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We evaluate the next-to-leading (NLO) corrections to the perturbative (PT) and ⟨𝛼𝑠𝐺2⟩ condensate and the LO 
constant term of the ⟨𝐺3⟩ contributions to the 2++ tensor di-gluonium two-point correlator. Using these results 
into the inverse Laplace transform sum rules (LSR) moments and their ratio, we estimate the mass and coupling 
of the lowest ground state. We obtain: 𝑀𝑇 = 3028(429) MeV and the renormalization group invariant (RGI) 
coupling 𝑓𝑇 = 167(40) MeV within a vacuum saturation estimate of the 𝐷 = 8 dimension gluon condensates 
(𝑘𝐺 = 1). We study the effect of 𝑘𝐺 on the result and find: 𝑀𝑇 = 3188(405) MeV and 𝑓𝑇 = 164(28) MeV for 
𝑘𝐺 = (3 ± 2). Absolute upper bounds for the mass and coupling from the positivity of the spectral function are 
also derived. Our result does not favour the pure gluonia/glueball nature of the observed 𝑓2(2010, 2300, 2340)
states.
1. Introduction

Since the pioneering work of Novikov et al. (NSVZ) [1], some efforts 
have been done for improving the determination of the 2++ tensor di-

gluonium mass and coupling either using a least-square fit method [2]

or stability criteria [3,4]).1 To Lowest Order (LO) of perturbative QCD 
(PT) and including the dimension 𝑑 = 8 condensates estimated by (SVZ) 
[6] using vacuum saturation, the up-to-date results are [4]2:

𝑓𝑇 |𝐿𝑂 = 113(20) MeV,

𝑀𝑇 |𝐿𝑂 = 2.0(1) GeV, 𝑀𝑇 |𝐿𝑂 ≤ 2.7(4) GeV. (1)

In this paper, we shall improve these LO results by including NLO cor-

rections and checking the effect of the violation of vacuum saturation 
on the results.

2. The QCD 𝟐++ di-gluonium two-point function

We shall be concerned with the two-point function3:

𝜓
𝜇𝜈𝜌𝜎

𝑇
(𝑞2) ≡ 𝑖 ∫ 𝑑4𝑥𝑒𝑖𝑞𝑥⟨0|𝜃𝜇𝜈

𝐺
(𝑥)

(
𝜃
𝜌𝜎

𝐺

)† (0)|0⟩
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1 For recent reviews on the status of gluonia/glueballs, see e.g. [5] and references quoted therein.
2 Tachyonic gluon mass contribution though important for recovering the universal scale of the gluonia channels does not contribute in the unsubtracted sum rule 

analysis as it has no imaginary part [7]. We have rescaled the normalization of the coupling by a factor 
√
2.

3 For relations among different form factors, see e.g. [7].

=
(
𝑃𝜇𝜈𝜌𝜎 ≡ 𝜂𝜇𝜌𝜂𝜈𝜎 + 𝜂𝜇𝜎𝜂𝜈𝜌 − 2

𝑛−1 𝜂
𝜇𝜈𝜂𝜌𝜎

)
𝜓𝑇 (𝑞2), (2)

built from the gluon component of the energy-momentum tensor4:

𝜃
𝜇𝜈

𝐺
= 𝛼𝑠

[
−𝐺𝜇,𝑎

𝛼
𝐺𝜈𝛼
𝑎

+ 1
4
𝑔𝜇𝜈𝐺𝑎

𝛼𝛽
𝐺𝛼𝛽
𝑎

]
, (3)

with:

𝜂𝜇𝜈 ≡ 𝑔𝜇𝜈 − 𝑞𝜇𝑞𝜈∕𝑞2 ∶ 𝑃𝜇𝜈𝜌𝜎𝑃
𝜇𝜈𝜌𝜎 = 2(𝑛2 − 𝑛− 2) , (4)

where: 𝑛 = 4 + 2𝜖 is the space-time dimension used for dimensional 
regularization and renormalization. To LO and up to dimension 𝐷 = 8
gluon condensates, the QCD expression is [1]:

𝜓𝑇 |𝐿𝑂(𝑞2 ≡ −𝑄2) = 𝑎2
𝑠

[
− 𝑄4

20
log 𝑄

2

𝜈2
+ 5

3
𝜋3𝛼𝑠⟨2𝑂1 −𝑂2⟩], (5)

where 𝑎𝑠 ≡ 𝛼𝑠∕𝜋 and:

𝑂1 =
(
𝑓𝑎𝑏𝑐𝐺𝜇𝛼𝐺𝜈𝛼

)2
, 𝑂2 =

(
𝑓𝑎𝑏𝑐𝐺𝜇𝜈𝐺𝛼𝛽

)2
. (6)

Using the vacuum saturation hypothesis (𝑘𝐺 = 1), it reads [1]:
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Fig. 1. LO perturbative contribution to 𝜓𝑇 (𝑄2).

⟨2𝑂1 −𝑂2⟩ ≃ −𝑘𝐺
( 3
16

)⟨𝐺2⟩2. (7)

We shall test the effect of this assumption by taking:

𝑘𝐺 ≠ 1, (8)

for an eventual violation of the factorization assumption like the one 
found for the 𝐷 = 6 four-quark condensates (see e.g. [3,8–10]) where 
this assumption is violated by about a factor 5-6.

3. PT expression of the two-point function up to NLO

• Lowest Order (LO) contribution

It comes from the diagram in Fig. 1 and reads:

𝜓
𝑝𝑒𝑟𝑡

𝑇
|𝐿𝑂 = −𝑎2

𝑠

𝑄4

20
log 𝑄

2

𝜈2
(9)

• Next-to-Leading (NLO) contribution

We use two approaches to perform the calculation:

⋄ Diagrammatic renormalization

This approach has been initiated in [11] for QCD sum-rule corre-

lation functions. It requires an isolation of the subdivergences arising 
from the one-loop subdiagram(s) of an individual bare NLO diagram 
(see e.g., Ref. [12]). Counterterm diagrams generated from the subdi-

vergences are then calculated and subtracted from the bare diagram 
to obtain the renormalized diagram. A self-consistency check of the 
method is the cancellation of non-local divergences in each diagram.

We shall be concerned with the bare diagrams a–g listed in Table 1

and their corresponding individual diagrammatically-renormalized con-

tributions parametrized in Feynman gauge as:

𝜓
𝑝𝑒𝑟𝑡

𝑇
|𝑑𝑖𝑎𝑔
𝑁𝐿𝑂

(𝑄2) = 𝑎3
𝑠

(
𝑄4

16

)
log 𝑄

2

𝜈2

[
𝐴 log 𝑄

2

𝜈2
+𝐵

]
(10)

with: 𝑎𝑠 ≡ 𝛼𝑠∕𝜋. The sum of the contributions of the bare dia-

grammatically-renormalized diagrams a–g in Table 1 leads to the renor-

malized NLO two-point function for 𝑛𝑓 flavours:

𝜓
𝑝𝑒𝑟𝑡

𝑇
|𝑅
𝑁𝐿𝑂

(𝑄2) = 𝑎3
𝑠

(
𝑄4

16

)
𝐿

[
− 2
15

𝑛𝑓𝐿+
(4
3
+ 202

225
𝑛𝑓

)]
, (11)

with: 𝐿 = log 𝑄2

𝜈2
. Note that diagram h from Table 1 is not used in the 

diagrammatic renormalization method, but is crucial in the conven-

tional renormalization approach for the cancellation of the non-local 
(1∕𝜖) log(𝑄2∕𝜈2) as we shall see in the next section.

⋄ The conventional approach

Here, we calculate each QCD diagram using the standard Feynman 
approach (see e.g. [3,8,13]). We consider the renormalization of the 
gluonic current using the renormalization constant obtained in Ref. [14]
2

for the current 𝜃𝜇𝜈
𝐺
∕𝛼𝑠:
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𝑍𝜓 = 1 −
(
𝑛𝑓

3

)
𝑎𝑠

2𝜖
(12)

for 𝑛 = 4 + 2𝜖 dimensions to which corresponds the anomalous dimen-

sion:

𝛾𝜓 ≡
(
𝛾1 =

𝑛𝑓

3

)
𝑎𝑠.+⋯ . (13)

Taking into account the renormalization of 𝛼𝑠:

𝑍𝛼𝑠
= 1 + 𝛽(𝛼𝑠)

