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In this work, the p − pðp̄Þ Drell-Yan lepton pair production (DY) differential cross sections at hadron
colliders, such as LHC and TEVATRON, are studied in the kt-factorization framework. In order to take into
account the transverse momenta of incoming partons, we use the unintegrated parton distribution functions of
Kimber et al. (KMR) and Martin et al. (MRW) in the leading order (LO), and next-to-leading-order (NLO)
levels with the input MMHT2014 PDF libraries. Based on the different off shell partonic matrix elements, we
analyze the behaviors of DY differential cross sections with respect to the invariant mass, the transverse
momentum and the rapidity as well as the specific angular correlation between the produced leptons. The
numerical results are compared with the experimental data, in different energies, which are reported by
various collaborations, such as CDF, CMS, ATLAS, and LHCb. It is shown that the NLO-MRW and KMR
schemes predict closer results to the data compared to the LO-MRW, since we do not have fragmentation. It is
demonstrated that while the q� þ q̄� → γ�=Z þ g → lþ þ l− þ g subprocess has a negligible contribution, it
has a sizable effect in the low dilepton transverse momentum. In agreement with the NNLO, perturbative
quantum chromodynamics (pQCD), report (PYTHIA, SHERPA, etc.) by including the higher-order perturbative
contributions the better results are archived. On the other hand as the scale of energy increases, for the LHC
energies, the Compton subprocess, i.e., q� þ g� → γ�=Z → lþ þ l− þ q, has the largest contribution to the
differential cross section in the most intervals of some observables, as is expected. The variation of the
differential cross section with respect to the various variables such as the invariant mass, the center of mass
energy, etc. are discussed. In order to validate our results, we also consider the strong ordering constraint and
the KaTie parton-level event generator.

DOI: 10.1103/PhysRevD.104.056005

I. INTRODUCTION

Traditionally, the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equations [1–4] approach is used
to obtain the quark, antiquark and gluon densities, i.e., the
parton distribution functions (PDF), aðx; μ2Þ. These func-
tions depend on the Bjorken variable x and the hard scale
μ2, and can be easily used in the collinear QCD factori-
zation formalisms. In these DGLAP evolution approaches,
the transverse momentum (kt) components of partons are
integrated over and there is not any degree of freedom for
the initial gluon radiations and the transverse momentum
(kt) of the partons in the PDF. The outcome of hadron-
hadron colliders at high energies indicates that the explicit
inclusion of the intrinsic transverse momentum of initial
hadron constituents is important to get accurate results and

predictions. Therefore, the important inputs are the trans-
verse momentum dependent parton distribution functions
or the so-called “unintegrated” PDF (UPDF).
Theoretically, various methods are proposed to generate

these fundamental quantities, i.e., UPDF, and among them
the Balitsky-Fadin-Kuraev-Lipatov [5–9] (which is valid
for the small x and the scale k2t ) and Catani-Ciafaloni-
Fiorani-Marchesini (CCFM) [10–14] (which is applicable
at both the small and large x, the scales k2t and μ2) evolution
equations are considered extensively. Nevertheless, the
CCFM approach is both mathematically and numerically
more complicated and time consuming.
Recently, Kimber et al. (KMR) [15] and Martin et al.

(MRW) [16] proposed the KMR and MRW formalisms,
respectively, in the leading order (LO) and next-to-leading
order (NLO) levels. These formalisms were extensively
used to extract the UPDF, fðx; k2t ; μ2Þ, from the ordinary
PDF based on the kt-factorization approach of pQCD as
well as probing the partonic structures of hadrons [17–21].
The main difference between these two approaches is
originated from into the various types of imposing the
angular ordering constraints (AOC). We analyzed these
formalisms to calculate the proton structure functions and
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the different hadron-hadron differential cross sections in the
references [22–26].
The analysis of Drell-Yan lepton pair production (DY) in

the hadron-hadron collisions at high energies is the subject
of intense studies [27–35], since it provides an ideal ground
for testing the QCD predictions [36–39]. Many experi-
mental groups like the CDF, CMS, ATLAS, D0 and LHCb
Collaborations [27–34] try to compare the experimental
measurements of these DY (using the available energies of
the Tevatron and LHC colliders events of the corresponding
theoretical predictions from the pQCD and the parton level
Monte Carlo programs, such as ResBos [40], DYNNLO
[41], and POWHEGþ PYTHIA [42] event generators. The
ResBos method simulates the vector-boson production
and its decay, using a resumed treatment of the soft-gluon
emissions at the NLO-logarithm and the γ� and Z=γ�
contributions are simulated at the NLO accuracies. The
DYNNLO approach is a parton level Monte Carlo program
that computes the cross sections for the vector boson
production in the p − pðp̄Þ collisions up to the NNLO
in the pQCD theory. The PYTHIA program generates the
LO QCD interactions via its parton shower algorithms.
In a recent investigation [33] the distribution of dilepton
transverse momentum and angular variable ϕ�

η were calcu-
lated perturbatively at

ffiffiffi
s

p ¼ 8 TeV using the ResBos
Monte Carlo generator at NNLO accuracy and compared
to the ATLAS data. Although, the results at low values of
pT and ϕ�

η demonstrate good agreement with the data, this
is not the case at high values of pT and ϕ�

