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Abstract We study the von Neumann algebra description
of the inflationary quasi-de Sitter (dS) space. Unlike per-
fect dS space, quasi-dS space allows the nonzero energy flux
across the horizon, which can be identified with the expecta-
tion value of the static time translation generator. Moreover,
as a dS isometry associated with the static time translation
is spontaneously broken, the fluctuation in time is accumu-
lated, which induces the fluctuation in the energy flux. When
the inflationary period is given by (εH H)−1 where εH is the
slow-roll parameter measuring the increasing rate of the Hub-
ble radius, both the energy flux and its fluctuation diverge in
theG → 0 limit. Taking the fluctuation in the energy flux and
that in the observer’s energy into account, we argue that the
inflationary quasi-dS space is described by Type II∞ algebra.
As the entropy is not bounded from above, this is different
from Type II1 description of perfect dS space in which the
entropy is maximized by the maximal entanglement. We also
show that our result is consistent with the observation that the
von Neumann entropy for the density matrix reflecting the
fluctuations above is interpreted as the generalized entropy.

1 Introduction

Whereas the spacetime geometry close to de Sitter (dS) well
describes the primordial inflation and the current acceler-
ating expansion of the universe, understanding its quantum
nature is challenging. Studies on the quantum field theory
in the dS background tell us that a static observer in dS
space is surrounded by the (cosmological) horizon of radius
rH = H−1 having thermodynamic properties characterized
by the Gibbons–Hawking temperature β−1 = H/(2π) and
the entropy SGH = A/(4 G) = πM2

Pl/H
2, where A is the

horizon area given by 4πr2
H and M2

Pl is defined as G−1 [1].
This is quite similar to the black hole as seen from far outside
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the horizon but the geometric structure of dS space different
from that of the black hole gives rise to several ambigui-
ties. That is, unlike the black hole horizon, the boundary of
the physically well defined compact object, the cosmological
horizon in dS space is observer dependent. Moreover, it is not
clear that the dS entropy given by the finite number counts
the number of degrees of freedom of the region beyond the
horizon which is not compact.

Such ambiguities are expected to be fixed by the more
complete description of the thermodynamic behavior in
quantum gravity. As an attempt to find it, it was recently pro-
posed that the entanglement needs to be described in terms of
the algebra of local observables, rather than the tensor prod-
uct of two Hilbert spaces defined on two separated regions
(for reviews, see, e.g., [2,3]). Here the algebra of local observ-
ablesA called the von Neumann algebra is required to satisfy
the following conditions (see Section II. F of [2]):

• Any element a inA is bounded: this means that the eigen-
values α of a are bounded, i.e., |α| < ∞. Then given the
vector |ψ〉 in the Hilbert space consisting of the nor-
malized vectors, a|ψ〉 is also normalizable, so belongs
to the Hilbert space. More concretely, expanding |ψ〉 in
terms of the eigenvectors |α〉 of a as |ψ〉 = ∑

α cα|α〉
with 〈ψ |ψ〉 = ∑

α |cα|2 < ∞, the norm of a|ψ〉 =
∑

α αcα|α〉 given by
∑

α |α|2|cα|2 is also finite provided
|α| < ∞.

• The algebra is closed under the Hermitian conjugation:
Typically, A consists of the localized operators called
the ‘smeared fields’, which is written in the form of
φ f = ∫

dDx f (x)φ(x). Here f (x) is supported in the
small region in whichA is defined. Then its complex con-
jugation φ

†
f (x) = ∫

dDx f (x)∗φ†(x) is also well defined
and belongs to A as well.

• The algebra is closed under the weak limit: if we con-
sider the sequence of operators a1, a2, · · · ∈ A then any
matrix element 〈ψ |an|χ〉 converges to 〈ψ |a|χ〉 for some
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a ∈ A in the n → ∞ limit. From this, we can identify
the observables with the finite (but the large number of)
observations within the controllable error.

When the multiple of the identity is the only allowed cen-
ter, a subset of A consisting of operators that commute with
all elements in A, the von Neumann algebra is called a fac-
tor. Then the Hilbert space is constructed by acting the local
observables on the cyclic and separating state |	〉. Here the
state |	〉 is said to be cyclic for A if the states a|	〉 for
a ∈ A are dense in the Hilbert space, i.e., only the zero vec-
tor is orthogonal to all states in the form of a|	〉. Meanwhile,
|	〉 is called separating if a = 0 is the only local observables
in A satisfying a|	〉 = 0.

When we merely consider the quantized fluctuation
around the fixed background in the G → 0 (or equivalently,
MPl → ∞) limit, the algebra typically belongs to Type III,
in which neither the pure state nor the entropy is well defined
[4–7]. 1 By taking dynamical gravity into account through the
O(G) corrections and treating diffeomorphism invariance as
gauge redundancy or constraint, the algebra becomes Type II
factor, in which the entropy as a finite, renormalized quantity
can be defined. For the black hole, HL/R − M , the deviation
of the ADM Hamiltonian of the left/right patch around the
ADM mass M = rs/(2G) (rs is the horizon radius) can take
any real value in the G → 0 limit as M becomes diver-
gent. Then the black hole thermodynamics is described by
Type II∞ algebra [8,9], in which only a subset of observ-
ables has the finite trace hence the entropy is not bounded
from above. In contrast, in dS space, there is no boundary at
infinity. Instead, the static patch is bounded by the horizon
which is in thermal equilibrium with the Gibbons–Hawking
radiation, resulting in the vanishing energy flux across the
horizon. As we will see, this implies the absence of the oper-
ator analogous to HL/R − M in the black hole, hence the
algebraic description of dS space is different from that of the
black hole. In [10], it was found that when the static observer
has the positive energy as a random variable, a system of dS
space and the observer is well described by Type II1 algebra,
in which the trace of any bounded operator is finite. As a
result, the entropy has an upper bound, which is saturated for
the maximally entangled state.

Meanwhile, in the inflationary era, H is no longer a con-
stant but a slowly varying function of the flat time coordinate
t . Then some of dS isometries are slightly broken and the

1 Formally, the state is called pure if the function F	(a) = 〈	|a|	〉
cannot be written in the form of p1F
1 (a) + p2F
2 (a) with p1,2 > 0,
which means that decoherence does not take place thus interference
effects appear. When the state is not pure, it is called mixed. Indeed,
F	(a) is used to define the density matrix through the trace, the linear
functional of operators satisfying the commutative property and the
positivity. If the finite trace is not defined, the divergent entropy is not
renormalized. For more complete discussion, see reviews [2,3].

spacetime geometry is given by quasi-dS space. In this case,
the deviation of the background from perfect dS space is
parametrized by the slow-roll parameter εH . When the infla-
tion is driven by the vacuum energy of the inflaton φ(t), a
homogeneously evolving scalar field, εH is proportional to
φ̇2:

εH ≡ ˙rH = − Ḣ

H2 = 4πφ̇2

M2
PlH

2
= 4πGφ̇2

H2 , (1)

where dot denotes the derivative with respect to t . In perfect
dS case, equations of motion are solved by the constant H
and φ̇ = 0, giving εH = 0. On the other hand, even if φ̇2

does not vanish, we can suppress εH close to zero by taking
the G → 0 limit, which we will focus on throughout this
work. In any case, as εH → 0, the broken dS isometries are
restored, implying the existence of the approximate timelike
Killing vector associated with the static time coordinate ts .
At the same time, the time scale (εH H)−1 after which H is
no longer approximated as a constant becomes infinity. We
will explicitly show that when we take this time scale to be
the inflationary period, the energy flux across the horizon
and its fluctuation become divergent in the G → 0 limit.
Moreover, the energy flux across the horizon is interpreted as
the expectation value of the static time translation generator,
and its fluctuation is driven by the fluctuation in time, hence
that in the value of H at the end of inflation. Then we find
that unlike perfect dS space, the inflationary quasi-dS space
is described by Type II∞ algebra rather than Type II1 algebra.

