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Abstract The one-loop contribution of scalar and vector
leptoquarks (LQs) to the electromagnetic properties (NEPs)
of massive Dirac neutrinos is presented via an effective
Lagrangian approach. For the contribution of gauge LQs to
the effective neutrino charge radius defined in Bernabeu et
al. (Phys Rev Lett 89:101802, 2002. https://doi.org/10.1103/
PhysRevLett.89.101802 [Erratum: Phys Rev Lett 89:229902
(2002)]), we considered a Yang–Mills scenario and used
the background field method for the calculation. Analyti-
cal results for nonzero neutrino mass are presented, which
can be useful to obtain the NEPs of heavy neutrinos, out of
which approximate expressions are obtained for light neutri-
nos. For the numerical analysis we concentrate on the only
renormalizable scalar and vector LQ representations that do
not need extra symmetries to forbid tree-level proton decay.
Constraints on the parameter space consistent with current
experimental data are then discussed and it is found that the
scalar ˜R2 and the vector U1 representations could yield the
largest LQ contributions to the NEPs: for LQ couplings to
both left- and right handed neutrinos of the order of O(1)

and a LQ mass of 1.5-2 TeV, the magnetic dipole moment
(MDM) of a Dirac neutrino with a mass in the eV scale can be
of the order of 10−9–10−10 μB , whereas its neutrino electric
dipole moment (EDM) can reach values as high as 10−20–
10−19 ecm. On the other hand, the effective NCR can reach
values up to 10−35 cm2 even if LQs do not couple to right-
handed neutrinos, in which case the EDM vanishes and the
contribution to the MDM would be negligible.

a e-mail: ebolanosc@tec.mx
b e-mail: marianne.gl93@gmail.com
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1 Introduction

The neutrino interaction with the photon is governed by the
neutrino electromagnetic properties (NEPs) [2–5], which can
only arise at the one-loop level or higher orders in perturba-
tion theory and have been long the focus of considerable
interest in the literature [6–9] since they could allow us to
determine the Dirac or Majorana nature of neutrinos [5] and
also hint new physics effects in neutrino experiments [9–12].
The neutrino electromagnetic vertex function consistent with
Lorentz and electromagnetic gauge invariance can be written
as [13]
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where q2 is the photon squared transfer momentum, FV
1 is

the electric charge form factor and F A
1 the anapole form fac-

tor. As for the chirality-flipping form factors FV
2 and F A

2 ,
they determine the static CP-conserving magnetic dipole
moment (MDM) μν and the static CP-violating electric
dipole moment (EDM) dν as follows

μν = e
FV

2 (0)

2mν

, (2)

and

dν = −ie
F A

2 (0)

2mν

. (3)

Both dipole form factors vanish for a Majorana neutrino,
which can only have nonvanishing anapole form factor and
transition dipole form factors [4,5,14]. On the other hand,
Dirac neutrino can have nonvanishing anapole and dipole
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Fig. 1 Feynman diagrams that
contribute to leading order in the
charged lepton mass to the
effective NCR at the one-loop
level in the SM in the BFM

form factors [4,15]. Thus, the observation of a neutrino MDM
would be a clear evidence that neutrinos are Dirac particles.

The standard model (SM) augmented with massive Dirac
neutrinos predicts a neutrino MDM at the one-loop level,
which, in units of the Bohr magneton, μB = e/(2me) is
given by [3,4]

μν�
= 3eGFmν�

8
√

2π2
� 3.1 × 10−19

( mν�

1 eV

)

μB, (4)

whereas the EDM vanishes at the one-loop level, though tran-
sition EDMs can be nonvanishing.

Although the neutrino electric charge form factor FV
1 (q2)

vanishes for an on shell photon, except in theories with elec-
trically millicharged neutrinos [7], it can give rise to a neu-
trino charge radius (NCR):

〈r2〉ν�
= 6

dFV
1 (q2)

dq2

∣

∣

∣

q2=0
. (5)

Using the conventional definition of FV
1 (q2), this quantity

was calculated long ago in the context of the SM [16–20]
and was found to be gauge dependent, which stems from
the fact that off shell Green’s functions are not associated
with S-matrix elements and can thus be plagued with several
pathologies [21], such as dependence on the gauge-fixing
parameter (GFP) ξ , ultraviolet divergences, etc. Nonetheless,
well behaved off shell Green’s functions, out of which physi-
cal observables may be defined, can be obtained via the pinch
technique (PT) [21–24]. This approach was followed by the
authors of Refs. [1,24–26], who addressed all the theoreti-
cal and experimental issues to define an effective NCR that
is finite, GFP independent, and target independent, thereby
being a valid physical observable that can serve as a probe
of the SM at neutrino experiments, as discussed in [26].

The PT is a diagrammatic approach that requires to insert
the associated off shell vertex into a physical process and judi-
ciously removing the gauge-dependent terms arising from
box, vertex, and self-energy diagrams. Furthermore, it has
been shown that, at least up to the two-loop level, the well-
behaved off shell Green’s functions obtained through the
PT are identical to those obtained via the background field
method (BFM), as long as the Feynman–’t Hooft gauge is
used [27,28]. This provides a systematic approach to obtain
new physics contributions to the effective NCR.

The correspondence between the effective NCR obtained
via the PT and that obtained through the BFM was discussed
in Ref. [26] in the context of the SM, where the one-loop
level contributions to the effective NCR are induced by the
Feynman diagrams of Fig. 1 to leading order in the mass of
the charged lepton �.

The corresponding result is [25,26,29]
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4.1 × 10−33 cm2 for νe,

2.4 × 10−33 cm2 for νμ,

1.5 × 10−33 cm2 for ντ .

(6)

It is worth mentioning that the Z −γ self-energy does not
yield a contribution to the effective NCR as it is associated to
the effective electroweak charge form factor rather than the
electric charge one, as discussed in [25].

In this work we present a calculation of the one-loop con-
tributions to neutrino MDM, EDM and effective NCR in
scalar and vector leptoquark (LQ) models. LQs are hypo-
thetical spin-0 or spin-1 particles predicted by several new
physics theories [30–44], which are peculiar as they carry
both lepton and baryon number, thereby interacting simul-
taneously to leptons and quarks and giving rise to a rich
phenomenology. Such particles were first predicted in the
SU (4)R × SU (4)L × SU (4′) model of Pati and Salam [30],
which postulates that lepton number is the fourth color quan-
tum number, but they also appear naturally in grand uni-
fication theories (GUT) [31–36], theories with composite
fermions [37–39], superstring-inspired E6 models [40,41],
technicolor models [42–44], etc. LQs can give rise to new
interesting effects, out of which the most dramatic is the
appearance of tree-level LQ-diquark couplings that can trig-
ger rapid proton decay [45] and constrain severely the LQ
mass unless ad-hoc symmetries are invoked to preserve pro-
ton stability.

The late 1990s saw a boom of interest in LQs prompted by
the apparent anomaly in e+ p scattering reported by the H1
[46] and ZEUS [47] collaborations, which could be explained
by the presence of LQ particles, but such an interest faded
away once no further confirmation of a SM deviation was
found in subsequent analyses [48]. Very recently, however,
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Table 1 90% CL upper bounds
(or allowed range) on neutrino
MDM and NCR for each flavor
from several neutrino
experiments: XENONnT [78],
Borexino [79], GEMMA [80],
DONUT [81], LSND [82],
TEXONO [83], and solar [84]

Flavor |μν | (×10−11μB)
〈

r2
ν

〉 ( × 10−32cm2
)

νe

0.63 (XENONnT)
3.9 (Borexino)
2.9 (GEMMA)

[−45, 3.0] (XENONnT)
[−0.82, 1.27] (Solar)
[−5.94, 8.28] (LSND)
[−4.2, 6.6] (TEXONO)

νμ
1.37 (XENONnT)
5.8 (Borexino)

[−45, 52] (XENONnT)
[−9, 31] (Solar)
1.2 (CHARM-II)
[−4.2, 0.48] (TEXONO)

ντ

1.24 × 104 (XENONnT)
5.8 × 104 (Borexino)
3.9 × 104 (DONUT)

[−40, 45] (XENONnT)
[−9, 31] (Solar)

the interest in LQs has renewed as they can explain the appar-
ent lepton flavor universality violating (LFUV) anomalies
in semi-leptonic b-hadron decays, namely the RD,D∗ and
RK ,K ∗ anomalies, but can also provide a solution to the muon
g−2 discrepancy: a plethora of LQ models constructed to this
end have been proposed [49–66]. Even more, LQs can gen-
erate small neutrino masses radiatively [56,65,65,67–70].
Although the latest LHC-b data seem to exclude the RK ,K ∗
anomaly [71], it is still worth studying the LQ effects on
experimental observables. The neutrino MDM has already
been calculated in the framework of LQ models [72–75], but
an up-to-date analysis is in order given the recent proposal
of LQ models. As far as LQ contributions to both the EMD
and the effective NCR, no known calculation exists yet to our
knowledge.

In the experimental arena, bounds on the neutrino MDM
and NCR already exist. We list in Table 1 the 90% CL limits
obtained from several experiments. Other recent bounds such
as those obtained [76] by using the COHERENT experiment
data [77] are not shown as they are less stringent.

As far as the neutrino EDM, no experimental limit exist
yet, but several indirect and theoretical bounds have been
obtained. For the electron and muon neutrino EDMs, the most
stringent limits are dνe,νμ � 10−21 ecm [85], whereas for the
tau neutrino bounds of the order of 10−17 − 10−18 ecm have
been obtained in the context of some new physics scenarios:
dντ � ×10−17 ecm in a model-independent approach (nat-
uralness) [86], dντ � ×10−17 ecm in effective Lagrangians
[87], dντ � 10−18−10−20 ecm in vector-like multiplet mod-
els [88], etc. Also, it was found [89] that the ILC and CLIC
would allow one to test dντ values up to the 10−19 ecm level
for center-of-mass energies of 500 to 3000 GeV.

The rest of this work is organized as follows. In Sect. 2 we
present an overview of some minimal renormalizable mod-
els that predict scalar and vector LQs at the TeV scale and
have no proton decay at the tree-level. Section 3 is devoted
to present the calculation of the electromagnetic properties
of a massive Dirac neutrino arising from both vector and
scalar LQs, whereas Sect. 4 is devoted to the discussion of the

current constraints on the LQ parameter space from exper-
imental data along with a numerical estimate of the NEPs
of SM neutrinos. Finally, the conclusion and outlook are
presented in Sect. 5. The lengthy formulas for the analyti-
cal results of the LQ contributions to the NEPs are presented
in Appendix A and some results for the LQ contributions
to several observables useful to constrain the LQ parameter
space are presented in Appendix B.