η.
In the present report, it is intended to calculate the DY

differential cross sections based on the KMR and MRW kt-
factorization approaches using the corresponding off shell
transition amplitudes. We consider the three subprocesses
namely; (1) q�þ q̄�→ γ�=Z→ lþþ l−, (2) q� þ g� →
γ�=Z → lþ þ l− þ q and (3) q� þ q̄� → γ�=Z þ g →
lþ þ l− þ g at the LO and NLO levels, respectively. The
dependence of the DY differential cross sections on the
dilepton transverse momentum, the invariant mass and
the rapidity distributions as well as the angular correlation
between the produced leptons are calculated in the above
frameworks and compared with the experimental data
developed by the CDF, CMS, ATLAS and LHCb collabo-
rations in both the Tevatron andLHCenergies. TheHarland-
Lang et al. (MMHT2014) PDF libraries [43] in the LO for
both the KMR [15] andMRW [16] formalisms and the NLO
for NLO-MRW approaches are considered. These calcula-
tions are performed for the off shell incoming partons.
We should also point out here that, recently, the con-

sideration of various angular ordering, as well as the
generation of different UPDF becomes the subject of
several reports [44,45]. In the reference [44], it is pointed
out that the KMR UPDF, which are generated using the
differential and integral approaches, give different results
in the region where kt > μ. Therefore it is concluded that,
the integral form of the KMRUPDF gives the correct result,

while for the application of differential form, one should
use the cutoff dependent PDF. On the other hand, in the
reference [46], the above idea is rejected, and a new term is
added to the Sudakov form factor via a Heaviside step
function, to set the Sudakov form factor equal to 1 in the
region where kt > μ. Further, it is claimed that the above
two forms of the KMR approach give the same result i.e.,
there is no need to introduce cutoff dependent PDF. Finally,
in the reference [46], by referring to this report, i.e., [47] (in
which the predictions of the KMR approach with the AOC
overestimates the data in case of the heavy quark produc-
tion) it is suggested that the above problem is due to the
freedom of the parton to have transverse momentum larger
than μ, and concluded that it is much more suitable to use
the KMRUPDF with the strong ordering constraint (SOC),
which harshly cuts the transverse momentum in kt > μ
region. Because of the above statements, and all of the
problems appear in kt > μ, we compute the DY differential
cross sections with respect to Mll and pll

T using the SOC
KMR UPDF to check the sensitivity of our results in this
region [see Figs. 1 (panel f) and 2 (panel d)]. One should
also note that, as is discussed in the reference [48], the
result of kt-factorization should not be as good as collinear
factorization approaches in covering the experimental
data—on the other hand, it is more simplistic considering
computer time consumption.
It should be also noted that the Sudakov form factor of

the KMR approach does not obey the multiplication law
according to the reference [52], but despite of this fact, it is
interesting to point out that the normalization condition [see
Eq. (1)] is approximately satisfied in the KMR formalism
(which is a critical issue in constructing any new UPDF).
The kt-factorization calculations were also performed by

considering one or two of the above three subprocesses
with the MSTW2008 PDF [53–55]. In these works,
although the authors declare that they use the KMR
formalism, they do not take into account the factor 1=k2t
in the cross section nor in the normalization formulas

xaðx; μ2Þ ≃
Z

μ2 dk2t
k2t

fðx; k2t ; μ2Þ: ð1Þ

Additionally, they use different angular ordering conditions
with respect to the KMR prescriptions (we refer to them as
semi-KMR). However, their results are surprisingly close to
the experimental data. In the above references [54,55], it is
claimed that the second and the third of the above sub-
processes can be omitted by effectively using only the
reggeized (off shell) quark approach in the first subprocess.
A brief discussion about the result of these reports and the
comparisonwith our predictions are presented in the Sec. III.
In reference [54], although the off shell initial quarks are
used, it is shown that utilizing the reggeized model and the
effective vertexes guarantee the gauge invariance of the
transitionmatrix elements (TME). However, in our previous
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work [56], we showed that using the off shell initial quarks in

the kt-factorization dynamics and in the small x regions

leads to gauge invariance of the TME, too.
To check the validity of our calculated cross sections the

KaTie parton-level event generator [57] is used (in which
the off shell partonic cross sections are taken care of) and
gives the hadronic cross section with desirable accuracy.
However, we are not intending to solely show the result of
cross section as it can be simply done with the KaTie
parton-level event generator [57] [see Figs. 1 (panel f) and 2
(panel h)]. Our intention is to check the effects of different
impositions of the cutoff Δ, which is additionally imposed
on the quark radiation term in the KMR approach. We also
want to check the other forms of the DGLAP based UPDF,
i.e., NLO-MRW, in which Martin et al. used the virtuality
k2 ¼ k2t =ð1 − zÞ. The UPDF of this form are rarely inves-
tigated in the phenomenological applications of the
kt-factorization. We include the subprocess q� þ q̄� →
γ�=Z → lþ þ l− þ g which usually is neglected e.g.,
[53]. In the others works, including those that are cited
in our paper [53], the combinations of KMR and MRW

formalisms are used incorrectly and they forget about the
importance of the normalization constraint [Eq. (1)] on
the UPDF. This point is discussed in detail in Ref. [56].
One should note that the KMR prescription is a semi-NLO.
Another important item is the fragmentation effect, which
are not presented in the processes that are discussed in our
paper. Because of that, as it is explained in the paper,
the KMR and NLO-MRW procedures demonstrate better
agreement to the experimental data.
The outline of our paper is as follows. In Sec. II,

we briefly present the basic cross section formulas of
kt-factorization (II A) approach and the derivation of input
UPDF (II B). In Sec. III we present numerical calculations
(III A), results presentations (III B), and discussions (III B).
Section IV expresses our conclusions.