The organization of this article is as follows. In Sect. 2,
we describe how the change in the horizon area induced by
the slow-roll gives rise to the nonzero energy flux across the
horizon, which is identified with the expectation value of the
static time translation generator.

In Sect. 3.1, we observe the modification of the von Neu-
mann algebra description of the inflationary quasi-dS space
from that of perfect dS space when we take the nonzero
energy flux across the horizon into account. After claiming
that quasi-dS space is well described by Type II∞ algebra,
we provide the expression for the von Neumann entropy of
the static patch in Sect. 3.2. In Sect. 3.3, we relate this with
the change in the horizon area considered in Sect. 2 to com-
plete our argument. Then we conclude with a brief comment
about the possibility that the inflationary quasi-dS space is
described by Type II1 algebra. This can happen when the
inflationary period is much shorter than (εH H)−1 as recently
conjectured in the swampland program. In Appendix A, we
summarize various coordinates on dS space which are used
throughout the discussion. In Appendix B, details of the den-
sity matrix considered in Sect. 3.2 are given.
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Fig. 1 Penrose diagram of dS space. Over the whole period of inflation,
a static observer travelling along the timelike trajectory γ is causally
accessible to the static patch R, the region bounded by the future horizon
H+ and the past horizon H−. Two horizons intersect at the bifurcation
cut b. At a time close to the end of inflation, the static observer is causally
connected to the region denoted by ∞, the right of the future horizon
cut b∞. In the inflationary era, the universe covers the region R∪T , the
past boundary H− ∪H−′ of which corresponds to the initial singularity.
The complement static patch is denoted by L . The increasing directions
of Kruskal–Szekeres coordinates U and V are also depicted

2 Horizon dynamics of quasi-dS space

In this section, we estimate the energy flux across the future
horizon H+ during the inflationary period, which relates the
change in the horizon area to the static time translation gen-
erator. We assume that there is no energy flux across the
initial singularity, H− ∪ H−′ in Fig. 1, the past boundary of
the region T ∪ R covered by the flat coordinates. Since the
past horizon H− belongs to the initial singularity, we do not
consider the energy flux across H−.

The energy–momentum tensor of the inflaton field φ with
the canonical kinetic term is given by

Tμν = ∇μφ∇νφ −
(

1

2
(∇φ)2 + V (φ)

)

gμν. (2)

Since spacetime during inflation is homogeneous and
isotropic at large scale, we expect that the equations of motion
are solved by φ(t) which depends only on the flat time coor-
dinate t (the metric of dS space in the flat coordinates (t, r)
can be found in (A.65)). Since φ̇ becomes zero in the per-
fect dS limit (H =constant), it measures the deviation of the
background from dS space, which is evident from (1), i.e.,
εH ∝ φ̇2. So far as εH is very tiny, one can find the approx-
imate dS isometries, which allow an approximate timelike
Killing vector along the direction of the static time coordi-
nate ts , ka = (∂ts )

a = (∂t − Hr∂r )a (the metric of dS space
in the static coordinates (ts, rs) can be found in (A.61)). The
component of the energy–momentum tensor associated with

the ts direction is written as

Tts ts = φ̇2 + (1 − H2r2
s )

(

−1

2
φ̇2 + V (φ)

)

, (3)

hence Tts ts = φ̇2 on the horizon rs = rH = H−1. Fur-
thermore, the relation ∂rsφ = (∂t/∂rs)φ̇ = −[(Hrs)/(1 −
H2r2

s )]φ̇ (see (A.67)) gives

Ttsrs = − Hrs
1 − H2r2

s
φ̇2. (4)

For a more straightforward interpretation of this, we con-
sider Ttsr∗ by converting rs into the tortoise coordinate r∗
defined in (A.62). From this, we can define ‘luminosity’,
the energy flux across the surface of constant rs by L =
−4πr2

s Ttsr∗ [11]. Since

Ttsr∗ = −Hrs φ̇
2 (5)

becomes Ttsr∗ = −φ̇2 on the horizon, the luminosity on the
horizon is given by L = 4πH−2φ̇2 = εHM2

Pl. Meanwhile,
the Kruskal–Szekeres coordinatesU andV , in terms of which
the metric is written as (A.64), are natural affine parameters
on H+ and H−, respectively. The energy–momentum tensor
components in the Eddington–Finkelstein coordinates (t, r∗)
and those in the Kruskal–Szekeres coordinates (U, V ) are
related as

Tts ts = H2U 2TUU + H2V 2TVV − 2H2UVTUV ,

Ttsr∗ = −H2U 2TUU + H2V 2TVV . (6)

Then the simple relations

TUU = Tts ts
H2U 2 = − Ttsr∗

H2U 2 = φ̇2

H2U 2
(7)

are satisfied on H+ (V = 0).
The energy–momentum tensor components on H+ are

used to find the first law of thermodynamics, which relates
the energy flux across the horizon to the change in the horizon
area [12,13]. In the perfect dS limit, we can use the timelike
Killing vector ka = (∂ts )

a = H(U∂U − V ∂V ) to find the
conserved current

Ja = −T a
bk

b. (8)

Since V = 0 =(constant) on H+, relations ka = HU∂U
and dV = 0 thus gab(dV )a(dV )b = 0 are satisfied, imply-
ing that the vector (∂U )a which is proportional to gab(dV )b
is normal as well as tangential to H+. Then H+ corresponds
to the Killing horizon and the energy flux across H+ is given
by

�E = −
∫

H+
d�a J

a =
∫

H+
d�dU

√
γ TUts

=
∫

H+
d�dU

√
γ (HU )TUU , (9)
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where d�a is the volume element on H+ and
√

γ = r2
H =

H−2. As can be inferred from the relation ka = HU∂U on
H+ and TUts in the integrand, �E is interpreted as the static
time translation generator on H+. More precisely, consider
the semiclassical approximation in which the h̄ → 0 limit is
taken and the quantum fluctuations around the mean values of
the operators are sufficiently small.2 Denoting the quantum
state of the inflationary universe by |
〉 and the operator gen-
erating the static time translation on the ‘boundary’H+ of the
static patch R by HR , the solutions to the equations of motion
φ(t) and Tμν can be regarded as 〈
|φ|
〉 and 〈
|Tμν |
〉,
respectively. Then �E is identified with 〈
|HR |
〉. Indeed,
the horizon is regarded as a boundary of the static patch.
Whereas the bulk Hamiltonian as a constraint associated with
the static time translation vanishes which is evident in the
ADM formalism, the boundary Hamiltonian defined on the
horizon is nonzero, and plays the role of the generator of the
static time translation. As we will see, �E is proportional to
the horizon area, and as argued in Section 2.4 and Section
3 of [9] (and references therein), it is canonically conjugate
to the ‘boost’ (static time translation) so identified with the
static time translation generator.

Meanwhile, since rs = rH = H−1 is almost constant
on H+, the relations U = H−1eH(ts−r∗) (see (A.63)) and
ts = t − 1

2H log
(
1 − H2r2

s

)
(see (A.66)) indicate that dU =

HUdt is satisfied on H+. Then from (7) one finds

〈
|HR |
〉 = �E =
∫

dt
4π

H2 φ̇2 =
∫

dtεHM2
Pl, (10)

where the integrand is nothing more than the luminosity L
and the range of t integration is taken to be the inflationary
period during which H is almost constant. In addition, we
assume | ˙εH/(εH H)| � 1 such that εH does not vary much
during the inflationary period. Since the value of H consid-
erably deviates from the initial value after �t = O(1) ×
(εH H)−1, we may take t ∈ (−c(2εH H)−1, c(2εH H)−1)

with c being some constant smaller than 1 (not to spoil the
perturbative expansion with respect to εH ), which becomes
t ∈ (−∞,+∞) in the perfect dS limit εH → 0. Then
〈
|HR |
〉 is estimated as

〈
|HR |
〉 � c

εH H
× εHM2

Pl = c
M2

Pl

H
, (11)

i.e., M2
Pl/H up toO(1) (but smaller than 1) coefficient, show-

ing that 〈
|HR |
〉 is insensitive to εH , or equivalently, φ̇2

at leading order.
The backreaction of the energy flux across the horizon

leads to the deformation of the geometry parametrized by

2 But still, the solution can be fluctuated by the statistical uncertainty
or the ‘classical’ fluctuation. This is generated by the decoherence, the
loss of the interference effect through the interaction of the system with
the environment, the region the observer is ignorant of. See discussion
in the paragraph containing (20) and references therein.

expansion, shear, and rotation. When the background is close
to dS space, the horizon can be approximated as a Killing
horizon, where all the three parameters vanish at leading
order. Then the Raychaudhuri equation for the expansion
� = A−1d A/dU which describes the change in the horizon
area A = 4πr2

H = 4πH−2 is approximated as

d�

dU
� − 8π

M2
Pl

Tab(∂U )a(∂U )b = − 8π

M2
Pl

TUU , (12)

from which we can replace TUU by −[M2
Pl/(8π)]d�/dU .

