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Anomalies in transverse Ward-Takahashi identities are studied, allowing discussion of the feasibility of
anomalies arising in general nonsymmetry Ward-Takahashi identities. We adopt the popular Fujikawa
method and rigorous dimensional renormalization to verify the existence of transverse anomalies to one-
loop order and any loop order, respectively. The arbitrariness of coefficients of transverse anomalies is
revealed, and a way out is also proposed after relating transverse anomalies to Schwinger terms and
comparing symmetry and nonsymmetry anomalies. Papers that claim the nonexistence of transverse
anomalies are reviewed to find anomalies hidden in their approaches. The role played by transverse
anomalies is discussed.
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I. INTRODUCTION

There are always surprises in common quantization
procedures, let alone the quantization of relativistic fields,
which is highly entangled with infinite degrees of freedom,
with various divergences and anomalies revealing the
power of quantum laws. We discuss such anomalies in
the present paper. In various examples, anomalies break
many symmetries and manifest as various anomalous
Ward-Takahashi identities [1,2] (WTIs), such as chiral
[3–5] and trace [6,7] anomalies. To our knowledge, how-
ever, no paper has discussed anomalies in WTIs that do not
stand for any symmetry. Our research on anomalies in the
transverse Ward-Takahashi identity [8–11] (tWTI), which
is not a symmetry WTI, has opened the door to non-
symmetry anomalies. The content of nonsymmetry WTIs is
much richer than that of symmetry WTIs, and the anomaly
may be largely extended and more exposed to us such that
we may see the nature of the anomaly more deeply.
However, this requires far more examples of nonsymmetry
anomalies, apart from anomalies in tWTIs as discussed in
this paper. Further support for nonsymmetry anomalies
must be left to further discoveries, with the present paper

focusing on anomalies in tWTIs (referred to as transverse
anomalies) only.
In dealing with transverse anomalies, we find that

many methods applied to symmetry anomalies are
entirely suitable for locating and analyzing a nonsymmetry
anomaly. As an example, if we use dimensional renorm-
alization, anomalies in symmetry and nonsymmetry
WTIs may be treated on an equal footing because extra-
dimensional operators appear in equations of motion and
any WTI that involves the use of equations of motion may
acquire an anomaly because these extra-dimensional oper-
ators can often be expanded using various four-dimensional
operators that potentially include anomaly terms [12,13].
Indeed, we find no difference in analyzing transverse
anomalies when adopting dimensional renormalization in
Sec. IV than when adopting a procedure to handle chiral
and trace anomalies (as described in detail in Ref. [12]).
Although dimensional renormalization already allows us

to go to any order in perturbation theory, it is interesting and
inspiring to look at some semiclassical one-loop methods in
locating anomalies in WTIs. Fujikawa’s elegant approach
[7,14] tells us that anomalies appear as long as we get
nontrivial Jacobian factors by varying fields in the path
integral when obtaining WTIs. It is therefore convenient to
check whether a WTI has anomalies if we know how to get
the WTI by varying fields, and this is the case for the tWTI.
Equivalently,1 we may locate anomalies in the canonical
framework to avoid dealing with the explicit but somehow
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1The equivalence of Fujikawa’s method and the following
canonical approach are proved in Ref. [15].
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abstract path integral measure because it has no classical
correspondence, and we do not even have to know how to
get this WTI by varying fields. In the canonical framework
without any consideration of renormalization, it is easy to
conclude that an anomaly is a matter of definition of
operators and that anomalies simply hide in equations of
motion. We consider, for example, the case of the chiral
anomaly [15,16]. We start from the following Dyson-
Schwinger equation, where derivatives should be outside
the time-ordered product (as is the convention used
throughout the present paper):

hTi=Dx
klψlðxÞψ̄nðyÞi ¼ mhTψkðxÞψ̄nðyÞi þ iδknδ4ðx − yÞ:

ð1Þ

In assembling the chiral anomaly, we contract ðγ5Þnk on
both sides of (1) and take the y → x limit, thus obtaining
the familiar expression tr½γ5�δ4ðx − xÞ, a signal for chiral
anomaly2:

hψ̄ðxÞγ5i=⃗DψðxÞi ¼mhψ̄ðxÞγ5ψðxÞi− itr½γ5�δ4ðx− xÞ: ð2Þ

Similarly, we have (the Dyson-Schwinger equation for ψ̄ )

hψ̄ðxÞi=⃖Dγ5ψðxÞi ¼ −mhψ̄ðxÞγ5ψðxÞi þ itr½γ5�δ4ðx − xÞ:
ð3Þ

The anomalous partial conservation equation for axial

current jμ5 ≡ ψ̄γμγ5ψ is then obtained (D⃗μ ¼ ∂⃗μ − igAμ;

D⃖μ ¼ ∂⃖μ þ igAμ):

∂μhjμ5ðxÞi ¼ −ihψ̄ðxÞi=⃖Dγ5ψðxÞi þ ihψ̄ðxÞγ5i=⃗DψðxÞi
¼ 2imhψ̄ðxÞγ5ψðxÞi þ 2tr½γ5�δ4ðx − xÞ: ð4Þ

This is exactly what Fujikawa [14] obtained3 by calculating
the transformation Jacobian of the path integral mea-
sure (before regularization). Additionally, it is easy to
generalize to other anomalies such as the trace anomaly4

from conformal symmetry. Consider the following expres-
sion of energy momentum tensor (see, e.g., (1.2) in
Ref. [18]):

θμν ¼
1

4
gμνFρσFρσ − FμρFν

ρ

þ i
4
ðψ̄γμD⃗νψ þ ψ̄γνD⃗μψ − ψ̄γμD⃖νψ − ψ̄γνD⃖μψÞ;

ð5Þ

and contract (1) with δkn, i.e.,

hψ̄ðxÞi=⃗DψðxÞi ¼ mhψ̄ðxÞψðxÞi − itr½1�δ4ðx − xÞ: ð6Þ

Together with that of ψ̄ ,

hψ̄ðxÞi=⃖DψðxÞi ¼ −mhψ̄ðxÞψðxÞi þ itr½1�δ4ðx − xÞ; ð7Þ

we have

gμνhθμνðxÞi ¼ mhψ̄ðxÞψðxÞi − itr½1�δ4ðx − xÞ: ð8Þ

Again, this reproduces what Fujikawa obtained by his
method [19] (before regularization).
Clearly, the important step in getting the chiral and

trace anomaly explicitly is to define ψ̄ðxÞγ5i=⃗DψðxÞ
and ψ̄ðxÞi=⃗DψðxÞ to be limy→x Tψ̄ðyÞγ5i=⃗DxψðxÞ and

limy→x Tψ̄ðyÞi=⃗DxψðxÞ. If we use the naive defini-

tion that ψ̄ðxÞγ5i=⃗DψðxÞ≡ limy→x ψ̄ðyÞγ5i=⃗DxψðxÞ and

ψ̄ðxÞi=⃗DψðxÞ≡ limy→x ψ̄ðyÞi=⃗DxψðxÞ, there cannot be any
anomalous terms in the chiral and trace WTI. According
to the above argument, as long as equations of motion
are used in derivations of a WTI and the time-ordered
product definition of operators is taken, an anomaly in the
form of singular contact terms like tr½γ5�δ4ðx − xÞ and
tr½1�δ4ðx − xÞ may appear.5 This helps us greatly to
anticipate possible anomalies in new WTIs—not neces-
sarily one that stands for some symmetry—before resorting
to rigorous all-order methods, such as dimensional
renormalization.
The remainder of the paper is organized as follows. We

first briefly review the tWTI in Sec. II and then derive the
tWTI in Fujikawa’s paradigm (one-loop order) in Sec. III to
obtain intuitive ideas on transverse anomalies. We next
present a rigorous any-loop order analysis of the tWTI in
dimensional renormalization in Sec. IV. In Sec. V, we
discuss the connection between transverse anomalies and
Schwinger terms on the basis of Sec. IV. It has been shown
many times that the naive tWTI (i.e., without transverse
anomalies) is correct on one-loop order, and we make
comments in Sec. VI and Appendixes B and C relating
to picking up hidden transverse anomalies in those
approaches. Symmetry and nonsymmetry anomalies are

2The minus sign is due to Fermi statistics, and we drop the
time-ordered symbol in the equal time limit.

3Note that Fujikawa worked in Wick rotated Euclidean space;
thus, an extra factor i should be multiplied to our anomaly terms
to restore his results. This is also true for the trace anomaly, which
we will talk about next.

4Reference [17] worked out the trace anomaly of the scalar
field in curved spacetime, but in the present paper, we talk about
trace anomaly in quantum electrodynamics.

5Of course, this is only established on one-loop order and some
specific regularization schemes such as ζ function regularization
discussed in Appendix A.
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then compared in Sec. VII. We conclude the paper in
Sec. VIII. It is worth emphasizing that throughout the paper
except in Sec. III and where one loop is indicated explicitly,
we work with the accuracy to any-loop order in perturba-
tion theory.
In this paper, the spacetime metric is gμν ¼

diagðþ;−;−;−Þ. γ5 ≡ iγ0γ1γ2γ3 and ϵ0123 ¼ þ1. We
define σμν ≡ i

2
½γμ; γν�.