2 Minimal models with scalar and vector LQs

We are interested in the electromagnetic properties of mas-
sive Dirac neutrinos and assume that there are right-handed
neutrinos that could interact with LQ particles and SM quarks
but are sterile to the weak force. We will not focus on the
mechanism of neutrino mass generation, though there are
several LQ models that address this problem [56,65,65,67–
70]. Instead of analyzing a particular LQ model in all its com-
plexity, it is more convenient to study the LQ effects on low-
energy experiments in a model-independent fashion via an
effective Lagrangian. Apart from SU (3)C×SU (2)L×U (1)Y
gauge invariance, extra symmetries must be assumed to for-
bid dangerous diquark couplings that can induce rapid pro-
ton decay at tree-level, thereby pushing the LQ masses up
to the ultra high-energy scale: for instance, proton decay
sets a limit of 1016 GeV on the mass of GUT vector LQs
[32,45]. Along these lines, the authors of Ref. [90] found
all the SU (3)C × SU (2)L ×U (1)Y LQ representations with
renormalizable couplings to SM fermion bilinear operators
respecting both baryon and lepton number conservation: it
turns out that there are only five scalar and five vector LQ
representations of such a kind [90], though there are one
extra scalar and one extra vector representations when right-
handed neutrinos are included [91,92]. Out of all these twelve
LQ representations, only ten of them can couple to neutri-
nos, thereby yielding one-loop contributions to NEPs. Such
representations are shown in Table 2, where apart from the
spin, fermion number, and SU (3)c×SU (2)L ×U (1)Y gauge
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Table 2 SU (3)c×SU (2)L×U (1)Y LQ representations with renormal-
izable couplings to bilinear fermion operators, including right-handed
neutrinos, respecting both baryon and lepton number conservation [90–
92]. We show the corresponding spin s, fermion number F = 3B + L ,
and SU (3)c × SU (2)L ×U (1)Y gauge quantum numbers (GQNs). We
also include the electric charge of the LQ components of each repre-

sentation and indicate between parenthesis if they couple to left-handed
(L) neutrinos, right-handed (R) neutrinos, or both of them (LR) [92].
In the last column we show the representations that provide renormal-
izable LQ models that do not need to invoke extra symmetries to forbid
proton decay in perturbation theory

Representation s F GQNs LQ electric charge (|e|) Extra symmetries required to forbid proton decay

S3 0 −2 (3̄, 3, 1/3) 1/3 (L), 4/3, −2/3 (L) Yes

R2 0 0 (3, 2, 7/6) 5/3, 2/3 (L) No
˜R2 0 0 (3, 2, 1/6) 2/3 (R), −1/3 (LR) No

S1 0 −2 (3̄, 1, 1/3) 1/3 (LR) Yes

S̄1 0 −2 (3̄, 1,−2/3) −2/3 (R) Yes

U3 1 0 (3, 3, 2/3) 2/3 (L), −1/3 (L), 5/3 No

V2 1 −2 (3̄, 2, 5/6) 1/3 (L), 4/3 Yes
˜V2 1 −2 (3̄, 2,−1/6) 1/3 (R), −2/3 (LR) Yes

U1 1 0 (3, 1, 2/3) 2/3 (LR) No

Ū1 1 0 (3, 1,−1/3) −1/3 (R) Yes

quantum numbers of each LQ representation, we also include
the charge of the corresponding LQs and indicate which of
them can couple to left- and/or right-handed neutrinos.

Another approach was followed by the authors of Refs.
[93,94], who found the effective LQ models based on
SU (3)c × SU (2)L ×U (1)Y representations with renormal-
izable couplings to fermion bilinear operators that do not
need to invoke any extra global symmetry to forbid baryon
number violation in perturbation theory, thereby forbidding
tree-level proton decay via either diquark couplings or triple
and quadruple LQ self-interactions. These models are thus
still phenomenologically viable at the TeV scale as they have
no severe constraints on the LQ masses and couplings from
proton decay. It was found that the only models of this kind
are those comprised by the either one or several of the follow-
ing four LQ representations: the two scalar representations
R2 and ˜R2 [93] and the two vector representationsU1 andU3

[94]. Models with one or several of these four LQ represen-
tations have been the focus of attention recently since, apart
from providing a renormalizable framework and predicting
a rich phenomenology at the TeV scale, they can explain the
LFUV anomalies in B-meson decays as well as the muon
g−2 anomaly in regions of the parameter space still allowed
by the current experimental constraints from meson decays,
electroweak precision parameters, and direct searches at the
LHC [50,54,95–99,99–102].

Although the R2, ˜R2, U1, and U3 representations can
give contributions to NEPs, only ˜R2 and U1 can have cou-
plings to both left- and right-handed neutrinos. In particu-
lar, the U1 representation has been the source of attention
recently as emerges naturally from the minimal realization
of the Pati-Salam model [30] and provides a solution to the
LFUV anomalies in B-meson decays [94,96,101,103–113],

for which models based on the ˜R2 have also been studied
[52,108,114,115]. Notice however that the scalar S1 and vec-
tor ˜V2 representations, with F = 2, can also can have cou-
plings to both left- and right-handed neutrinos, so in order
to have a comprehensive calculation we will consider the
scalar representations ˜R2 and S1 as well as the vector repre-
sentationsU1 and ˜V2 since they provide the most general LQ
couplings to neutrinos and quarks that can induce contribu-
tions to NEPs at the one-loop level.

We will present below an overview of the LQ couplings
necessary for our calculation.

2.1 Scalar LQ interactions

2.1.1 ˜R2 and S1 neutrino couplings

In the following, we will refrain from presenting the LQ
interactions with quarks and charged leptons as they are not
relevant for our calculation and can be found elsewhere [90,
92]. Therefore, the dimension-4 Yukawa lagrangian for the
˜R2 and S1 representations that yield LQ interactions with a
quark and both left- and right-handed neutrinos can be written
as [90,92]

L
˜R2

⊃ −˜Y RL
2 i j d

′i
Ri˜R

T
2 τ2L

′ j
L + ˜Y LR

2 i j Q
′i
L
˜R2ν

′ j
R + H.c., (7)

and

LS1 ⊃ Y LL
1 i j Q

′C i
L iτ2L

′ j
L S1 + Y RR

1 i j d
′C i
R ν

′ j
R S1 + H.c., (8)

where as customary L
′i
L and Q

′i
L are SU (2)L left-handed

lepton and quark doublets, respectively, whereas ν
′i
R and q

′i
R

are SU (2) singlets, with the subscripts i and j being family
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Table 3 Interactions of the scalar and vector LQs arising from the representations of Table 2 with a quark and left- and right-handed neutrinos

Representation Neutrino interactions

S3 −(Y LL
3 U )i j d̄CiL ν

j
L S

1/3
3 + √

2(V T Y LL
3 U )i j ūCiL ν

j
L S

−2/3
3 + H.c.

R2 (Y RL
2 U )i j ūiRν

j
L R

2/3
2 + H.c.

˜R2 (˜Y RL
2 U )i j d̄ iRν

j
L
˜R−1/3

2 + ˜Y LR
2 i j d̄

i
Lν

j
R

˜R−1/3
2 + (V˜Y LR

2 )i j ūiLν
j
R

˜R2/3
2 + H.c.

S1 (Y LL
1 U )i j d̄CiL ν

j
L S

1/3
1 + Y RR

1 i j d̄
Ci
R ν

j
R S

1/3
1 + H.c.

S̄1 Y
RR
1 i j ū

Ci
R ν

j
R S̄

−2/3
1 + H.c.

U3 (V XLL
3 U )i j ūiLγ μν

j
LU

2/3
3 μ + √

2(XLL
3 U )i j d̄ iLγ μν

j
LU

−1/3
3 μ + H.c.

V2 −(X RL
2 U )i j d̄CiR γ μν

j
L V

1/3
2 μ + H.c.

˜V2 −(˜X RL
2 U )i j ūCiR γ μν

j
L
˜V−2/3

2 μ + (V T
˜XLR

2 )i j ūCiL γ μν
j
R
˜V−2/3

2 μ − ˜XLR
2 i j d̄

Ci
L γ μν

j
R
˜V 1/3

2 μ + H.c.,

U1 (V XLL
1 U )i j ūiLγ μν

j
LU

2/3
1 μ + X RR

1 i j ū
i
Rγ μν

j
RU

2/3
1 μ

˜U1 X RR
1 i j d̄

i
Rγ μν

j
R
˜U−1/3

1 μ + H.c.

indices. The left-side (right-side) superscript of the Yukawa
matrices Y stand for the chirality of the corresponding quark
(lepton) multiplet.

We now write the LQ in terms of their components
and rotate to the mass eigenstates of the fermions via the
transformations ei

′
L = eiL , d

′i
L = diL , ui

′
L = VikukL , and

ν
′i
L = Uikν

k
L (down alignment), where V and U are the

Cabbibo–Kobayashi–Maskawa (CKM) and the Ponte-corvo-
Maki–Nakagawa–Sakata (PMNS) mixing matrices, respec-
tively. This leads to the following interactions of the S1 and
˜R2 representations with neutrinos and quarks

L
˜R2

⊃ ˜R2/3
2 Vik˜Y

LR
2k j ū

i
Lν

j
R

+ ˜R−1/3
2

(

Ukj˜Y
RL

2ik d̄
i
Rν

j
L + ˜Y LR

2i j d̄
i
Lν

j
R

)

+ H.c., (9)

and

LS1 ⊃ S1/3
1

(

UkjY
LL
1 ik d̄

Ci
L ν

j
L + Y RR

1 i j d̄
Ci
R ν

j
R

)

+ H.c. (10)

For completeness we present in Table 3 the LQ interac-
tions to a neutrino-quark pair of all the scalar and vector LQs
arising from all the representations of Table 2.

For the purposes of our calculation, we will consider a
generic interaction of a scalar LQ 
k of electric charge Qk =
k, in units of |e|, to quarks and Dirac neutrinos of the form

L
kqi να = q̄i
(

ζ 0
L iαPL + ζ 0

R iαPR

)

να
k + H.c., (11)

where the quark qi is of up type (down type) for the scalar
LQ 
2/3 (
−1/3). As usual PL ,R are the left- and right-
handed chirality projectors and the LQ coupling constants
ζ 0
L iα and ζ 0

R iα , where the superscripts stands for the LQ spin
and the column (row) index is denoted by a Latin (Greek
letter) and it is associated with the quark (lepton) family, will

be assumed as complex and can be extracted from Table 3.
Notice however that the scalar LQ representation S1 gives
rise to interactions with charge conjugate quark fields of the
form

L
kqC,i να = q̄C,i
(

ζ̃ 0
L iαPL + ζ̃ 0

R iαPR

)

να
k ∗ + H.c.,

(12)

where again the quark qi is of up type (down type) for the
scalar LQ 
2/3 (
−1/3). We will discuss below that our
results for the NEPs obtained from the interaction (11) can
be used mutatis mutandi to obtain the contributions of the
scalar LQs that obey the interaction (12).