Putting this into 〈
|HR |
〉, we obtain

〈
|HR |
〉 = −M2
Pl

8π

∫

d�dU
√

γ (HU )
d�

dU

= −M2
Pl

8π

∫

d�

[√
γ HU�

∣
∣
∣
∣

U�∞

U=0

−
∫

dU

(√
γ H + HU

d
√

γ

dU
+ √

γU
dH

dU

)

�

]

.

(13)

Noting that ∂U = (HU )−1∂ts and dts = dt on H+, one
finds that dH/dU = −εH H/U , d

√
γ /dU = 2εH/(H2U )

and � = 2εH/U . Then the last two terms in (13) are
O(ε2

H�t). For the first surface term, since
√

γ HU� is
O(εH ), the variation of

√
γ HU� over H+ is O(ε2

H�t).
Therefore, the second term in (13) gives the leading contri-
bution to 〈
|HR |
〉 of O(εH�t):

〈
|HR |
〉 = M2
Pl

8π

∫

dUH
∫

d�
√

γ� + O(ε2
H�t)

= M2
Pl

8π

∫

dUH
dA

dU
+ O(ε2

H�t)

= M2
Pl

8π

∫

dtH
d A

dt
+ O(ε2

H�t)

=
∫

dt
H

2π

d

dt

(
A

4G

)

+ O(ε2
H�t). (14)

Since the Gibbons–Hawking temperature is given by
H/(2π), the integrand can be written in the form of T�S,
which is consistent with the first law of thermodynamics. We
also note that the explicit calculation of the integrand repro-
duces (10). To see the physical meaning of 〈
|HR |
〉 = �E
more clear, we recall that the static time translation is a
diffeomorphism, the gauge invariance of gravity, hence it
acts as a constraint on the dynamics of quantum gravity.
As a result, just like the ADM mass of the black hole, the
associated charge gets contribution from the surface inte-
gral on the boundary (H+ for dS space) only, which is
given by β−1S = M2

Pl/(2H) = rH/(2G) [14]. This is
supported by the fact that the energy inside the horizon in
the perfect dS limit is estimated as M2

Pl/(2H), which is
obtained by multiplying the energy density during inflation
Ttt � [3/(8π)]M2

PlH
2 by the volume inside the horizon
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(4π/3)H−3.3 If we regard the slow-roll as the adiabatic pro-
cess, H slowly decreases in time, then the ‘ADM mass’ just
after the end of inflation M2

Pl/(2H) + �E is identified with
M2

Pl/(2H f ) where H f is the value of H at that time. As H f

significantly deviates from the initial H , we expect that �E
is at most given by the same order as M2

Pl/(2H).
It is remarkable that 〈
|HR |
〉 becomes divergent in the

G → 0, or equivalently, M2
Pl → ∞ limit. Indeed, whereas

the perfect dS limit εH → 0 is trivially obtained by taking
φ̇ → 0, we can also reach the same limit by taking G → 0
even if φ̇2 is kept finite, as can be noticed from (1). In this
case, as εH almost vanishes, the spacetime geometry can
be well approximated by the perfect dS space. Moreover,
even though the effects of εH become negligible, the ratio
εH/SGH = 4π2φ̇2/H4, which is independent of G, can be
kept nonvanishing. This is quite similar to what was assumed
to find the AdS/CFT correspondence: the string coupling gs
is taken to vanish to decouple string interactions, but the ‘t
Hooft coupling g2

YMN ∼ gs N is kept fixed [15]. Therefore,
by keeping εH/SGH > 1, i.e., εH > H2/M2

Pl, we can still
forbid eternal inflation, and the formulation based on the
semiclassical approximation is reliable against large quan-
tum fluctuations or the non-perturbative effects [16]. Indeed,
recent swampland conjectures concerning the instability of
dS space claimed the lower bound on the potential slope [17–
20], which forbids eternal inflation (see, e.g., [21–24]). But
at the same time, as implied by the nonzero energy flux,
the horizon is no longer in thermal equilibrium with the
Gibbons–Hawking radiation. Then the state |
〉 breaks the
dS isometry by allowing the nonzero 〈
|HR |
〉, instead of
being annihilated by HR , just like the Unruh state describing
the evaporating black hole [25] (see also [26,27] for recent
discussions). This can be contrasted with perfect dS space
(φ̇ = 0), in which the horizon is in thermal equilibrium hence
the energy flux across the horizon vanishes. Then the quan-
tum state |	〉 for perfect dS space respects the dS isometry.
This is called the Bunch-Davies state [28,29], the dS analogy
of the Hartle–Hawking state of the black hole [30].

Before moving onto the fluctuation, we comment on our
assumption | ˙εH/(εH H)| � 1. Since

˙εH
εH H

= Ḧ

H Ḣ
− 2

Ḣ

H2 = 2(−ηH + εH ), (15)

where ηH ≡ −Ḧ/(2Ḣ H) is another slow-roll parameter,
this assumption indicates that εH � ηH . On the other hand,
there is a priori no reason that εH and ηH are similar in
size: we just require that these two parameters are sufficiently
smaller than 1. To see the role of ηH , we consider the per-
turbative expansion of H around some pivotal value H0, say,

3 The radius of the horizon in the flat coordinates H−1e−Ht gives V =
(4π/3)e3Ht × (H−1e−Ht )3 where the factor e3Ht comes from

√−g
restricted to the spatial directions.

the initial value of H ,

H(t) = H0 + Ḣ0�t + 1

2
Ḧ0�t2 + · · ·

= H0
(
1 − εH (H0�t) + ηH εH (H0�t)2 + · · · ),

(16)

which is valid for εH , |ηH | < 1 and H0�t < min(1/

εH , 1/|ηH |). In particular,�t is at most c×min(1/εH , 1/|ηH |)
with c being a constant smaller than 1, which can be
employed as the inflationary period. Denoting the value
of H(t) at the end of inflation, i.e., H0�t � c ×
min(1/εH , 1/|ηH |), by H f , and using the definition of εH ≡
−Ḣ/H2, one finds that �E can be written as

�E =
∫

dtεHM2
Pl

= −
∫

dH

H2 M2
Pl = M2

Pl

(
1

H f
− 1

H0

)

= εH�t + (ε2
H − εHηH )H0�t2 + · · · , (17)

which is positive. Therefore, if εH � |ηH |, we take H�t �
c/εH , which leads to

�E = M2
Pl

H0

(
c + (ε2

H − εHηH )c2 + · · ·
)
, (18)

that is, with appropriately chosen c < 1, �E ∼ cM2
Pl/H ,

as we considered so far. In contrast, if εH < |ηH |, we take
H�t � c/|ηH |, giving

�E = M2
Pl

H0

(

c
εH

|ηH | +
(

ε2
H

η2
H

− εH

ηH

)

c2 + · · ·
)

