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Hikida have found the charged spin-2,3 currents and the neutral spin-2,3 currents previ-
ously. In this paper, as an extension of Gaberdiel-Gopakumar conjecture found ten years
ago, we calculate the operator product expansion (OPE) between the charged spin-2 cur-
rent and itself, the OPE between the charged spin-2 current and the charged spin-3 current
and the OPE between the neutral spin-3 current and itself for generic N, M and k. From
the second OPE, we obtain the new charged quasi primary spin-4 current while from the
last one, the new neutral primary spin-4 current is found implicitly. The infinity limit of &
in the structure constants of the OPEs is described in the context of asymptotic symmetry
of M x M matrix generalization of AdS3 higher spin theory. Moreover, the OPE between
the charged spin-3 current and itself is determined for fixed (N, M) = (5,4) with arbi-
trary k up to the third order pole. We also obtain the OPEs between charged spin-1,2,3
currents and neutral spin-3 current. From the last OPE, we realize that there exists the
presence of the above charged quasi primary spin-4 current in the second order pole for
fixed (N, M) = (5,4). We comment on the complex free fermion realization.
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1 Introduction

The Grassmannian-like coset model is described by [1]

SU(N + M),
SU(N)k X U(1)pnar(v4ar)

(1.1)

By introducing the 't Hooft-like coupling constant A = ﬁ and taking the infinity limit
of N with fixed A and M, it has been proposed in [2] that the above coset model is dual
to M x M matrix generalization of AdSs Vasiliev higher spin theory [3, 4]. For M = 1,
their proposal leads to the Gaberdiel-Gopakumar conjecture [5] via level-rank duality. See
also [6-8] for review of [5]. The central charge of the coset model with infinity limit of
level k with fixed A and M coincides with the one in the asymptotic symmetry of above



AdSs higher spin theory. The charged spin-2, 3 currents and the neutral (higher) spin-2, 3
current in terms of the coset realization characterized by five spin-1 currents have been
found explicitly. At A =2 (or k = —2N), the operator product expansion (OPE) between
the charged spin-2 current and itself for general (N, M), by decoupling the charged spin-3
current, leads to the one of the “rectangular” W-algebra with SU(M) symmetry of AdSs
higher spin theory.

In this paper, we will compute the OPE between the charged spin-2 current and itself
by hand, for generic k as well as generic N and M. It turns out that the above charged spin-
3 current, for generic A, should appear in the right hand side of the OPE. The structure
constants appearing in the right hand side of this OPE in terms of these three parameters
will be determined completely.

At each singular term, we should rearrange the coset composite operators in terms
of the known currents, i) the stress energy tensor of spin-2, ii) the spin-1 current of
SU(M), iii) the charged spin-2 current by allowing all the possible nonlinear terms.

It is known that after subtracting the descendant terms, we are left with the sum of
quasi primary operators [9-11]. We should determine the structure constants appearing in
these quasi primary operators of the right hand side of the OPE. Because there are free
adjoint indices a and b of SU(M) in the left hand side of the OPE, it is rather nontrivial
to exhaust all the possible quasi primary operators which will be contracted with some
SU(M) invariant tensors. For example, in general, the first order pole of this OPE can
contain the cubic terms in the spin-1 current which possesses a single adjoint index. Then
those invariant tensors will contain fifth order invariant ones maximally. That is, two of
them will be the above free indices while three of them will be contracted with each index
of cubic terms. This is the reason why the OPE between the nonsinglet charged operators
even their spins are low is more complicated to analyze, compared to the OPE between
the singlet operators. Note that in the examples of [12-14], there exist some OPEs having
nonsinglet indices associated with the SO(4) but for these cases it is not so difficult to
figure out its structures in the right hand sides of the OPEs because we can determine the
vector and adjoint indices and the invariant tensors in SO(4) for fixed rank.

Furthermore, we will obtain the OPE between the charged spin-2 current and the
charged spin-3 current which occurs at the first order pole of the previous OPE between
the charged spin-2 current and itself. Now we should include both the charged spin-3
current and the neutral spin-3 current as the candidates for the quasi primary operators in
the list of known currents we described in previous paragraph. The presence of the neutral
spin-3 current is due to the fact that the left hand side of this OPE has two different
operators, contrary to the previous OPE between the charged spin-2 current and itself.
The point is how we can write down the singular terms described by the coset realization
in terms of the known currents. We expect that up to the second order pole of this OPE,
we should express them by using the known currents with various SU(M) invariant tensors.

By analyzing the first order pole of this OPE, we will determine the new quasi primary
charged spin-4 current in terms of coset realization. By construction, all the relative
coefficients appearing in the coset composite operators are determined automatically
although the careful analysis should be performed.



From the explicit result for the OPE between the neutral spin-3 current and itself for
fixed (N, M) values, we will extract this OPE for generic (IV, M) case and at the second
order pole of this OPE we will observe that there should be new primary neutral spin-4
current in terms of coset realization.

In obtaining this result, we realize that the k-dependent structure constant can be
rewritten as the modified central charge which is equal to the coset central charge
subtracted by the central term due to the stress energy tensor for the quadratic
Sugawara term in the spin-1 current of SU(M).

Then i) the modified stress energy tensor of spin-2, ii) the neutral spin-3 current and
iii) the neutral spin-4 current will consist of the generators of the standard W algebra and
their OPEs with the spin-1 current do not have any singular terms. That is, the spin-1
current is decoupled in the OPEs between these singlet currents.

In section 2, we review the results of [2] by emphasizing that the spin-2 current
and the spin-3 currents can be obtained by hands without trying to perform for
several (N, M) values. Those currents were determined previously. The derivations
for obtaining these are new. In section 3, the simplest nontrivial OPE between the
charged spin-2 current and itself can be obtained. The structure constants are new.
We will observe the charged spin-3 current at the first order pole. In section 4,
the next nontrivial OPE between the charged spin-2 current and the charged spin-3
current can be obtained. The new charged quasi primary spin-4 current at the first
order pole is determined.