2.1.2 Electromagnetic interactions of scalar LQs

As far as the couplings of the scalar doublets to the photon
are concerned, they can be straightforwardly obtained from
the kinetic Lagrangian, which for a scalar LQ multiplet 


can be generically written as

LLQ
kin = 1

2
(Dμ
)†Dμ
, (13)

where the SU (2) ×U (1) covariant derivative is given by

Dμ = ∂μ + ig I lWl
μ + ig′Y
Bμ, (14)

where l runs from 1 to 3 and I k are matrices in the SU (2)

representation of 
: I l = 0 for SU (2) singlets, I l = τ l

(l = 1, 2, 3), with τ l being the Pauli matrices, for SU (2)

scalar LQ doublets, and
(

I l
)

i j = −iεi jl (i, j, l = 1, 2, 3)

for SU (2) scalar LQ triplets. As usual Bμ and Wi
μ are the

abelian and nonabelian gauge fields.
After rotating to the mass eigenstates, we obtain the cou-

plings of the LQ multiplet components 
k to the photon,
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Fig. 2 Generic Feynman rules
for the interactions of a scalar
LQ 
k necessary for the
calculation of NEPs. Here k
stands for the LQ electric charge
in units of |e|. The usual
Feynman rules for the particle
propagators and the SM
interactions are not shown

which can be written as

LA
k
k† = ieQk A
μ

(


k†∂μ
k − 
k∂μ
k†
)

. (15)

Apart from the usual SM Feynman rules, the remaining
ones necessary for our calculation can be obtained from the
above Lagrangians and are presented in Fig. 2.

2.2 Vector LQ interactions

2.2.1 U1 and ˜V2 neutrino couplings

As for the vectorU1 and ˜V2 representations, their interactions
with the left- and right-handed neutrinos follow from the
current-sector Lagrangian and can be written as follows

LU1 ⊃
(

XLL
1 i j Q̄

′i
Lγ μL

′ j
L + X RR

1 i j ū
′i
Rγ μν

′ j
R

)

U1μ + H.c.,

(16)

and

L
˜V2

⊃ ˜X RL
2 i j ū

′C i
R γ μ

˜V2 μiτ2L
′ j
L + ˜XLR

2 i j Q̄
′C i
L γ μiτ2˜V2 μν

′ j
R

+ H.c., (17)

where again the coupling constants can be taken as complex
quantities in general, but they are fixed to gauge coupling
constants in the case of gauge LQs. Note that the ˜V2 rep-
resentation induces diquark couplings, so the couplings of
the ˜V 2/3

2 and ˜V−1/3
2 components can be severely constrained

from proton decay unless an ad hoc symmetry is invoked to
achieve proton stability, We will only consider this represen-
tation to present the most general calculation of vector LQ
contributions to NEPs.

After rotating to the mass eigenstates we obtain the fol-
lowing interactions of vector LQs with left- and right-handed
neutrinos

LU1 ⊃ U 2/3
1 μ

(

VimUkj X
LL
1mkū

i
Lγ μν

j
L + X RR

1 i j ū
i
Rγ μν

j
R

)

+ H.c., (18)

and

L
˜V2

⊃ ˜V−2/3
2 μ

(

−Uik˜X
RL
2 k j ū

C i
R γ μν

j
L + V T

ik
˜XLR

2 k j ū
C i
L γ μν

j
R

)

− ˜V 1/3
2 μ

˜XLR
2 i j d̄

Ci
L γ μν

j
R + H.c., (19)

Again, we will consider a generic interaction of a vector
LQ V k of electric charge Qk = k, in units of |e|, to charge
Qk quarks and neutrinos of the form

LV k
μq

i να =V k
μ q̄

iγ μ
(

ζ 1
L iαPL + ζ 1

R iαPR

)

να + H.c., (20)

where the quark qi is of up type (down type) for the vector
LQ V 2/3 (V−1/3). The LQ coupling constants ζ 1

L iα can be
obtained from Table 3 for all the vector LQ representations
of Table 2. As in the case of scalar LQs, we will see below
that the results for NEPs obtained from (20) will also allows
one to obtain the results for the contribution arising from the
˜V2 representation, which yields an interaction of the form

LV k
μq

C,i να = q̄C,iγ μ
(

ζ̃ 1
L iαPL + ζ̃ 1

R iαPR

)

ναV k†
μ + H.c.

(21)

2.2.2 Electromagnetic interactions of vector LQs

As far as the LQ electromagnetic couplings, for simplic-
ity we will consider below vector LQs that are arise from
a gauge theory spontaneously broken. Following our model-
independent approach we consider that once the gauge group
of the ultraviolet (UV) completion has been broken into the
SM gauge group, the gauge LQ interactions with the SM
gauge bosons are given by the most general renormaliz-
able SU (2) × U (1) invariant Lagrangian for a gauge LQ
Vμ [92,116,117]

LVμ = −1

2
V †

μνV
μν − ig′V †μBμνV

ν − igV †μWμνV
ν,

(22)

where Vμν = DμVν − DνVμ, with the SU (2)L × U (1)Y
covariant derivative given in Eq. (14), also Wμν = I kWk

μν ,
with the matrices I k being defined above.
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Fig. 3 Generic Feynman rules for a gauge LQ V k
μ in the unitary gauge

necessary for the calculation of the neutrino static dipole moments. Here
k stands for the LQ electric charge in units of |e| and the AV k†V k vertex

function is �UG
μ,α,β(k1, k2, k3) = (k3 −k2)μgαβ +(k1 −k3)αgβμ +(k2 −

k1)βgμα . The usual Feynman rules for the particle propagators and SM
interactions are not shown

Finally, after the gauge symmetry has broken to the
U (1)em group and all the gauge fields have been rotated to
their mass eigenstates, we arrive at the following interaction
Lagrangian of a pair of gauge LQs V k

μ to the photon [118]

LAV k†V k = −1

2
V k †

μν V
k μν − i QkeV

k †
μ FμνV k

ν , (23)

where Fμν is the electromagnetic strength tensor and

V k
μν ≡ Dem

μ V k
ν − Dem

ν V k
μ

= (

∂μ + i QkeAμ

)

V k
ν − (∂ν + i QkeAν) V

k
μ. (24)

The generic Feynman rules in the unitary gauge for a gauge
LQ are presented in Fig. 3, though they are only useful to cal-
culate the static neutrino dipole moments, which are gauge-
independent quantities.

However, to obtain the effective NCR we need to make
some assumptions about the UV completion of the LQ
model since the calculation must be performed via the BFM
to obtain a gauge-independent result. As far as the LQ
interactions with the SM gauge bosons are concerned, as
shown in Ref. [117], where the BFM formalism was used
to obtain the Feynman rules for the new singly and dou-
bly charged gauge bosons arising in an SU (3)L × U (1)X
model, once the extended gauge symmetry is spontaneously
broken into SU (2)L × U (1)Y , the vertex functions for the
trilinear and quartic gauge boson couplings share the same
Lorentz structure, which stems from the fact that they all obey
SU (2)L×U (1)Y symmetry. Even more, the couplings of any
charged gauge boson and its associated pseudo-Goldstone
boson must obey electromagnetic gauge invariance. Thus,
the vertex function for the coupling of a photon with a pair
of charged gauge bosons AVV † is identical for any charged
gauge boson except for the electric charge factor, and the
same is true for the vertex function of the AGVG

†
V coupling,

whereGV is the pseudo-Goldstone boson associated with the
charged gauge boson (note that in the BFM there is no mixed
tree-level AVG†

V coupling). Thus, the Feynman-rules for the

AVV † and AGVG
†
V couplings, with V a gauge LQ and GV

its associated pseudo-Goldstone boson, must be analogue to
those presented in [27,117] for singly and doubly charged
gauge bosons after replacing the LQ electric charge.

Nevertheless, for the interactions of the LQ and its pseudo-
Goldstone boson with the SM fermions we do need to know
more details of the UV completion of the LQ model since
the coupling constants of Eq. (20) are fixed to the gauge
coupling constants. To obtain an estimate of the magnitude
of the LQ contributions to the effective NCR we will assume a
gauge LQ with left-handed coupling inspired in the model of
[110,119]. The corresponding Feynman rules are presented
in Fig. 4, where we also include the Feynman rules for the
coupling of a pseudo-Goldstone boson to a neutrino-quark
pair, with the coupling constants being given in Table 4.

3 LQ contribution to NEPs

We now turn to present our calculation of the LQ contribu-
tions to the NEPs, which at the one-loop level are induced by
the Feynman diagrams of Fig. 5 for scalar LQs and Fig. 6 for
vector LQs. As already mentioned, the γ −Z self-energy dia-
grams does not contribute to the effective NCR, as discussed
in [29].

The loop amplitudes were worked out by Feynman-
parameter integration with the help of the FeynCalc package
[120,121] to perform the Dirac algebra. An independent eval-
uation was done by means of the Passarino–Veltman reduc-
tion scheme via the FeynCalc and Package-X routines [122],
which allowed us to make a cross-check. We first obtained
results for nonvanishing q2 and afterwards a careful proce-
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Fig. 4 Feynman rules in the Feynman–’t Hooft gauge of the BFM,
which together with those of Fig. 3 are necessary for the calcula-
tion of the contribution of a gauge LQ to the effective NCR. Note
that in this gauge the AVV † vertex function of Fig. 3 is given by
�BFM

μ,α,β(k1, k2, k3) = (k3 − k2)μgαβ + (k1 − k3 − k2)αgβμ + (k2 −
k1 + k3)βgμα . In addition, the left- and right handed coupling con-

stants of the gauge LQ and its associated pseudo-Goldstone boson to
the fermions must be fixed to the gauge constants. Thus, inspired in the
model of Ref. [110,119] we assume a simple renormalizable gauge LQ
model where the coupling constants of a gauge LQ and its associated
pseudo-Goldstone bosons to a neutrino-quark pair are given as in Table
4

Table 4 Left- and right-handed coupling constants for the interactions
of a gauge LQ and its associated pseudo-Goldstone boson to the a
neutrino-quark pair, inspired in the model of Ref. [110]. Here g4 stands
for a gauge coupling constant

Vertex Left-handed couplings Right-handed couplings

V kq̄iνα ζ 1
L iα = g4√

2
βiα ζ 1

R iα = 0

Gk
V q̄

iνα ζ̄ 1
L iα = g4√

2

mqi

mLQ
βiα ζ̄ 1

R iα = g4√
2

mνα

mLQ
βiα

dure was applied to obtain the LQ contributions to the NEPs
in the limit of q2 = 0.

We first present the most general form of the contribution
of a spin-s LQ to the NEPs, and detailed results for scalar
and gauge LQs will be given below.

The contribution to the MDM of neutrino να can be written
in Bohr magneton units as follows

μs
να

= NcQLQme

16π2mLQ

∑

i

( (

mνα

mLQ

)

(

∣

∣ζ s
L iα

∣

∣
2 + ∣

∣ζ s
R iα

∣

∣
2
)

× f s(xqi ) +
(

mqi

mLQ

)

Re
(

ζ s
L iαζ s∗

R iα

)

gs(xqi )

)

μB,

(25)

where the superscript s stands for the LQ spin, whereas QLQ

and mLQ denote its electric charge and mass. We also define
xqi = m2

qi /m
2
LQ, with qi being the virtual quark. The f s(x)

and gs(x) functions can be written as

f s(x) =
∑

j

f sj (x), (26)

and

gs(x) =
∑

j

gsj (x), (27)

where the f sj (x) and gsj (x) functions stand for the contri-
bution of each Feynman diagram, which will be presented
below in approximate and full form. The LQ coupling con-
stants ζ s

L iα and ζ s
R iα can be extracted from Table 3 for the

scalar and vector LQs arising from the representations of
Table 2.