II. THE THEORETICAL FRAMEWORK OF DY

A. The kt-factorization cross section formulas

Our DY differential cross section calculations are based
on the kt-factorization in the KMR and MRW UPDF
[15,16] approaches. Therefore, in this section, we describe

(a) (b)

(c) (d)

(e) (f)

FIG. 1. The (double) differential cross sections of DYat Tevatron and LHC as a function of the dilepton invariant mass at ECM ¼ 1.8
and 7 TeV compared to the CDF and ATLAS data [49–51]. The numerical results related to the KMR UPDF are shown in left panels.
The contribution of the q� þ q̄� → γ�=Z → lþ þ l−, q� þ g� → γ�=Z → lþ þ l− þ q and q� þ q̄� → γ�=Z þ g → lþ þ l− þ g sub-
processes are presented by dash, dotted-dash and dotted histograms. In the right panels, the results corresponding to the KMR, LO and
NLO-MRWUPDF are shown by solid, dashed and dotdashed histograms respectively and compared with each other. The shaded bands
indicate the corresponding uncertainty for KMR calculations (see the text for details about the SOC and KaTie results).
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the theoretical framework of these approaches as well as the
corresponding matrix elements (see Appendix A). As we
pointed out in the introduction, we include all the sub-
process contributions up to the ααs level, namely:
q� þ q̄� → γ�=Z → lþ þ l−, q�þg�→ γ�=Z→ lþþ l−þq
and q� þ q̄� → γ�=Z þ g → lþ þ l− þ g. From the kin-
ematical point of view, if we show the four-momenta of

the incoming protons (partons) by Pð1Þ (kð1Þ) and Pð2Þ (kð2Þ)
and neglect their masses, then in the proton center of mass
framework we have

Pð1Þ ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ; Pð2Þ ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ; ð2Þ

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. The normalized differential cross section of Drell-Yan lepton pair production at LHC as a function of the dilepton transverse
momentum, at ECM ¼ 7 and 8 TeV compared to the different collaborations data from the CMS [27] and ATLAS [31,58]. The notation
of all histograms is the same as in Fig. 1 (see the text for details about the SOC and KaTie results).
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where
ffiffiffi
s

p
is the total center of mass energy. In the high

energy and the leading log-approximation kinematics, the
corresponding parton four-momenta can be written in terms
of their transverse momenta k1t and k2t, and the fraction (xi)
of the incoming protons momentum as

k1 ¼ x1Pð1Þ þ k1t; k2 ¼ x2Pð2Þ þ k2t: ð3Þ

There are some relations for the above three subprocesses
due to the energy-momentum conservation law as follows:

k1t þ k2t ¼ p1t þ p2t; ð4Þ

x1 ¼
1ffiffiffi
s

p ðm1tey1 þm2tey2Þ; ð5Þ

x2 ¼
1ffiffiffi
s

p ðm1te−y1 þm2te−y2Þ; ð6Þ

for the first subprocess and

k1t þ k2t ¼ p1t þ p2t þ p3t; ð7Þ

x1 ¼
1ffiffiffi
s

p ðm1tey1 þm2tey2 þm3tey3Þ; ð8Þ

x2 ¼
1ffiffiffi
s

p ðm1te−y1 þm2te−y2 þm3te−y3Þ: ð9Þ

for the second and third subprocesses, where pit, yi andmit
are the transverse momenta, the rapidities and the trans-
verse masses (m2

it ¼ m2
i þ p2

it) of the produced particles,
[i ¼ 1 and 2 for leptons, and i ¼ 3 for (anti-) quark or
gluon], respectively.
To calculate the matrix elements squared in the

kt-factorization framework [59], the summation over the
incoming off shell gluon polarizations is carried out as

X
εμεν ¼ kμ2tk

ν
2t=k

2
2t; ð10Þ

where kt is the gluon transverse momentum. For the off
shell quark spinors with momentum k (after imposing
the Sudakov decomposition in the high energy and the
leading log-approximation kinematics [60]), we haveP

uðkÞūðkÞ ≃ xP̂
k2t
, where x represents the fractional longi-

tudinal momentum of the proton (see Refs. [56,61,62]).
Also, the effective vertices are used to calculate the
Feynman amplitudes to test and ensure the gauge invari-
ance of the different matrix elements [63–65]. It is worth
pointing out that a similar technique is also developed,
using the Slavnov-Taylor identities by the means of the
helicity amplitude [66–68] and being checked against those
obtained by usage of Lipatovs effective action [63–65], as
we pointed out.