1
2𝜖
, (14)

one can deduce the anomalous dimension of the current 𝜃𝜇𝜈
𝐺

:

𝛾𝜃
𝜓
≡ (

𝛾𝜃1 = −11
2

)
𝑎𝑠.+⋯ . (15)

The diagrams appearing in Table 1e) to g) are due to the non-abelian 
property of QCD where:

𝐺(𝑎)
𝜇𝜈

= 𝜕𝜇𝐴
(𝑎)
𝜈

− 𝜕𝜈𝐴
(𝑎)
𝜇

+ 𝑔𝑓𝑎𝑏𝑐𝐴(𝑏)
𝜇
𝐴(𝑐)
𝜈

(16)

The diagram in Table 1h) is induced by the off-diagonal term which 
arises due to the mixing of the 𝑞𝑞 and 𝐺2 currents. Following [14,15], 
such terms are necessary to cancel the non-local (1∕𝜖) log (𝑄2∕𝜈2)
divergent terms appearing in the calculations given in Table 1. It is 
remarkable to notice that there is a systematic factor two difference for 
the coefficient A of diagrams a) to g) from the two approaches. The sum 
of the individual diagrams in Table 1 gives for the current normalized 
in Eq. (3):

𝜓𝑅𝐼
𝑇

|𝑁𝐿𝑂(𝑄2) =
𝑎3
𝑠

600
𝑄4 log 𝑄

2

𝜈2
𝑛𝑓

[
5
(
log 𝑄

2

𝜈2
+ 2
𝜖

)
− 9

]
(17)

⋄ NLO PT results

We have shown in the previous sections, that the diagrammatic and 
conventional approaches lead to the same result. The renormalized two-

point function for 𝑛𝑓 flavours reads:

𝜓
𝑝𝑒𝑟𝑡

𝑇
|𝑅
𝑁𝐿𝑂

(𝑄2) ≡ 𝜓
𝑝𝑒𝑟𝑡

𝑇
|𝐿𝑂 +𝜓

𝑝𝑒𝑟𝑡

𝑇
|𝐵
𝑁𝐿𝑂

+𝜓𝑅𝐼
𝑇

|𝑁𝐿𝑂 =

𝜓
𝑝𝑒𝑟𝑡

𝑇
|𝐿𝑂

[
1 + 𝑎𝑠

(
𝑛𝑓

6
log 𝑄

2

𝜈2
−

101𝑛𝑓 + 150
90

)]
, (18)

where 𝜓𝑝𝑒𝑟𝑡

𝑇
|𝐿𝑂 can be deduced from Eq. (5). One can notice that for 

gluodynamics (𝑛𝑓 = 0), we recover the earlier result of [16].

4. Dimension-four gluon ⟨𝜶𝒔𝑮
𝒂
𝝁𝝂𝑮

𝝁𝝂

𝒂 ⟩ condensate

One can notice from Eq. (5) that, unlike the case of scalar and pseu-

doscalar gluonia [1], the contributions of the gluon condensates are 
only due to the 𝐷 = 8 dimension.

• LO contribution

From the diagram in Fig. 2, we have checked that to LO the leading 
log-term does not contribute to the two-point function. The LO contri-

bution comes from the constant term:

𝜓𝐺2
𝑇

|𝐿𝑂 =
𝛼𝑠

6
⟨𝛼𝑠𝐺2⟩, (19)

where we have used two different approaches (plane wave and con-

ventional one using the projection in Eq. (2)). The non-zero value of 
this constant term raises the question of the validity of the null result 
obtained in Ref. [17] based on instantons for dual/antidual background 
fields. However, this term is harmless in the LSR analysis as it will disap-

pear when one takes the different derivatives of the two-point functions.
• NLO contribution
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Table 1

NLO perturbative contribution to 𝜓𝑇 (𝑄2) in conventional and diagrammatic renormalization methods. The quantities 𝐴 and 𝐵 are defined in 
Eq. (10). Diagrams h) are only used in conventional renormalization but are not applicable (N/A) in the diagrammatic method.
Fig. 2. LO 𝛼𝑠𝐺
2 contribution to 𝜓𝑇 (𝑄2).