As for the contribution of a spin-s LQ to the neutrino
electric dipole moment, it requires complex LQ couplings
and can be written in terms of the gs(x) functions as follows

dsνα
= − eNcQLQ

32π2mLQ

∑

i

(

mqi

mLQ

)

Im
(

ζ s
L iαζ s∗

R iα

)

gs(xqi ).

(28)

As far as the effective NCR is concerned, following Refs.
[25,26], we obtain the contributions of scalar and vector
LQs to the �̂

μ
Aν̄ν vertex for nonvanishing q2, from which the

dimensionless effective form factor F̂V
1 (q2) can be extracted

as the coefficient of ieγ μ(1 − γ 5): it is given in terms of the
dimensionful form factor F̂να (q

2) as follows

F̂V (q2) = q2 F̂να (q
2). (29)

The effective NCR is thus given by 〈r2〉να = 6F̂να (0). While
the scalar LQ contribution to F̂V (q2) is gauge-independent
and was calculated straightforwardly, the vector LQ contri-
bution was obtained via the BFM in the Feynman–’t Hooft
gauge, as described more detailed below.
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Fig. 5 Feynman diagrams that
contribute to the neutrino dipole
moments and the effective NCR
at the one-loop level in models
with scalar LQs

Fig. 6 Feynman diagrams for
the contribution to NEPs from
gauge LQ V k

μ . The upper row
diagrams can be calculated in
the unitary gauge to obtain the
contributions to the neutrino
MDM and EDM, whereas the
four diagrams must be
calculated in the Feynman–’t
Hooft gauge of the BFM to
obtain the contribution to the
effective NCR. Here GV stands
for the pseudo-Goldstone boson
associated to V

The LQ contribution to the effective NCR can be written
as

〈r2〉sνα
= NcQLQ

16π2m2
LQ

∑

i

(

(

∣

∣ζ s
L iα

∣

∣
2 + ∣

∣ζ s
R iα

∣

∣
2
)

f̂ s(xqi )

+
(

mqimνα

m2
LQ

)

Re
(

ζ s
L iαζ s∗

R iα

)

ĝs(xqi )

)

, (30)

where the f s(x) and gs(x) obey relationships similar to Eqs.
(26) and (27).

We have obtained results for the rsk (x) functions (r =
f, g, f̂ , ĝ) for nonzero neutrino mass in terms of both
Feynman-parameter integrals and Passarino–Veltman scalar
functions, which are presented in Appendix A and can be use-
ful to obtain the NEPs of hypothetical heavy Dirac neutrinos.
From such results, approximate expressions were obtained
to leading order in the neutrino mass, which provide a good
estimate for the NEPs of light neutrinos, and are presented
below.

3.1 Scalar LQ contribution for light neutrinos

The scalar LQ contributions to the NEPs are clearly gauge-
independent and yield ultraviolet finite MDM and EDM.
As for the contribution to the neutrino charge form factor

F̂V
1 (q2), its derivative is finite at q2 = 0 and so is the effec-

tive NCR.
The contributions of a scalar LQ to the neutrino MDM are

given trough the f 0
i (x) and g0

i (x) functions of Eqs. (25) and
can be approximated for light neutrinos as

f 0
1 (x) = − 1

6 (x − 1) 4 (((x − 6) x + 3) x

+6x log (x) + 2) , (31)

f 0
2 (x) = − 1

6 (x − 1) 4 ((x − 1) (x (2x + 5) − 1)

− 6x2 log (x)
)

, (32)

and

g0
1(x) = − 1

(x − 1) 3

(

x2 − 4x + 2 log (x) + 3
)

, (33)

g0
2(x) = − 1

(x − 1) 3

(

x2 − 2x log (x) − 1
)

. (34)

The latter functions are also useful to compute the contribu-
tion of a scalar LQ to the neutrino EDM of Eq. (28).

As far as the contributions of a scalar LQ to the effective
NCR, the f̂ 0(x) and ĝ0(x) functions of Eq. (30) are given as
follows for light neutrinos
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f̂ 0
1 (x) = 1

12 (x − 1) 4 (6 (2 − 3x) log (x)

− (x − 1) (x (7x − 29) + 16)) , (35)

f̂ 0
2 (x) = − 1

12 (x − 1) 4

(

(x − 1) (x (11x − 7) + 2)

− 6x3 log (x)
)

, (36)

and

ĝ0
1(x) = − 1

3 (x − 1) 5 ((x − 1) ((x − 8) x − 17)

+ 6 (3x + 1) log (x)) , (37)

ĝ0
2(x) = 1

3 (x − 1) 5

(

((9 − 17x) x + 9) x

+ 6 (x + 3) x2 log (x) − 1
)

. (38)

3.2 Vector LQ contribution

We first calculate the contribution of a vector LQ to the static
neutrino MDM and EDM, which are gauge independent and
can thus be straightforwardly computed in the unitary gauge,
where the contributing Feynman diagrams are the ones shown
in the upper row of Fig. 6.

The results for the f 1
k (x) and g1

k (x) functions for light
neutrinos read as follows

f 1
1 (x) = 1

6 (x − 1) 4

(

18x2 log (x)

− (x − 1) (x (x (5x − 9) + 30) − 8)
)

, (39)

f 1
2 (x) = − 1

6
(

xq − 1
)

4

(

18x3 log (x)

+ (x − 1) (x (x (4x − 45) + 33) − 10)
)

, (40)

g1
1(x) = 1

(x − 1) 3

(

x3 + 3x − 6x log (x) − 4
)

, (41)

g1
2(x) = 1

(x − 1) 3

(

(x − 1) ((x − 11) x + 4)

+ 6x2 log (x)
)

. (42)

As far as the calculation of the effective NCR is concerned,
the gauge LQ contribution to the F̂V (q2) form factor must
be obtained via the BFM in the Feynman–’t Hooft gauge.
Apart from the Feynman diagrams with an internal gauge LQ,
there are two additional Feynman diagrams where the gauge
LQ is replaced by its associated pseudo-Goldstone boson,
as shown in the lower row of Fig. 6. Nevertheless, the latter
contributions are suppressed by a factor of mqi /mLQ and
even for the top quark will give a subdominant contribution.

According to the coupling constants assumed in Table 4,
the gauge LQ contribution to the effective NCR can be written

as in Eq. (30) but with vanishing right-handed couplings,
namely, ζ 1

R iα = 0. It means that there are only contributions

to the effective NCR via the f̂ j (x) functions, which are given
by

f̂ 1
1 (x) = 1

6
(

xq − 1
)

4
((x − 1) (x (25x − 29) − 2)

− 6
(

6x2 − 9x + 2
)

log (x)
)

, (43)

f̂ 1
2 (x) = 1

6 (x − 1) 4

(

6x2 (5x − 6) log (x)

− (x − 1) (x (43x − 65) + 16)) , (44)

f̂ 1
3 (x) = x

12 (x − 1) 4 (6 (2 − 3x) log (x)

− (x − 1) (x (7x − 29) + 16)) , (45)

f̂ 1
4 (x) = x

12 (x − 1) 4

(

6x3 log (x)

− (x − 1) (x (11x − 7) + 2)
)

, (46)

where again the subscript stands for the contribution of each
Feynman diagram of Fig. 6.

Note that for a very heavy LQ, namely, xqi 
 1 the effec-
tive NCR for a gauge LQ with the couplings of Table 4 can
be approximated as

〈r2〉1
να

� NcQLQ

16π2m2
LQ

∑

i

∣

∣

∣ζ
1
L iα

∣

∣

∣

2 (

3 − 2 log
(

xqi
))

, (47)

which reduces to the SM result of Eq. (6) after the replace-

ments:
∣

∣ζ 1
L iα

∣

∣
2 → g2

2
= 2

√
2m2

WGF , mLQ → mW ,

mqi → me, QLQ → 1, and Nc → 1.
It is also worth noting that the LQs arising from the S1

and ˜V2 representations involve Feynman rules of Majorana
type, which requires special treatment [123,124]. Neverthe-
less, the corresponding contributions to NEPs are identical
to those obtained for the ˜R2 and U1 representations. Thus,
the above results are valid for all the LQ representations of
Table 2. A similar situation was discussed in [125,126] for
the contribution of scalar LQs to the fi → f jγ and t → cγ γ

decays.

4 Numerical analysis

We now turn to the numerical analysis, for which we need
to discuss the current constraints on the LQ mass and cou-
plings consistent with experimental limits on high precision
observables and direct searches at the LHC. A LQ model
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Table 5 Current lower bounds on the mass of scalar and vector LQs
from direct searches by the ATLAS and CMS collaborations [127–137].
In scenario I the condition of a solution to the LFUV anomalies in B-

meson decays is not imposed, whereas in scenario II such a solution is
required indeed. See the text and References therein for the assumptions
made to obtain such limits

LQ charge Scenario Scalar LQ mass (GeV) Vector LQ mass (GeV)

2/3 I 900–1450 1400–1950

2/3 II 1250–1450 1460-1960

−1/3 I 1300 1475–1810

−1/3 II 1370–1380 1620–1980

meant to solve the LFUV anomalies in B-meson decays and
the (g−2)μ anomaly may require several ingredients, such as
extra LQ representations, new symmetries, and fine tuning.
Note also that such anomalies, if confirmed by future mea-
surements, could also be explained by another mechanism of
the UV completion of the LQ model and not necessarily by
the LQs. In our analysis we will consider instead a simple
LQ model with only one LQ representation, which will allow
to asses the potential LQ contributions to NEPs.

4.1 Constraints on the masses of scalar and vector LQs

The most recent constraints on the masses of both scalar
and vector LQs have been obtained from direct searches
at the CERN LHC by the CMS and ATLAS collaborations
using the data for proton collisions at

√
s = 13 TeV [127–

137] via single and double production of LQs decaying into
a quark and a lepton, namely, pp → 
�̄ → q��̄ and
pp → 
†
 → qq̄��̄, qq̄νν̄. The constraints obtained this
way are rather model dependent since it is usually assumed
that LQs only couple to fermions of one generation and
have a dominant decay channel, though LQs that can couple
to fermions of distinct generations have also been consid-
ered recently [129,131,132]. In addition, since the oblique
parameters strongly constrain the mass splitting of a SU (2)

multiplet [138], LQs of the same SU (2) representation are
assumed mass degenerate.