, (19)

which is smaller than M2
Pl/H . This bound is saturated when

εH becomes close to ηH . This shows that our estimation
�E ∼ M2

Pl/H up to a constant smaller than 1 in fact corre-
sponds to the maximal value of the increment in the ADM
mass. Treating εH and ηH as independent parameters, one
may regard the ratio εH/|ηH | to be another factor smaller
than 1 multiplied to M2

Pl/H .
Our discussion so far is made in terms of the solutions to

the classical equations of motion, which are regarded as the
expectation values of the operators with respect to |
〉. On the
other hand, as a dS isometry associated with the static time
translation is spontaneously broken by the quasi-dS back-
ground, the quantum fluctuation in φ combines with that in
the trace of the spatial metric [31,32] (see also [33,34]), form-
ing the gauge invariant operator which excites the curvature
perturbation [35,36]. As the universe undergoes accelerated
expansion, the wavelength of the curvature perturbation is
stretched beyond the horizon scale, after which the fluctua-
tion can be treated as a classical one through the open system
description called decoherence [37–42]. In terms of the stan-
dard cosmological perturbation theory, this can be explained
by the fact that the perturbation with wavelength larger than
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H−1 no longer oscillates and may be treated as a frozen dis-
tribution of a classical field φ(t) [43]. This contributes to
the accumulated uncertainty of the classical trajectory φ(t)
during �t given by [43] (see also [44–46])

〈φ(t)2〉 ≡ δφ2 =
(

H

2π

)2

H�t. (20)

Noting β−1 = H/(2π), the accumulated uncertainty may
be interpreted as the thermal fluctuation, which induces the
fluctuation in HR estimated as

δHR =
(

∂

∂β
〈
|HR |
〉

)1/2

� MPl√
2π

, (21)

where the multiplication by c1/2 is implicit. We can reach
the similar conclusion in the following way. In perfect dS
space, different constant t (flat time) slices are physically
equivalent due to the isometry associated with the ts (static
time) translation: the translation of t can be compensated by
the scaling of r , leaving rs = reHt (see (A.66)) hence the
metric in the static coordinates (A.61) unchanged. In quasi-
dS space, however, the time dependent classical solution φ(t)
plays the role of ‘clock’ distinguishing the specific constant
t slice from others. Then the fluctuation in φ(t) given by (20)
leads to the fluctuation in time δt ,4 thus that in H :

|δH | = |Ḣδt | =
∣
∣
∣
∣
Ḣ

φ̇
δφ

∣
∣
∣
∣ =

√
εH

π
H

H

MPl
(H�t)1/2. (22)

From this, we can estimate the fluctuation in 〈
|HR |
〉
over the inflationary period �t = c(εH H)−1 to obtain

|δHR | = c1/2 M
2
Pl

H2 |δH | � MPl√
π

, (23)

which diverges in the G → 0 limit.
Since 〈
|HR |
〉 ∼ O(G−1) is divergent in the G → 0

limit, one may define the ‘renormalized’ static time trans-
lation generator by H ′

R = HR − 〈
|HR |
〉. But still,
〈
|(H ′

R)2|
〉 = (δHR)2 ∼ O(G−1) is also divergent in
the G → 0 limit, so H ′

R |
〉 has a divergent norm and H ′
R is

not well defined. In order for the static time translation gener-
ator to be well defined, i.e., the expectation values of both the
generator and its square to be finite in the G → 0 limit, we
need to extend the spacetime to the regions L and B in Fig. 1
such that |
〉 describes the whole quasi-dS manifold cover-
ing R∪T ∪ L ∪ B, as suggested in Section 2 of [8]. Then we
can introduce HL , the static time translation generator in the
complementary static patch L . Since L is just a copy of R, the
energy flux across the future horizon H+′ is the same in size

4 This should not be confused with �t , the time interval without fluc-
tuation during which the fluctuation in φ(t) is accumulated: t is the
time appearing in the background geometry, at each instant of which
the fluctuation of t given by δt is accumulated by δφ.

as that across H+. But the static time in L flows in the oppo-
site direction to that in R, so �E through H+ (say, flowing
from R to T ) has an opposite sign to that through H+′ (say,
flowing from L to B). From this, we expect that �E on H+′
is identified with −〈
|HL |
〉 and the sum of �E on H+
and that on H+′ vanishes, giving 〈
|HR |
〉 = 〈
|HL |
〉.
Now let us define the total static time translation generator
by H0 = HR − HL = H ′

R − H ′
L . This acts on the ther-

mofield double state |TFD〉 = ∑
n cn|En〉R |En〉L describ-

ing the entanglement between states living on H+ and H+′.
Since both H0 and (H0)

2 annihilate the thermofield double
state (H0|TFD〉 = ∑

n cn(En − En)|En〉R |En〉L = 0), their
expectation values are finite, hence H0 is well defined.

But the fact that H ′
L and H ′

R are not well defined indicates
that a factorization of the Hilbert space into the Hilbert spaces
defined on R and L is not well defined in theG → 0 limit. We
can compare our results, 〈
|HR |
〉 ∼ O(G−1) and δHR ∼
O(G−1/2), with the boundary Hamiltonian of the eternal AdS
black hole, which describes theN = 4 super Yang-Mills the-
ory [8]. In the large N limit, Hamiltonians in the left and right
boundaries HL and HR have thermal expectation values of
O(N 2) ∼ O(G−1) and H ′

L/R = HL/R − 〈HL/R〉 satisfy

〈H ′
L/R

2〉 ∼ O(N 2) hence δHL/R ∼ O(N ) ∼ O(G−1/2),
showing the same behaviors as 〈
|HR |
〉 and δHR , respec-
tively.

3 von Neumann algebra for inflationary quasi-dS space

3.1 von Neumann algebra for quasi-dS space

In order to find the von Neumann algebra description of
quasi-dS space, we first consider Type II1 algebra for dS
space discussed in [10] and see how it is modified by the
nonzero energy flux across the horizon we obtained in Sect. 2.
Since a static observer can access the static patch R only, the
quantum description of (quasi-)dS space as seen by the static
observer is made in terms of the local observables on R.

Moreover, in the dS limit, the static patch is invariant under
the subgroup of the dS isometry consists of the static time
translation and rotation hence operators on the static patch
are required to be invariant under the subgroup. However, as
pointed out in [10], the only operators that commute with the
static time translation generator are those proportional to the
identity. In order to resolve this issue, Chandrasekaran et al.
[10] suggested that the nontrivial operators can be considered
by taking the Hamiltonian of the static observer into account
in addition, such that the total Hamiltonian is given by H0+q̂ ,
where H0 is the static time translation generator and q̂ is the
observer Hamiltonian. To see the meaning of q̂ , we note that
the observer detects the thermal radiation using, for exam-
ple, the apparatus consisting of the large number of atoms.
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In this case, the energy eigenvalues q are almost continuous,
forming the band structure such that we can detect the ther-
mal radiation with any frequency by observing the transition
between the energy levels of the apparatus. Since the energy
levels of the apparatus described above is also bounded from
below, it is reasonable to assume that the eigenvalues q are
nonnegative and q̂ acts on L2(R+), the Hilbert space of the
square integrable function of q. Moreover, we can define the
time measured by the observer’s clock along the observer’s
worldline, which corresponds to the eigenvalue of the oper-
ator q̂ conjugate to p̂.