To calculate the differential cross sections of DY,
according to the kt-factorization theorem, for 2 → 2 sub-
process we have

σ1 ¼
X
q

Z
1

16πðx1x2sÞ2
jMγ�

1 þMZ
1 j2

× fqðx1; k21t; μ2Þfq̄ðx2; k22t; μ2Þ
dk21t
k21t

×
dk22t
k22t

dp2
1tdp

2
2tdy1dy2

dϕ1

2π

dϕ2

2π
; ð11Þ

and for 2 → 3 subprocess one finds

σ2ð3Þ ¼
X
q

Z
1

256π3ðx1x2sÞ2
jMγ�

2ð3Þ þMZ
2ð3Þj2

× fqðx1; k21t; μ2Þfgðq̄Þðx2; k22t; μ2Þ
dk21t
k21t

×
dk22t
k22t

dp2
1tdp

2
2tdy1dy2dy3

dϕ1

2π

dϕ2

2π

dψ1

2π

dψ2

2π
;

ð12Þ

where fqðxi; k2it; μ2Þ are the UPDF, which depend on the
two hard scales, k2t and μ2, and they can be written in terms
of the usual PDF. As we pointed out in the Introduction, in
the present calculations, the MMHT2014 PDF [43] is used
for calculating the UPDF. In the above formula,Mj

i are the
off shell matrix elements which are presented for the three
different subprocesses in Appendix A. Note that when we
square the matrix elements of each three subprocesses we
get the interference effect between γ� and Z production,
which will be discussed in Sec. III. The azimuthal angles of
the initial partons and the produced leptons are presented
by ϕ1 and ϕ2, and ψ1 and ψ2, respectively. Then the total
cross section can be written as

σTotal ¼ σ1 þ σ2 þ σ3: ð13Þ

To calculate the UPDF of (anti-)quarks and gluons in a
proton, we apply the LO KMR, LO MRWand NLO-MRW
approaches [15,16]. In the following each of them will be
described.

B. The KMR and MRW UPDF

In the KMR method the UPDF of each parton (which
means the probability to find a parton with transverse
momentum kt and fractional momentum x at hard scale μ2)
are given by
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faðx; k2t ; μ2Þ ¼ Taðk2t ; μ2Þ

×
X
b¼q;g

�
αSðk2t Þ
2π

Z
1−Δ

x
dzPð0Þ

ab ðzÞb
�
x
z
; k2t

��
;

ð14Þ

where Taðk2t ; μ2Þ is

Taðk2t ; μ2Þ ¼ exp

�
−
Z

μ2

k2t

αSðk2Þ
2π

dk2

k2

×
X
b¼q;g

Z
1−Δ

0

dz0Pð0Þ
ab ðz0Þ

�
; ð15Þ

which is the familiar Sudakov survival form factor
and limits the emissions of partons between k2t and μ2

scales [15,16]. Pð0Þ
ab ðzÞ are the usual LO splitting functions.

In this formula the angular-ordering constraint (AOC)
[10–14,69,70], Δ, is applied in the upper limit of the
integration, which is an infrared cutoff to prevent the soft
gluon singularities arising from the splitting functions and
is defined as

Δ ¼ kt
μþ kt

: ð16Þ

Note that this constraint is imposed on both quark and
gluon radiations. bðxz ; k2t Þ are the LO PDF, and in this work
they are taken from the MMHT2014 libraries [43].
To determine the UPDF we also apply the MRW

prescription which is similar to the KMR formalism, but
the AOC only acts on the terms which include the on shell
gluon emissions. For the quarks and the gluons they take
the following forms:

fLOq ðx; k2t ; μ2Þ

¼ Tqðk2t ; μ2Þ
αSðk2t Þ
2π

Z
1

x
dz

�
Pð0Þ
qq ðzÞ x

z
q

�
x
z
; k2t

�

× Θ
�

μ

μþ kt
− z

�
þ Pð0Þ

qg ðzÞ x
z
g

�
x
z
; k2t

��
; ð17Þ

with

Tqðk2t ; μ2Þ ¼ exp

�
−
Z

μ2

k2t

αSðk2Þ
2π

dk2

k2

Z
zmax

0

dz0Pð0Þ
qq ðz0Þ

�
;

ð18Þ

and

fLOg ðx; k2t ; μ2Þ ¼ Tgðk2t ; μ2Þ
αSðk2t Þ
2π

Z
1

x
dz

�
Pð0Þ
gq ðzÞ

X
q

x
z
q

�
x
z
; k2t

�
þ Pð0Þ

gg ðzÞ x
z
g

�
x
z
; k2t

�
Θ
�

μ

μþ kt
− z

��
; ð19Þ

with

Tgðk2t ; μ2Þ ¼ exp

�
−
Z

μ2

k2t

αSðk2Þ
2π

dk2

k2

�Z
zmax

zmin

dz0z0PðLOÞ
gg ðz0Þ þ nf

Z
1

0

dz0Pð0Þ
qg ðz0Þ

��
; ð20Þ

respectively. In the above equations, zmax ¼ 1 − zmin ¼ μ
μþkt

[71].
By expanding MRW to the NLO level, we have

fNLOa ðx; k2t ; μ2Þ ¼
Z

1

x
dzTa

�
k2 ¼ k2t

ð1 − zÞ ; μ
2

�
αSðk2Þ
2π

X
b¼q;g

P̃ð0þ1Þ
ab ðzÞ × bNLO

�
x
z
; k2

�
Θ
�
1 − z −

k2t
μ2

�
: ð21Þ

In this formalism the Sudakov form factor is defined as

Tqðk2; μ2Þ ¼ exp

�
−
Z

μ2

k2

αSðq2Þ
2π

dq2

q2

Z
1

0

dz0z0½P̃ð0þ1Þ
qq ðz0Þ þ P̃ð0þ1Þ

gq ðz0Þ�
�
; ð22Þ

Tgðk2; μ2Þ ¼ exp

�
−
Z

μ2

k2

αSðq2Þ
2π

dq2

q2

Z
1

0

dz0z0½P̃ð0þ1Þ
gg ðz0Þ þ 2nfP̃

ð0þ1Þ
qg ðz0Þ�

�
: ð23Þ

The higher order splitting functions are presented in Appendix B.
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III. NUMERICAL RESULTS AND DISCUSSIONS