4.1.1 Charge 2/3 LQs

The ATLAS and CMS collaborations [133,137] set a lower
bound on the mass of a third-generation scalar LQ ranging
between 900 and 1450 GeV for a branching ratio of the bτ
decay channel ranging from 10 to 100%. On the other hand,
for a vector LQ in the Yang–Mills scenario the lower mass
bound goes from 1400 to about 1950 GeV for a branch-
ing ratio of the bτ decay channel ranging from 10 to 100%
[137], whereas in the so called minimal coupling scenario
the respective lower mass bounds are about 300 GeV less
stringent [137].

The constraints are more severe when it is imposed the
condition that a solution to the LFUV anomalies in B-meson

decays is imposed. In this scenario, the ATLAS collaboration
has searched for pair produced scalar and vector LQs decay-
ing into a quark of the third generation accompanied by a
lepton of the second and first generations [135,136]: for the
mass of a charge 2/3 scalar LQ decaying into the bμ (be) pair
a lower bound of about 1440 (1460) GeV was found. Along
the same line, the CMS collaboration has reported [134] a
search for third-generation charge 2/3 scalar and vector LQs
decaying into a bottom quark plus a τ lepton via single and
pair LQ production: when the LQ coupling to the bτ pair is
of the order of unity, the lower bound on the mass of a scalar
(vector) LQ is about 1250 GeV (1530 GeV), whereas for a
LQ coupling of the order of 2.5 the corresponding lower mass
limit is about 1370 GeV (1960 GeV) for a scalar (vector) LQ.

4.1.2 Charge −1/3 LQs

ATLAS has searched for this type of LQs [139] via pair
production and its decay into a τ lepton plus a charm or
a lighter quark. A charge −1/3 LQ with mass below 1.3
TeV is excluded as long as the branching fraction for the τc
decay channel is of one hundred percent. The CMS collabo-
ration also searched for scalar and vector LQs decaying into
a neutrino-quark pair and found the bounds of 1110 GeV for
a scalar LQ and 1475–1810 GeV for a vector LQ [140].

In the scenario where a solution to the LFUV anomalies
is required, the ATLAS collaboration has searched for this
type of LQ via the decay into tμ (te) and set the lower bound
of about 1380 GeV (1370 GeV); again, the bounds on the
mass of vector LQs are more stringent [135]: for a charge
−1/3 vector LQ decaying into tμ (te), the lower bound is
1980 GeV (1900 GeV) in the Yang–Mills scenario, but such
a bound relaxes to 1710 GeV (1620 GeV) in the minimal
coupling scenario.

We present a summary of the above constraints in Table 5.
For our numerical analysis we will consider LQs with masses
from 1.2 to 2 TeVs.

4.2 Realistic scenarios for the LQ coupling constants

In order to obtain a realistic estimation of the NEPs we must
consider scenarios for the LQ couplings to fermion bilin-
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ears consistent with the most up-to-date constraints on high-
precision experimental observables. We will focus on those
scenarios that could allow for the largest values for the LQ
coupling constants as they can give the largest contributions
to NEPs.

LQ particles can have dangerous effects on electroweak
precision observable quantities, which may yield strong con-
straints on the LQ masses and couplings. As far as LQ
couplings to fermions are concerned, LQ couplings to the
fermions of the first-generation are strongly constrained by
low-energy processes, such as atomic parity violation [141–
143], universality in leptonic pion decays [142–144], μ − e
conversion [145], flavor changing Kaon decays [145,146], as

well as K 0 − K
0

and D0 − D
0

mixings [143,144,147]. We
will thus assume that an extra symmetry forbids the LQ cou-
plings to the first generation of fermions while still allowing
nonzero couplings to the fermions of the second and third
generations, as has been customary done in the literature.

An analysis of the constraints on the coupling constants
of all the LQ representations of Table 2 is beyond the scope
of this work. Thus, for our analysis we will focus only on
the scalar ˜R2 and vector U1 representations as they are two
of the LQ representations that can yield the largest possible
values of NEPs as will be shown below.

4.2.1 The ˜R2 representation

This LQ representation can give a solution to the anomalies in
B-meson decays, but additional representations are required
to explain the discrepancy in the muon g − 2 [114]: it turns
out that apart from the charge −1/3 LQ that only couples
to quarks and neutrinos, this representation yields a charge
2/3 chiral LQ that can couple to down quarks and charged
leptons, thereby inducing a contribution to the muon g − 2
lacking of an enhancing chirality-flipping term.

We will content ourselves with discussing the constraints
on the LQ couplings in a simple model in which only one
˜R2 LQ representation is introduced with both left- and right
handed couplings to neutrinos. Constraints on these cou-
plings can be obtained from the Bs − Bs mass difference and
the decays b → sμ−μ+, B → Kνν, τ → μγ , τ → μφ

as well as the semileptonic meson decays such B → τν,
Ds → τν, etc. The analytical expressions for the contribu-
tion of the ˜R2/3

2 LQ to these observable quantities can be
found in [108], but for easy reference they are presented in
Appendix B. In our analysis we will assume that the PMNS
mixing matrix is approximately diagonal, which means that
the ζ 0

L and ζ 0
R couplings from Eq. (11) can be identified with

the Yukawa couplings ˜Y RL
2 and ˜Y RR

2 , respectively, of Table 3.
We will also assume the following ansatz to avoid the strong
constraints from parity violation

Fig. 7 Allowed values of the Yukawa couplings of the ˜R2 represen-
tation in the plane ζ 0

L 2μζ 0
L 2τ ζ

0
R 2μζ 0

R 2τ vs ζ 0
L 3μζ 0

L 3τ ζ
0
R 3μζ 0

R 3τ for LQ
masses of 1.2 TeVs (green points) and 1.5 TeVs (red points). We use
the experimental limits on the Bs − Bs mass difference as well as the
decays b → sμ−μ+, B → Kνν, τ → μγ , and τ → μφ. The ζ 0

L 2α

and ζ 0
R 2α (α = μ, τ ) couplings were taken to be below 0.1 to allow for

large values of the ζ 0
L 3α and ζ 0

R 3α couplings, for which we impose the
perturbativity bound ζ 0

L 3α, ζ 0
R 3α ≤ 1, which is also meant to evade the

constraints from direct searches at the LHC

ζ 0
L �

⎛

⎝

0 0 0
0 ζ 0

L 2μ ζ 0
L 2τ

0 ζ 0
L 3μ ζ 0

L 3τ

⎞

⎠ , (48)

with a similar expression for ζ 0
R .

Since we are interested in the scenario that can yield the
largest estimates for the NEPs, we will consider small val-
ues for the coupling constants ζ 0

L 2α and ζ 0
R 2α , below the 0.1

level, which will allow for large values of ζL 3α and ζR 3α . We
randomly scan over sets of values of the nonzero ζ 0

L ,R matrix
elements and found those sets that fulfil the experimental
limits on the Bs − Bs mass difference as well as the decays
b → sμ−μ+ and B → Kνν. We also impose the bounds
ζ 0
L 3α, ζ 0

R 3α ≤ 1 to evade the constraints from direct searches
at the LHC and avoid the breakdown of perturbation theory.
Although we include in our analysis other observables such
as the lepton flavor violating (LFV) tau decays τ → μγ

and τ → μφ, as well as semileptonic meson decays, they
do not yield useful constraints for small ζ 0

L 2α and ζ 0
R 2α . We

show in Fig. 7 the allowed values of the LQ couplings in the
ζ 0
L 2μζ 0

L 2τ ζ
0
R 2μζ 0

R 2τ vs ζ 0
L 3μζ 0

L 3τ ζ
0
R 3μζ 0

R 3τ for LQ masses
of 1.2 TeV and 1.5 TeVs. We can conclude that there are
allowed values of the product ζ 0

L 3μζ 0
L 3τ ζ

0
R 3μζ 0

R 3τ close to
the unity, which means that there are regions of the parameter
space where ζ 0

L 3α and ζ 0
R 3α can be close to one simultane-

ously, as can be observed in the zoomed area. Note also that
such values are also consistent with the model-independent
bounds on the LQ couplings from direct searches at the LHC
compiled in [148].
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4.2.2 The U1 representation

This representation is appealing as it gives no tree-level con-
tribution to observables such as the Bs − Bs mass differ-
ence and the very constrained decay B → Kνν̄, though
loop contributions could be relevant. Nevertheless, finding
constraints on the U1 couplings can be troublesome as its
contribution to radiative corrections can be plagued with
quadratic divergences, thereby requiring a specific UV com-
pletion to tackle this issue. As already mentioned, a few
relatively simple UV completions into which the U1 rep-
resentation can be embedded have been discussed in Refs.
[96,103,106,110,119,149,150], where the authors try to
address some dangerous effects on low energy observables
that can push the LQ mass well beyond the TeV scale such
as in the original Pati–Salam model. Those models contain
new particles, apart from the U1 LQ, that contribute to low-
energy observables, thus extra assumptions are required to
avoid tension with experimental measurements.

We will consider a model with a lone vector U1 LQ that
only couples to the fermions of the second and third genera-
tions in the scenario where either there are no right-handed
neutrinos or the corresponding coupling constants are negli-
gible, such as in the model of Ref. [119]. For the LQ couplings
to fermions we will use ζ 1

L iα = g4βiα/
√

2 and ζ 1
L iα = 0 with

g4 ∼ 3 [119]. Again, we consider ζ 1
L 2μ, ζ 1

L 2τ ≤ 0.1 to let

the ζ 1
L 3α couplings reach its largest allowed values, below the

perturbativity bound of 1. We then scan over sets of random
ζ 1
L iα values and select those sets consistent with the exper-

imental limits on the decays b → sμ−μ+, B → K τ−τ+,
B+ → K+τ±μ∓, and τ → μφ. Other b-hadron decays
such as B → τν, Bc → τν, B → τ−τ+, and Bs → τ−μ+
yield no useful constraints. The corresponding expressions
are given in Appendix B for easy reference. We show in Fig. 8
the allowed values for the LQ couplings in the ζ 1

L 2μζ 1
L 2τ vs

ζ 1
L 3μζ 1

L 3τ plane for LQ masses of 1.5 TeV and 1.7 TeVs. We

observe that the product ζ 1
L 3μζ 1

L 3τ can reach values of the

order of O(1) for ζ 1
L 2μζ 1

L 2τ below 10−4, which means that

the ζ 1
L 2μ and ζ 1

L 2τ couplings are allowed to take on values
of the order of O(1) simultaneously, as can be observed in
the zoomed area. As in the case of the ˜R2 representations,
the allowed values for the U1 coupling constants are consis-
tent with the model-independent bounds on the LQ couplings
from direct searches at the LHC compiled in Ref. [148].