II. REVIEW OF tWTIs

Vector and axial vector tWTIs have been proposed
[8–11] in Abelian and non-Abelian cases. In this paper,
we focus on the Abelian case only, while the non-Abelian
generalization is presented in Appendix A [see Eq. (A3)]
but is to be investigated in detail elsewhere.
The Abelian vector tWTI6 is often presented as [10,11]

[without anomaly; the generalization that includes more
ψðyiÞ and ψ̄ðzjÞ or AμkðukÞ is obvious]

∂μ
xhTjνðxÞψðyÞψ̄ðzÞi − ∂ν

xhTjμðxÞψðyÞψ̄ðzÞi
¼ iσμνhTψðyÞψ̄ðzÞiδ4ðx − yÞ þ ihTψðyÞψ̄ðzÞiσμνδ4ðx − zÞ
þ iϵμνρσð∂x

ρ − ∂x0
ρ Þ

× hTψ̄ðx0Þγσγ5eig
R

x0
x

dy·AψðxÞψðyÞψ̄ðzÞix0→x

þ 2mhTψ̄ðxÞσμνψðxÞψðyÞψ̄ðzÞi; ð9Þ

while the axial vector tWTI is

∂μ
xhTjν5ðxÞψðyÞψ̄ðzÞi − ∂ν

xhTjμ5ðxÞψðyÞψ̄ðzÞi
¼ iσμνγ5hTψðyÞψ̄ðzÞiδ4ðx − yÞ
− ihTψðyÞψ̄ðzÞiσμνγ5δ4ðx − zÞ þ iϵμνρσð∂x

ρ − ∂x0
ρ Þ

× hTψ̄ðx0Þγσeig
R

x0
x

dy·AψðxÞψðyÞψ̄ðzÞix0→x: ð10Þ

Before starting, it is necessary to reduce both (9)
and (10) to simpler forms. The apparently nonlocal

expression of limx0→x iϵμνρσð∂x
ρ − ∂x0

ρ Þψ̄ðx0Þγσγ5eig
R

x0
x

dy·A ×
ψðxÞ is suitable for Fourier transformations [10] but a

little confusing because the factor eig
R

x0
x

dy·A is not used in
this paper. The way out is to simply work out this
limit first,7

lim
x0→x

iϵμνρσð∂x
ρ − ∂x0

ρ Þψ̄ðx0Þγσγ5eig
R

x0
x

dy·AψðxÞ
¼ 2ϵμνρσψ̄ðxÞγσγ5iDρψðxÞ; ð11Þ

where Dρ ¼ 1
2
ð∂⃗ρ − ∂⃖ρÞ − igAρ. We hereafter use

2ϵμνρσψ̄ðxÞγσγ5iDρψðxÞ rather than the nonlocal limit
[the same as that in (10) with γσγ5 → γσ].
We return to the tWTI. Equations (9) and (10) are not

conservation equations for any currents because trans-
formations in (14) leading to tWTIs with αðxÞ ¼ Const:
do not leave the Lagrangian or action invariant, even with
m → 0. Therefore, the tWTI is a proper example that
illustrates the richness of anomalies beyond the scope of
quantum obstacles to classical symmetries.

III. HEURISTIC DERIVATION OF TRANSVERSE
ANOMALIES USING FUJIKAWA’S METHOD

In this section, we make use of Fujikawa’s method for
the path integral measure to obtain some intuitive pictures
of transverse anomalies. It is known [7] that Fujikawa’s
original method is correct only in the sense of the back-
ground field approximation, and we thus treat AμðxÞ as a
background electromagnetic potential, and the following
Lagrangian should be sufficient in this section (i.e., there
is no need for renormalization at the moment). The
Lagrangian is

LBG ¼ ψ̄

�
i
2
=∂↔ − ig0=A −m0

�
ψ : ð12Þ

The partition function Z½η; η̄; A� is simply

Z½η; η̄; A� ¼
Z

½dψdψ̄ �ei
R

d4xðLBGðxÞþψ̄ðxÞηðxÞþη̄ðxÞψðxÞÞ: ð13Þ

In the absence of the dynamics of Aμ, Eq. (13) is simply a
one-loop approximation of QED.
We apply the field variation

δψðxÞ ¼ 1

4
αðxÞϵμνσμνψðxÞ;

δψ̄ðxÞ ¼ 1

4
αðxÞϵμνψ̄ðxÞσμν ð14Þ

and include its nontrivial Jacobian8 and thus obtain the
desired tWTI:

∂μhjνðxÞiA − ∂νhjμðxÞiA
¼ 2ϵμνρσhψ̄ðxÞγσγ5iDρψðxÞiA þ 2mhψ̄ðxÞσμνψðxÞiA
− hψ̄ðxÞiAσμνηðxÞ− η̄ðxÞσμνhψðxÞiA − 2itr½σμν�δ4ðx− xÞ:

ð15Þ

We thus focus on the nontrivial Jacobian of the path integral
measure, i.e., −2itr½σμν�δ4ðx − xÞ in (15). In contrast, the
field variation leading to the axial tWTI,

6In most cases, this is the meaning of the tWTI.
7In fact, the original expression is just the result of the limit, so

any question about the interchange of limits is not of concern
here, as easily seen in Secs. III and IV. 8See Eq. (A4) for a detailed derivation.
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δψðxÞ ¼ þ 1

4
αðxÞϵμνσμνγ5ψðxÞ;

δψ̄ðxÞ ¼ −
1

4
αðxÞϵμνψ̄ðxÞσμνγ5; ð16Þ

acquires a vanishing Jacobian factor owing to the different
signs of δψ and δψ̄ and thus contributes no anomalies.
From now on, we will consider the vector tWTI only.
Proceeding with Fujikawa’s original regularization

method (i.e., with the regulator e−=D
2=Λ2

), we get the
divergent result (see Appendix A for details)

−2itr½σμν�δ4ðx − xÞ ¼Λ g0Λ2

2π2
FμνðxÞ − g0

12π2
∂ρ∂ρFμνðxÞ:

ð17Þ

However, it is known [20] that quadratic divergence
in QED corresponds to photon mass and thus must be
discarded. An elegant way to do this is to employ the ζ
function regularization (which effectively turns Λ2 to −m2

0)
and thus obtain

−2itr½σμν�δ4ðx − xÞ ¼ζ −
g0m2

0

2π2
FμνðxÞ − g0

12π2
∂ρ∂ρFμνðxÞ:

ð18Þ

The final result of the tWTI is thus

∂μhjνðxÞiA − ∂νhjμðxÞiA
¼ 2ϵμνρσhψ̄ðxÞγσγ5iDρψðxÞiA þ 2mhψ̄ðxÞσμνψðxÞiA
− hψ̄ðxÞiAσμνηðxÞ − η̄ðxÞσμνhψðxÞiA
−
g0m2

0

2π2
FμνðxÞ − g0

12π2
∂ρ∂ρFμνðxÞ: ð19Þ

At this point, however, it is emphasized that hjμðxÞiA,
ϵμνρσhψ̄ðxÞγσγ5iDρψðxÞiA and hψ̄ðxÞσμνψðxÞiA in (19) are
not well defined [even in the background field approxi-
mation (i.e., one-loop order)] owing to the divergence of
loop diagrams with only two vertices even after imposing
gauge invariance in the external photon leg. This is unlike
the case of the chiral WTI, where degrees of divergence of
triangle diagrams are largely decreased by both an

additional internal fermion propagator and gauge invari-
ance in two external photon legs. See Fig. 1.
It is the divergence in these loop diagrams that

makes the anomaly terms ambiguous because9 they may
be only counterterms of ϵμνρσhψ̄ðxÞγσγ5iDρψðxÞiA and
hψ̄ðxÞσμνψðxÞiA. However, we will see that the anomaly
terms survive even after renormalization. A rigorous
analysis using dimensional renormalization is presented
in the next section. Of course, the gauge fields Aμ present
are not treated as an external source.

IV. FULL ANALYSIS IN DIMENSIONAL
RENORMALIZATION

For simplicity and clarity, the modified minimal sub-
traction (MS) is used in this section. We first specify the
effective Lagrangian [12] (i.e., without infinite counter-
terms):

LEFF ¼ −
1

4
FμνFμν þ ψ̄ði=D −mÞψ

þ λ2

2
AμAμ −

1

2ξ
ð∂μAμÞ2: ð20Þ

Here, the gauge-fixing term is as usual, and a photon
mass term is added to regularize infrared divergences [12].
Now that Aμ is dynamical, our analysis can be extended
to all orders by virtue of dimensional renormalization
[13,21–23].
As figured out in a series of papers [12,22,23], ano-

malies in dimensional renormalization arise from extra-
dimensional objects like10 ĝμμ ¼ d− 4 and fγμ; γ5g ¼ 2γ̂μγ5,
which correspond, respectively, to trace and chiral anoma-
lies, as do transverse anomalies. Using the normal product
formalism [12,13,23] in dimensional renormalization, we
can easily derive a prototype of the tWTI:

∂μN½jν� − ∂νN½jμ�

¼ −
i
2
∂ρN½ψ̄ ½γρ; σ̄μν�ψ �

¼ 2N½ϵμνρσψ̄γσγ5iDρψ � þ 2mN½ψ̄ σ̄μνψ �
− 2N½ψ̄ σ̄μνγ̂ρiDρψ � þ N½ψ̄ σ̄μνði=⃗D −mÞψ �
þ N½ψ̄ð−i=⃖D −mÞσ̄μνψ �: ð21Þ

FIG. 1. (Divergent) one-loop diagrams for operators in the
tWTI and chiral WTI (gray vertex for those in the tWTI and black
vertex for those in the chiral WTI).