A. Numerical calculations

In this section, we present the kinematics and theoretical
inputs of our calculations. First, we calculate the UPDF
based on the different kt-factorization schemes by using
two different methods, i.e., KMR and MRW. Through our
calculations, we set the renormalization and factorization
scales to be equal to μR ¼ μF ¼ ζM, in which M ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p1tp2t½coshðy1 − y2Þ − cosðϕ1 − ϕ2Þ�

p
is the invariant

mass of produced dileptons and as usual we consider
the default value ζ ¼ 1 [56]. We let this parameter to vary
from 1=2 to 2, to estimate the scale uncertainties of our
calculations. We also set mZ ¼ 91.187 GeV and ΛQCD ¼
200 MeV with nf ¼ 4 active quark flavors. Using the LO
coupling constant, we get αsðM2

ZÞ ¼ 0.123 (gW ¼ 0.66).
Second, with the massless quarks approximation, the
calculation of transition matrix elements squared is carried
out using the small x approximation presented in
Appendix A, by the means of FeynCalc [72] i.e., the
Mathematica package for symbolic semiautomatic evalu-
ation of Feynman diagrams. In this paper, the nonlogar-
ithmic loop corrections to the q-q̄ annihilation cross section
are taken into account by applying the effective K-factor
with a particular scale choice of μ2 ¼ p4=3

T M2=3 as it was
done, for example, in the references [26,53,73], i.e.,

K ¼ exp

�
CF

αsðμ2Þ
2π

π2
�
;

where pT , [pT ¼ jp⃗1t þ p⃗2tj, see above Eq. (9)] is the
transverse momentum of produced dileptons and CF is the
color factor. To calculate the multidimensional integration,
the VEGAS routine [74] is used. The differential cross
sections at several center of mass energies, i.e., 1.96, 7, and
8 TeV as a function of the dilepton invariant mass (M),
rapidity (y), transverse momentum (pT), and the variable
ϕ�
η [34,75–77] i.e.,

ϕ�
η ¼ tan

�
ϕacop

2

��
cos

�
Δη
2

��
−1
;

are calculated with ϕacop ¼ π − jΔϕj, where Δη and Δϕ
are the pseudorapidity and azimuthal angle differences
between the produced leptons, respectively. The variable ϕ�

η

is correlated to the quantity jpT j=M and both of them
probes the same physics as the dilepton transverse momen-
tum, but it gives a better experimental resolution [78–80].

B. Results presentations

The results of above numerical calculations are com-
pared with the experimental data of DY at the Tevatron
and LHC laboratories with the total center of mass energyffiffiffi
s

p ¼ 1.8 TeV and
ffiffiffi
s

p ¼ 7 and 8 TeV, respectively. We use
the data from different groups such as the CDF, CMS,

ATLAS and LHCb collaborations. The available pQCD
predictions are also presented in each figure.
The above comparisons are demonstrated in the

Figs. 1–10 as follows:
(1) In all of the figures, the numerical results related to

the KMRUPDF are shown in the left panels in which
the dash, dotted-dash and dotted histograms corre-
spond to the contribution of individual subprocesses,
i.e., q�þ q̄�→ γ�=Z→ lþþ l−, q�þg�→ γ�=Z→
lþþ l−þq and q�þ q̄�→ γ�=Zþg→ lþþ l−þg re-
spectively. The shaded bands indicate the correspond-
ing uncertainty (1

2
≤ ζ ≤ 2) due to the hard scale

variation with KMR UPDF in cross sections evalu-
ation. Unlike the present paper, most of the previous
phenomenological works with the semi-KMR UPDF
for the DY differential cross sections did not present
the contributionof each subprocess in their final results
and also, did not take into account the contribution of
the third subprocess (assuming the possible double
counting [53,54] between the first and the third
subprocesses). However, according to our previous
papers [25,56], we do not believe that there is any
double counting among the first and the third sub-
processes. This point will be discussed in Sec. III C.

(2) In the right panels of each figure, the results of different
UPDF applications, namely KMR, LO-MRW and
NLO-MRW, in the differential cross sections are
shown by the solid, dash and dotted-dash histograms,
respectively, for the possible comparisons.

(3) Figs. 1–10, demonstrate the DY differential cross
sections versus the diplepton invariant mass (M),
the transverse momentum (pT), the variable ϕ�

η and
the rapidity (y), respectively (see the caption of each
figure for more details).