The leading-log. contribution at NLO, can be derived from the renor-

malization group equation (RGE). Using the fact that ⟨𝛼𝑠𝐺2⟩ obeys the 
RGE [18] (see different applications in section 4.4 of [13])5:

5 We take into account the overall 𝛼 factor appearing in the definition of the 
3

𝑠

energy-momentum tensor current.
{
− 𝜕

𝜕𝑡
+ 𝛽(𝑎𝑠)𝑎𝑠

𝜕

𝜕𝑎𝑠
− 2𝛾𝜃

𝜓

}
𝜓𝐺2
𝑇

= 0 (20)

where 𝑡 ≡ (1∕2)log(𝑄2∕𝜈2) and 𝛾𝜃
𝜓

is the anomalous dimension defined 
in Eq. (15). Writing the 𝛼𝑠 expansion as:

𝜓𝐺2
𝑇

=
(
𝑔0𝛼

2
𝑠
+ 2𝑔1𝛼2𝑠 𝑎𝑠 𝑡+ 𝑔′1𝛼

2
𝑠
𝑎𝑠 − 2𝛾𝜃

𝜓
𝛼2
𝑠
+⋯

)⟨𝐺2⟩, (21)

and considering that ⟨𝛼𝑠𝐺2⟩ is a constant, one deduces:

𝑔1 = 𝑔0

(
𝛽1
2

− 𝛾𝜃1

)
= 1

24

(
11 +

2𝑛𝑓
3

)
with : 𝑔0 =

1
6
. (22)

Note that, e.g. diagrams e) and f) in Table 1 contribute to 𝑔′1 and will 
disappear after taking the 3rd derivative of the two-point correlator for 

extracting the LSR expression.
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Fig. 3. LO 𝑔⟨𝐺3⟩ contribution to 𝜓𝑇 (𝑄2)∕𝛼2
𝑠
.

5. Dimension-six 𝒈𝟑⟨𝒇𝒂𝒃𝒄𝑮𝒂
𝝁𝝂𝑮

𝒃
𝝂𝝆𝑮

𝒄
𝝆𝝁⟩ gluon condensate

• LO contribution

We calculate the coefficients of the ⟨𝑔𝐺3⟩ contribution using the 
conventional approach and the projection in Eq. (4). We show the dif-

ferent contributions in Fig. 3 where the total sum is zero (log. coefficient 
and constant term) in agreement with the result of [17].

• Check of the result

We recompute the 𝐺3 coefficient of the scalar gluonium two-point 
function using the same method. We recover the result of Ref. [1] which 
is an indirect test of our result.

6. Laplace Sum Rule (LSR) analysis

• QCD expression

Collecting the previous results, we obtain for 𝑛𝑓 = 3 flavours to or-

der 𝛼𝑠 and up to dimension-8 condensates:

𝜓̃𝑇 (𝑄2) ≡ 𝜓𝑇 (𝑄2)
𝛼2
𝑠

= − 1
20𝜋2

𝑄4 log 𝑄
2

𝜈2

[
1 + 𝑎𝑠

(
1
2
log 𝑄

2

𝜈2
− 151

30

)]

+ 13
24𝜋

⟨𝛼𝑠𝐺2⟩ log 𝑄2

𝜈2
− 5𝜋

16
𝑘𝐺𝛼𝑠⟨𝐺2⟩2

𝑄4 . (23)

We shall be concerned with the following inverse Laplace transform 
moments and their ratio [6,19–22]:

𝑐
0,1(𝜏,𝜇) =

𝑡𝑐

∫
𝑡>

𝑑𝑡 𝑡(0,1)𝑒−𝑡𝜏
1
𝜋

Im 𝜓̃𝑇 (𝑡, 𝜈) ,

𝑐
10(𝜏) ≡

𝑐
1

𝑐
0
=

∫ 𝑡𝑐
𝑡>
𝑑𝑡 𝑒−𝑡𝜏 𝑡 Im 𝜓̃𝑇 (𝑡, 𝜈)

∫ 𝑡𝑐
𝑡>
𝑑𝑡 𝑒−𝑡𝜏 Im 𝜓̃𝑇 (𝑡, 𝜈)

, (24)

To get the lowest moment 𝑐
0, we take the 3rd derivative of the two-

point function which is superconvergent while for the 𝑐
1 moment, we 

take the 4th derivative of 𝑄2𝜓̃𝑇 (𝑄2). The NLO QCD expressions of the 
4

moments for 𝑛𝑓 = 3 flavours are:
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𝑐
0 =