9The authors are in debt to the referee for pointing this out.
10We here use the same convention as used by Collins [13],

where objects with a bar, such as γ̄μ, are genuinely four-
dimensional things (but not to be confused with the bar in ψ̄ ,
which indicates pseudo-Hermitian conjugation); objects with
a hat, such as ĝμν, exist in extra dimensions; and objects
without special labels, such as pμ ¼ p̄μ þ p̂μ, are complete
d-dimensional entities.
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Formally vanished N½ψ̄ σ̄μνði=⃗D −mÞψ � and N½ψ̄ð−i=⃖D−
mÞσ̄μνψ � obtained using equations of motion are
sources of contact terms when inserted into the
Green’s functions [13], and we thus only need consider
the possible anomaly term N½ψ̄ σ̄μνγ̂ρiDρψ �. Although
N½ψ̄ σ̄μνγ̂ρiDρψ � has a vanishing tree diagram, its loop

diagrams are not zero because ∂↔ρ inside the operator
drops loop momenta off11 and thus has nonzero con-
tributions. Operators with evanescent vertices [13] like
this are simply origins of anomalies in dimensional renor-
malization. Thanks to the existence of Zimmermann-like
identities in dimensional renormalization [12,23], trans-
verse anomalies that are also of the form N½ĝμνOμν� (just
as trace and chiral anomalies which were given by
Bonneau [12]) because

N½ψ̄ σ̄μνγ̂ρiDρψ �≡ N½ĝρσðψ̄ σ̄μνγρiDσψÞ� ð22Þ

can be reduced to usual operators in physical dimensions:

N½ψ̄ σ̄μνγ̂ρiDρψ � ¼ aN½ψ̄ σ̄μνγ̂ρiDρψ �
þ b0ð∂μN½jν� − ∂νN½jμ�Þ
þ c0N½ϵμνρσψ̄γσγ5iDρψ � þ f0mN½ψ̄ σ̄μνψ �
þ r0∂ρ∂ρFμν þ s0m2Fμν: ð23Þ

For simplicity, we omit the normal product symbol for a
single renormalized fieldFμν. Similar to the case of trace and
chiral anomalies [12], all the above coefficients can be
obtained from r.s.p. (residues of the simple pole) at 4 − d ¼
0of theoveralldivergenceof thespecificGreen’s functionsof
N½ǧρσðψ̄ σ̄μνγρiDσψÞ�, where ǧρσ defined by Bonneau [12] is
roughly ĝρσ=ðd − 4Þ but 1=ðd − 4Þ therein is not included in
the Laurent expansionwhen determining counterterms [12].
The results are as follows12 [here, a line over a Green’s
function indicates the overall divergence (i.e., the counter-
term obtained by contracting the whole one particle irreduc-
ible diagram to a single vertex) has not been subtracted].
We have

a ¼ 1

48ð4 − dÞ tr
�
r:s:p:

∂
∂pρ

�
TN½ǧαβðψ̄ σ̄μνγαiDβψÞ�ψ̃

�
1

2
p

�
˜̄ψ

�
1

2
p

��
prop

����
ǧ;p¼0

× σ̄μνγ̂ρ

�
;

b0 ¼ 1

−96i
tr

�
r:s:p:

∂
∂pρ

�
TN½ǧαβðψ̄ σ̄μνγαiDβψÞ�ψ̃

�
1

2
p

�
˜̄ψ

�
−
1

2
p

��
prop

����
ǧ;p¼0

× ðḡμργ̄ν − ḡνργ̄μÞ
�
;

c0 ¼ 1

−96
tr

�
r:s:p:

∂
∂pρ

�
TN½ǧαβðψ̄ σ̄μνγαiDβψÞ�ψ̃

�
1

2
p

�
˜̄ψ

�
1

2
p

��
prop

����
ǧ;p¼0

× ϵμνρσγ
σγ5

�
;

f0 ¼ 1

−48m
trfr:s:p:hTN½ǧαβðψ̄ σ̄μνγαiDβψÞ�ψ̃ð0Þ ˜̄ψð0Þipropjǧ¼0 × σ̄μνg;

r0 ¼ 1

−288i
∂
∂qδ

∂
∂qδ

∂
∂qσ r:s:p:hTN½ǧαβðψ̄ σ̄μνγαiDβψÞ�ÃρðqÞipropjǧ;q¼0 × ðḡμρḡνσ − ḡμσ ḡνρÞ;

s0 ¼ 1

−24im2

∂
∂qσ r:s:p:hTN½ǧαβðψ̄ σ̄μνγαiDβψÞ�ÃρðqÞipropǧ;q¼0

× ðḡμσ ḡνρ − ḡμρḡνσÞ: ð24Þ

Finally, the tWTI is

ð1 − 2bÞð∂μN½jν� − ∂νN½jμ�Þ ¼ 2ð1 − cÞN½ϵμνρσψ̄γσγ5iDρψ � þ 2mð1 − fÞN½ψ̄ σ̄μνψ �
− 2r∂ρ∂ρFμν − 2sm2Fμν þ N½ψ̄ σ̄μνði=⃗D −mÞψ � þ N½ψ̄ð−i=⃖D −mÞσ̄μνψ �; ð25Þ

where x ¼ x0=ð1 − aÞ for x ¼ b, c, f, r, s and their one-
loop values are given in Appendix D.
In QED, it is necessary to ensure that all coefficients are

gauge invariant, and in particular, we should focus on

coefficients of transverse anomalies, namely, −2r and
−2sm2. Fortunately, following the arguments made by
Bonneau about gauge invariance of the chiral anomaly
[12], mainly13 (B.10), Lemma 3, and Fig. 3 in Ref. [12], it is
almost trivial to see that b; c; fm; r; sm2 are all gauge
invariant, i.e., independent of ξ. This gauge independence
is also briefly discussed in Appendix D.11Extra-dimensional loop momenta must not be taken to be

zero before carrying out loop integrals, in contrast with the case
for external momenta.

12ψ̃ðpÞ ≡ R
d4xeip·xψðxÞ; ˜̄ψðqÞ ≡ R

d4xe−iq·xψ̄ðxÞ; ÃρðkÞ≡R
d4xeik·xAρðxÞ.

13Conclusions in Ref. [12] are so general that nothing essential
needs modifications.
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It is now clear that transverse anomalies exists even
after renormalization. Of course, with the presence of the
four-dimensional operator N½ϵμνρσψ̄γσγ5iDρψ � and three-
dimensional operator N½ψ̄ σ̄μνψ �, transverse anomalies
(whose dimensions are, respectively, 4 and 2) may be
absorbed into these operators as finite counterterms and
thus be rendered dependent on the renormalization
schemes.14 We may represent the most general form of
the tWTI as

ð1 − 2bÞð∂μN½jν� − ∂νN½jμ�Þ
¼ 2ð1 − cÞÑ½ϵμνρσψ̄γσγ5iDρψ � þ 2mð1 − fÞÑ½ψ̄ σ̄μνψ �
− 2r̃∂ρ∂ρFμν − 2s̃m2Fμν

þ N½ψ̄ σ̄μνði=⃗D −mÞψ � þ N½ψ̄ð−i=⃖D −mÞσ̄μνψ �: ð26Þ

Here, the operators with a tilde are simply linear combi-
nations of the original operators and transverse anomalies,

2ð1 − cÞÑ½ϵμνρσψ̄γσγ5iDρψ �≡ 2ð1 − cÞN½ϵμνρσψ̄γσγ5iDρψ � − 2ðr − r̃Þ∂ρ∂ρFμν − 2α̃ðs − s̃Þm2Fμν;

2mð1 − fÞÑ½ψ̄ σ̄μνψ �≡ 2mð1 − fÞN½ψ̄ σ̄μνψ � − 2ð1 − α̃Þðs − s̃Þm2Fμν; ð27Þ

and r̃, s̃, α̃ denote arbitrary real numbers of order Oðg2Þ.
We will talk more generally about this arbitrariness in Sec. VII by comparing with chiral and trace anomalies. However,

we suggest a way of fixing the coefficient r̃ making use of Schwinger terms in the next section.

V. TRANSVERSE ANOMALIES AND SCHWINGER TERMS

The Green’s function version of (26), together with ψðyÞψ̄ðzÞAρðuÞ, is

ð1 − 2bÞð∂μ
xhTN½jν�ðxÞψðyÞψ̄ðzÞAρðuÞi − ∂ν

xhTN½jμ�ðxÞψðyÞψ̄ðzÞAρðuÞiÞ
¼ 2ð1 − cÞhTÑ½ϵμνρσψ̄γσγ5iDρψ �ðxÞψðyÞψ̄ðzÞAρðuÞi
þ 2mð1 − fÞhTÑ½ψ̄ σ̄μνψ �ðxÞψðyÞψ̄ðzÞAρðuÞi

− 2r̃hT∂ρ
x∂x

ρFμνðxÞψðyÞψ̄ðzÞAρðuÞi − 2s̃m2hTFμνðxÞψðyÞψ̄ðzÞAρðuÞi
þ iσ̄μνhTψðyÞψ̄ðzÞAρðuÞiδ4ðx − yÞ þ ihTψðyÞψ̄ðzÞAρðuÞiσ̄μνδ4ðx − zÞ: ð28Þ

The crucial observation is to note the equation of motion for photon field AρðuÞ:

∂x
μhTFμνðxÞψðyÞψ̄ðzÞAρðuÞi þ 1

ξ
∂ν
xhT∂x

μAμðxÞψðyÞψ̄ðzÞAρðuÞi

¼ −ghTjνðxÞψðyÞψ̄ðzÞAρðuÞi þ igνρhTψðyÞψ̄ðzÞiδ4ðx − uÞ: ð29Þ

Taking the equation of motion together with the Bianchi identity [20],

∂μFνρ þ ∂νFρμ þ ∂ρFμν ¼ 0; ð30Þ

it is easy to get

ð1 − 2b − 2gr̃Þð∂μ
xhTN½jν�ðxÞψðyÞψ̄ðzÞAρðuÞi − ∂ν

xhTN½jμ�ðxÞψðyÞψ̄ðzÞAρðuÞiÞ
¼ 2ð1 − cÞhTÑ½ϵμνρσψ̄γσγ5iDρψ �ðxÞψðyÞψ̄ðzÞAρðuÞi
þ 2mð1 − fÞhTÑ½ψ̄ σ̄μνψ �ðxÞψðyÞψ̄ðzÞAρðuÞi
− 2ir̃hTψðyÞψ̄ðzÞið∂μ

xgνρ − ∂ν
xgμρÞδ4ðx − uÞ − 2s̃m2hTFμνðxÞψðyÞψ̄ðzÞAρðuÞi

þ iσ̄μνhTψðyÞψ̄ðzÞAρðuÞiδ4ðx − yÞ þ ihTψðyÞψ̄ðzÞAρðuÞiσ̄μνδ4ðx − zÞ: ð31Þ

The contribution of −2r∂ρ∂ρFμν is thus recast to be the modification of the coefficient of the curl of N½jν� and a new
contact term, −2irhTψðyÞψ̄ðzÞið∂μ

xgνρ − ∂ν
xgμρÞδ4ðx − uÞ.