C. Discussions

First, we generally start by analyzing the calculated cross
sections related to the medium and high center of mass
energies for

ffiffiffi
s

p ¼ 1.8 and 7 TeV. Although the results
show that the KMR UPDF describe reasonably the wide
range of data of Tevatron and LHC, we note that for the two
sets of differential cross section data which are in terms
of pT and ϕ�

η parameters, this is not the case. Indeed, in
these two cases, the input NLO-MRW UPDF describe the
data better than other schemes. To be sure about this
conclusion, we try to include the newer data from the
ATLAS Collaboration at

ffiffiffi
s

p ¼ 8 TeV. The results of this
double check are presented in the different panels of
Figs. 2–8. The final comparisons (as we will discuss
below) indicate that among the three different schemes
(i.e., KMR, LO-MRW, and NLO-MRW UPDF) the NLO-
MRW one, on average, is more suitable for describing the
experimental data and it confirms other group reports of
NNLO pQCD calculations [81]. We should point out here
that in our previous work e.g., Ref. [56], the KMR and
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LO-MRW had a better agreement to the data (because of
the possible fragmentation effects).
The results of double and single differential cross

sections dσ
dMdy and dσ

dM versus the invariant mass of the

dilepton are compared to the experimental data at
ffiffiffi
s

p ¼ 1.8
and 7 TeV and are shown in Fig. 1 (panels (a) and (b) and
(c) to (f), respectively). In the panels (a) to (d) of this figure,
as is expected, the Z boson mass peak is observed around

the M ¼ 91 GeV. In these panels, it is clear that in the
small M region ðM < MzÞ which corresponds to the
medium and large pT , the contribution of LO q-q̄ sub-
processes to the cross section is less than the other ones.
However, by increasing the invariant mass of dilepton,
its effect become larger than the other subprocesses. In
panels (b), (d), and (f), the comparison between all three
approaches i.e., KMR, LO-MRW and NLO-MRW are

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. The normalized differential cross section of Drell-Yan lepton pair production at LHC as a function of dilepton transverse
momentum at ECM ¼ 8 TeV compared to the ATLAS data [33]. The notation of all histograms is the same as in Fig. 1.
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presented, and a similar behavior spatially at the Z boson
mass region is observed. In panel (d) it is clear that the
results of the three methods are more or less the same,
but in panel (f) the KMR method shows better agreement
with the experimental data. Our results in panels (c)–(f) are
also close to those of PYTHIA [42] and SHERPA [49],
especially in the small M regions, but the reggeized
[54,55] model is below our predictions. According to these
panels, although our results show a overestimate and
underestimate in the low and high dilepton invariant mass
region, the uncertainty bands of our calculations cover the
experimental data. In addition, the results of the SOC and
the KaTie parton-level event generator are presented in
panel (f) of this figure. It is clear that there is not any
significant difference between these results.
In Figs. 2–4, the normalized differential cross sections of

DYas a function of pT , at
ffiffiffi
s

p ¼ 7 and 8 TeVare compared
to the CMS and ATLAS Collaborations data. As expected,
in all three figures, the first subprocess has the main
contribution while as we go to the higher center of mass

energy i.e., 8 TeV, the second subprocess also becomes
important, especially with the increase of dilepton mass
[see panels (e) and (g) of the Fig. 2]. In this figure, the
results of applying the SOC and the KaTie parton-level
event generator are compared in panels (d) and (h),
respectively. It is observed that in most of the regions,
there is not a significant difference between the two
methods. Also in Figs. 3 and 4 in which the rapidity is
increased, only the second subprocess is sensitive to the
rapidity in small pT . However, in the large pT region
(pT > 10) the contribution of second subprocess i.e., q-g,
becomes enhanced and in the middle of pT region only the
first and the second subprocesses are of the same order.
By considering the above three UPDF methods, one can
find that for pT < 40, they behave very similarly such that
the LO-MRW and NLO-MRW are the upper and lower
band of KMR, respectively. The experimental data also
pass through the AOC band (see Ref. [56]). A comparison
between our results and the parton level Monte Carlo
programs such as PYTHIA and SHERPA are also presented.

(a) (b)

(c) (d)

(e) (f)

FIG. 4. The differential cross section of Drell-Yan lepton pair production at LHC as a function of the dilepton transverse momentum at
ECM ¼ 8 TeV compared to the ATLAS data [33]. The notation of all histograms is the same as in Fig. 1.
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According to these panels, although our results show a
overestimate and underestimate in the low and high
dilepton invariant mass region, the uncertainty band of
our calculations covers the experimental data.
In Figs. 5–8, the normalized differential cross sections of

DY at LHC as a function of the variable ϕ�
η and different

experimental conditions on the dilepton rapidity and
invariant mass are presented. According to these figures

(except Fig. 5), it is clear that in the small ϕ�
η region, which

corresponds to the back-to-back leptons, the contribution of
the first and the second subprocesses are dominated and
approximately in the same order. But in Fig. 5, which is
demonstrated for the small mass interval, all of the three
subprocesses are of the same order for the small ϕ�

η region.
On the other hand for ϕ�

η > 0.01 the three subprocesses are
separated and as it is expected contribution of the first

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. The normalized differential cross section of Drell-Yan lepton pair production at LHC as a function of ϕ�
η at ECM ¼ 8 TeV

compared to the ATLAS data [33]. The notation of all histograms is the same as in Fig. 1.
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subprocess becomes enhanced and dσ1
σdϕ�

η
> dσ2

σdϕ�
η
≫ dσ3

σdϕ�
η
. In

the right panels of these figures, the same conclusion as
above can be made about the effect of different UPDF
methods in which up to ϕ�

η < 0.1 they behave the same, and
for larger ϕη the NLO-MRW UPDF cross section calcu-
lations predict closer results to the corresponding data.