𝜏−3

10𝜋2

{[
1 − 𝑎𝑠

(53
15

+ 𝛾𝐸

)]
𝜌𝑐2 −

65𝜋
12

⟨𝛼𝑠𝐺2⟩𝜏2𝜌𝑐0
−𝜋2

𝑎𝑠

(25
8

)
𝑘𝐺⟨𝛼𝑠𝐺2⟩2𝜏4}, (25)

and

𝑐
1 =

3𝜏−4

10𝜋2

{[
1 − 𝑎𝑠

(16
5

+ 𝛾𝐸

)]
𝜌𝑐3 −

65𝜋
36

⟨𝛼𝑠𝐺2⟩𝜏2𝜌𝑐1
+𝜋2

𝑎𝑠

(25
24

)
𝑘𝐺⟨𝛼𝑠𝐺2⟩2𝜏4}, (26)

from which one can deduce the ratio 𝑐
10(𝜏). 𝛾𝐸 = 0.5772... is the Euler 

constant and:

𝜌𝑐
𝑛
= 1 − 𝑒−𝑡𝑐 𝜏

(
1 + (𝑡𝑐𝜏) +⋯+

(𝑡𝑐𝜏)𝑛

𝑛!

)
. (27)

• Strategies

⋄ Parametrization of the spectral function

To a first approximation, we have parametrized the spectral function 
using the minimal duality ansatz (MDA):

1
𝜋
Im 𝜓̃(𝑡) = 𝑓 2

𝑇
𝑀4

𝑇
𝛿(𝑡−𝑀2

𝑇
) + 𝜃

(
𝑡−𝑡𝑐

)
“QCD continuum”, (28)

where we assume that the QCD expression of the spectral function 
above the continuum threshold 𝑡𝑐 smears all radial excitation contribu-

tions. 𝑓𝑇 is normalized as 𝑓𝜋 = 132 MeV. In the MDA parametrization:

𝑐
10 ≃𝑀2

𝑇
. (29)

⋄ Optimization procedure

One can notice that there are three free parameters in the analysis, 
namely the LSR variable 𝜏 , the continuum threshold 𝑡𝑐 and the pertur-

bative subtraction constant 𝜈. The later quantity is eliminated when one 
works with different derivatives of the two-point function for taking its 
inverse Laplace transform and working with the running QCD parame-

ters. The optimal results will be extracted at the minimum or inflexion 
points in 𝜏 while we shall fix the range of 𝑡𝑐 in a conservative region 
from the beginning of 𝜏-stability until the (approximate) 𝑡𝑐 -stability.

⋄ QCD input parameters

We shall work with the QCD input parameters [9,10]:

Λ= 340(28) MeV, ⟨𝛼𝑠𝐺2⟩ = (6.49 ± 0.35)10−2 GeV4, (30)

and use the parametrization of the 𝐷 = 8 gluon condensates given in 
Eq. (7).

• Di-gluonium mass and coupling at Lowest Order (LO)

In this section, we redo the analysis in Ref. [4] using the expression 
in Eq. (5) that one shall explicitly compare with the one including the 
new NLO terms.

⋄ We show the determination of 𝑀𝑇 from 𝑐
10 in Fig. 4, where 

the vacuum saturation estimate of the 𝐷 = 8 gluon condensates is as-

sumed. We show the 𝑡𝑐 -behaviour of the optimal values on 𝜏 in Fig. 5. 
The final optimal results are obtained for the set (𝜏, 𝑡𝑐 ) from (0.18,4.5) 
to (0.68,12) (GeV−2, GeV2) and are respectively 1857 and 2324 MeV. 
They lead to the mean:

𝑀𝑇 = 2091(234)𝑡𝑐 (24)𝐺2 MeV ⟶◦ 𝑡𝑐 ≃
(
6.5+5.5−2.0

)
GeV2. (31)

⋄ We show the analysis of the coupling 𝑓𝑇 from the moment 𝑐
0 in 
Fig. 6.
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Fig. 4. Behaviour of the 2++ tensor di-gluonium mass from the ratio of moments 
𝑐

10 versus 𝜏 for different values of 𝑡𝑐 at LO.