For quasi-dS space, by taking the inflationary period to
be (εH H)−1, the nonzero energy flux across the horizon
〈
|HR |
〉 becomes divergent in the G → 0 limit. As dis-
cussed in Sect. 2, H ′

R = HR − 〈
|HR |
〉, the renormalized
static time translation generator (restricted to the static patch
R) is not well defined since 〈
|(H ′

R)2|
〉 ∼ O(G−1) also
diverges in the G → 0 limit. The similar problem also arises
in the boundary Hamiltonian of the AdS black hole, in which
the issue is circumvented by considering H ′

R/N since O(N )

is equivalent to O(G−1/2) in the large N limit [8]. Moti-
vated by this, we may define H ′

R/N where N is now the
dimensionless parameter of O(G−1/2), say, MPl/H . Then
following [8], H ′

R/N can be expressed as

H ′
R

N
= U + H0

N
, (24)

where U is an operator which commutes with any observ-
ables on R. Whereas U is in fact H ′

L/N , it is also identified
with H ′

R/N in the G → 0 limit, in which H0/N → 0 and
[a, H ′

R/N ] = (i/N )∂a/∂ts → 0 for any operator a on R.
Moreover, the divergence of 〈
|HR |
〉/N ∼ O(G−1/2) in
the G → 0 limit indicates that the lower bound on U is
−∞ thus the eigenvalue of U can take any real number in
(−∞,+∞) and the Hilbert space relevant to U is given by
L2(R). In the following discussion, we will take the fac-
tor 1/N to be implicit for convenience. Indeed, as pointed
out in [8], if we are interested in the ordinary functions
of N , we may work with H ′

R instead of H ′
R/N .5 Defining

X ≡ NU = H ′
L , H ′

R is written as X + H0 with X acting on
the Hilbert space L2(R) and the (renormalized) Hamiltonian
restricted to the static patch R is given by Ĥ = H0 + X + q̂ .

Now we can construct Type III algebra AR ⊗ B(R) ⊗
B(R+), where AR is the algebra of the observables on R
and B(R(+)) is the algebra of bounded operators acting on

5 Our discussion is based on the canonical ensemble in which the fluc-
tuation δHR ∼ O(G−1/2) is divergent in the G → 0 limit. On the other
hand, we don’t need to divide HR by N in the microcanonical ensemble
as the fluctuation in HR is restricted to beO(1) [9]. The reason we do not
consider the microcanonical ensemble is that the divergent fluctuation
in HR is induced by the fluctuation in the curvature perturbation and so
far as we know there is no physical reason to restrict the fluctuation to
be O(1).

R
(+). This is converted into Type II algebra by imposing the

diffeomorphism invariance as a gauge constraint. Focusing
on an (approximate) isometry of the static time translation,
the algebra of the observables on R is given by an invariant
subalgebra with respect to Ĥ ,

ÂR = (AR ⊗ B(R) ⊗ B(R+)
)Ĥ

. (25)

The elements of ÂR can be explicitly written by intro-
ducing an operator p̂ conjugate to q̂ satisfying [̂q, p̂] = i ,
which is interpreted as a (fluctuating) time measured by the
static observer. By requiring [̂q, H0] = 0, q̂ belongs to ÂR .
Moreover, for any a ∈ AR , one finds that its gravitational
dressing or the outer automorphism,

a′ = ei(H0+X) p̂ae−i(H0+X) p̂ (26)

satisfies [̂q, a′] = −[H0 + X, a′], or equivalently, [Ĥ , a′] =
0. Therefore, ÂR is generated by

{a′ = ei(H0+X) p̂ae−i(H0+X) p̂, q̂}. (27)

By taking the conjugation by e−i(H0+X) p̂, one finds that
it is equivalent to {a, q̂ − (H0 + X)}.

In order to implement the finite (renormalized) entropy,
we need to define ‘trace’ in a sensible way. The trace here
refers to, in a somewhat abstract sense, a linear functional of
operators satisfying Tr(ab) = Tr(ba) and Tr(a†a) > 0 for
a nonzero a. This can be used to defined the ‘renormalized’
(thus finite) entropy in dS space (for further discussion, see
[2] and [10], which is also reviewed in the paragraph contain-
ing (29)). Just like the case of perfect dS space, the trace can
be defined in terms of the Bunch-Davies state |	〉 which is
invariant under the dS isometries.6 Then we define the trace
of any operator â ∈ ÂR by

Tr(̂a) =
∫ ∞

−∞
βdxeβx

∫ ∞

0
βdqe−βq 〈	 |̂a|	〉, (28)

where x is the eigenvalue of X .
For perfect dS space, since the divergent fluctuation in X

is not taken into account, the integration over x is absent and
the trace of the identity is not divergent but finite: Tr(1) = 1.
To see the physical meaning of the identity in this case, let
us observe the trace of other operators in ÂR generated by
{a, q̂ − H0}. For a ∈ AR which is independent of q̂ − H0,

Tr(a) = Tr(a1) =
(

β

∫ ∞

0
dqe−βq

)

〈	|a|	〉
= 〈	|a|	〉,

(29)

showing that Tr(a) is the expectation value of the local opera-
tora with respect to |	〉. On the other hand, when the operator

6 We note that since H0 belongs to the isometry generators, H0|	〉 = 0
is satisfied and |	〉 does not distinguish q̂ − H0 from q̂. From this and
[X, a] = 0, one finds that for a′ defined in (26), 〈	|a′|	〉 is identified
with 〈	|a|	〉.
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G ∈ ÂR is given by a function of q̂ − H0,

Tr(G(q̂ − H0)) = Tr(G(q̂ − H0)1)

= β

∫ ∞

0
dqe−βq〈	|G(q̂ − H0)|	〉

= β

∫ ∞

0
dqe−βq〈	|G(q)|	〉

= β

∫ ∞

0
dqe−βqG(q), (30)

from which one finds that for Tr(G) to be an expectation
value, βe−βq is interpreted as the probability distribution
of the eigenvalues of q̂ . Then it is reasonable to interpret the
identity as a density matrix describing the maximal entangle-
ment: the entropy of the system in the perfect dS background
is maximized at −Tr(1 log 1) = 0. In other words, among the
states in the Hilbert space H⊗ L2(R+) on which the algebra
ÂR acts,

|	max〉 = |	〉 ⊗
∫ ∞

0
dq

√
βe−βq/2|q〉 (31)

gives the maximal entropy as the density matrix ρmax = 1 is
obtained from 〈	max |̂a|	max〉 = Tr(ρmaxâ) [10]. This is a
feature of Type II1 von Neumann algebra.

In contrast, for quasi-dS space, the integration over x in
(28) leads to Tr(1) = ∞, which means that the density matrix
for the maximal entanglement is not renormalized. Then ÂR

belongs to Type II∞ von Neumann algebra, in which the trace
is sensibly defined only for the subset of the algebra.

3.2 Density matrix and entropy

Since the inflationary quasi-dS background slightly breaks
the dS isometry, the quantum state during inflation |
〉 is
no longer the Bunch-Davies state |	〉. In order to find the
density matrix in this case, we consider a state

|
̂〉 = |
〉 ⊗ g(X) ⊗ f (q̂) (32)

in H ⊗ L2(R) ⊗ L2(R+), where

g(X) =
∫ ∞

−∞
g(x)|x〉, f (q̂) =

∫ ∞

0
f (q)|q〉. (33)

Here |g(x)|2 and | f (q)|2 are interpreted as the prob-
ability distributions of x and p with the normalizations∫ ∞
−∞ |g(x)|2dx = 1 and

∫ ∞
0 | f (q)|2dq = 1, which are

assumed to be slowly varying functions of x and q, respec-
tively. Then ρ
̂, the density matrix associated with |
̂〉 is
defined as

〈
̂|̂a|
̂〉 = Tr(ρ
̂â) =
∫ ∞

−∞
βdxeβx 〈	max|ρ
̂â|	max〉,

(34)

for any â ∈ ÂR .