In section 5, the new OPE between the charged spin-3 current and itself can be
determined for specific N and M values.! In section 6, the new OPE between the
uncharged spin-3 current and itself can be determined and the new uncharged spin-4
current appears at the second order pole. In section 7, the new OPEs between the
charged spin-1, 2, 3 currents and the uncharged spin-3 current are described. In sec-
tion 8, we present the future directions with a summary of this paper. In appendices,
we will describe some detailed calculations based on the previous sections. The free
field realization of [15] is reviewed and we explain how their results can be related
to the previous results by taking the appropriate limits for the parameters we are
considering.

The Thielemans package [16] is used together with the mathematica package [17]. The
similar coset in the work of [18] where the possibility of four parameters in the specific coset
is described is studied.?

!The integer M = 4 is the lowest value in order to have an independent SU(M) invariant tensors [2].
We take N which is different from M as five.

2There is a similar construction, a matrix extended Wi4o. algebra [19], defined in terms of matrix
extended Miura transformation (See also [20] for some mathematics for the “rectangular” W-algebra). The
truncation of this matrix extended Wi, algebra can be realized the one in (1.1) without U(1) factor in
the denominator. The three parameters of the algebra are given by N, M and k in the subsection 3.5 of [19].
We thank Lorenz Eberhardt for pointing this out.



The charged spin-1, 2, 3,4 currents and uncharged spin-2, 3,4 currents we are consid-
ering in this paper are given by

spin-1 : J%(2), spin-2 : K%(z), spin-3 : P%(z), spin-4 : R%(z),
spin-2 : T'(z), spin-3 : W) (2), spin-4 : WW(z). (1.2)

Here T'(z) is the stress energy tensor and the index a in (1.2) is an adjoint index of SU(M)
and a = 1,2,--- ,(M? — 1). Except of T'(z) and }A%“(z) which are quasi primary currents,
the remaining currents are primary ones under the stress energy tensor. In the context
of [5], the OPEs between the neutral higher spin currents are relevant to this conjecture
and the algebra between them is closed under the neutral higher spin currents. In addition
to that, there are also the OPEs between the charged higher spin currents and the neutral
ones and the OPEs between the charged higher spin currents. The right hand sides of these
OPEs will contain the composite charged or neutral higher spin operators.

The main work of this paper is to start with the charged and neutral higher spin
currents [2] and construct their algebra explicitly as an extension of [5] in the above
coset model (1.1).

What we have found newly in this paper is the higher spin-4 currents in (1.2). The
remaining ones were found in [2] previously.

2 Review with some new derivations

The normalization of the generators (£, %, t*(1) (%) ¢(93)) in SU(N + M) of the coset (1.1)
can be fixed by taking the following simple metric [2]

Tr(t*¢?) = %%, Tr(t*?) = 6%, Tr(*MeM)y =1, TrEPde@)) = 507 571 (2.1)

Under the decomposition of SU(N+ M) into the SU(N)xSU(M), the adjoint representation
of SU(N + M) breaks into

(N+M)?-1— (N2-1,1)a(1,M*>-1)@ (1,1) & (N,M) & (N, M). (2.2)

The fundamental indices p and j among (2.2) runover p =1,2,--- ;N and j =1,2,--- , M,
while the antifundamental indices & and i run over ¢ = 1,2,--- ,N and ¢ = 1,2,--- , M.
Note that the barred index in (2.1) becomes the unbarred one when we raise or lower
it and vice versa. For the «,a and u(1l) indices where the adjoint indices are given by
a=1,2,--- (N?2~1)anda=1,2,---,(M? — 1) respectively, we can raise or lower them
without any change.® We will use the metric in (2.1) all the time.

For the above given generators, the totally antisymmetric f and totally symmetric d
symbols can be expressed as follows:

Te([tY, 9)67) = if Py, Te([t,¢0)0) = ifobe,  Te({t*, P ) = doP,
Tr({t?, t°}t¢) = d*, . (2.3)

3Sometimes we use the SU(M) indices a, b, c, - -+ as superscripts.



where the abbreviated parts can be written similarly. We use the following nontrivial f
symbols [2] which are totally antisymmetric

. ) (55)u(1 M+ N % o BICHI 016 $ji po
{90 ()—méj 5P i flPd@a — gop1 5015 i .

- r(pi)(35)a pF §i1i $i71 4a
if —gP7 §"t §Inn tq (2.4)
Due to the traceless property of the generators, when the indices p and ¢ are equal to each
other in the second relation of (2.4), the corresponding f symbols are zero. Similarly, for
the equal 7 and j in the third relation, the f symbols vanish.

The nontrivial SU(N + M) currents satisfy the following OPEs [2]

T () JP (w) = (zlw)QkaaM( ! o

: § 18 P (w) 4
1

T IO w) = = T )
T (2) JO) () = (z—lw)z 7O D (w)
J9(2) b (w) = (Z_lw)2 e (Z_lw) P F T (w) -
J9(2) Juﬁ)(w)_(z_lw)i fa<p(%';3) TOD (w)4- - |
J9(2) T () = (z_lw) i 1200 I ()4
JUD) () 70 (1) (z_lw)z .
TH0(z) 00 w) (z_lw)if“( ’&j})ﬂf’”( )
T (2) ] (w) = — )zf ) (w)+
JP) () JO) (w) = (z_lw)zkapf’faﬁ (2.5)

1 )\ 0. (N za « 2) (0 a
=) i fEICD e g fC) g DD ge (w)+

The second order pole in (2.5) has the explicit k¥ dependence with weight 1. From the
nonzero f symbols in (2.4), the spin-1 currents transforming as (N, M) or (N, M) appear
in many places of (2.5). Due to the last OPE in (2.5), the contraction between the spin-1
current and its conjugated one in the OPEs later will provide the remaining three kinds of
spin-1 currents in the right hand side.

Note that there are also the five regular OPEs besides the above ten OPEs

J(2) J*D (w)
JP)(2) JOD () =

J¥z) J(w) =0+
J(pi)(z)J(UE)(w) 0+

JU2) J* D (w) =0+ -,

0+
0+ (2.6)



These come from the trivial results from both metric (2.1) and f symbols in (2.3) and (2.4).
In particular, the first and the third relations in (2.6) can be generalized to the spin-2, 3,4
currents with the adjoint index a according to the coset (1.1) we are considering.