14We thank the referee for making this point.

YI-DA LI and QING WANG PHYS. REV. D 102, 056008 (2020)

056008-6



We recall that contact terms come from equal time commutation relations of operators like jμ and elementary fields
ψ ; ψ̄ ; Aρ in the canonical framework, and it is thus concluded that there is a noncanonical contribution to
½N½ji�ðx⃗; tÞ; Aρðy⃗; tÞ�:

δðx0 − y0Þ½N½ji�ðx⃗; x0Þ; Aρðy⃗; y0Þ� ¼ −2ir̃
1 − 2b − 2gr̃

ð∂0
xgiρ − ∂i

xg0ρÞδ4ðx − yÞ: ð32Þ

According to Schwinger [24], this nonzero commutator is required so as to not conflict with the existence of a vacuum state.
As definite operators, the commutator of N½jν� and Aρ should not have arbitrariness. Then, −2ir̃

1−2b−2gr̃ is fixed, and thus r̃ is
fixed. However, s̃ remains arbitrary.
Furthermore, we can also work out Schwinger terms for ½N½ji�; N½jρ��. We consider the WTI15

ð1 − 2b − 2gr̃Þð∂μ
xhTN½jν�ðxÞN½jρ�ðyÞi − ∂ν

xhTN½jμ�ðxÞN½jρ�ðyÞiÞ
¼ 2ð1 − cÞhTÑ½ϵμνρσψ̄γσγ5iDρψ �ðxÞN½jρ�ðyÞi þ 2mð1 − fÞhTÑ½ψ̄ σ̄μνψ �ðxÞN½jρ�ðyÞi
− 2s̃m2hTFμνN½jρ�ðyÞi
− 2ðu∂α

y∂y
α þ vm2Þð∂μ

ygνρ − ∂ν
ygμρÞδ4ðx − yÞ; ð33Þ

where u≡ u0=ð1 − aÞ, v≡ v0=ð1 − aÞ, and

u0 ¼ 1

−288i
∂
∂qδ

∂
∂qδ

∂
∂qσ r:s:p:hTN½ǧαβðψ̄ σ̄μνγαiDβψÞ�N½j̃ρ�ðqÞipropjǧ;q¼0 × ðḡμρḡνσ − ḡμσ ḡνρÞ

¼ r0=g;

v0 ¼ 1

−24im2

∂
∂qσ r:s:p:hTN½ǧαβðψ̄ σ̄μνγαiDβψÞ�N½j̃ρ�ðqÞipropǧ;q¼0

× ðḡμσ ḡνρ − ḡμρḡνσÞ

¼ s0=g: ð34Þ

Therefore, the Schwinger terms of ½N½ji�; N½jρ�� are

δðx0 − y0Þ½N½ji�ðx⃗; x0Þ; N½jρ�ðy⃗; y0Þ�

¼
�

−2ir=g
1 − 2b − 2gr̃

∂α
y∂y

α þ −2is=g
1 − 2b − 2gr̃

m2

�
ð∂0

ygiρ − ∂i
yg0ρÞδ4ðx − yÞ: ð35Þ

Taking ρ ¼ 0, on the one-loop level, we have

δðx0 − y0Þ½N½j0�ðx⃗; x0Þ; N½ji�ðy⃗; y0Þ�

¼ −
�

i
12π2

∂α
x∂x

α þ
im2

2π2

�
∂i
xδ

4ðx − yÞ: ð36Þ

This is comparable to results published in earlier papers.
As an example, in Ref. [25], it was obtained that
h½j0ðx⃗; 0Þ; jið0Þ�i0 is (Eq. (10) in Ref. [25])

h½j0ðx⃗; 0Þ; jið0Þ�i0 ¼ ∞∂iδðx⃗Þ þ i
12π2

∂iΔδðx⃗Þ; ð37Þ

using spectral representation, where Δ≡∇2. However, we
get a finite and covariant result, in contrast with the infinite
and noncovariant result obtained in Ref. [25]. In any event,
the reproduction of the term16 i

12π2
∂iΔδðx⃗Þ implies that

transverse anomalies are closely related to Schwinger
terms.

VI. COMMENTS ON PREVIOUS ARTICLES

There are papers [8,27,28] on the anomalies of the tWTI,
but none found an anomaly for the vector tWTI.
Additionally, Ref. [29] examined the vector tWTI to
one-loop order in dimensional regularization and con-
cluded that there was no anomaly. In fact, Ref. [29] has
noted that ϵμνρσγργ5 should be replaced by − 1

2
fγρ; σμνg to

ensure tWTI is still established; otherwise, on one-loop15The last term is easily derived using Zimmermann-like
identities in dimensional renormalization proposed by Bonneau
[12,23]. Note that there are no contact terms corresponding to
ψ ; ψ̄ ; Aσ in this situation.

16The Schwinger term (37) was also obtained in Ref. [26]
using the Bjorken, Johnson, and Low method.
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order, there will be additional terms of the form a divergent
integral multiplied by d − 4 in their one-loop expression of
tWTI.17 Equivalently, they adopted schemes that absorb all
transverse anomalies into N½ϵμνρσψ̄γσγ5iDρψ �; i.e., what
appeared in the tWTI in that paper is not
N½ϵμνρσψ̄γσγ5iDρψ � but N½−iψ̄fγρ; σμνgDρψ �. However,
the (d − 4) term the authors discovered is actually a
spurious anomaly corresponding to corrections of coeffi-
cients of terms existing in the tWTI, such as
N½ϵμνρσψ̄γσγ5iDρψ �, because they only examined one-loop
diagrams with two external fermion legs and did not note
the crucial diagram with one external photon legs that
generates transverse anomalies. We calculated this missing
diagram and obtained exactly the results of ζ function
regularization in Appendix A.
In Ref. [8], the author identified the transverse

vector transformation (14) as the “local Lorentz transforma-

tion,”18 and therewas thus no possibility of an anomaly in the
vector tWTIdue toLorentz invariance.However, theLorentz
transformation of the Dirac fermion mismatches the trans-
verse transformation (14) in signs. The spinor part of the
Lorentz boost of the fermion is [20] δψðxÞ ¼
þ i

4
αðxÞϵμνσμνψðxÞ; δψ̄ðxÞ ¼ − i

4
αðxÞϵμνψ̄ðxÞσμν, where

Jacobians of ψ and ψ̄ cancel each other out, regard-
less of whether tr½σμν�δ4ðx − xÞ vanishes. According to
our derivation, tr½σμν�δ4ðx − xÞ is not zero, and thus trans-
verse transformation,both signsofwhicharepositive, cannot
be protected by Lorentz symmetry to be free of anomalies.
The point-splitting method was used in Ref. [27]. A

spurious transverse axial anomaly was proposed but
corrected in Ref. [28]. Meanwhile, Ref. [27] gave a
expression for the “vanishing” transverse vector anomaly;
however, following this formulation, we get a nonvanishing
result. Equation (12) of Ref. [27] is19

∂μjνðxÞ − ∂νjμðxÞ ¼ lim
x0→x

ið∂x
λ − ∂x0

λ Þϵλμνρψ̄ðx0Þγργ5UPðx0; xÞψðxÞ
þ Symm lim

ϵ→0
fψ̄ðxþ ϵ=2Þ

× ½−igðγνFμρðxÞ − γμFνρðxÞÞϵρ�ψðx − ϵ=2Þg: ð38Þ

Using [20] hψðxÞψ̄ðyÞi ∝ γσðx−yÞσ
ðx−yÞ4 and [27] Symm limϵ→0fϵρϵσϵ2

g ¼ 1
4
gμν, we finish the calculation of the last term:

Symm lim
ϵ→0

fψ̄ðxþ ϵ=2Þ½−igðγνFμρðxÞ − γμFνρðxÞÞϵρ�ψðx − ϵ=2Þg

∝ Symm lim
ϵ→0

tr½ðγνFμρðxÞ − γμFνρðxÞÞγσ� ϵσϵρ
ϵ4

∝ lim
ϵ→0

ðgνσFμρðxÞ − gμσFνρðxÞÞgσρ
1

ϵ2

∝ lim
ϵ→0

1

ϵ2
FμνðxÞ ≠ 0: ð39Þ

Moreover, because the above result is quadratically diver-
gent, we need to expand Fμνðx� ϵ=2Þ in intermediate steps
(see Appendix C) to Oðϵ4Þ to extract finite contributions,
which means (39) is incomplete.20

In brief, Ref. [27] partially worked out transverse
anomalies. It is a pity that the nonvanishing result (39)
was omitted in Ref. [27].

Pauli-Villars regularization [30] was applied to calculat-
ing transverse anomalies in Ref. [28]. Unfortunately,
Ref. [28] forgot a vital procedure in Pauli-Villars regulari-
zation and thus missed transverse anomalies. This step
expresses any amplitude with its regularized form so that
anomalies may appear from the WTI with mass terms
[30,31], which is the case for the vector tWTI (19). We
consider any WTI with the form

A ¼ mBþ C; ð40Þ

where m is some particle’s mass. Pauli-Villars regulariza-
tion requires [31] regularized WTI to be made up of
regularized amplitudes

fphys ¼ lim
M→∞

fm − fM; ð41Þ

17However, Ref. [29] did not look into this one-loop anoma-
lous term.

18In fact, only the spinor part.
19UPðx0; xÞ ¼ expf−ig R x0

x dy · Ag differs from ours in sign
because Ref. [27] assigned D⃗μ ¼ ∂⃗μ þ igAμ.