In order to obtain ρ
̂, we need to convert the states writ-
ten in terms of |	〉, i.e., the states constructed by acting the
operators in ÂR on |	〉, into those written in terms of |
〉.
This is well described by the relative Tomita operator S
|	 ,
an antilinear operator satisfying7

S
|	a|	〉 = a†|
〉 (35)

for all a ∈ AR . From this, we define the relative modular
operator

�
|	 = e−h
|	 = S†

|	 S
|	, (36)

which gives the relation

〈	|�	|
a|	〉 = 〈	|S†

|	 S
|	a|	〉

= 〈	|S†

|	a

†|
〉 = 〈
|a†|
〉∗
= 〈
|a|
〉. (37)

In the same way, we can also define the Tomita operators
and the modular operators �
 = e−h
 = S†


S
 and �	 =
e−h	 = S†

	 S	 satisfying

S
a|
〉 = a†|
〉, S	a|	〉 = a†|	〉, (38)

respectively. In order to find the physical meaning of these
modular operators, in addition to AR , the local algebra
restricted to the static patch R, we consider another local alge-
bra A′

R , a commutant of AR . When we extend the spacetime
manifold to L and B, A′

R can be given by the local alge-
bra on the complementary static patch L . Then it was shown
that (see, e.g., Section IV. A of [2]) the density matrix ρ	

for algebra AR and ρ′
	 for A′

R associated with the state |	〉
satisfy

�	 = ρ	 ⊗ ρ′
	

−1
. (39)

We can also find the similar relations �
 = ρ
 ⊗ ρ′



−1,

�	|
 = ρ	 ⊗ ρ′



−1, and �
|	 = ρ
 ⊗ ρ′
	

−1. Given the
static time translation generators HR for AR and HL for
A′

R = AL , the density matrices can be written as

log ρ	 = −βHR + C, log ρ′
	 = −βHL + C, (40)

respectively, from which one finds that h	 = β(HR − HL).
Since the static time in R runs in the opposite direction to
that in L , HR − HL is nothing more than the total static time
translation generator H0. Thus, h	 is identified with βH0.
The explicit value of C in (40) can be obtained by taking the
expectation value with respect to |	〉. From 〈	|HR |	〉 = 0
(no energy flux across the horizon) and 〈	| log ρ	 |	〉 =
Tr(ρ	 log ρ	) = −Sbulk(R)	 where R denotes the bulk of
the static patch R, we obtain

log ρ	 = −βHR − Sbulk(R)	. (41)

7 While we follow the notations in [10], they are different from those
in [2]: S
|	 and �
|	 in [10] are S	|
 and �	|
 in [2], respectively.
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Comparing (34) and (37), it is reasonable to expect that
ρ
̂ contains �
|	 , which converts the expectation value with
respect to |	〉 into that with respect to |
〉. This indeed is
supported by the relation �
|	 = ρ
 ⊗ρ′

	
−1 and the obser-

vation that L ∪ B is a copy of R ∪ T thus ρ′
	 is just given by

ρ	 . The rest part of ρ
̂ depends on the probability distribu-
tion of x and q. Moreover, the fact that the observer’s energy
is described in a probabilistic way implies that the observer’s
time has an uncertainty. In [10] and [9], it was argued that
when the fluctuation in the observer’s time is bounded by
ε � β and g(x) as well as f (q) is slowly varying over 1/ε,
i.e., |�x |, |�q| ∼ 1/ε, the density matrix ρ
̂ is given by

ρ
̂ = 1

β2

∣
∣g(X + h	/β) f (q̂)

∣
∣2
eβ(−X+q̂)�
|	 + O(ε).

(42)

The justification of (42) can be found in Appendix B.
We note that in quasi-dS space, the curvature perturbation
induces the fluctuation in φ(t) hence that in the flat time
given by δt = δφ/φ̇(t). As can be inferred from (20), these
fluctuations are accumulated as time goes on, hence negligi-
bly small compared to the fluctuation in the static observer’s
time provided

δt = δφ

φ̇(t)
=

√
1

πεH

(H�t)1/2

MPl
< ε � β = 2π

H
. (43)

If the inequality is satisfied until �t ∼ β, i.e., several
e-folds, εH is required to be larger than H2/M2

Pl, which is
known as the condition that the eternal inflation does not
take place. That is, if εH is too small, the field value of φ(t)
strongly fluctuates and H may stay at some constant value
for a long time instead of decreasing in time through the
slow-roll. In this case, the semiclassical description we have
considered is no longer valid. If the inequality is satisfied until
the end of inflation �t ∼ (εH H)−1, we have the stronger
bound εH > H/MPl.

Then the von Neumann entropy of the static patch asso-
ciated with the state |
̂〉, which will be identified with the
generalized entropy up to the addition of constant, is written
as

S(R)
̂ = −〈
̂| log ρ
̂|
̂〉
= 〈
̂|h
|	 |
̂〉 − 〈
̂|(β(q̂ − X) + h
)|
̂〉

−
∫ ∞

0
dq| f (q)|2(log | f (q)|2 − log β)

−
∫ ∞

−∞
dx |g(HR)|2(log |g(HR)|2 − log β), (44)

where in the second term 〈
|h
|
〉 = 0 which is obtained
from S
|
〉 = |
〉 is added and HR indicates X + h	/β =
X + H0. From �	 = ρ	 ⊗ ρ′

	
−1 and �	|
 = ρ	 ⊗ ρ′



−1,

one finds �is

|	�−is

	 = �is

�−is

	|
 (this quantity is called the

Connes cocycle), which leads to h
|	 − h
 = h	 − h	|
.
Then S(R)
̂ is rewritten as

S(R)
̂ = − 〈
̂|h	|
|
̂〉 − 〈
̂|(β(q̂ − X) − h	)|
̂〉
−

∫ ∞

0
dq| f (q)|2(log | f (q)|2 − log β)

−
∫ ∞

−∞
dx |g(HR)|2(log |g(HR)|2 − log β). (45)

Let us first consider the second line. The first integral is
interpreted as the entropy of the static observer, which is
evident from the fact that | f (q)|2 is the probability distribu-
tion of q̂ eigenvalues, the observer’s energy. As for the last
term, we recall that the fluctuation in HR originates from
the fluctuation in φ(t), or equivalently, the flat time t . Since
H also varies depending on t , the value of H at the end of
inflation also fluctuates, the probability distribution of which
is described by |g(HR)|2. These two integrals in the second
line are not explicitly relevant to the excitations of matter
in the static patch, and can be identified with Sbulk(∞)
̂,
the bulk entropy associated with |
̂〉 at the end of inflation.
This is because at late time, the wavelength of almost all
the excitations will be stretched beyond the horizon so the
static observer does not find any excitation except for that
of the observer state inside the horizon. We can compare
it with the static observer in the Bunch-Davies state |	〉.
As |	〉 is invariant under the static time translation gener-
ated by H0, the bulk entropy will be constant in time, i.e.,
Sbulk(R)	̂ = Sbulk(∞)	̂ , and it measures the entropy of
empty dS space without any excitation except for that of the
observer state. For the state during inflation |
〉, in contrast,
the background does not respect the isometry generated by
H0 any longer. Then the spontaneous breaking of the isome-
try by the background gives rise to the curvature perturbation
which does not appear in perfect dS space. But the back-
ground is still close to dS space and the wavelength of these
excitations would be stretched as the universe undergoes
accelerated expansion. Then just like the perfect dS back-
ground, almost all the excitations cross the horizon after sev-
eral e-folds and only the fluctuations of the observer’s energy
and the value of H contribute to the entropy. Then Sbulk(∞)
̂
can be identified with the sum of Sbulk(∞)	̂ = Sbulk(R)	̂
and the last integral in (45). The same argument leads to
Sbulk(∞)
 � Sbulk(∞)	 = Sbulk(R)	 .

We also note that the last two integrals in (45) reflects two
different ways to give rise to the uncertainty of the horizon
area. First, since the horizon is deformed by the backreac-
tion of observer’s energy q, the horizon area fluctuates as q
fluctuates [10,47,48]. Second, as we remarked earlier, the
probability distribution |g(HR)|2 is induced by the fluctu-
ation in time, which leads to the fluctuation in the horizon
radius, thus that in the horizon area at late time.
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Summarizing the discussion so far, S(R)
̂ can be written
as

S(R)
̂ = −〈
̂|h	|
|
̂〉 − 〈
̂|(β(q̂ − X) − h	)|
̂〉
+ Sbulk(∞)
̂.

(46)

As we will see in the next section, whereas the first term is
identified with the negative of the change in the generalized
entropy, the term −〈
̂|(β(q̂ − X) − h	)|
̂〉 = 〈
̂|(HR −
βq̂)|
̂〉 can be interpreted as the deformation of the horizon
area from the initial value. This leads to the relation S(R)
̂ =
Sgen(R)
̂+(constant).