We can express the stress energy tensor [2], by Sugawara construction,

1 " —~ _ . =
T = |J"J" aje iy (O (CH)) _& - 7(39) 7(pi) (1) qu(1)
@) =smanaan |77 T A 0ead T 4 00 SN TN 4 SR (2)
1 1
ot gaga,y 2 qud) qul),y .
2(k+ N) JETN2) QkJ J4(2) (2.7)

The first five terms of (2.7) come from the SU(N + M) of the coset (1.1) while the remaining
ones come from the SU(N)x U(1) of the coset. Note that we can move the J(#) in the fourth
term of (2.7) to the left and combine it with the third term together with a derivative term
according to the relation &,z 0,7 [J@), gk = —MN % 9 J*1) which will be used
several times in this paper. Then we have the following OPE

T T(w) = —— S 4 L op@)+

Gowiz Gowp? OT(w)+.  (28)

(z —w)

It is rather nontrivial to check this OPE (2.8) explicitly by using the (2.5). Here the central
charge in (2.8) is given by [2]

k(N +M)?-1) KkN?-1)

(k+M+N)  (k+N)
_ (—k? + k*M? — 2kN — MN + 2k?MN + kEM?N — N? + kM N?) (2.9)
N (k+N)(k+ M+ N) ' '

Furthermore, the spin-1 current is primary operator under the stress energy tensor (2.7)

@fmymw+ !

T(z) J%(w) = 0J%w)+---. (2.10)

(z —w)
Note that 7T'(2) is a singlet under the horizontal subalgebra SU(M) [21]. The OPEs between
T(z) and J%(w) (and J*M(w)) are regular. When we further divide the SU(M) piece
in the coset (1.1) and subtract the corresponding stress energy tensor, m Jo T (w),
from (2.7), then this modified stress energy tensor is no longer singular OPE with spin-1
current J¢(w).

2.1 A charged spin 2 current

The next question is whether the spin-2 current transforming as adjoint representation of
SU(M) exists or not. If there exists, then how do we construct explicitly? It is natural to
require that it should transform as a primary operator under the stress energy tensor (2.7).
The nontrivial requirement is the relation between the previous spin-1 current and this
spin-2 current. In general, the second order pole of this OPE contains the spin-1 current
with two free adjoint indices while the first order pole contains the composite spin-2 op-
erators contracted with the appropriate indices. In the specific basis, the spin-2 current



can transform as the “primary” operator under the spin-1 current [22]. Furthermore, the
spin-2 current should transform under the adjoint representation of the horizontal finite
dimensional Lie algebra SU(M) [21].

Among five spin-1 currents, we can make the quadratic terms between them with
derivative terms in order to have spin-2 operator. The nontrivial term is given by the
SU(M) generator multiplied by the spin-1 current transforming as (N, M) and its conju-
gated one. Moreover, the fundamental and antifundamental indices of SU(V) should be
contracted each other. We expect that there should be the spin-2 operator contracted by
d symbol [23, 24| from the adjoint spin-1 current J%(z). It turns out that a charged spin-2
current [2] is given by*

. _ . _ . - N
K%z) = 0,5 t (J0) g@3) 4 j@3) gy (z) — T+ 75 debe Jb Jo(z)
2N [M+N . .o
=\ un @) (2.11)

Note that the third term of (2.11) occurs in [23, 24]. Instead of introducing the arbitrary
coefficients, we will check whether the above result is consistent with other conditions.
Now we can compute the OPE between J%U(z) and K%w) and it turns out that
the second order pole of this OPE coming from the first two and last terms of (2.11) has
J*(w) term whose coefficient vanishes, similar to the third one of (2.6). Moreover, the
OPE between J(z) and K“(w) can be obtained from the first two terms of (2.11) and this
leads to the vanishing of this OPE, along the line of the first relation of (2.6), where the
traceless conditions for the generators {75 and t?]—. are used. From the OPE between J%(z)
and K°(w), the second order pole vanishes by using the identity that the triple product
df f is proportional to d symbol [23-25]. We also consider 0 J%(z) term in (2.11) but the
vanishing of third order pole of the OPE between J%(z) and K°(w) does not allow us to add
this term. Finally, the first order pole of this OPE can be written in terms of 4 £, K¢(w).

Therefore, we summarize that the charged spin-2 current has the following OPE

1
b - pab

Ja(Z)K (w):mzfacKc(w)—i—--- . (212)
We can compute the commutator [J§, K’(w)] and this leads to i f%*¢ K¢(w) from the result
of (2.12). In other words, the spin-2 current transforms under the adjoint representation of
the horizontal finite dimensional Lie algebra SU(M) as mentioned before. Here J§ is the
Laurent zero mode of spin-1 current J%(z) [21]. Because the complete expression of this
charged spin-2 current is given by (2.11), we can calculate the OPE with the stress energy
tensor (2.7) and it is given by

1 1

m2KCb(w) +

T(z) K*(w) = IR (w) + -, (2.13)

(z — w)

4We have the relation 6,5 ts J@9 J(Pb(z) =0pot; J#h J@)(2) + N 8J%(z) from the last OPE of (2.5)
with the help of [23].



where the relation (2.10) and other ones are used. So far, the currents are given by the
stress energy tensor (2.7), the spin-1 current and the spin-2 current (2.11). Their OPEs
are given by (2.8), (2.10), (2.13), the fourth relation of (2.5), and (2.12).