20However, even if we go to Oðϵ4Þ, arbitrariness of the
coefficient of ∂ρ∂ρFμν that originates from the arbitrariness
of a ∈ R in ψ̄ðxþ ðaþ 1ÞϵÞγμψðxþ aϵÞ prevents the point-
splitting method from working for transverse anomalies; see
Appendix C.
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where f denotes any amplitude, while fm and fM, respec-
tively, denote amplitudes calculated with physical mass m
and regulated mass M. Then, if we proved the bare WTI

Am − AM ¼ mBm þ Cm −MBM − CM; ð42Þ

the regularized WTI may acquire an anomaly,

Aphys ¼ Am − AM ¼ mBm þ Cm −MBM − CM

¼ mBphys þ Cphys þ ðm −MÞBM: ð43Þ
Indeed, on the basis of the proof of the bare tWTI in

Ref. [28], we worked out transverse anomalies that
Ref. [28] ignored; see Appendix B.

VII. COMPARISON BETWEEN SYMMETRY
ANOMALIES AND NONSYMMETRY ANOMALIES

In fact, ∂μjν − ∂νjμ on the left of tWTI (25) can be recast
into the divergence of some current:

∂μjν − ∂νjμ ¼ −
i
2
∂ρðψ̄ ½γρ; σμν�ψÞ: ð44Þ

In addition to transverse anomalies and the mass term,
factors that prevent ψ̄ ½γρ; σμν�ψ from being a conserved
current include another four-dimensional operator, i.e.,
N½ϵμνρσψ̄γσγ5iDρψ �. Without this operator, the current will
become an anomalous partial conserved current, which is
the case for the tWTI in two-dimensional QED.21

Therefore, the essential difference between a symmetry
WTI and a nonsymmetry WTI is the presence of extra four-
dimensional operators, besides operators on the left of the
WTI22and anomalies.
It is exactly the extra four-dimensional operators that

render the arbitrariness of transverse anomalies. Obviously,
this makes sense also for any other nonsymmetry anomalies
that have extra four-dimensional operators.
We may proceed further. It is also possible to change

coefficients of chiral or trace anomalies at will, as long as
we absorb N½F̃μνAν� or N½ḡμνFρσFρσ� into N½ψ̄γμγ5ψ � or
N½θμν� without considering gauge invariance or energy
conservation. However, it is just these nontrivial properties
or symmetries satisfied by N½ψ̄γμγ5ψ � and N½θμν� that
prevent other operators such as anomaly terms to be
absorbed into them, and thus protected chiral and trace

anomalies such that their coefficients cannot be adjusted
arbitrarily. Therefore, once we find some physical mean-
ings or symmetries for N½ϵμνρσψ̄γσγ5iDρψ �, coefficients of
transverse anomalies may be fixed naturally. As shown in
Sec. V, coefficients of transverse anomalies may be fixed
partially by resorting to Schwinger terms, but more general
results for remaining s̃ and other nonsymmetry anomalies
require deeper research.

VIII. CONCLUSION

We discuss the extension of anomalies to cover those in
WTIs that are not formed by symmetry transformations,
beyond the scope of symmetry, taking the explicit example
of anomalies in tWTIs. Both background field (one-loop)
analyses in Sec. III (together with some one-loop calcu-
lation in Appendixes B and C) and renormalization to all
orders in dimensional renormalization in Sec. IV indicate
the existence of transverse anomalies, and we locate where
anomalies hid when Refs. [8,27–29] stated the nonexist-
ence of the transverse anomalies in the vector tWTI on one-
loop order. The scheme dependence of coefficients of
transverse anomalies is also concluded temporarily, and
this is partially solved by considering Schwinger terms as
in Sec. V. This needs to be investigated further.
So far, the anomaly in all types of the local linear

transformation of fermion fields23 (not all symmetry trans-
formations) has been exhausted. There are only three
nonzero anomalies; see Table I (in Fujikawa’s style for
simplicity).
Table I shows that the transverse anomalies have many

more types of operators than the trace anomaly and chiral
anomaly. In particular, the CabcF

μρ
b Fcρ

ν term may have
some effect on the present scheme [11,32,33] making use
of tWTI. However, in this scheme, the other two terms in
non-Abelian transverse anomalies and the whole Abelian
transverse anomalies (where Cabc ¼ 0) have no places to
plug in because the general method [11,32] is to contract
ϵαμνβtαqβ; ϵαμνβγαqβ to the vector tWTI24 in the momentum
space,25

qμΓνðk; pÞ − qνΓμðk; pÞ
¼ S−1ðpÞσμν þ σμνS−1ðkÞ þ 2imΓμνðk; pÞ
þ tλϵλμνρΓA

ρ ðk; pÞ þ AV
μνðk; pÞ; ð45Þ

21In two-dimensional QED with a massless fermion,
fγρ; σμνg ¼ 0 and jμ5 ¼ −ϵμνjν, owing to σμν ¼ iϵμνγ5 and
γμγ5 ¼ −ϵμνγν, and thus − i

2
∂ρðψ ½γρ; σμν�ψÞ ¼ ∂μjν − ∂νjμ ¼

ϵμν∂ρj
ρ
5 ¼ − g

2π ϵ
μνϵρσFρσ ¼ g

πF
μν [20]. Therefore, both jμ5 and

∂ρðψ ½γρ; σμν�ψÞ are anomalous partial conserved currents, and as
a consequence, the tWTI in two-dimensional QED is not a
nonsymmetry WTI.

22These operators are usually in the form of a derivative of
some three-dimensional operator as is the case of chiral (∂μj

μ
5)

and trace [∂μðxνθμνÞ] anomalies.

23The local and linear transformation of ψðxÞ; ψ̄ðxÞ must
be δψðxÞ ¼ αðxÞΩψðxÞ; δψ̄ðxÞ ¼ αðxÞψ̄ðxÞΩ̃, where Ω and
Ω̃ are a linear combination of γ matrices and hence of
1; γμ; ½γμ; γν�; γμγ5; γ5. However, the traces of odd number γ
matrices are zero; i.e., tr½γμ�δ4ðx − xÞ and tr½γμ; γ5�δ4ðx − xÞ
are zero even after regularization.

24So far, Refs. [11,32] discussed only the Abelian case. And
here we use the Abelian tWTI for an explanation.

25Equation (4) in Ref. [11], in the Euclidean metric;
q≡ k − p; t≡ kþ p.
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such that the identically vanishing left-hand side and the
contracted right-hand side serve as constraints for axial
vertex ΓA

ρ ðk; pÞ to be solved. Therefore, additional
terms26 q2q½μÃν�ðk; pÞ and q½μÃν�ðk; pÞ of the Abelian
transverse anomalies all vanish after contraction with
ϵαμνβqα because ϵαμνβqαqμ ¼ 0. The Abelian transverse
anomalies are thus neglectable in current schemes [11,32]
making use of tWTI. However, even if the ordinary
derivative parts27 of Fμν

a and DρDρF
μν
a vanish owing to

the same reason as the case of the Abelian tWTI, the
non-Abelian transverse anomalies have a nonvanishing
contribution from CabcF

μρ
b Fcρ

ν in this scheme because
CabcF

μρ
b Fcρ

ν is not of the form q½μfν�ðk; pÞ where
fνðk; pÞ is some operator’s Fourier transformed
Green’s function. Unfortunately, the Abelian approxima-
tion [i.e., Γμ

aðnon-AbelianÞ ≈ taΓμðAbelianÞ] remains
the backbone [32,32,34,35]. However, once we begin
to attack the non-Abelian quark-gluon vertex directly
using the non-Abelian tWTI (A3), the transverse
anomaly will take some responsibility. Furthermore,
other possible applications to the transverse anomaly
are being researched.
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APPENDIX A: NON-ABELIAN
GENERALIZATION AND ONE-LOOP

CALCULATION THROUGH ζ FUNCTION
REGULARIZATION

The generalization of transverse anomalies to the
non-Abelian case [with gauge group SUðNÞ] is straight-
forward. Within Fujikawa’s framework, using the
Lagrangian [20]

LSUðNÞ ¼ ψ̄ði=D −m0Þψ ; Dμ ≡ 1

2
ð∂⃗μ − ∂⃖μÞ − igtaAaμ;

ðA1Þ
applying variations of fermion fields

δψðxÞ ¼ 1

4
ϵμναaðxÞtaσμνψðxÞ;

δψ̄ðxÞ ¼ 1

4
ϵμναaðxÞψ̄ðxÞtaσμν; ðA2Þ

and considering the transformation Jacobian (of which we
present a concrete calculation later), we get

DμhjνaðxÞiA −DνhjμaðxÞiA
¼ hϵμνρσψ̄ðxÞγσγ5fiDρ; tagψðxÞiA þ 2m0hψ̄ðxÞσμνtaψðxÞiA
−
g0m2

0

4π2
Fμν
a ðxÞ − g0

24π2
DρDρF

μν
a ðxÞ

−
g20
8π2

CabcF
μρ
b ðxÞFcρ

νðxÞ: ðA3Þ

Renormalization of the above non-Abelian tWTI is left as
further work.
We next calculate the one-loop transverse anomalies,

−2itr½taσμν�δ4ðx − xÞ, through ζ function regularization.
Identification of the transformation Jacobian of (A2) and
(14) to be −2itr½taσμν�δ4ðx − xÞ and −2itr½σμν�δ4ðx − xÞ is
straightforward after using the following equation [recall
that lnð1þ xÞ ≅ x when x ≪ 1]:

Det

	
δ

δψðyÞ
�
ψðxÞ þ 1

4
ϵμναaðxÞtaσμνψðxÞ

�


¼ Det

	
δ4ðx − yÞ þ 1

4
ϵμναaðxÞtaσμνδ4ðx − yÞ




¼ exp

�
tr ln

	
δ4ðx − yÞ þ 1

4
ϵμναaðxÞtaσμνδ4ðx − yÞ


�

≅ exp

�
1

4
ϵμναaðxÞtr½taσμν�δ4ðx − xÞ

�
: ðA4Þ

σμν ≡ i
2
½γμ; γν�, and it is thus enough to calculate

trfta½γμ; γν�gδ4ðx − xÞ. The combination of Fujikawa’s
approach [14] and ζ function regularization [31,36] leads to

TABLE I. Nontrivial anomalies in all types of local linear transformation of fermion fields.