Fig. 5. 𝑡𝑐 -behaviour of the 2++ tensor di-gluonium LO mass at the 𝜏 minimum.

Fig. 6. Behaviour of the 2++ tensor di-gluonium coupling from the moment 𝑐

0
versus 𝜏 for different values of 𝑡𝑐 at LO assuming a factorization of the 𝐷 = 8
condensates (𝑘𝐺 = 1).

– One obtains:

𝑓𝑇 = 156(9)𝑡𝑐 (0.4)𝐺2 (22)𝑀𝑇
MeV ⟶◦ 𝑡𝑐 ≃

(
7.0+5.0−0.5

)
GeV2. (32)

These results agree within the errors with the ones in Eq. (1) ob-

tained at slightly low value of 𝑡𝑐 ≃ 5.5 GeV2. The large error obtained 
here is due to the most conservative choice of the 𝑡𝑐 -range.

– We obtain the central values of the upper bounds:
5

𝑀𝑇 ≤ 2347 MeV, 𝑓𝑇 ≤ 174 MeV. (33)
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Fig. 7. Behaviour of the 2++ tensor di-gluonium mass from the ratio of moments 
𝑐

10 versus 𝜏 for different values of 𝑡𝑐 at NLO assuming a factorization of the 
𝐷 = 8 condensates (𝑘𝐺 = 1).

The bound on the mass is comparable with the one in Eq. (1).

• The 2++ ground state di-gluonium mass at NLO

⋄ Factorization of the 𝐷 = 8 gluon condensates (𝑘𝐺 = 1)

The behaviour of the mass is shown in Fig. 7 where we have assumed 
the factorization of the dimension 8 gluon condensates. The stabilities in 
𝜏 are reached for the set (𝜏, 𝑡𝑐 ) = (0.12, 9.5) to (0.36,20) (GeV−2, GeV2) 
to which correspond the mass values 2746 and 3309 MeV.

– We deduce the mean value:

⟨𝑀𝑇 ⟩ = 3028(281)𝑡𝑐 (1)𝜏 (34)Λ(47)𝐺2

(243)𝑃𝑇 (207)𝑃𝑇
𝐺2
(0)𝑂𝑃𝐸 MeV

= 3028(429) MeV ⟶◦ 𝑡𝑐 ≃
(
12.6+7.4−3.1

)
GeV2. (34)

We have added some systematic errors: the last 5th and 6th errors come 
from an estimate of the higher order (HO) 𝛼𝑠 corrections to the PT and ⟨𝛼𝑠𝐺2⟩ contributions where the 𝛼𝑛

𝑠
coefficients are assumed to increase 

geometrically [23]. The last 7th error comes from the high-dimension 
condensates estimated to be about (Λ2𝜏) times the ⟨𝐺4⟩ contributions.

– From Fig. 7, one can also deduce the optimal upper bound from 
the positivity of the ratio of moments. We obtain:

𝑀𝑇 ≤ 3376(26)Λ(42)𝐺2 (240)𝑃𝑇 (286)𝑃𝑇
𝐺2

≤ 3376(377) MeV. (35)

⋄ Comparison with the LO results within factorization

We notice that the PT NLO corrections increase the central value of 
the mass by 561 MeV from its LO value while the ⟨𝛼𝑠𝐺2⟩ ones provide 
an additional increase of 376 MeV.

⋄ Comparison with some other LSR results

– In Ref. [24], the result:

𝑀𝑇 = 1.86+014−0.17 GeV (36)

has been obtained to LO PT but including the NLO ⟨𝛼𝑠𝐺2⟩ term and 
the LO constant term of the ⟨𝑔𝐺3⟩ condensates. Unfortunately, our re-

sults summarized in Eq. (23) do not agree with the coefficients of these 
condensates. The difference of these coefficients may come from the 
different current used by Ref. [24].

– Result within instanton liquid model is about 1525 MeV [25]
which is much lower than our above result.
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Fig. 8. Behaviour of the 2++ tensor di-gluonium mass versus 𝑡𝑐 for different 
values of the factorization factor 𝑘𝐺 .