2.2 A charged spin 3 current

We would like to construct the charged spin-3 current as we did in previous subsection. This
charged spin-3 current should be a primary operator under the stress energy tensor (2.7).
We expect that the cubic term of SU(M) adjoint spin-1 current with the fourth order d
symbols [24, 26] as a nonderivative term can arise. For the OPE with the spin-1 current,
we require the previous “primary” condition under the spin-1 current.
It turns out that the charged spin-3 current which was obtained by using the works
of [27-29] has the following terms®
P(2) = ato,t%J T D J D) (2) +ag ] JT () +ag P T T () +ag T D T D (2)
+a5dabc(§pﬁt?gt]c({](ﬂg)J(ﬁj)_|_J(/3J')J(PZ))(Z)+a75p&t?gju(1)(J(Pg)J(f?j)_i_J(&j)J(P;))(Z)
+agdps8;7J(J 0D D) 4 70D J6D) (2) agdae S T D) (2) +ani fr0.T0 T (2)
+a12(5p5t%8(](pi)¢](5j) (Z) —I—algépat%aj(&j)(](/ﬁ) (z) +a1682Ja(z)
+arr6Tr(t*t et D).J0 JeJ(2). (2.14)

The a3, a11,a16 and a7 terms contain the spin-1 current only.® The a17 term is related to
the above cubic term with the fourth order d symbols mentioned before. We understand
the a9, a4 and ag terms because the indices except the free adjoint index a are contracted
properly. The nontrivial parts are given by the remaining six terms. The free index a arises
in the generator t%, the spin-1 current J* and the d®¢ symbols. They contain the spin-1
currents transforming as (N, M) or (N,M). For as,a7,a12 and a3 terms, the Kronecker
delta symbols are multiplied in order to contract with the fundamental and antifundamen-
tal indices of SU(N) each other. For ag term, there exists further Kronecker delta symbols
associated with the fundamental and antifundamental indices of SU(M ). Note that in the
ay term, there is an additional generator t7; contracted with three other indices. We do not
get the a1 term from the each term of charged spin-2 current and other operators. There-
fore, the aq term is crucial for the construction of an independent charged spin-3 current.

Now we would like to construct the spin-3 current step by step explicitly by assuming
the operator contents of [2]. We calculate the OPEs by hand without using the method
given in [2] where they have obtained this charged spin-3 current for several fixed low
(N, M) values and extracted the (NN, M) dependence of relative coefficients as well as k
dependence. By requiring that we should have the condition J%(z) P*(w) = 0, along the
line of the first relation of (2.6), where the corresponding terms in (2.14) are given by

5The coefficients 06,010,014 and ajs are vanishing where the corresponding terms are given by
ag i [ 65t J(J PV TPV 4 4 JPD T (2) 4 a19 d® 0 I TO(2) + ara J* 0 TV (2) + a15 90 J* TV (2). In
order to check (2.14) we keep these terms also.

The a17 term can be written as = J* J* J+3 (if +d)*** d*°* J* J° J4+ 3 (if +d)** d**i f*4 0 JF Jo—
i(if_’_d)ade fcdf fbfg 82 J9I + %ifbacajc Jb _ ﬁ fbac fbcd 82 Jd,



ai,as,as, a2 and ais terms, the second order pole provides the following equations

(2N + k) a1 + (a12 — arg) | £ £ T T (w) = 0,
a1 = 2(N + k) as — 2M ag| J* J*(w) = 0. (2.15)

Here the relation [t%, 7] = ifa% t7 is used in (2.15). Moreover, from (2.5), we have the
following identity (See also [23])

[J(;ﬁ)7 J(&j)] _ Z-f(Pi)(é_Tj)u(l) 9 ) _|_Z'f(Pg)(5j)a 9 J +Z'f(pg)(5j)a oJ%. (2.16)
Then the contribution from the second term of ag in (2.14) is the same as the one from

the first term because the additional two delta symbols in ag term can act on (2.16) which
leads to zero value.

Similarly, the regularity condition J*((z) P%(w) = 0, similar to the third relation
of (2.6), gives the following equations we should have

M+ N [M+N .
[—N Wa12+2ka14—]\7 Wa13‘|¢] (’UJ)ZO
M+ N a qu(l) _
[Qka4 2Ny a7+2(M+N)a8]J JUD () = 0,
[—2N11M+Na5+ka
M+ N | M+ N
(i) 7(37) —
[2]6&74— VN a2 MN CLB](S t J J ( ) 0,
M+ N [M+N .
[—ZMN VN ag+kNay — N Wa13+ka15]8J (w):(). (2.17)

Each term of the last four terms can be seen from the charged spin-2 current in (2.11). In the
last relation of (2.17), the identity . J® J¢(w) = iM 0 J%(w) [23, 24] is used. In the com-
putation of a7 term, there exists the relation 6,5 tJ; J@3) gD () = Op5 L JPD 7@ () +
N 0 J*(w) which can be obtained from the relation (2.16).

Let us consider the OPE between J%(z) and P’(w). The fourth and third order poles
of this OPE give us

dabCJb JC( ) 07

{QMkag—QMkan—kNa12+kNa13+6ka16} (5ab:

N N
[Q(M—k) CL3—|—(M2—4) M(L5—|—2N(I8—(2k‘—|—M) all—galz

N
+—a13+2a16+ M +6)a17]lfabJC( ):0,

M+N [ M l ab Tu
[4NM VN ag— alg N a13+2ka1515bj (1)( ):0

N
[ NM ag+(2k+M) aro+— a12+a131dab0JC( )=0. (2.18)

2 2



In the calculation of the second relation of (2.18), we use the following relation
1 4b4cd 1 ib scd L. ibe (- ecd
Te(t't"t°t7) = 5 07 8% + 2 (if +d)™ (if +d)*. (2.19)

This can be obtained by recalling the fact that the product of two generators can be
written in terms of Kronecker delta symbol with identity matrix, f and d symbols with
generator and we can multiply further generators successively. By multiplying three f
symbols into (2.19), we obtain the intermediate result

TI‘(ti tb e td) fabf ffcg fgdh —
4 1 . . . .

. 2fa1h + Z M2fzah . ,L-M2dhaz . iM2dlah . (M2 . 4)fzha 7 (220)
where the identities for the triple products fff and df f [23, 24] are used in (2.20). Then
the remaining five similar terms can be obtained and by adding these we arrive at the final
contribution (M? + 6) aj7if%¢ J¢(w) in (2.18).