3.3 Horizon dynamics and entropy in quasi-dS space

We now focus on the first term of the RHS in (46). It was
argued in [9] that this term is identified with a negative of
the relative entropy, −Srel(
||	). Indeed, this is the case if
we consider the expectation value of −h	|
 with respect to
|
〉,
− 〈
|h	|
|
〉 = 〈
| log(�	|
)|
〉

= 〈
|(log(ρ	) − log(ρ
))|
〉
= Tr(ρ
 log ρ	) − Tr(ρ
 log ρ
) = −Srel(
||	).

(47)

Moreover, the relative entropy can be rewritten as [9,49]

Srel(
||	) = Sgen(∞)
 − Sgen(R)
, (48)

i.e., the difference between the generalized entropies at initial
(U = 0) and late (U = ∞) times given by

Sgen(R) = A(b)

4G
+ Sbulk(R),

Sgen(∞) = A(b∞)

4G
+ Sbulk(∞),

(49)

respectively, where b and b∞ indicate the horizon cuts at
initial and late times as depicted in Fig. 1. This comes from
the observation that HR , the static time translation generator
restricted to the static patch R (recall that H0 = h	/β =
HR − HL ) satisfies

〈
|βHR |
〉 = A(b∞)

4G
− A(b)

4G
. (50)

Then from Sbulk(∞)
 � Sbulk(∞)	 = Sbulk(R)	 we
obtain

Sgen(∞)
 − Sgen(R)


= A(b∞)

4G
− A(b)

4G
+ Sbulk(∞)
 − Sbulk(R)


� A(b∞)

4G
− A(b)

4G
+ Sbulk(R)	 − Sbulk(R)
.

(51)

From (41), the change in the horizon area can be written
as

A(b∞)

4G
− A(b)

4G
= β〈
|HR |
〉
= −〈
| log ρ	 |
〉 − Sbulk(R)	,

(52)

from which the above expression is rewritten as

Sgen(∞)
 − Sgen(R)
 = −〈
| log ρ	 |
〉 − Sbulk(R)


= −〈
| log ρ	 |
〉
+ 〈
| log ρ
|
〉

= Srel(
||	), (53)

which confirms (48).
Meanwhile, when we replace |
〉 by |
̂〉, the first term in

(46) is given by

−〈
̂|h	|
|
̂〉 = 〈
̂|(log ρ	 − log ρ
)|
̂〉
= −〈
̂|βHR |
̂〉 − Sbulk(R)	 − 〈
̂| log ρ
|
̂〉, (54)

where again the expression (41) for log ρ	 is used for the first
two terms in the second line. To proceed, we note that the rela-
tion (50) holds even if |
〉 is replaced by |
̂〉, with the explicit
values of A(b∞) and A(b) are changed reflecting the back-
reaction of the observer. Moreover, since log ρ
 contains
the probability distribution of the matter excitations in the
bulk, it is tempting to relate the last term −〈
̂| log ρ
|
̂〉 =
−Tr(ρ
̂ log ρ
) to the bulk entropy. However, it cannot be
identified with Sbulk(R)
̂ as the dynamics of the bulk in
the state |
̂〉 is also affected by the fluctuations in q and
x , which are not reflected in log ρ
. Since these fluctua-
tions remain until the end of inflation when all the matter
excitations cross the horizon, if we conjecture that the dif-
ference Sbulk(R)
̂ − (−Tr(ρ
̂ log ρ
)) which contains the
effects of the fluctuations in q and x on the bulk dynamics are
time independent at leading order, it can be identified with
Sbulk(∞)
̂ − Sbulk(∞)
. Then we obtain

−〈
̂|h	|
|
̂〉 =
(

− A(b∞)

4G
+ A(b)

4G

)

− Sbulk(R)	

+ (
Sbulk(R)
̂ − Sbulk(∞)
̂ + Sbulk(∞)


)

= −
(
A(b∞)

4G
+ Sbulk(∞)
̂

)

+
(
A(b)

4G
+ Sbulk(R)
̂

)

= −(
Sgen(∞)
̂ − Sgen(R)
̂

)
, (55)

where in the second line we use the relation Sbulk(∞)
 �
Sbulk(∞)	 = Sbulk(R)	 .

Now we investigate the change in the horizon area more
explicitly.
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When the observer’s energy q in perfect dS space is con-
centrated in the tiny region, the Schwarzschild–de Sitter
black hole can be created and the metric is modified as8

ds2 = − f (rs)dt
2
s + 1

f (rs)
dr2

s + r2
s (dθ2 + sin2 θdφ2),

f (rs) = 1 − 2Gq

rs
− H2r2

s .

(56)

If q is small enough, say, q � H or q/�E ∼ H2/M2
Pl �

1, the linear expansion in q is valid such that the cosmological
horizon and the black hole radii are approximated as H−1 −
Gq and 2Gq, respectively. For quasi-dS space, the radius
of the cosmological horizon deformed by the slow-roll as
well as the backreaction of the observer’s energy is given
by rH = H−1 + εH�t − Gq. Here H is the initial value
of the Hubble parameter, and the Hubble parameter during
the inflationary period can be approximated by this constant
value. Then the (cosmological) horizon area at initial time is
estimated as

A(b)

4G
� π

G
(H−1 − Gq)2 � π

GH2 − βq, (57)

and that at late time, namely, just after the inflationary period
�t � (εH H)−1, is approximated as

A(b∞)

4G
� π

G
(H−1

f − Gq)2 � π

GH2
f

− β f q, (58)

where H−1
f = H−1 + εH�t is the value of the Hub-

ble radius at the end of inflation and β f = (2π)/H f . As
we have seen in Sect. 2, the change in the horizon area
leads to the energy flux across the horizon as 〈
̂|HR |
̂〉 =∫
dtβ−1(d/dt)[A/(4 G)], or symbolically, 〈
̂|βHR |
̂〉 =

[A(b∞) − A(b)]/4 G. Since X + H0 = X + h	/β = HR ,
(46) is rewritten as

S(R)
̂ = −(Sgen(∞)
̂ − Sgen(b)
̂) − 〈
̂|βq̂|
̂〉
+

(
A(b∞)

4G
− A(b)

4G

)

+ Sbulk(∞)
̂

= Sgen(b)
̂ − 〈
̂|βq̂|
̂〉 − A(b)

4G
. (59)

We also note that the state |
̂〉 contains the probability
distribution of the observer’s energy q, in which −βq in (57)
is modified to −〈
̂|βq̂|
̂〉. Therefore, we arrive at

S(R)
̂ = Sgen(b)
̂ − π

GH2 , (60)

and since H is a constant, S(R)
̂ is identified with Sgen(b)
̂
up to the addition of a constant.

8 There has been a conjecture that in the absence of an observer collect-
ing information, quantum gravity forbids the production of the black
hole through the fluctuation [50]. For discussions on how this conjecture
applies to the dS background, see, e,g, [51–54].

4 Conclusion

Throughout this article, we have investigated how Type II1

von Neumann algebra description of perfect dS space is mod-
ified in the inflationary quasi-dS space. Unlike perfect dS
space, quasi-dS space allows the nonvanishing energy flux
across the horizon, which is identified with the expectation
value of the static time translation generator. In the evalua-
tion of the energy flux, we assume the inflationary period to
be (εH H)−1, which is natural in the sense that after this time
scale H deviates significantly from the initial value hence
it is no longer approximated as a constant. Then both the
energy flux and its fluctuation diverge in the G → 0 limit.
Here the fluctuation originates from the breaking of the dS
isometry associated with the static time translation, which
induces the uncertainty of time, and also the fluctuation in
the value of H at the end of inflation. As a result, the infla-
tionary quasi-dS space can be described by Type II∞ algebra.
This is different from Type II1 algebra for perfect dS space:
since the horizon radius fluctuates by the uncertainty of the
observer’s energy only, the entropy of any quantum state can-
not exceed that of empty dS space in the Bunch-Davies state.
In contrast, in Type II∞ algebra for quasi-dS space, due to
the divergent fluctuation of the energy flux, the trace hence
the entropy is not well defined for the identity describing the
maximal entanglement of the Bunch-Davies state, and there
is no upper bound on the entropy.