Anomaly type “Bare” expression In four-dimensional SUðNÞ QCD (one-loop results)

Trace anomaly [6,7] tr½1�δ4ðx − xÞ g2

48π2
Fμν
a Faμν

Transverse anomalies trfta½γμ; γν�gδ4ðx − xÞ − gm2

4π2
Fμν
a − g

24π2
DρDρF

μν
a − g2

8π2
CabcF

μρ
b Fcρ

ν

Chiral anomaly [7,14] tr½taγ5�δ4ðx − xÞ g2

32π2
ϵμνρσF

μν
b Fρσ

c tr½tatbtc�

26Ãμðk; pÞ is hTAμðxÞψðyÞψ̄ðzÞi in momentum space.
27Of course, the gauge field parts (where no ordinary derivative

appears) of Fμν
a and DρDρF

μν
a are not zero in general, but these

are not gauge covariant and thus may be zero by proper choice of
gauge. However, CabcF

μρ
b Fcρ

ν is gauge covariant, and its con-
tribution cannot be neglected.
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ftrfta½γμ; γν�gδ4ðx − xÞgζ
¼ d

ds

����
s¼0

s
ΓðsÞ

Z
∞

0

dτ τs−1
�
tr½e−ð=D2

xþm2Þτta½γμ; γν��
Z

d4k
ð2πÞ4 e

−ik·ðx−yÞ
�

y→x

¼ d
ds

����
s¼0

s
ΓðsÞ

Z
∞

0

dτ τs−1e−m
2τ 1

ð ffiffiffi
τ

p Þ4
Z

d4k
ð2πÞ4

× tr

	
ta½γμ; γν� exp

�
k2 þ 2ik ·D

ffiffiffi
τ

p
−D2τ þ i

4
gtb½γρ; γσ�Fbρστ

�

: ðA5Þ

In the last step, we used =D2 ¼ D2 − 1
4
igta½γμ; γν�Faμν and rescaled k → k=

ffiffiffi
τ

p
.

We note that28

d
ds

����
s¼0

s
ΓðsÞ

Z
∞

0

dτ τs−1e−m
2τ 1

ð ffiffiffi
τ

p Þ4 ð
ffiffiffi
τ

p Þn

¼ d
ds

����
s¼0

sΓðsþ n=2 − 2Þ
ΓðsÞ ðm2Þ2−s−n

2

¼

8>>><
>>>:

m4

2
; n ¼ 0;

−m2; n ¼ 2;

1; n ¼ 4;

0; otherwise:

ðA6Þ

Therefore, the only contributing terms in (A5) are those proportional to ð ffiffiffi
τ

p Þ0; ð ffiffiffi
τ

p Þ2; ð ffiffiffi
τ

p Þ4 in expansion of the
exponential inside the trace.
The ð ffiffiffi

τ
p Þ0 term is zero because trf½γμ; γν�g ¼ 0. The ð ffiffiffi

τ
p Þ2 term is (after finishing d

ds js¼0)

ð−m2Þtr½tatb�trf½γμ; γν�½γρ; γσ�g
Z

d4k
ð2πÞ4 e

k2 i
4
gFbρσ: ðA7Þ

The ð ffiffiffi
τ

p Þ4 term is

tr½tatbtc�trf½γμ; γν�½γρ; γσ�½γα; γβ�g
Z

d4k
ð2πÞ4 e

k2 1

2!

�
i
4
g

�
2

FbρσFcαβ

þ trf½γμ; γν�½γρ; γσ�g
Z

d4k
ð2πÞ4 e

k2 1

2!

i
4
gð−1Þtr½taðD2tbFbρσ þ tbFbρσD2Þ�

þ trf½γμ; γν�½γρ; γσ�g
Z

d4k
ð2πÞ4 e

k2 1

3!

i
4
gð2iÞ2

× tr½taððk ·DÞ2tbFbρσ þ ðk ·DÞtbFbρσðk ·DÞ þ tbFbρσðk ·DÞ2Þ�: ðA8Þ

We arrive at the final result by completing the integral and working out the trace:

ftrfta½γμ; γν�gδ4ðx − xÞgζ ¼ −
gm2

4π2
Fμν
a −

g
24π2

DρDρFμν
a −

g2

8π2
CabcF

μρ
b Fcρ

ν: ðA9Þ

The only difference between the Abelian case and non-Abelian case is the use of tr½tatb� ¼ 1
2
δab, which is not needed in

the Abelian case. The Abelian result is therefore29

28In (A5), we strip d
ds js¼0

s
ΓðsÞ

R
∞
0 dτ τs−1e−m

2τ away and substitute
ffiffiffi
τ

p
with 1=Λ, thus arriving at the original Fujikawa’s method. From

(A6), it is obvious that Λ2 in the final results, like (17), is effectively regularized to be −m2 through ζ function regularization.
29Additionally, note that tr½tb� ¼ 0 for SUðNÞ, such that there is no contribution in tr½γμ; γν�δ4ðx − xÞ from non-Abelian fields through

observation on (A7) and (A8) with ta stripped away, using tr½tbtc�trf½γμ; γν�½γρ; γσ �½γα; γβ�gFbρσFcαβ ¼ 0.
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ftr½γμ; γν�δ4ðx − xÞgζ ¼ −
gm2

2π2
Fμν −

g
12π2

∂ρ∂ρFμν;

ðA10Þ
where Fμν ≡ ∂μAν − ∂νAμ is the Uð1Þ gauge field.

APPENDIX B: ONE-LOOP CALCULATIONS—
PAULI-VILLARS REGULARIZATION

This Appendix calculates missing transverse anomalies
in Ref. [28] adopting Pauli-Villars regularization, which is
also the method used by Ref. [28]. As in Ref. [28], we work
with an external field Aμ, and the Lagrangian is then
again (12).
To verify (19), we go to momentum space and define

ΓμðqÞ≡
Z

d4x e−iq·xhjμðxÞiA;

NμνðqÞ≡
Z

d4x e−iq·x2hψ̄ðxÞϵμνρσγσγ5iDρψðxÞiA;

TμνðqÞ≡
Z

d4x e−iq·xhψ̄ðxÞσμνψðxÞi: ðB1Þ

The following bare tWTI has been verified in Ref. [28] (for
simplicity, we denote m0 by m):

iqμðΓν
m þ Γν

M1
− 2Γν

M2
Þ − iqνðΓμ

m þ Γμ
M1

− 2Γμ
M2
Þ

¼ Nμν
m þ Nμν

M1
− 2Nμν

M2
þ 2ðmTμν

m þM1T
μν
M1

− 2M2T
μν
M2
Þ:

ðB2Þ
Here, Γμ

m indicates an amplitude is calculated with fermion
mass m. There are two subtractions because the leading
divergence is quadratic. M1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2Λ2

p
and M2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ Λ2
p

, where Λ serves as an effective cutoff, as
in Ref. [28].
However, in the spirit of Pauli-Villars regularization

[30,31], the WTI should be expressed by a regularized
“physical” amplitude forwhich anyamplitudef is defined as

fphys ≡ lim
Λ→∞

fm þ rfM1
− 2sfM2

: ðB3Þ

Here, r and s should be chosen to cancel out all divergences
in f. For Tμν, it is easily seen that r ¼ m=M1; s ¼ m=M2

through direct analysis of the diagram on the lowest order
of AμðxÞ.
The bare identity then gets an extra term after assembling

each amplitude into its regularized form:

iqμΓν
phys − iqνΓμ

phys

¼ iqμðΓν
m þ Γν

M1
− 2Γν

M2
Þ − iqνðΓμ

m þ Γμ
M1

− 2Γμ
M2
Þ

¼ Nμν
m þ Nμν

M1
− 2Nμν

M2
þ 2m

�
Tμν
m þ m

M1

Tμν
M1

−
2m
M2

Tμν
M2

�

þ
	
2

�
M1 −

m2

M1

�
Tμν
M1

− 4

�
M2 −

m2

M2

�
Tμν
M2




≡ Nμν
phys − 2mTμν

phys þAμν: ðB4Þ
We will show that

Aμν ≡ 2

�
M1 −

m2

M1

�
Tμν
M1

− 4

�
M2 −

m2

M2

�
Tμν
M2

ðB5Þ

is exactly the anomaly we obtained in Appendix A up to
quadratic divergences.
Tμν is represented by the Feynman graphs30:

ðB6Þ

Gauge invariance in external photon legs and dimensional
analysis tell us the diagram in (B6) with n photon legs
diverges at worst likeQnAnΛ3−2n whenΛ → ∞, whereQ is
some typical scale of external momenta and A is an
abbreviation of AμðxÞ. Therefore, the only term contribut-
ing to transverse anomalies is the smallest diagram:

Aμν ¼ 2

�
M1 −

m2

M1

�
Tμν
M1;the smallest diagram − 4

�
M2 −

m2

M2

�
Tμν
M2;the smallest diagram

¼ 2

�
M1 −

m2

M1

�
ig0

Z
d4p
ð2πÞ4

tr½σμνðp − qþM1Þ=̃AðqÞðpþM1Þ�
½ðp − qÞ2 −m2 − 2Λ2�½p2 −m2 − 2Λ2�

− 4

�
M2 −

m2

M2

�
ig0

Z
d4p
ð2πÞ4

tr½σμνðp − qþM2Þ=̃AðqÞðpþM2Þ�
½ðp − qÞ2 −m2 − Λ2�½p2 −m2 − Λ2�

¼ ðiqμÃν − iqνÃμÞ
Z

1

0

dx
Z

x

0

dy
Z

y

0

dz

× g0
Λ4

π2

�
4

½m2 þ ð1þ x − yþ zÞΛ2 − yð1 − yÞq2� þ
2m2 þ 3Λ2 − ½y2 þ ð1 − yÞ2�q2

½m2 þ ð1þ x − yþ zÞΛ2 − yð1 − yÞq2�2
�
: ðB7Þ

30Recall that C parity of ψ̄σμνψ is odd, such that there are only A2nþ1 terms.
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Taking the limit Λ → ∞, we get