Let us describe the second order pole which will be more complicated. We have the
following result

M+N
MN

—2N ,/ a5+Na7—|— 2k+M)a9] dabe ge g () =0,
\/ aﬁ+a15

M N /M N
ka14 kNM + + algléabaJU(l)( ): 5

(k‘%M) a57§a12+2 a13‘| dab05 tc J(P;) J(5j) (U}) =0,

—a1+kas

6% g g% (w) =0, [k as—2N a71 69t JuD) julD) (1) =,

Zfabc J¢ Ju(l)( ):0

1 1 0 — .
—2(k+M)ag+ 5 a12+5 a13] i %85 15T T ) (w) =0,

[ 1 1 N
2k:ag—Ma12+M a13] 5ab6p5 5jg!](m) J("])(w) :0,

—Nag+ag| i fe¢d* je g% (w) =0,

[ N
kajo+N (k+M) a5+2a13+MNa6] d“bcf)Jc(w) =0,

—2a3—a11+g ka7 | d®¢ded ¢ J(w) =0,
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i 4 12k
2(k+M) a3+2Na8+M (2@3+CL11)+ <M+18) a17] J¢ Jb(w) =0,

6% J¢ J¢(w) =0,

i 4 6k
kag—M (2a3+a11)+ <M—6> aiy

N as+(2a3+a11)+3(k+M) anl daed gbee J4 ¢ (w) =0,

[ N N 1
ka1 +2a16+ = a13— N (k+M)ag— ~— (M?—4) a5 — — (M?—4) (2a3+a11)
i 2 M M
3 2 4 e c
+ _ikM+(_2M —6) a17—2Na8—M(2a3—|—a11) 1 f°0J (w):O (221)

We rewrite the term f2°? f@b¢ je¢ jé(w) in terms of Kronecker delta § and d symbols by
using the corresponding identity [21, 24]. For the calculation of last five relations associated
with a17 term in (2.21), the identities containing the quartic products of ffff, fffd and
ffdd [24, 25] are used. Note that although there are also f2¢¢ d*? J¢ J%(w) and d*¢ 9 J¢(w)
in general, those contributions from the coeflicient a17 become zero.

By solving the above equations (2.15), (2.17), (2.18) and (2.21), we obtain the coeffi-
cients appearing in the spin-3 current as follows:

ax N(k+2N) (k+2N)(M+N)

2= B = R+ M) @k T M b
_ (k+2N) _ (k+2N) [M+N _ (k+2N)
5= "4kt M) M0 a7 ="k MN Y 8= T o A
__(k+2N)N [(M+N) _ (K*—8)N(k+2N)
9= "Sktkr) V  MN YY MT G M) Bk 20 MY
1 1
a12:—§(k+2N)a1, a13:§(k+2N)a1, (2.22)
N (6k34+9k> M +4kM?+12M)(k+2N) N(k+2N)
ale = — ai, a7 = aj.
12k(k+ M) (3k+2M) 6(k+M)(3k+2M)

Except the coefficient ag, all the coefficients contain the factor (k 4+ 2N). These are the
same as the ones in [2]. As described in the footnote 5, the four coefficients, ag, aig, ais
and a15 are vanishing.
Also we have the primary condition under the stress energy tensor mentioned before
L spow)+ — 9P w)+ (2.23)
S — w —_— w LRI .
? (z —w)
In order to check this condition (2.23), the relations (2.10) can be used.
After using the vanishing of the fourth, third and second order poles we are left with

T(:) P*(w) = (=

the first order pole and can be written as

J4z) P*(w) = i fo Pe(w) +-- -, (2.24)

1
(z — w)
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where the fundamental relations (2.5) can be used in (2.24). As explained in (2.12), the
spin-3 current transforms under the adjoint representation of SU(M). Once again, the
charged spin-3 current is primary operator via (2.23) and (2.24).

2.3 An uncharged spin 3 current

How do we construct the higher spin-3 current which is neutral under the spin-1 current?
We should write down the possible composite spin-3 operators and determine the relative
coefficients by imposing the basic conditions coming from the coset (1.1). As explained
before, we should require that this spin-3 current transforms as the primary operator under
the stress energy tensor (2.7).

It turns out that the uncharged spin-3 current [2] has the following independent terms’

WO (2) = by d*PY J*JP T (2) +by d?¢ T T8 JE(2) +bg JHUD) ) Jub) () 4by Jo T J D (2)
bs J T T (2) 4 b t% 8.5 T (JPD J@) 4 g (@) g0 ()

po Vgt
+b7 8p5 1% J(JP) J@0) 4 g(@3) J(eDY () -bg 8p5 057 JUO () g @) 4 g(@) gy ()
+b120p5 0570 T JOD (2)+b13 8,5 6,50 17D T0D (2) +b14 0 TV (2). (2.25)

The second term can be seen from the work of [23]. The be, b5 and b7 terms can be seen from
the terms of spin-2 current in (2.11). When we differentiate the stress energy tensor (2.7),
then we observe the bio and bi3 terms. For the bg term, we have seen similar a; term in
the charged spin-3 current.

The regularity condition J%(z) W (w) = 0 implies the following relations coming from
the third and second order poles

2(k+ N)bg + M by +Mb13] J%(w) =0,

3(k+ N) by + Mbg| d*? JP J7 (w) =0,

M+ N
2k + N) by + 2M bg + 2M 1|~

66] J T (w) =0,

(k‘—l—N)bg—i—Mbm—(kM-‘rQMN)bG] 8J”(w) =0,

550 g J@D (1) = 0. (2.26)

Q(kt—i-QN) b6 + b1a —b13 ji Lpe

In this calculation, we have the identities f** J8 J7(w) = iN9 J*(w) and Tr(t*t%t7) =
3(if + d)*P7 as described before.