Note also that in the models of [96,103,106,110,119,149,
150] there are extra particles such as new gauge and scalar
bosons as well as additional fermions, which can give new
contributions to low energy observables. For instance in the
model of [110] there are two extra neutral gauge bosons g′
and Z ′, as well as new scalar bosons and fermions, whereas
the model presented in [103] also includes right-handed neu-
trinos. In those works, a complete treatment of the constraints

Fig. 8 Allowed values for the Yukawa couplings of the U1 represen-
tation in the plane ζ 1

L 2μζ 1
L 2τ vs ζ 1

L 3μζ 1
L 3τ for a LQ masses of 1.5 TeVs

(green points) and 1.7 TeVs (red points) from the experimental limits
on the decays b → sμ−μ+, τ → μφ. The ζ 1

L 2α (α = μ, τ ) cou-
plings were taken to be below 0.1 to find the largest allowed values
of the ζ 1

L 3α couplings, for which we impose the perturbativity bound
ζ 1
L 3α ≤ 1. We consider that either there are no right-handed neutrinos

or the corresponding coupling constants are too small

on the parameter space from experimental data was per-
formed with the purpose of addressing the LFUV anomalies
in B-meson decays. In general, one can assume that the LQ
couplings to the quarks of the second family are negligible,
which allows for large couplings to the quarks of the third
generation.

Therefore, in the most promising scenario we can assume
values for the couplings of scalar and vector LQs to quarks
and fermions of the order of O(1), which would lead to the
best scenario for the magnitude of the LQ contribution to
the NEPs of the tau and muon neutrino, whereas those of
the electron neutrino would be strongly suppressed as the
couplings to the first generation fermions would only arise
from quark mixing.

4.3 Behavior of the LQ contribution to NEPs

The general behavior of the LQ contribution to NEPs can
be inferred from Eqs. (25), (28), and (30), which show the
presence of chirality-flipping (CF) and chirality-conserving
(CC) terms: the MDM and effective NCR have the following
structure

μs
να

= asCC(|ζ s
L3α|2 + |ζ s

R3α|2) + asCFRe(ζ s
L3αζ s∗

R3α), (49)

and

〈r2〉sνα
= bsCC(|ζ s

L3α|2 + |ζ s
R3α|2) + bsCFRe(ζ s

L3αζ s∗
R3α),

(50)
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Table 6 Estimate for the contributions of the LQ representations of
Table 2 to the NEPs of a light Dirac neutrino να with a mass of 1 eV
and a LQ with a mass of 1.5 TeV. It is assumed that a third-generation

quark runs into the loop. The coupling constants are those associated
with the specific LQ representation and neutrino flavor

Representation μνα [μB ] dνα [ecm] 〈r2〉να [cm2]
S3, R2 10−21 × |ζ 0

L 3α |2 − 10−35 × |ζ 0
L 3α |2

˜R2, S1 10−10 × Re(ζ 0
L 3αζ 0 ∗

R 3α) 10−21 × Im(ζ 0
L 3αζ 0 ∗

R 3α) 10−35 × (|ζ 0
L 3α |2 + |ζ 0

R 3α |2)

S1 10−21 × |ζ 0
R 3α |2 − 10−35 × |ζ 0

R 3α |2
U3, V2 10−20 × |ζ 1

L 3α |2 − 10−35 × |ζ 1
L 3α |2

U1, ˜V2 10−9 × Re(ζ 1
L 3αζ 1 ∗

R 3α) 10−19 × Im(ζ 1
L 3αζ 1 ∗

R 3α) 10−35 × (|ζ 1
L 3α |2 + |ζ 1

R 3α |2)

U 1 10−20 × |ζ 1
R 3α |2 − 10−35 × |ζ 1

R 3α |2

whereas for the EDM we have

dsνα
= ãsCF Im(ζ s

L3αζ s∗
R3α). (51)

Note that asCF ∼ ãsCF ∼ bsCC ∼ mqj , whereas asCC ∼ bsCF ∼
mνα . Thus, the most promising scenario for sizeable LQ con-
tributions to both dipole moments is that in which the LQ
couples to both left- and right-handed neutrinos, whereas in
the absence of such couplings the EDM would vanish and the
MDM would be proportional to the neutrino mass, thereby
being negligible small for light neutrinos.

We can conclude that the largest contributions to the elec-
tromagnetic dipole moments of light neutrinos could arise
from the vector representations U1 and ˜V2, as well as the
scalar representations ˜R2 and S1, which are the only ones
that can have couplings to both left- and right-handed neutri-
nos. However, the contributions from such vector represen-
tations are expected to be larger that those of such scalar rep-
resentations: the vector LQs have charge 2/3 and its largest
contribution would arise from the loop with the top quark,
whereas the scalar LQs have charge −1/3 and its dominant
contribution would arise from the loop with the much lighter
bottom quark. As far as the effective NCR is concerned, it
would be nonvanishing even in absence of LQ couplings to
right-handed neutrinos as it receives its dominant contribu-
tion from the bsCC term, which is proportional to the quark
mass. Thus, the LQ contribution to the effective NCR would
not be sensitive to the mass of the virtual quark nor the neu-
trino mass.

We consider the scenarios posed by the scalar and vector
LQ representations of Table 2 assuming the presence of a LQ
with a mass of 1.5 TeV that can couple to the third-generation
quarks and the three SM neutrino flavors. We show in Table 6
the estimates for the LQ contributions to the NEPs of a light
neutrino with a mass of a few eVs. For the numerical evalua-
tion we used the approximate expressions for light neutrinos
presented above. Since the scalar LQ representations ˜R2 and
S1, along with the vector representations U1 and ˜V2, are the
only ones that yield a LQ that can have simultaneous cou-
plings to both left- and right-handed neutrinos, they would

give the largest contributions to the neutrino MDM, which in
the best scenario could be of the order of 10−10–10−9. Such
representations could also allow for an EDM of the order of
10−19–10−20 ecm provided that there are complex LQ cou-
plings. All other LQ representations cannot couple to right-
handed neutrinos, so their contribution to the EDM would
vanish, whereas their contributions to the MDM would be
proportional to the neutrino mass, thereby being of the order
of 10−20 μB for mνα in the eV scale. As far as the effective
NCR is concerned, it is insensitive to the neutrino mass and
to whether or not the LQs couple to right-handed neutrinos,
so all the LQ representations could yield a contribution of
the order of 10−35 cm2, regardless of the LQ charge and the
accompanying quark.

Note however that the above estimates must take into
account the fact that the coupling constants would not be fla-
vor blind, as observed in our analysis of the bounds on the LQ
coupling constants of the ˜R2 and U1 representations. Thus,
an extra suppression is expected for the LQ contribution to
the NEPs of each neutrino flavor. For instance, according to
the assumptions made to obtain our constraints on the LQ
coupling constants, the NEPs of the electron neutrino would
be vanishing.

Finally, we consider a charge −1/3 scalar LQ and a charge
2/3 vector LQ, as the ones arising from the ˜R2 and U1 rep-
resentations, in the scenario with right-handed neutrinos. All
the features of the behavior of the NEPs described above are
best illustrated in Fig. 9, where we show the contours of the
LQ contributions to the NEPs of a neutrino of a mass of 1 eV
as functions of the LQ mass and the LQ coupling constants.

In closing, we would like to compare our estimates for
the LQ contributions to the NEPs with the experimental con-
straints of Table 1. While the LQ contributions to the neutrino
MDM are slightly below the experimental constraints, those
to the effective NCR are two orders of magnitude smaller.
On the other hand, our prediction for the EDM is similar to
the existing indirect limits.

It is also worth assessing a possible enhancement to the
NEPs in hypothetical LQ models with several LQs: even in

123



Eur. Phys. J. C (2024) 84 :217 Page 15 of 24 217

Fig. 9 Contour plots for the contributions of a scalar LQ of charge
−1/3 (top row) and a vector LQ of charge 2/3 (bottom row) to the
electromagnetic properties of a light Dirac neutrino να with a mass
of 1 eV in the plane of the LQ mass vs the LQ coupling constants. We
assume that LQs can couple to both left- and right handed neutrinos. We

have neglected the chirality-flipping term for μνα , whereas for 〈r2〉να

we assume left-handed neutrinos as it is independent of the presence
of right-handed neutrinos. It is also assumed that the only contribution
arises from virtual quarks of the third generation

the case that the distinct LQ contributions to the NEPs add
constructively, an enhancement of several orders of magni-
tude cannot be expected since all the partial contributions
would be about the same order of magnitude in the best sce-
nario.

5 Summary

In this work we have presented a calculation of the one-
loop contribution of scalar and vector LQ models to the
static electromagnetic properties of massive Dirac neutrinos,
namely, the magnetic and electric dipole moments as well as
the effective NCR defined in [1], which is a valid physical
observable. We do not make any assumption on the mecha-
nism of neutrino mass generation and consider the effective
Lagrangian approach of Buchmuller, Ruckl, and Wyler for
the SU (3)c×SU (2)L×U (1)Y scalar and vector LQ represen-
tations that have renormalizable couplings to fermion bilin-
ears, including right-handed neutrinos. Analytical results are
presented in terms of both Feynman-parameter integrals and
Passarino-Veltman scalar functions in the case of nonzero

neutrino mass, which to our knowledge have never been
reported in the literature and could be useful to obtain the LQ
contributions to the NEPs of hypothetical heavy neutrinos.
From such general results, simple expressions are obtained
in the limit of light neutrinos. It is worth noting that for the
vector LQ contribution to the effective NCR we considered
a Yang–Mills scenario for gauge LQs and the calculation
was performed via the BFM, which in the Feynman–’t Hooft
gauge yields an identical result to that obtained through the
PT. For the numerical evaluation we focus on the scalar and
vector LQ models that are renormalizable and do not need
extra symmetries to forbid proton decay at the tree-level,
thereby still being phenomenologically viable at the TeV
scale, though we also discuss the potential contributions of
other LQ representations. It is found that the largest contri-
butions to the NEPs of the SM neutrinos may arise from
the scalar LQ representation ˜R2 and the vector represen-
tation U1, which can have simultaneous couplings to both
left- and right-handed neutrinos. We then analyze the current
constraints of the parameter space of such LQ models from
experimental data and found that LQ couplings to quarks and
neutrinos of the order of O(1) are still allowed. In such a sce-
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nario and for a LQ with a mass of the order of 1.5 TeV, the ˜R2

and U1 representations could yield the following contribu-
tions to the electromagnetic dipole moments of a light Dirac
neutrino with a mass in the eV scale: while the MDM can
be of the order of 10−9 μB , the EDM would be of the order
of 10−20 − 10−19 ecm provided that the LQ couplings had
a complex phase. On the other hand, when there are no LQ
couplings to right-handed neutrinos, the EDM would be van-
ishing and the corresponding LQ contributions to the MDM
would be negligible small. As for the LQ contribution to the
effective NCR, it can reach values up to 10−35 cm2 even in
the absence of right-handed neutrinos and regardless of the
value of the neutrino mass. Our estimates may have a severe
suppression if the LQ couplings to quarks and fermions are
below the O(1) level.
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Appendix A: Analytical results for the LQ contributions
to NEPs

In this appendix we present the f sk (x), gsk(x), f̂ sk (x), and
ĝsk(x) functions (k = 1, 2 and s = 0, 1) of Eqs. (25), (28),
and (30) in terms of both Feynman-parameter integrals and
Passarino–Veltman scalar functions for both scalar and vector
LQs and nonzero neutrino mass.