The AOC and uncertainty bands approximately cover the
ATLAS collaboration data.
The differential cross sections of DY with respect to the

rapidity of dilepton versus y are plotted in the various
panels of Figs. 9 and 10. It is observed that on average the
second subprocess (qg) is dominant, especially in the mid-y
region, compared to the other two subprocesses. On the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. The normalized differential cross-section of Drell-Yan lepton pair production at LHC as a function of ϕ�
η at ECM ¼ 8 TeV

compared to the ATLAS data [33]. The notation of all histograms is the same as in Fig. 1.
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other hand, by comparing the right panels of these figures,
one can conclude that again the NLO-MRW and KMR
methods give closer results to experimental data with
respect to the LO-MRW procedure.
In addition, our results are slightly different from

Ref. [54] as we use different PDF, UPDF and methods.
Indeed, we use the original method introduced by Kimber

et al. and consider the correct form of the normalization
equation (1).
It is notable that the redefined form of normalization

equation as xaðx; μ2Þ ≃ R
μ2 dk2t fðx; k2t ; μ2Þ without the

factor 1=k2t does not lead to the collinear form of cross
section after integrating over k2t . In Ref. [54] the unpolar-
ized DY in the pp collisions is investigated at the LHC

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. The normalized differential cross section of Drell-Yan lepton pair production at LHC as a function of ϕ�
η at ECM ¼ 8 TeV

compared to the ATLAS data [33]. The notation of all histograms is the same as in Fig. 1.
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energies by CCFM and semi-KMR within the reggeized
quark formalism [54,55] to be sure about the gauge
invariance of matrix elements. However, as we discussed
in our previous work [56], the gauge invariance is guar-
anteed because of applying the small x approximation
in our calculations. As we pointed out before, in Figs. 1
(panel f) and 2 (panel b), our results are compared with those

of references [54,55]. On the other hand, our results are
compared with those of PYTHIA [50] [Fig. 1 (panels c–f)],
SHERPA [49] [Figs. 1 (panels e–f) and 3 (panels a,c,e)],
FEWZ [83] [Fig. 7 (panels g–h)] and RESBOS [84]
[Figs. 4 (panel e) and 7 (panel e)]. It is observed that in
the regions in which the higher order calculations are
not important our results are similar to those of pQCD.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8. The normalized differential cross section of Drell-Yan lepton pair production at LHC as a function of ϕ�
η and dilepton

transverse momentums at ECM ¼ 8 TeV compared to the ATLAS data [33]. The notation of all histograms is the same as in Fig. 1.
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However, in some parts, spatially for high pT and ϕ�
η, the

NLO-MRWUPDF scheme shows slightly different behavior
with respect to the data and the pQCD methods.
In several papers such as Ref. [81], the authors denote that

the description of two observables, including the pT and ϕ�
η

distributions, are improved, if the higher order perturbative
contributions are taken into account, which agrees with the
cross check we performed. On the other hand as the scale of
energy increases, for the LHC energies, the q-g subprocess
has the largest contribution to the differential cross section in
the most intervals of pT and ϕ�

η, as expected.
We also checked the interference effect between the γ�

and Z in the cross sections and found out that the
interference is ignorable in all regions.
Finally, we would like to point out that there is a new

CMS measurement on the differential cross sections of

the Z boson production in the P − P collisions [85]. In
Figs. 7 (in terms of pZ

T) and 8 (in terms of ϕ�
η of dilepton)

of this report, the CMS data are compared to the
theoretical works presented in Refs. [86–89], in which
the UPDF [the so called transverse momentum dependent
distribution functions (TMD)] are calculated, using the
Parton Branching (PB) model. In this PB TMDmodel, the
resummation to NLL accuracy, the fixed-order results at
NLO, and the nonperturbative contributions are taken
into account. The PB TMD results can predict the data
well at low pZ

T, but deviates from the measurements at
high pZ

T , because of missing contributions from Zþ jets
matrix element calculations. Furthermore, in the present
work, we do not use the LHAPDF [90] or TMDlib [91]
repositories, but we hope in our future papers we can
analyze the difference between the applications of present

(a) (b)

(c) (d)

(e) (f)

FIG. 9. The normalized differential cross section of Drell-Yan lepton pair production at LHC as a function of the dilepton rapidity at
ECM ¼ 7 TeV compared to the ATLAS data [82]. The notation of all histograms is the same as in Fig. 1.
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PDF and UPDF with those can be generated through
LHAPDF and TMDlib repositories.

IV. CONCLUSIONS

We investigated the lepton pair production in the p-p and
p-p̄ collisions within the framework of kt-factorization
approach. We used the transverse momentum dependent
parton distribution functions of three different prescrip-
tions, i.e., KMR, LO-MRWand NLO-MRW.We calculated
the matrix element square for the three different sub-
processes among which the matrix element square for
the q-q̄ in the NLO level is rarely taken into account. We
calculated several differential cross sections in terms of the
dilepton invariant mass, transverse momentum and rapidity,
as well as the angular correlation between produced leptons
of the Drell-Yan process. In addition, we obtained the
uncertainty band for the cross section distribution in the
case of KMR by changing the scale factor as described in
Sec. III. We considered the contribution of each subprocess
separately based on the off shell and massless quarks. We
found that although some of the results show that using the
KMR framework, rather than LO-MRW and NLO-MRW
schemes, represents better agreement with the experimental
data, in the case of pT and ϕ�

η probing the NLO-MRW gave
better predictions. It is shown that the AOC and SOC
constraints give similar results and our direct calculations
of the off shell matrix elements and the method of

integration for evaluation of the cross section give the
same prediction as those of KaTie parton-level event
generator.
Finally, in this work we consider the renormalization

and factorization scales to be equal i.e., μR ¼ μF ¼ ζM,
in which, M is the invariant mass of produced dilepton
and ζ can vary from 1=2 to 2, to estimate the scale
uncertainties of our calculations. However as stated in
Ref. [85], one can vary each scale independently.
Additionally, it is possible to find the uncertainty, which
comes through the implementation of PDF through
UPDF, but it should not be as large as the uncertainty
effect due to the variation of renormalization and fac-
torization scales. We hope to verify these effects in our
future paper.
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APPENDIX A: THE MATRIX ELEMENTS

The matrix elements of three subprocesses can be
presented as follows:

Mγ
1 ¼ ie2eqῡs1ðk2Þγμus2ðk1Þ

gμν
s
ūr1ðp1Þγνυr2ðp2Þ; ðA1Þ

(a) (b)

(c) (d)

FIG. 10. The normalized differential cross section of Drell-Yan lepton pair production at LHC as a function of the dilepton rapidity at
ECM ¼ 7 TeV compared to the ATLAS data [82]. The notation of all histograms is the same as in Fig. 1.
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MZ
1 ¼ i

g2w
4 cos2 θw

ῡs1ðk2ÞγμðCq
V − Cq

Aγ
5Þus2ðk1Þ ×

�
gμν −

ðk1 þ k2Þμðk1 þ k2Þν
m2

Z

�
ūr1ðp1ÞγνðCe

V − Ce
Aγ

5Þυr2ðp2Þ
ðs −m2

Z − imZΓZÞ
; ðA2Þ

Mγ
2 ¼ −e2eqgstaεμðk2Þus1ðk1Þ

�
γμ

k̂1 þ k̂2
s

γν þ γν
−k̂2 þ p̂3

ð−k2 þ p3Þ2
γμ
�
ūs2ðp3Þ ×

gμν
ðp1 þ p2Þ2

ūr1ðp1Þγρυr2ðp2Þ; ðA3Þ

MZ
2 ¼ −

g2wgs
4 cos2 θw

taεμðk2Þus1ðk1Þ
�
γμðCq

V − Cq
Aγ

5Þ k̂1 þ k̂2
s

γν þ γν
−k̂2 þ p̂3

ð−k2 þ p3Þ2
γμðCq

V − Cq
Aγ

5Þ
�
ūs2ðp3Þ

×
�
gρν −

ðp1 þ p2Þρðp1 þ p2Þν
m2

Z

�
ūr1ðp1ÞγρðCq

V − Cq
Aγ

5Þυr2ðp2Þ
ðp1 þ p2Þ2 −m2

Z − imZΓZ
; ðA4Þ

Mγ
3 ¼ −e2eqgstaεμðp3Þus1ðk1Þ

�
γμ

k̂1 − p̂3

ðk̂1 − p̂3Þ2
γν þ γν

−k̂2 þ p̂3

ð−k2 þ p3Þ2
γμ
�
ῡs2ðk2Þ ×

gνρ
ðp1 þ p2Þ2

ūr1ðp1Þγρυr2ðp2Þ; ðA5Þ

MZ
3 ¼ −

g2wgs
4 cos2 θw

taεμðp3Þus1ðk1Þ ×
�
γμðCq

V − Cq
Aγ

5Þ k̂1 − p̂3

ðk̂1 − p̂3Þ2
γν þ γν

−k̂2 þ p̂3

ð−k2 þ p3Þ2
γμðCq

V − Cq
Aγ

5Þ
�
ῡs2ðk2Þ

×
�
gρν −

ðp1 þ p2Þρðp1 þ p2Þν
m2

Z

�
ūr1ðp1ÞγρðCq

V − Cq
Aγ

5Þυr2ðp2Þ
ðp1 þ p2Þ2 −m2

Z − imZΓZ
; ðA6Þ

where s ¼ ðk1 þ k2Þ2 and the electron and quark (frac-
tional) electric charges are denoted by e and eq. Other
notations are the same as the reference [53].

APPENDIX B: THE SPLITTING FUNCTIONS

The NLO splitting functions are defined as [21]

P̃ð0þ1Þ
ab ðzÞ ¼ P̃ð0Þ

ab ðzÞ þ
αS
2π

P̃ð1Þ
ab ðzÞ; ðB1Þ

with

P̃ðiÞ
abðzÞ ¼ PðiÞ

abðzÞ − Θðz − ð1 − ΔÞÞδabFðiÞ
abPabðzÞ; ðB2Þ

where i ¼ 0 and 1 stand for the LO and the NLO,
respectively. Δ can be defined as [16]

Δ ¼ k
ffiffiffiffiffiffiffiffiffiffi
1 − z

p

k
ffiffiffiffiffiffiffiffiffiffi
1 − z

p þ μ
;

and we have

Fð0Þ
qq ¼ CF; ðB3Þ

Fð1Þ
qq ¼ −CF

�
TRNF

10

9
þ CA

�
π2

6
−
67

18

��
; ðB4Þ

Fð0Þ
gg ¼ 2CA; ðB5Þ

Fð1Þ
gg ¼ −2CF

�
TRNF

10

9
þ CA

�
π2

6
−
67

18

��
; ðB6Þ

PqqðzÞ ¼
ð1 − z2Þ
1 − z

; ðB7Þ

PggðzÞ ¼
z

ð1 − zÞ þ
ð1 − zÞ

z
þ zð1 − zÞ; ðB8Þ
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