"The coefficients bg, bio and b11 are vanishing and the corresponding terms are given by bg 9 J* J%(z) +
b1odJ* J(2) + b1y & JD JD(2),

- 12 —



Similarly, from the OPE between J*()(z) and W (w), we have the following relations
from the fourth, the third and the second order poles

IM+ N M+ N
Ny g — kMN —
N ek NN itk bl“] 0,

2k b1y + (M + N) bl2+(M+N)5131Ju(l)(w) =0,

M+ N
MN

M+ N

kby+2M N

bs

J* J*(w) = 0, [k bs — 2N b7] Jo J%(w) = 0,

2(M + N) b8+3kb3] JU Ju) () =0,

zkzbgﬂ/MJrN ,/M+Nb13]5 357 J@0) (w) = 0,

M+ N
kb + kMN |2 g (M 4 N) b13‘| 8 M (w) = 0. (2.27)
I MN
The identity 6,5 6 (D J@D)(w) = MAEN M N 9 J*Y(w) coming from (2.16) is used

in the calculation of last two equations of (2.27). If we use the relations (2.26) and (2.27)
only, then the coefficients are not determined completely.

In order to calculate the OPE between T'(z) and W (w), we should obtain the following
nontrivial OPEs

1 (—k — M +2K2M — N + kMN)] 7
T(z) 77)(w) = (2 — w)? l 2kM(k + N) ] T w)
P L pede o gk | 1 z FeOu) - qu) gl
(z—w) [(k+ N) (o) j)

+8J(Pi)](w)+...’

) 1 (—k — M +2k>M — N + kMN)
T(2) P (w) = ) [ RNk T ) ] JP3) (w)
1 1 (i qa (k) 4 L. p(Gu)  qu(l) 1(ok)
T esw [Gr T e T T Gy T
n 3J(ﬁj>] (W) + - . (2.28)

In the first order term of (2.28), there exist nontrivial nonlinear terms. Even the second
order term has nontrivial coefficients which depend on N, M and k explicitly. In this
calculation we use the following identity

1 1
tﬁlal %02 = 5;7152 5P251 - N 50151 5P2527 t?j tzl 5il_5k3 - M 61'3 6kl_' (2'29)
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In (2.29), they satisfy for any four indices and similar relations for contracted indices can
be obtained from these identities.

We summarize the fifth, fourth and third order poles in the OPE between 7'(z) and
W) (w) as follows:

N(—k — M +2k?M — N + kMN)
(k+ N)

[Qk (M? — 1) byo + (b2 +b13)| =0,

M+ N N(—=k — M +2k?M — N + kMN)
M? —1)bs — 2N(M? -1

(—k — M +2k*M — N +EkMN) M+ N (1)
N _ u _
TP M+ N

2b1o J* J4(w) + (bra + bi3) [25,)5 87 110 J@D) — (;r) Ju) jul)
M N M+ N
_ «_ MN u(1) =0. 2.
(k+N)J J v 07 ](w) 0 (2.30)

It can be checked that the contribution from the coefficient bg term vanishes by using the
various further contractions between the operators appearing in the contributions from the
b1z or byg term. We have the following primary condition under the stress energy tensor

(le)Q 3W® (w) +

T(z) W& (w) = SOW(w) + - (2.31)

1
(z —w)
It will be rather complicated to check this by hand explicitly. If we identify some of the
factors in the spin-3 current with the previous known currents, then the corresponding
computations will be easier.

By solving (2.26), (2.27) and (2.30), we arrive at the following intermediate result for
the coefficients

, 2R N)(MEN)(2N) [MeN,  6(k+N) [MaN,

5 K2M MN b YT g MN "

5 — k MN 7 6 — M 1)
b _73(]{34—]\7)(]64-2]\7) M—I—Nb by — 3(]€+N)(k3+2]\7) b

8 — kM MN 1 12 — M 1,

3k N)(k+2N) B M+N
bis= i by, by = N(k—f—N)(k-l-QN) VN by.

(2.32)

The coeflicients are written in terms of by and by and moreover the coefficient by is not
determined yet. Except the coefficients of by and bg, all the coefficients contain the factor
(k+2N). We will analyze further in section 7 and determine the remaining coefficients
completely. Therefore, we have checked that the expressions for the spin-3 current is correct
for any (N, M) and k.
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3 The OPE between the charged higher spin-2 current and itself

In this section, we would like to construct the OPE K%(z) K®(w) which did not appear
n [2] by using the explicit realization in (2.11) with the help of (2.5). What they have
observed in [2] is that the above OPE is found by assuming that there exist the spin-1,2
currents as well as the stress energy tensor (2.7). Of course, they have constructed the
uncharged spin-3 current which does not appear in the above OPE. Moreover, they have
used the Jacobi identities between these currents and the relative coefficients appearing
in this OPE depend on (N, M) and k explicitly by collecting some of the results for fixed
(N, M) values. Furthermore, their construction does not tell us any information on the
coset model.

On the other hand, in our construction we use the explicit realization of coset and the

currents are given by (2.7), (2.11), (2.14) and (2.25). We will observe that there exists a
charged spin-3 current described in (2.14) in the first order pole of the OPE.

It is useful to calculate the OPEs between K“(z) and other spin-1 operators. We
have (2.12) and the OPE between K%(z) and J%(w) and the OPE between K“(z) and
J*M (w) have trivial results from the analysis of the subsection 2.1. Then the remaining
nontrivial OPEs are given by

K%(z) J*) (w) =

o 2— - =
1 [Q(k: 1)(2k+M+N) 42 D (w)

(z—w)? k(2k+M)
+ (z—lw) 2(k+N)éy; (ta)gkaj(/ﬁ)_Q(kzN) W(;mta Ju(1) 7(pd)
2 a J(6i) (2k+MA+2N) N o
_251431'5”(;_1 (ta)(ﬁpt% Je J(aj) (w)+"-,
5 1 [2(*=1)2k+M+N)| .0 (s
K@ (P7) — T sa. 1(5k)
o) | 2N O, <t“>k1jaJ<p’“>+2(kZN) W p3tga otV g oh)
2 (2k+M+2N) \“
- M+N) Je i) v e jj14c b 7(pk)
g FHMAEN) 0T (f+ e D) d) §Igg - 0 T
F20 b0 (£t T T | ()4 (3.1)

These two OPEs look similar but they are different from each other. Based on these OPEs,
we can calculate the OPEs between the charged spin-2 current and the derivative of spin-1
currents by simply taking the derivative with respect to the argument w. We use the

~15 —



identity of two and triple products of generators

1 1
tatb — 76ab1 (s d abctc

1 1 1
a b be 4a ad (; bed . bed (o adf +f
= — 1 — 2
e = 8t s 0 (G f + ) L+ LG+ d) G + d) e, (3.2)
where the first relation can be obtained from the f and d symbols in (2.3) together with
the metric in (2.1) and the second relation can be determined by acting other generator
on the first relation.