A.1 Feynman parameter results

In terms of Feynman-parameter integrals, the f sk (x), gsk(x),

f̂ sk (x), and ĝsk(x) functions can be cast in the form

rsk (x) =
∫ 1

0

Rs
k(x, y)

((1 − y)(x − yxνα ) + y)a
dy, (A.1)

where a = 1 for rsk (x) = f sk (x) and gsk(x), whereas a =
2 for rsk (x) = f̂ sk (x) and ĝsk(x). The respective Rs

k(x, y)
functions are given below for both scalar (s = 0) and vector
(s = 1) LQs. Note that the dependence of the rsk (x) and
Rs
k(x) functions on xνα is not written out explicitly. Here

xνα = m2
να

/m2
LQ, where mLQ stands for the LQ mass.

A.1.1 Scalar LQ contribution

For the contribution of a scalar leptoquark to the neutrino
MDM and EDM we obtain the following expressions for the
Fs
k (x, y) and Gs

i (x, y) functions:

F0
k (x, y) = 1

2
(1 − y)y hk(y), (A.2)

G0
k(x, y) = 1

3
(1 − y) hk(y). (A.3)

where

hk(y) =
{

1 − y k = 1,

y k = 2.
(A.4)

As far as the contribution of a scalar LQ to the effective
NCR, the F̂0

k (x, y) and Ĝ0
k(x, y) functions can be written as

F̂0
1 (x, y) = 1

2
(y − 1)3

(

3(x + y2xνα ) − 2y
(

x + xνα − 1
)

)

,

(A.5)

F̂0
2 (x, y) = 1

2
y3 (

(1 − y)(x + yxνα ) + y
)

, (A.6)

and

Ĝ0
1(x, y) = 2y(y − 1)3, (A.7)

Ĝ0
2(x, y) = −2(y − 1)y3. (A.8)

The integration of the r0
k (x) functions is straightforward

when xνα is neglected and yield the results of Eqs. (31), (32),
(33), (34), (35), (36), (37), and (38).

A.1.2 Vector LQ contribution

As far as the contribution of a vector LQ to the neutrino MDM
and EDM, the F1

k (x, y) and G1
k(x, y) functions are given as

follows

F1
k (x, y) = (

y
(

y
(

x + xνα + 2
) − 3x − xνα + 2

) + 2x
)

hk(y),
(A.9)

G1
k(x, y) = −2

(

y
(

(2y − 3)xνα + 4 − x
) + x + xνα

)

hk(y),
(A.10)

where the hk(y) function is given in Eq. (A.4).
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On the other hand, the F̂1
k (x, y) functions associated with

the contributions of the Feynman diagrams of Fig. 6 can be
written as

F̂1
1 (x, y) = (y − 1)

(

y
(

y
(

−2y
(

x + xνα − 1
) + x + 3y2

xνα + xνα + 2
) − 2

(

x + xνα − 1
)) + 3x

)

,

(A.11)

F̂1
2 (x, y) = y2 (

y
(

7x + 6(xνα − 1)

−y
(

x + (y + 5)xνα − 1
) + xνα

) − 6x
)

,

(A.12)

F̂1
3 (x, y) = 1

2
(y − 1)3

(

3y2xνα

(

x + xνα

) − 2y
(

x
(

4xνα − 1
) + x2

+ (

xνα − 1
)

xνα

) + 3x
(

x + xνα

))

, (A.13)

and

F̂1
4 (x, y) = y3

2

(

−y2xνα

(

x + xνα

)

+y
(

4xxνα − x2 + x + x2
να

+ xνα

)

+x
(

x − 3xνα

))

. (A.14)

We note that for the gauge LQ couplings of Table 4 there are
no contributions to Eq. (30) of the Ĝ1

k(x, y) functions.

A.2 Passarino–Veltman results

For completeness we also present results for the rsk (x) func-
tions in terms of two-point Passarino–Veltman scalar func-
tions. In this case we write

rsk (x) = Rs
k(x)

(1 − x)axbνα
λc(x, xνα )

, (A.15)

where λ(u, v) = 1 + u2 + v2 − 2(u + v + uv), whereas the
triads of integers (a, b, c) are (4, 2, 0) for f sk (x), (3, 1, 0)

for gsk(x), and (1, 2, 2) for f̂ sk (x) and ĝsk(x). Note that the
Rs
k(x) functions are not the same as those of Eq. (A.1), but we

use the same notation for simplicity. We also introduce the
following dimensionless ultraviolet finite functions �i (x)

�1(x) = B0(0, x m2
LQ, x m2

LQ) − B0(0, m2
LQ,m2

LQ)

= − log(x), (A.16)

�2(x) = B0(xναm
2
LQ, x m2

LQ,m2
LQ) − B0(0, x m2

LQ,m2
LQ),

(A.17)

where the arguments of the two-point Passarino–Veltman
scalar functions B0 are given in the usual notation [120]. Note

that the following two three-point scalar functions appear
throughout the calculation

C1(x) = m2
LQC0(m

2
να

,m2
να

, 0,m2
LQ, xm2

LQ,m2
LQ), (A.18)

C2(x) = m2
LQC0(m

2
να

,m2
να

, 0, xm2
LQ,m2

LQ, xm2
LQ), (A.19)

but they can be written in terms of two-point scalar functions
[151] as follows

C1(x) = 1

(x − 1)λ(x, xνα )

(

(x − 1)
(

xνα + x − 1
)

− x
(

xνα − x + 1
)

�1(x)

− (x − 1)
(

xνα + x − 1
)

�2(x)
)

, (A.20)

C2(x) = 1

(x − 1)λ(x, xνα )

(

(x − 1)
(

xνα − x + 1
)

− (

xνα + x − 1
)

�1(x)

− (x − 1)
(

xνα − x + 1
)

�2(x)
)

. (A.21)

It is also worth noticing that this calculation requires deriva-
tives of the two- and three-point scalar functions, which we
denote as

C ′
1(x) = m4

LQC
′
0(m

2
να

,m2
να

, q2,m2
LQ, xm2

LQ,m2
LQ)|q2=0,

(A.22)

C ′
2(x) = m4

LQC
′
0(m

2
να

,m2
να

, q2, xm2
LQ,m2

LQ, xm2
LQ)|q2=0,

(A.23)

where the prime represents derivative with respect to q2.
Again the C ′

i (x) functions can be decomposed in terms of
two-point scalar functions as follows [151]

C ′
1(x) = 1

6(x − 1)xναλ2(x, xνα )

(

(x − 1)xνα

(

x2 (

3xνα − 1
)

−3x
(

x2
να

− 1
)

+ (

xνα − 1
) 3 − x3

)

+ xxνα

(

4x
(

xνα + 1
) − (

xνα − 1
) 2 − 3x2

)

�1(x)

− (x − 1)
(

xνα + x − 1
)

(

λ(x, xνα ) − 2xxνα

)

�2(x)
)

, (A.24)

C ′
2(x) = 1

6(x − 1)xναλ2(x, xνα )

(

(x − 1)xνα

(

3x2 (

xνα + 1
)

−3xx2
να

− (

xνα − 1
) 3 − x3 − x

)

+ xxνα

(

2x
(

xνα + 2
) − x2

να
+ 4xνα + x2 − 3

)

�1(x)

− (x − 1)x
(

xνα − x + 1
)

(

λ(x, xνα ) − 2xνα

)

�2(x)
)

. (A.25)
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We also need the following two-point scalar function deriva-
tive

B ′
0(q

2,m2
a,m

2
a) = 1

6m2
a
. (A.26)

Below we present the Rs
k(x) functions below for the con-

tributions of scalar and vector LQs.

A.3 Scalar LQ contribution

For the contribution of scalar LQs to the static neutrino MDM
and EDM we have the following F0

k (x) and G0
k(x) functions

F0
1 (x) = −1

2

(

− (x − 1) xνα

(

2 (3x + 1) xνα + (x + 1) (x − 1) 2
)

− 2xxνα

(

(x + 3) xνα + (x − 1) 2
)

�1(x)

+ 2 (x − 1)
(

(x − 1) 2xνα + (3x + 1) x2
να

+ (x − 1) 4
)

�2(x)
)

, (A.27)

F0
2 (x) = −1

2

(

(x − 1) xνα

(

2x (x + 3) xνα + (x + 1) (x − 1) 2
)

+ 2xxνα

(

x
(

x + 3xνα − 2
) + xνα + 1

)

�1(x)

−
(

2x (x − 1) 3xνα + 2x (x + 3) (x − 1) x2
να

+2 (x − 1) 5
)

�2(x)
)

, (A.28)

and

G0
1(x) = −2

(−2 (x − 1) xνα − (x + 1) xνα�1(x)

+ (x − 1)
(

(x − 1) 2 + 2xνα

)

�2(x)
)

, (A.29)

G0
2(x) = −2

((

x2 − 1
)

xνα + 2xxνα�1(x) − (x − 1)
(

x
(

x + xνα − 2
) + xνα + 1

)

�2(x)
)

. (A.30)

For small xνα we obtain the following expansion to order
O

(

x2
να

)

�2(x) = 1

6 (x − 1) 5

(

3 (x − 1) 2
(

x2 − 2x log (x) − 1
)

xνα

+ (x (x (x + 9) − 6(1 + x) log(x) − 9) − 1) x2
να

)

+ O
(

x4
να

)

, (A.31)

which after their substitution in the r0
k (x) functions yield the

results presented in Eqs. (31), (32), (33), and (34) at leading
order in the neutrino mass.