Aμν ¼
�
g0 ln 2
π2

Λ2 −
g0
2π2

m2 þ g0
12π2

q2
�
ðiqμÃν − iqνÃμÞ;

ÃμðqÞ≡
Z

d4x e−iq·xAμðxÞ: ðB8Þ

This is what we get in Appendix A in momentum space,
up to a quadratic divergent term. However, it is well known
[30,37] that quadratic divergence in hjμiA in the Pauli-
Villars scheme corresponds to an infinite photon mass,
which must be subtracted to ensure gauge invariance. As
long as we subtract quadratic divergence on both sides of31

iqμΓν
phys − iqνΓμ

phys ¼ Nμν
phys − 2mTμν

phys þAμν; ðB9Þ

nothing is affected by quadratic divergence. Nevertheless, it
is somehow confusing that there is no logarithmic diver-
gence associated with this quadratic divergence. It is not
easy (as far as we are concerned) to give a thorough
explanation, but the situation may be summarized phe-
nomenologically as an absence of logarithmic divergence is
simply a signal of an anomaly because an anomaly is a local
operator and leads to only polynomials of external
momenta on one-loop order. (Note that the coefficient of
an anomaly term is one loop, and the matrix elements of the
anomaly term are thus tree level.)

APPENDIX C: ONE-LOOP CALCULATIONS—
POINT-SPLITTING METHOD

Similar to the case of chiral anomaly, the point-splitting
method [20] gives results for transverse anomalies.
However, the dependence on the splitting ratio prevents
this method from working for transverse anomalies.
The point-splitting method selects a special regulariza-

tion for jμ (where a is a real number):

jμðxÞ → ψ̄ðxþ ðaþ 1ÞϵÞγμeig
R

xþðaþ1Þϵ
xþaϵ

dy·AðyÞψðxþ aϵÞ:
ðC1Þ

Usually [20], a ¼ −1=2 such that x is the midpoint of the
two split points. However, there is no principle that
demands a to be −1=2, and if this method is to make
sense, the final results must be independent of a, as is the
case for the chiral anomaly [20]. (Looking into the concrete
process of calculating the chiral anomaly [20], it is easy to
see that the chiral anomaly only needs expansion toOðϵÞ so
that the a dependence is of the form ðaþ 1Þ − a ¼ 1.) We
will see soon that the point-splitting method cannot be
applied to calculating transverse anomalies owing to its
nontrivial dependence on a.
We first use ½γρ; 1

2
σμν� ¼ igμργν − igνργμ to rewrite

∂ ½μjν� as

∂μjνðxÞ − ∂νjμðxÞ ¼ −i∂ρ

�
ψ̄ðxþ ðaþ 1ÞϵÞ

	
γρ;

1

2
σμν



eig

R
xþðaþ1Þϵ
xþaϵ

dy·AðyÞψðxþ aϵÞ
�
: ðC2Þ

Rearranging terms gives

∂μjνðxÞ − ∂νjμðxÞ ¼ iðψ̄ðxþ ðaþ 1ÞϵÞð∂⃗ρ − ∂⃖ρÞϵμνρσγσγ5ψðxþ aϵÞÞeig
R

xþðaþ1Þϵ
xþaϵ

dy·AðyÞ

− iðψ̄ðxþ ðaþ 1ÞϵÞ∂⃖ργ
ρσμνψðxþ aϵÞÞeig

R
xþðaþ1Þϵ
xþaϵ

dy·AðyÞ

þ iðψ̄ðxþ ðaþ 1ÞϵÞσμνγρ∂⃗ρψðxþ aϵÞÞeig
R

xþðaþ1Þϵ
xþaϵ

dy·AðyÞ

þ gψ̄ðxþ ðaþ 1ÞϵÞ
	
γρ;

1

2
σμν



eig

R
xþðaþ1Þϵ
xþaϵ

dy·AðyÞψðxþ aϵÞ

×

�
ϵσ∂ρAσðxÞ þ

ðaþ 1Þ2 − a2

2
ϵσϵλ∂λ∂ρAσðxÞ þ

ðaþ 1Þ3 − a3

6
ϵσϵλϵκ∂λ∂κ∂ρAσðxÞ þOðϵ4Þ

�
:

ðC3Þ
We then use equations of motion for the massless (for simplicity) fermion =⃗DψðxÞ ¼ 0 and ψ̄ðxÞ=⃖D ¼ 0 to get

∂μjνðxÞ − ∂νjμðxÞ ¼ iðψ̄ðxþ ðaþ 1ÞϵÞð∂⃗ρ − ∂⃖ρÞϵμνρσγσγ5ψðxþ aϵÞÞeig
R

xþðaþ1Þϵ
xþaϵ

dy·AðyÞ

− gψ̄ðxþ ðaþ 1ÞϵÞAðxþ ðaþ 1ÞϵÞγρσμνψðxþ aϵÞeig
R

xþðaþ1Þϵ
xþaϵ

dy·AðyÞ

− gψ̄ðxþ ðaþ 1ÞϵÞσμνγρAðxþ aϵÞψðxþ aϵÞeig
R

xþðaþ1Þϵ
xþaϵ

dy·AðyÞ

31Equation (B9) holds at any Λ so that quadratic divergences on the two sides are equal.
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þ gψ̄ðxþ ðaþ 1ÞϵÞ
	
γρ;

1

2
σμν



eig

R
xþðaþ1Þϵ
xþaϵ

dy·AðyÞψðxþ aϵÞ

×

�
ϵσ∂ρAσðxÞ þ

ðaþ 1Þ2 − a2

2
ϵσϵλ∂λ∂ρAσðxÞ þ

ðaþ 1Þ3 − a3

6
ϵσϵλϵκ∂λ∂κ∂ρAσðxÞ þOðϵ4Þ

�
: ðC4Þ

We next expand Aμ at x to Oðϵ4Þ:

∂μjνðxÞ − ∂νjμðxÞ ¼ iðψ̄ðxþ ðaþ 1ÞϵÞðD⃗ρ − D⃖ρÞϵμνρσγσγ5ψðxþ aϵÞÞeig
R

xþðaþ1Þϵ
xþaϵ

dy·AðyÞ

− gψ̄ðxþ ðaþ 1ÞϵÞγρσμνψðxþ aϵÞeig
R

xþðaþ1Þϵ
xþaϵ

dy·AðyÞ

×

�
ðaþ 1Þϵσ∂σAρðxÞ þ

ðaþ 1Þ2
2

ϵσϵλ∂λ∂σAρðxÞ þ
ðaþ 1Þ3

6
ϵσϵλϵκ∂λ∂κ∂σAρðxÞ þOðϵ4Þ

�

− gψ̄ðxþ ðaþ 1ÞϵÞσμνγρψðxþ aϵÞeig
R

xþðaþ1Þϵ
xþaϵ

dy·AðyÞ

×
�
aϵσ∂σAρðxÞ þ

a2

2
ϵσϵλ∂λ∂σAρðxÞ þ

a3

6
ϵσϵλϵκ∂λ∂κ∂σAρðxÞ þOðϵ4Þ

�

þ gψ̄ðxþ ðaþ 1ÞϵÞ
	
γρ;

1

2
σμν



eig

R
xþðaþ1Þϵ
xþaϵ

dy·AðyÞψðxþ aϵÞ

×

�
ϵσ∂ρAσðxÞ þ

ðaþ 1Þ2 − a2

2
ϵσϵλ∂λ∂ρAσðxÞ þ

ðaþ 1Þ3 − a3

6
ϵσϵλϵκ∂λ∂κ∂ρAσðxÞ þOðϵ4Þ

�
:

ðC5Þ

We finally take the ϵ → 0 limit. From Refs. [20,27], we have32

hψðxþ aϵÞψ̄ðxþ ðaþ 1ÞϵÞi ¼ i
2π2

γαϵα
ϵ4

þOðA1Þ;

lim
ϵ→0

ϵμϵν

ϵ2
¼ 1

4
gμν;

lim
ϵ→0

ϵμϵνϵρϵσ

ϵ4
¼ 1

24
ðgμνgρσ þ gμρgνσ þ gμσgνρÞ: ðC6Þ

Therefore, the final result (where the Bianchi identity is used and care is taken with Fermi statistics) is

∂μjνðxÞ − ∂νjμðxÞ ¼ iψ̄ðxÞðD⃗ρ − D⃖ρÞϵμνρσγσγ5ψðxÞ

þ g
π2

1

ϵ2
FμνðxÞ þ g½ðaþ 1Þ3 − a3�

72π2
ð2∂ρ∂ρFμνðxÞ þ 2∂ν∂ρFμρðxÞ − 2∂μ∂ρFνρðxÞÞ

¼ 2ψ̄ðxÞϵμνρσγσγ5iDρψðxÞ þ
g
π2

1

ϵ2
FμνðxÞ þ g½ðaþ 1Þ3 − a3�

18π2
∂ρ∂ρFμνðxÞ: ðC7Þ

This result is not only affected by quadratic divergence33

but is also dependent on a nontrivially. The point-splitting
method is thus not suitable for transverse anomalies.