3.1 The fourth, third and second order poles

Then the fourth order pole can be determined by the OPE between the spin-2 current and
the first two terms of spin-2 current. If we use the property of the footnote 4, then the
contribution from the second term of the spin-2 current can be expressed as the contribution
from the first term and the contribution from the OPE between the spin-2 current and the
derivative of spin-1 current which can be easily obtained from the defining relation in (2.12).

It turns out that the fourth order pole of this OPE is given by

2 _
K%z) K®(w) _ Ak 12;\;(?]\;)]\4 ) 5, (3.3)

1
(z—w)d

which is equal to 4 6%° in the notation of [2]. Then we can determine the coefficient

8(k? —1)N(2k + M + N)

(2k+ M) ’ (34)

Cc1 —

The free indices a and b arise in the form of invariant Kronecker delta symbols.

How do we obtain the third order pole? By using the trace of triple product of
generators appearing in (3.2) leading to the second contribution because the first and
last contributions provide zero due to the tracelessness of the generator, the final result
can be expressed as a f symbols with spin-1 current. It turns out that the third order pole
of this OPE is given by

_ A(kK* —1)N(2k+ M + N)
B k(2k + M)

K9(2) K®(w) ifebe Je(w), (3.5)

1
(z—w)3

which is given by cpi f%¢ J¢(w) in the notation of [2]. Therefore, we have the coefficient

_ 4(k* —1)N(2k+ M + N)
2= k(2k + M) ‘ (36)
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Let us present the final result first. The second order pole can be written as

K%(z) K" (w)

1
(z—w)2

4(k+N)(M+N) ab yu(1l) u(1) ab o a 7b
o 8 70 74D ) — 460 1 T (w) = (k4 M+N) T T (w)

M+N [ N2 N (452 +2kM +4kN+MN) \ ™
R L B (4k"+2kMAARN+MN) | Je T (1)
MN k k(2k+M)

(k+M+2N) )aec , db, d 8(
761 d C 7€

(2k+M) (@ f+d)™ 5T (w)+ =

- abe sp5 e 1(oD) 1(5) 2(4k? 42k M +4kN+MN) be o5 o (o) 1(5
—2Ni f¢67 170D 7D (w) + ( D) ) gabe g0 1,70 1) (1)

AN

+2

+N <Z fo 8(k+N) 5ab 507 5j[J(Pl_) J@) (w)

M+N
_AN(k+N) Mitvéabaﬂl)(w)ukm £95 9.7 (w)
%k N (2k+M+2N)

(2k+M)

MN
(2k+ M)

dbe 9 Je(w)— d®™ K¢(w)+Ni f% K¢(w). (3.7)
The contribution from the third term of (2.11) is given by the second term of the last line
of (3.7). The last term of (3.7) comes from the expression of the second term having a
derivative term of J®(w) in the footnote 4. Then the remaining expressions come from
the first two terms in (2.11). Then the operator contents of (3.7) is the same as the ones
in (2.21) as expected.

The next question is how we can write down the above expression (3.7) in terms of
previous known currents, spin-1, 2 currents as well as the stress energy tensor? Of course,
there should be a descendant term originating from the third order pole. This is a simple
derivative term of spin-1 current with fixed known coefficient. Moreover, it is obvious that
there are stress energy tensor and spin-2 current of spin-2. Now it is clear to simplify (3.7)
by comparing it with (2.7) and (2.11).

It is easier to look at the terms of singlet operator without having any group indices
first. By identifying J“1) J*()(w) term in both (3.7) and (2.7), we observe that the
coefficient of T'(w) in the second order pole should be equal to

8

17k N) (ke M+ N, (3.8)

by focusing on the first term of (3.7). This is equivalent to 2“5 of [2] with (2.9)
and (3.4). Then we can extract the coefficient of a1 ¢ from (3.8) as follows:

(2k+M)(—k?>+k2>M? —2kN —MN+2k> M N +kM?N — N2+ kM N?)
2(k2—1)M N (2k+M+N) '

al,CH = (39)

Then the structure constant (3.8) appearing in the stress energy tensor of the second order

pole is determined. Of course, other terms of the stress energy tensor in the second order
pole can be checked.
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Let us move to the other structure constant and the coefficient of d**¢ K¢(w) is given by

2k(2k + M + 2N)
2k + M)

which is equal to 2¢ in [2]. Note that the contribution (3.10) comes from the d term of the

(3.10)

second line of (3.7) and the second term in the last line of (3.7) by focusing on the singlet
term of (2.11). Then the coefficient of ¢ of [2] from (3.10) is given by

k(2k + M + 2N)
(2k + M)

Then the structure constant (3.10) appearing in the spin-2 current of the second order pole

6 = (3.11)

is determined.

After subtracting the descendant term, the stress energy tensor term and spin-2 current
term from the second order pole, there exists the sum of some nonzero composite operators
which corresponds to a quasi primary operator. We can collect the following nonderivative
quadratic J* dependent terms in (3.7)

N (4k? + 4kM + M? + MN)

4N
=y 5ab c 7C dabe decd c 7d
w ST (2k + M)2 T
AN(2k+M+N) , ., 2N(2k+ M+ N) od e
_ a . dece ¢ c ' 12
kM S (2k + M) S (3.12)

From the expression of (3.7), it is easy to see that the above terms (3.12) come from the
last term of the first line (entering into the third term of (3.12)), the first term of the
third line, and the second term of the last line (contributing to the second term of (3.12))
of (3.7). Because we are looking at the particular composite operators, the other terms
in (3.7) including the derivative terms should be checked explicitly.