As far as the scalar LQ contributions to the effective NCR
are concerned, we obtain the following F̂0

k (x) and Ĝ0
k(x)

functions

F̂0
1 (x) = 1

4

(

(x − 1)
(

x − 1 − xνα

)

xνα

(

x3
να

− 7(x + 1)x2
να

+(x(11x + 26) + 11)xνα − 5(x − 1)2(x + 1)
)

− 2xνα

(

5x4 − 15x3 (

xνα + 1
)

+ x2 (

xνα

(

17xνα + 4
) + 15

)

+ x
(

xνα

(

13 − 9x2
να

+ xνα

)

− 5
)

+ 2
(

xνα − 1
) 3xνα

)

�1(x)

+ 2(x − 1)
( (

1 − 26x2 + x
)

x3
να

− (20x + 13)(x − 1)3xνα

+ (x(32x + 5) + 11)(x − 1)x2
να

− 2x5
να

+ (11x + 4)x4
να

+ 5(x − 1)5
)

�2(x)
)

, (A.32)

F̂0
2 (x) = 1

4

(

(x − 1)
(

x − 1 − xνα

)

xνα

(

x3
να

− 7(x + 1)x2
να

+(x(11x + 26) + 11)xνα − 5(x − 1)2(x + 1)
)

− 2xνα

(

5x4 − 15x3 (

xνα + 1
)

+ x2 (

xνα

(

17xνα + 4
) + 15

)

+ x
(

xνα

(

13 − 9x2
να

+ xνα

)

− 5
)

+ 2
(

xνα − 1
) 3xνα

)

�1(x)

+ 2(x − 1)
( (

1 − 26x2 + x
)

x3
να

− (20x + 13)(x − 1)3xνα

+ (x(32x + 5) + 11)(x − 1)x2
να

− 2x5
να

+ (11x + 4)x4
να

+ 5(x − 1)5
)

�2(x)
)

, (A.33)

and

Ĝ0
1(x) = 2(x − 1)

(

xνα − x − 1
)

xνα

×
(

x2
να

− 2(x + 2)xνα + (x − 1)2
)

+ 2xνα

(

x3
να

− 2(2x + 1)x2
να

+ x(5x + 6)xνα

+xνα − 2(x − 1)2x
)

�1(x)

+ 2(x − 1)
(

3
(

3x2 + 1
)

x2
να

−(7x + 5)(x − 1)2xνα + x4
να

−(5x + 1)x3
να

+ 2(x − 1)4
)

�2(x), (A.34)
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Ĝ0
2(x) = −2(x − 1)

(−xνα + x + 1
)

xνα
(

x2
να

− 2(x + 2)xνα + (x − 1)2
)

+ 2xνα

(

x3
να

− 2(2x + 1)x2
να

+ x(5x + 6)xνα

+xνα − 2(x − 1)2x
)

�1(x)

+ 2(x − 1)
(

3
(

3x2 + 1
)

x2
να

−(7x + 5)(x − 1)2xνα

+x4
να

− (5x + 1)x3
να

+ 2(x − 1)4
)

�2(x). (A.35)

A.4 Vector LQ contribution

As for the vector contribution to the neutrino MDM and
EMD, the F1

k (x) and G1
k(x) functions are given by

F1
1 (x) = 1

4

(

(x − 1)xνα

(

(x(x(x + 5) + 21) − 3)xνα

+(x + 1)(x + 2)(x − 1)2
)

+ 2xxνα

(

x
(

11xνα − 3
)

+xνα + x3 + 2
)

�1(x)

+
(

2((x − 5)x + 1)(x − 1)3xνα

−2(x(4x + 9) − 1)(x − 1)x2
να

−2(x + 2)(x − 1)5
)

�2(x)
)

, (A.36)

F1
2 (x) = 1

4

(

− (x − 1)xνα

(

x
(

x
(

(25 − x)xνα

+x(1 + x) − 3) − xνα − 1
) + xνα + 2

)

− 2xxνα (x ((4x + 9)

xνα + x2 − 3
)

− xνα + 2
)

�1(x)

+
(

6(2x − 1)(x − 1)3xνα · +2x(11x + 1)(x − 1)

x2
να

+ 2(x + 2)(x − 1)5
)

�2(x)
)

, (A.37)

and

G1
1(x) =

(

3 − x(1 + x + x2)
)

xνα − (x + 5)xxνα�1(x)

+ (x − 1)
(

x
(

(6 − x)xνα + x2 − 3
)

+ xνα + 2
)

�2(x), (A.38)

G1
2(x) = (x − 1)(7x − 1)xνα + 2(2x + 1)xxνα�1(x)

− (x − 1)
(

x
(

7xνα − 3
) − xνα + x3 + 2

)

�2(x), (A.39)

where the �i (x) functions were defined above, but with
mLQ = mV instead.

The contribution of gauge LQs to the effective NCR is
obtained via the F̂1

k (x) functions only given our assumptions
for the coupling constants and can be written as

F̂1
1 (x) = 1

2

(

(x − 1)xνα

(

2x3 (

2xνα + 5
) + 2x2xνα

(

9xνα + 11
) − 2x

(

xνα

(

14x2
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)

+ 5
)

+ (

xνα − 1
) 2 (

xνα

(

11xνα − 8
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) − 5x4
)

− 2xνα

(
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)

(

2x3
να

+ (x − 4)x2
να

− 2x(4x + 9)xνα + 2xνα + 5(x − 1)2x
)

�1(x) + 2(x − 1)
(

(14x + 19)(1 − x)3xνα

+ (x(14x + 5) + 29)(x − 1)x2
να

− 2x5
να

+ (5x − 2)x4
να

+ ((13 − 8x)x + 19)x3
να

+ 5(x − 1)5
)

�2(x)
)

, (A.40)

F̂1
2 (x) = 1

2

(
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(

10x3 (

xνα − 1
)
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(
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− 3(2x + 9)(x − 1)3xνα + 7x5
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− 3(4x + 11)x4
να
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+ 5(x − 1)5
)

�2(x)
)

, (A.41)

F̂1
3 (x) = 1

4
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2xνα

(

2x3
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+ (x − 4)x2
να

− 2x(4x + 9)xνα
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+ 2(x(x(13x + 24) + 32) + 3)x2
να

− (x − 1)(x(x(19x + 31) + 3) − 5)xνα

+ 5(x − 1)3x(x + 1)
)

)

, (A.42)

and

F̂1
4 (x) = 1

4

(
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13xνα − 1
) + 2x2

(

−13x3
να

+ 7x2
να

+ xνα + 5
)

+ x
(

xνα − 1
) 2 (
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να
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)
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(
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(
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)
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)

x3
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− 3
(

x
(

x
(

5x2 + x + 6
)

− 19
)

+ 7
)

x2
να

− x6
να

+ 3(x + 3)x5
να

− (x(3x + 10) + 26)x4
να
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�2(x)
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. (A.43)

Appendix B: LQ contributions to low-energy observables

In this Appendix we present the most relevant analyti-
cal expressions for the LQ contributions to the low-energy
observables useful to constrain the LQ Yukawa couplings
ζ s
L iα and ζ s

R iα of Eqs. (11) and (20) for the LQs arisen from
the scalar ˜R2 and vector U1 representations. We remind the
reader that the index i (i = 2, 3) corresponds to the quark
family, whereas the index α (α = μ, τ ) corresponds to the
lepton family. We have also assumed that the couplings to
the fermions of the first generation vanish. Such expressions
can be found in several sources but the results shown below
are those compiled in [52,108] for the scalar LQ contribution
and [101] for the vector LQ contribution.

B.1 ˜R2 representation

The ˜R2 contribution to the Wilson coefficients relevant for
the b → s�1�2 decay in terms of the coupling constants of
Eq. (11) is

(

C�1�2
9

)′ = −
(

C�1�2
10

)′ = − πυ2

2VtbV ∗
tsαem

ζ 0
L 3�1

ζ 0
L 3�2

m2
LQ

.

(B.1)

For the mass difference of the Bs − Bs system we have

�mTheor.
Bs

�mSM
Bs

= 1 + η1

16G2
Fm

2
W |VtbV ∗

ts |2ηB S0(xt )m2
LQ

(

(

ζ 0
L 3αζ 0∗

L 2α

)2 + 1

2

(

ζ 0
R 3αζ 0∗

R 2α

)2

− η41
3

2

(

ζ 0
L 3αζ 0∗

L 2α

) (

ζ 0
R 3α′ζ 0∗

R 2α′
)

(

mBs

mb + ms

)2 B4(mb)

B1(mb)

)

, (B.2)

where again repeated indices α and α′ sum over μ and τ ,
xt = m2

t /m
2
W , and the S0(x) is Inami-Lim function

S0(x) = 1

4

(

1 + 9

1 − x
− 6

(1 − x)2 − 6x2

(1 − x)3 log(x)

)

.

(B.3)

Also, we use η1 = 0.81(1), η41 = 4.4(1) [52], whereas
B1(mb) = 3.4 and B4(mb) = 4.5 for the bag parameters
[152].

The corresponding contribution to the B → Kνν decay
can be written as

Rνν = BR(B → Kνν)Theor.

BR(B → Kνν)SM

= 1 − 1

6CSM
L

Re

(

ζ 0
L 3αζ 0∗

L 3α

Nm2
LQ

)

+ 1

48CSM
L

2

ζ 0
L 3αζ 0∗

L 3αζ 0
L 3α′ζ 0∗

L 3α′

|N |2m4
LQ

, (B.4)

where again repeated indices α and α′ sum over μ and τ ,

whereas N = GFVtbV ∗
tsαem√

2π
and CSM

L = −6.38(10) [153].

The scalar LQ contributions to the LFV decays τ → μγ

and τ → φγ can be written as [108]

BR(τ → μγ )

= αem(m2
τ − m2

μ)3

4m3
τ�τ

∣

∣

∣

∣

∣

ζ 0
L 3μζ 0∗

L 3τ

Ncm2
bmτ

96π2m4
LQ

(

5

2
+ log

(

m2
b

m2
LQ

))∣

∣

∣

∣

∣

2

,

(B.5)

and

BR(τ → μφ)
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= f 2
φm

4
φ

256πm3
τ�τ

∣

∣

∣

∣

∣

ζ 0
L 2τ ζ

0∗
L 2μ

m2
LQ

∣

∣

∣

∣

∣

2

(

−1 + m2
μ + m2

τ

2m2
φ

+
(

m2
μ − m2

τ

)2

2m4
φ

)

λ1/2(m2
φ,m2

τ ,m
2
μ),

(B.6)

where the triangle function is λ(x, y, z) = x2 + y2 + z2 −
2(xy+xz+ yz) and the φ decay constant fφ = 241(8) MeV.

B.2 U1 representation

We consider the model of Ref. [110] where the LQ coupling
constants of Eq. (20) are given by ζ 1

L ıα = g4/
√

2βL iα and
ζ 1
R ıα = 0, with g4 = 2mLQ

√
CU/υ. Below we list the U1

contribution to some observables that can be useful to con-
strain the LQ couplings and fit the model parameters.

The U1 contribution to the B → Dτν and B → D∗τν

decays reads as

RD = BR (B → Dτν)

BR (B → Dτν)SM
� RD∗

� RSM
D

(

1 + 2CURe

(

1 + Vcs
Vcb

βL 2τ

))

. (B.7)

For the decay b → s�−�+ we have

C��
9 = −C��

10 = − 2π

VtbV ∗
tsαem

CUβL 2�β
∗
L 3�. (B.8)

The contribution to the following B meson decays can also
be useful to constrain the U1 LQ coupling constants

BR
(

B → K τ−τ+) � 1.5 × 10−7

+1.4 × 10−3CURe (βL 2τ )

+3.5C2
U |βL 2τ |2 , (B.9)

BR
(

B+ → K+τ+μ−) = 8.3C2
U

∣

∣βL 2μ

∣

∣

2
, (B.10)

BR
(

B+ → K+τ−μ+) = 8.3C2
U

∣

∣βL 3μβ∗
L 2τ

∣

∣

2
, (B.11)

and the U1 contribution to the LFV tau decay τ → μφ is
given by

BR(τ → μφ) = f 2
φG

2
F

16π�τ

m3
τ

(

1 − m2
φ

m2
τ

)2 (

1 + 2
m2

φ

m2
τ

)

C2
U

∣

∣

∣βL 2τ β
∗
L 2μ

∣

∣

∣

2
. (B.12)

The masses and life times of the B mesons as well as the latest
experimental constraints and measurements on the B-meson
decay modes were taken from [154,155].
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