On the other hand, there has been a claim called the ‘dS
swampland conjecture’ that dS space is unstable in quan-
tum gravity, which is supported by the distance conjecture
and the covariant entropy bound [17–20]. Estimation based
on the conjecture suggests the much shorter inflationary
period given by (ε

−1/2
H H−1) log(MPl/H), after which εH

becomes O(1) and the background geometry is no longer
close to dS space [55,56]. Even shorter inflationary period
H−1 log(MPl/H) was conjectured under the name of ‘trans-
Planckian censorship conjecture’, which forbids the hori-
zon crossing of the trans-Planckian modes [57] (see also
[58–61]). In these cases, the energy flux across the horizon,
or 〈
|HR |
〉 is given by ε

1/2
H [1/(GH)] log(MPl/H) and

εH [1/(GH)] log(MPl/H), respectively. Since εH ∼ O(G),
the former still diverges but the latter is of O(1) in the
G → 0 limit. In both cases, the fluctuation δHR becomes
vanishing in the G → 0 limit as the values in two cases
are estimated as (εH/π)1/2 log(MPl/H)[log(MPl/H) + 1]
and (ε3

H/π)1/2 log(MPl/H)[log(MPl/H) + 1], respectively.
Hence, the renormalized operator H ′

R = HR −〈
|HR |
〉 is
well defined. Then in this limit, we do not need to consider
the probability distribution g(X) reflecting the fluctuation in
time, and the von Neumann algebra can be defined in the
same way as that in the pure dS space with observer, i.e.,
Type II1 algebra. This shows that in addition to the nonzero
energy flux across the horizon, the inflationary period plays
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the crucial role in determining the appropriate von Neumann
algebra description of spacetime during the inflation.
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A Coordinate systems on de Sitter space

We list several coordinate descriptions of dS space which are
useful in our discussion. For more complete reviews, see, e.g.,
[62,63]. A natural description of dS space as seen by a static
observer surrounded by the horizon is the static coordinates,
in which the metric is written as

ds2 = −(1 − H2r2
s )dt2

s + dr2
s

1 − H2r2
s

+ r2
s (dθ2 + sin2 θdφ2). (A.61)

From this, one immediately finds that the timelike Killing
vector is just given by ka = (∂ts )

a and the horizon is located at
rs = H−1. In order to see the causal structure, it is convenient
to introduce the tortoise coordinate,

dr∗ = drs
1 − H2r2

s
, r∗ = 1

2H
log

(
1 + Hrs
1 − Hrs

)

, (A.62)

such that the (ts, r∗) part of the metric is written in the
conformally flat form. Then one can define the Eddington–
Finkelstein coordinates u = ts − r∗ and v = ts + r∗ as light-
cone coordinates. For the extension to the region beyond the
horizon, the Kruskal–Szekeres coordinates are useful. In the
static patch, they are given by

U = 1

H
eHu = 1

H
eHts

√
1 − Hrs
1 + Hrs

,

V = − 1

H
e−Hv = − 1

H
e−Hts

√
1 − Hrs
1 + Hrs

, (A.63)

in terms of which the metric is written as

ds2 = − 4

(1 − H2UV )2 dUdV

+ (1 + H2UV )2

H2(1 − H2UV )2 (dθ2 + sin2 θdφ2).

(A.64)

Using (A.63), the timelike Killing vector in dS is rewrit-
ten as ka = (∂ts )

a = H(U∂U − V ∂V )a . The future (past)
horizon is a null hypersurface satisfying V = 0 (U = 0),
which is normal to ka = HU∂U (ka = −HV ∂V ) or
ka = −2HU (dV )a (ka = 2HV (dU )a). Thus, U (V ) is
a natural canonical affine parameter on the future (past) hori-
zon.

Meanwhile, in order to describe the inflationary cosmol-
ogy, the flat coordinates (t, r) in terms of which the metric
is written as

ds2 = −dt2 + e2Ht [dr2 + r2(dθ2 + sin2 θdφ2)
]

(A.65)

are useful. They are related to the static coordinates by

ts = t − 1

2H
log

(
1 − H2r2e2Ht), rs = reHt , (A.66)

which give

∂ts
∂t

= 1

1 − H2r2
s
,

∂rs
∂t

= Hrs,

∂ts
∂r

= eHt Hrs
1 − H2r2

s
,

∂rs
∂r

= eHt ,

∂t

∂ts
= 1,

∂r

∂ts
= −Hr,

∂t

∂rs
= − Hrs

1 − H2r2
s
,

∂r

∂rs
= e−Ht

1 − H2r2
s
.

(A.67)

Then the timelike Killing vector is written as ka =
(∂ts )

a = (∂t − Hr∂r )a .

B Derivation of the density matrix

Here we briefly sketch how (42), the expression for the den-
sity matrix ρ
̂ associated with |
̂〉 is obtained, following
[10]. The relation (37), 〈	|�
|	a|	〉 = 〈
|a|
〉 indicates
that theAR part of ρ
̂ is given by �
|	 . Meanwhile, from the
facts that the algebra ÂR is generated by {a, q̂ − (H0 + X)}
where H0 = βh	 and that h	 −h
|	 = h
 −h	|
 belongs
to AR , one finds that the combination

eβ(−X+q̂)�
|	 = e−βX+β(q̂−h	/β)+(h	−h
|	) (B.68)
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is well factorized into AR ⊗ B(R) ⊗ B(R+). This motivates
us to consider an ansatz

ρ
̂ = 1

β2 g(X)∗ f (q̂ − h	/β)∗eβq̂

�
|	 f (q̂ − h	/β)g(X) + O(ε).

(B.69)

Since we assume that both f (q̂ − h	/β) and g(X) are
slowly varying such that they are taken to be almost constant
over |q − h	/β| < 1/ε and |x | < 1/ε, respectively, their
commutators with any other operators are expected to be
suppressed by O(ε). Then ρ
̂ can be written in the form of
(42).

To see ρ
̂ satisfies (34), we consider the operator

â = ae−iu(β(q̂−X)−h	), (B.70)

which does not vanish for β|u| < ε as it avoids the strong
oscillation. Imposing eiuh	 = 1+O(ε), its expectation value
with respect to |
̂〉 = |
〉 ⊗ g(X) ⊗ f (q̂) is given by

〈
̂|̂a|
̂〉 =
∫ ∞

−∞
dx |g(x)|2

×
∫ ∞

0
dq| f (q)|2〈
|ae−iu(β(q−x)−h	)|
〉

=
∫ ∞

−∞
dx |g(x)|2

×
∫ ∞

0
dq| f (q)|2e−iuβ(q−x)〈
|a|
〉 + O(ε).

(B.71)

Here 〈
|a|
〉 can be replaced by 〈	|�
|	a|	〉. Ignoring
O(ε) terms and using h	 |	〉 = 0, it becomes

〈
̂|̂a|
̂〉 =
∫ ∞

−∞
dx

∫ ∞

0
dq〈	|∣∣g(x + h	/β)

∣
∣2

× ∣
∣ f (q)

∣
∣2
e−iu(β(q−x)−h	)�
|	a|	〉

=
∫ ∞

−∞
dx

∫ ∞

0
dq〈	|∣∣g(x + h	/β)

∣
∣2

× ∣
∣ f (q)

∣
∣2

�
|	 â|	〉
=

∫ ∞

−∞
βdxeβx

∫ ∞

0
βdqe−βq〈	| 1

β2

× ∣
∣g(x + h	/β) f (q)

∣
∣2
eβ(−x+q)�
|	 â|	〉.

(B.72)

Matching this with
∫

βdxeβx 〈	max|ρ
̂â|	max〉, we find
that ρ
̂ is written as (42).
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