APPENDIX D: DETAILS OF DIMENSIONAL
RENORMALIZATION IN SEC. IV

This Appendix presents a note for one-loop calculation
in dimensional renormalization and an analysis for gauge
invariance of the coefficient in (24) including that of
transverse anomalies.
To determine coefficients in tWTI (25) on one-loop order,

it is not necessary to use all the algebra in (24), and it is more
convenient and simple to calculate hTN½ψ̄ σ̄μνγ̂ρiDρψ �×
ψ̃ðp̄1Þ ˜̄ψðp̄2Þiprop and hTN½ψ̄ σ̄μνγ̂αiDαψ �Ãρðq̄Þiprop (instead

32Here, we only need OðA0Þ of hψðxþ aϵÞψ̄ðxþ ðaþ 1ÞϵÞi
because C parity of jμ and Aμ are both odd, andOðA2Þ of hψðxþ
aϵÞψ̄ðxþ ðaþ 1ÞϵÞi is of OðϵÞ and thus does not make a
contribute.

33Unlike the case in Appendix B, it seems here that we cannot
find a proper way to subtract this divergence because the
quadratic divergence of jμ is not shown explicitly.
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of the Green’s functions with N½ψ̄ σ̄μνγ̂ρiDρψ � replaced
by N½ǧρσðψ̄ σ̄μνγρiDσψÞ�) to read out ðb; c; f; r; sÞ ¼
ðb0; c0; f0; r0; s0Þ=ð1 − aÞ directly from (23). (Of course,
information on a is lost, but this does not matter because

a is only an intermediate variable.) Only the following four
Feynman diagrams in Fig. 2 are relevant.
For the first diagram,

Eμν
ð1Þðp̄1; p̄2Þ

¼ −2ig2
Z

ddp
ð2πÞd σ̄

μν

�
γ̂α

1

=pþ =̄p2 −m
γ̂α

− ð1 − ξÞ=̂p 1

=pþ =̄p2 −m
=p

1

p2

�
1

p2

¼ −2ig2σ̄μν
Z

ddp
ð2πÞd

Z
1

0

dx

� ð4 − dÞðð1 − xÞ=̄p2 −mÞ
½−p2 − xð1 − xÞp̄2

2 þ xm2�2

þ ð1 − ξÞ 2ð1 − xÞp̂2ðm − =̄p2Þ
½−p2 − xð1 − xÞp̄2

2 þ xm2�3
�

¼ g2

16π2
σ̄μνð=̄p2 − 4mþ ð1 − ξÞðm − =̄p2ÞÞ: ðD1Þ

Similar to the first diagram, we have for the second diagram
that

Eμν
ð2Þðp̄1; p̄2Þ ¼ −2ig2

Z
ddp
ð2πÞd

�
γ̂α

1

=pþ =̄p1 −m
γ̂α − ð1 − ξÞ=̂p 1

=pþ =̄p1 −m
=p

1

p2

�
σ̄μν

1

p2

¼ −2ig2
Z

ddp
ð2πÞd

Z
1

0

dx

� ð4 − dÞðð1 − xÞ=̄p1 −mÞ
½−p2 − xð1 − xÞp̄2

1 þ xm2�2 þ ð1 − ξÞ 2ð1 − xÞp̂2ðm − =̄p1Þ
½−p2 − xð1 − xÞp̄2

1 þ xm2�3
�
σ̄μν

¼ g2

16π2
ð2=̄p1 − 4mþ ð1 − ξÞðm − =̄p1ÞÞσ̄μν: ðD2Þ

The third diagram is a little complicated but still straightforward to calculate:

Eμν
ð3Þðp̄1; p̄2Þ ¼ 2ig2

Z
ddp
ð2πÞd

�
γα

1

=pþ =̄p1 −m
=̂pσ̄μν

1

=pþ =̄p −m
γα−ð1 − ξÞ=p 1

=pþ =̄p1 −m
=̂pσ̄μν

1

=pþ =̄p −m
=p

1

p2

�
1

p2

¼ −2ig2
Z

ddp
ð2πÞd · 2

Z
1

0

dx
Z

x

0

dy

�
γαð=pþ ð1 − yÞ=̄p1 − ð1 − xÞ=̄p2 þmÞ=̂pσ̄μνð=p − y=̄p1 þ x=̄p2 þmÞγα

½−p2 − yð1 − yÞp̄2
1 − xð1 − xÞp̄2

2 þ 2yð1 − xÞp̄1 · p̄2 þ ð1 − xþ yÞm2�3
þ 3ð1 − ξÞðx − yÞð=p − y=̄p1 − ð1 − xÞ=̄p2Þ

×
ð=pþ ð1 − yÞ=̄p1 − ð1 − xÞ=̄p2 þmÞ=̂pσ̄μνð=p − y=̄p1 þ x=̄p2 þmÞð=p − y=̄p1 − ð1 − xÞ=̄p2Þ

½−p2 − yð1 − yÞp̄2
1 − xð1 − xÞp̄2

2 þ 2yð1 − xÞp̄1 · p̄2 þ ð1 − xþ yÞm2�4
�

¼ g2

16π2

�
−
2

3
=̄p1σ̄

μν þ 4

3
=̄p2σ̄

μν þ 4

3
σ̄μν=̄p1 −

2

3
σ̄μν=̄p2ð1 − ξÞð−2mσ̄μν þ =̄p1σ̄

μν þ σ̄μν=̄p2Þ
�
: ðD3Þ

We now come to the last but most simple diagram:

Eμνρ
ð4Þ ðq̄Þ ¼ −2ig

Z
ddp
ð2πÞd tr

	
γ̄ρ

1

=pþ =̄q −m
=̂pσ̄μν

1

=p −m




¼ 8gðq̄μḡνρ − q̄νḡμρÞ
Z

ddp
ð2πÞd

Z
1

0

dx
p̂2

½−p2 − xð1 − xÞq̄2 þm2�2

¼ −
g2

2π2
ðiq̄μḡνρ − iq̄νḡμρÞ

�
−
1

6
q̄2 þm2

�
: ðD4Þ

FIG. 2. One-loop diagrams of hTN½ψ̄ σ̄μνγρiDρψ �ψ̃ðp̄1Þ×
˜̄ψðp̄2Þiprop and hTN½ψ̄ σ̄μνγαiDαψ �Ãρðq̄Þiprop.
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When adding these terms together, all the gauge-
dependent terms cancel out, which verifies our conclusion
drawn in Sec. IV that all coefficients in the tWTI (25) are
gauge independent to one-loop order. We get these coef-
ficients on one-loop order:

b ¼ 0; c ¼ g2

6π2
; f ¼ g2

4π2
;

r ¼ g
24π2

; s ¼ g
4π2

: ðD5Þ

As for gauge invariance of these coefficients to all orders,
some general conclusions drawn in a similar treatment of
the chiral anomaly by Bonneau [12] are enough. We only
quote here the contents for the reader’s convenience (but
with our notations).
The starting point is provided by the action principle

(N½OðxÞ� is assumed to be any formally gauge-invariant
operator),

∂
∂ξ hTN½OðxÞ�Xi

¼
�
T
Z

d4yN

	
i

2ξ2
ð∂μAμðyÞÞ2



N½OðxÞ�X

�
; ðD6Þ

where X ≡Q
N
i¼1 ψðxiÞ

Q
N
j¼1 ψ̄ðyjÞ

Q
L
k¼1 A

μkðzkÞ.
Through repeated use of the following gauge WTI34

hT∂μAμðxÞN½OðyÞ�Xi

¼ −ξ
XL
k¼1

∂x
μkDðx − zkÞhTN½OðyÞ�XnAμkðzkÞi

þ igξ
XN
i¼1

ðDðx − xiÞ −Dðx − yiÞÞhTN½OðyÞ�Xi; ðD7Þ

and we can recast (D6) to many useful forms. We may only
focus on the gauge variance of the proper part of Green’s
functions with X ¼ Aρ and X ¼ ψðyÞψ̄ðzÞ because the
expression (24) for coefficients in the tWTI only considers
these two cases.
Gauge variance of Green’s functions is not the focus of

this paper, and we thus only quote two main results of
Ref. [12] to illustrate the gauge invariance of coefficients in
the tWTI. The first result is (B.10) in Ref. [12], for formally
gauge-invariant N½OðxÞ�,

∂
∂ξ

�
TN½OðxÞ�

YL
k¼1

AμkðzkÞ
�prop

¼ 0: ðD8Þ

This is also established for the nonoverall subtracted Green
function (see the first sentence after (B.11) in Ref. [12]).
Thus, ∂

∂ξ r0 ¼ 0 and ∂
∂ξ s0 ¼ 0 are simply special cases in

which O ¼ ǧρσðψ̄ σ̄μνγρiDσψÞ and L ¼ 1.
The second result deals with the gauge invariance of

r:s:p:hTN½OðxÞ�ψ̃ðpÞ ˜̄ψðqÞiprop. Figure 3 (which provides a
diagrammatical representation of the gauge variance of
hTN½OðxÞ�ψ̃ðpÞ ˜̄ψðqÞiprop) and Lemma 3 in Ref. [12] [i.e.,
Eqs. (B.13.a) and (B.13.b) therein] indicates that, if
hTN½OðxÞ�ψ̃ðpÞ ˜̄ψðqÞi has no trivial part (where a non-
trivial diagram was defined by Ref. [12] to be a graph with
at least one loop), then

∂
∂ξ r:s:p:hTN½OðxÞ�ψ̃ðpÞ ˜̄ψðqÞiprop ¼ 0: ðD9Þ

Obviously, hTN½ǧρσðψ̄ σ̄μνγρiDσψÞðxÞ�ψ̃ðpÞ ˜̄ψðqÞi has no
trivial part owing to the presence of ǧρσ ¼ ĝρσ=ðd − 4Þ
(which we take to be zero after finishing all loop integrals),
and obtaining the gauge independence of a; b0; c0; f0 is thus
straightforward.
We get the gauge independence of b, c, f, r, s by

combining these two results.
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