⋄ Effect of the 𝐷 = 8 condensates

Now, we study the effect of the estimate of the 𝐷 = 8 gluon conden-

sates on the mass determination assuming that the factorization can be 
violated like in the case of the four-quark condensate. The analysis is 
similar to the one in Fig. 7. We show the optimal results in Fig. 8 versus 
𝑡𝑐 for different values of the violation factor 𝑘𝐺 .

One can notice that the value of the mass is a smooth increasing 
function of 𝑘𝐺 . From the vacuum saturation estimate (𝑘𝐺 = 1) to 5 (if 
one takes the same value as the violation of the four-quark condensate), 
the value of the mass moves from 3028(287) MeV to 3347(295) MeV 
thus an increase of about 319 MeV.

⋄ Final estimate of the mass at NLO

For definiteness, we shall work with the conservative range:

𝑘𝐺 = (3 ± 2). (37)

– Then, we deduce the final estimate:

⟨𝑀𝑇 ⟩ = 3188(291)𝑡𝑐 (34)Λ(47)𝐺2 (159)𝑘𝐺
(157)𝑃𝑇 (162)𝑃𝑇

𝐺2
(2)𝑂𝑃𝐸 MeV

= 3188(405)MeV, (38)

which corresponds to 𝑡𝑐 ≈
(
14.1+7.9−3.1

)
GeV2.

– The related absolute upper bound is:

𝑀𝑇 ≤ 3580(17)Λ(45)𝐺2 (168)𝑘𝐺
(210)𝑃𝑇 (198)𝑃𝑇

𝐺2
(8)𝑂𝑃𝐸 MeV

≤ 3580(338) MeV. (39)

Our result for the ground state mass is in line with the ones from some 
other approaches [26] and ADS/QCD [27] where its mass is expected 
to be above 2 GeV. It is slightly higher than recent lattice calculations 
in the range (2.27 ∼ 2.67) GeV [28–30].

• The 2++ ground state di-gluonium coupling at NLO

We introduce the renormalization group invariant (RGI) coupling 
𝑓𝑇 which is related to the running coupling 𝑓𝑇 (𝜈) associated to the 
two-point correlator 𝜓̃𝑇 as:

𝑓𝑇 (𝜈) =
𝑓𝑇( ) 𝛾1

∶ 𝛾1 =
𝑛𝑓

3
. (40)
6

log 𝜈

Λ
−2𝛽1
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Fig. 9. Behaviour of the 2++ tensor di-gluonium RGI coupling from the moment 
𝑐

0 versus 𝜏 for different values of 𝑡𝑐 at NLO within factorization.

We shall extract the coupling from the lowest moment 𝑐
0 .

⋄ Factorization of the 𝐷 = 8 gluon condensates (𝑘𝐺 = 1)

– The NLO analysis is shown in Fig. 9. One can notice that, in the 
presence of the NLO terms (PT and ⟨𝛼𝑠𝐺2⟩), the curves present more 
pronounced minimum and inflexion points. The curves present a min-

imum at 148 MeV and inflexion point at 193 MeV for the set (𝜏, 𝑡𝑐)
equals to (0.2,11) and (0.3,22) (GeV−2, GeV2). One obtains to NLO:

𝑓𝑇 |𝑁𝐿𝑂 = 167(25)𝑡𝑐 (1)𝜏 (1.5)Λ(1)𝐺2 (25)𝑀𝑇

(16)𝑃𝑇 (11)𝑃𝑇
𝐺2
(0)𝑂𝑃𝐸 MeV

= 167(40) MeV ⟶◦ 𝑡𝑐 ≃
(
14+8−3

)
GeV2, (41)

and the optimal upper bound at the inflexion point 𝜏 ≃ 0.3 GeV−2:

𝑓𝑇 |𝑁𝐿𝑂 ≤ 186(1)Λ(2)𝐺2 (32)𝑀𝑇
(2)𝑃𝑇 (11)𝑃𝑇

𝐺2
(0)𝑂𝑃𝐸 MeV

≤ 186(34) MeV, (42)

where we have used the mass value in Eq. (34).

– Comparing with the LO result, one can notice that the change of 
the mass from 2091 to 3028 MeV has slightly increased the coupling by 
about 58 MeV while fixing the mass at its LO value, the NLO corrections 
have only increased the coupling by 13 MeV.

⋄ Beyond the factorization of the 𝐷 = 8 gluon condensates

We extract the value of the coupling corresponding to the 𝑘𝐺-factor 
in Eq. (37). The curves are shown in Fig. 10. One obtains for the set of 
(𝜏, 𝑡𝑐): (0.12, 12) and (0.30, 22) in (GeV−2, GeV2) the values 156.6 and 
173.6 MeV which give:

𝑓𝑇 = 164(8)𝑡𝑐 (3)Λ(1.3)𝐺2 (3)𝑘𝐺 (20)𝑀𝑇

(16)𝑃𝑇 (5)𝑃𝑇
𝐺2
(0)𝑂𝑃𝐸 MeV

= 164(28) MeV, ⟶◦ 𝑡𝑐 ≃
(
12.5+9.5−0.5

)
GeV2, (43)

and the optimal upper bound at the inflexion point 𝜏 ≃ 0.3 GeV−2:

𝑓𝑇 |𝑁𝐿𝑂 ≤ 203(5)Λ(2)𝐺2 (5)𝑘𝐺 (28)𝑀𝑇

(19)𝑃𝑇 (11)𝑃𝑇
𝐺2
(0)𝑂𝑃𝐸 MeV

≤ 203(36) MeV. (44)

We notice that, like the mass, the value of the coupling is weakly af-
fected by the value of the 𝐷 = 8 gluon condensates.
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Fig. 10. Behaviour of the 2++ tensor di-gluonium RGI coupling from the mo-

ment 𝑐

0 versus 𝜏 for different values of 𝑡𝑐 at NLO without factorization.

7. Summary and conclusions

⋄ We have computed the perturbative and ⟨𝛼𝑠𝐺2⟩ NLO corrections 
to the 2++ tensor di-gluonium two-point correlator and use the method 
of Laplace transform sum rules (LSR) to revise the estimate of the mass 
and coupling of the lowest ground state.

⋄ We find that the LO ⟨𝛼𝑠𝐺2⟩ coefficient has no imaginary part like 
found by NSVZ [1] but the constant term is not zero in contrast to NSVZ 
who have used dual/anti-dual field arguments. Thus, the use of the RGE 
allows to fix its log(𝑄2∕𝜈2) NLO coefficient from this LO constant term.

⋄ We note that our LO coefficient of ⟨𝑔𝐺3⟩ disagrees with the one 
of [24] but agrees with the one of NSVZ. This disagreement may be 
related to the choice of current. As an indirect check of our result, we 
recalculate the ⟨𝑔𝐺3⟩ coefficient in the scalar gluonium channel and 
recover the one of NSVZ.

⋄ Assuming vacuum saturation for the estimate of the 𝐷 = 8 gluon 
condensates, we found the lowest ground state mass 𝑀𝑇 = 3028(429)
MeV (Eq. (34)) and RGI coupling 𝑓𝑇 = 167(40) MeV (Eq. (41)). We 
also obtain the absolute upper bounds related to the positivity of the 
spectral function: 𝑀𝑇 ≤ 3376(377) MeV (Eq. (35)) and 𝑓𝑇 ≤ 186(34)
MeV (Eq. (42)).

⋄ We study the effect of the estimate of the 𝐷 = 8 gluon conden-

sates. We find 𝑀𝑇 = 3188(405) MeV (Eq. (38)) and 𝑓𝑇 = 164(28) MeV 
(Eq. (43)) for the violation factor 𝑘𝐺 = (3 ± 2). We also deduce the up-

per bounds: 𝑀𝑇 ≤ 3580(338) MeV (Eq, (39)) and 𝑓𝑇 ≤ 203(36) MeV 
(Eq. (44)).

⋄ Our result is in line with the ones from some other approaches 
[26] and ADS/QCD [27] where its mass is expected to be above 2 GeV. 
However, the central value of our mass is slightly higher than lattice 
calculations in the range (2.27 ∼ 2.67) GeV [28–30].

⋄ Our result does not favour the interpretation of the observed 
𝑓2(2010, 2300, 2340) states as pure gluonia/glueball candidates (see e.g. 
[31]). Moreover, we do not expect that an eventual meson-gluonium 
mixing will affect our result as this mixing is expected to be small 
(𝜃 ≃ −100) [14].
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