On the other hand, the two invariant fourth order d symbols are studied in [2] as well as
the two product of Kronecker delta symbols. Then we can express the above quantities by
writing down their invariant tensors in terms of f and d symbols via the first two relations
in appendix (A.1). In other words, we have
4 4 201&1 1

c31+—C32—

o 5ab c 7C 1
M MO T 3 M) T (3.13)

+ Je Jb_|_2033 dace debd J¢ Jd‘

N 8
(c32—c33) —2c6 (2]<:+M)] dabe geed ge g 4 [M c33+C34

Note that these four independent operators appear in (2.21). For the ¢33 term, as we can
see in the second relation of appendix (A.1), the various identities can be used. After using
the symmetric property of the free indices, then half of them can be rewritten as the other
half. It turns out that fd term and the derivative term with d symbols are vanishing.
Then we obtain the following expressions, by using the two equations (3.12) and (3.13),

4(4k3 + 4k*M + kM? + 8k*N + 6kMN + M?N + 4kN? + M N?)

_ 14
o 2kN(2k + M + N) o — N+ M+ N) o _ _AN(2k+ M+ N)
32 — <2k+M)2 9 33 — (2k+M) b 34 — k(2k+M)
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Therefore, we have determined the second order pole with (3.9), (3.11) and (3.14) com-
pletely. As we emphasized before, the structure constants we have found here are different
from the their (3.27) in [2].

3.2 The first order pole and charged spin-3 current

Now we can collect all the contributions entering into the first order pole and we arrive at
the final results as follows:

Ko(Z) Kb(w)| =i f™ NOK(w)
(Z*lw)

o N . race jbed yre 71d - rade jbed e poe ﬂ M+ N . abe e gu(l)

(2k+M)(zf dved jce gd 4 j pade g JK)(w)+ Ty KT )
ayi ) oj 4 M+ N i 4a U ) 0j

+ 8p 145 |4(k + N)oyg (t%)* 0 70 ¢ J)—%(kJrN) N g ((Ju) gleh)y g (@i
4 = _
= MLN a g(pi)y j(@7)

+kM(k+ + N) ((J*TJ¥P) TP

_ 2(Zf _ (2k+M+2N) d)acd 5]&75%[_((‘]8 J(pf)) J(c_fj))

(2k + M)
— 48%7 5,y (E) TP 57 (T JOD) JEDY 4 Ak + N)oy (897 0D 9 g @)

4 MAN (il o 1(o) qut) gk _ 4 (3) 7a 7()
o (k4 N) [ Tt 00 ) o b M N) T g g
. (2k + M +2N) ocd cifi id 1(p0) ¢ 7(5k)
2i f + o+ 10 d)wed i gl gD ge
+ 489 6,5, (14)701 10 0D g0 J<01’f>1 (w). (3.15)

Compared to the previous second order pole, it is rather easy to obtain this first order
pole because we do not have to consider the additional contractions between the operators.
The first two terms in the second line of (3.15) are determined from the OPE between the
spin-2 current and the third term of (2.11) while the last term in the second line of (3.15)
comes from the OPE between the spin-2 current and the last term of (2.11).

According to the observation of [2], there exist five quasi primary operators including
the spin-3 current after subtracting the various descendant operators properly. Let us look
at the J* term in (3.15). It appears in the sixth line and the last line. We can easily
see that they have the product of two generators and this contains the f symbols with
numerical value % Then the overall numerical factor will be 4 by adding the above two
contributions. Because the operator contents are the same as the one of the first term
of spin-3 current (2.14), by extracting the first term of P°(w) in the above first order
term (3.15), we determine the structure constant, the coefficient of P¢(w) in the right hand
side of the OPE

© 4 abc
Cro o = a—lzf be, (3.16)
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Of course, this is one of the terms among thirteen terms in (2.14). Further analysis on this
direction can be done without any difficulty.

Note that the second term of spin-3 current contains only J% and J¢ term. We can
check that this term cannot be seen from (3.15). However, among the list of the five quasi
primary operators we mentioned, we can find that term. This implies that we should have
exact coefficient in the two places, in the quasi primary operator and the spin-3 current
with opposite signs. Then we can determine the coefficient a§{¥ in [2] by focusing on the
second term of P¢(w)

. 1 1
12+ M+ N)  2(k+ N)

4
C2a3.CH +i—ao =0, (317)
ay

where (3.16) is used. Note that the two terms inside the bracket in (3.17) are coming from

the explicit stress energy tensor in (2.7). From this (3.17) together with (3.6) and (2.22),

we have determined the coefficient

22k+ M)(k+ N)(k+ M + N)
(k2 —1)MN(2k+ M + N)

a3,cH = (3.18)

Then the structure constant appearing in this quasi primary operator is given by the first
term of (3.17) with (3.6) and (3.18).

Now we move to the other quasi primary operator. Let us determine the coefficient of
c73 appearing in the first order pole in [2] by looking at fe¢d°de je j¢ Ju()(w). Then we
have the following relation

. 4N? M+N 4 2N |M+ N 0 (3.19)
-1 —t—a9 — — | —————C73 = .
kk+ M)\ MN oY kK MN TP

where the first term originates from the second, third and fourth terms of (3.15). In the

c73 term of (3.19), the relation of third line in appendix (A.1) is used. In the ag term, the
relation (3.16) is used. By substituting the value of ag in (2.22) into (3.19), we obtain

k(2k + M +2N)
Cr3 =1

(e + M)(2k + M) (3.20)

For the c79 term having f%°¢d"? in [2], we should focus on the as term of the spin-3
current P°(w). See also the relations in appendix (A.1). Then we have

4
—2t+1—2a5+2cy3—21ico =0. (3.21)
ai

There are two contributions from (3.15) for the first term in (3.21). The corresponding
terms are f terms in the fifth and eighth line of (3.15). In the as term here, the second
term of as appearing in (2.14) can be written in terms of the first term and derivative
term. Then the number 2 exists in (3.21). We determine the coefficient c¢72 from (3.21) by
using (2.22) and (3.20) as follows:

(2k + M + 2N)
(2k + M)

Cry = — (3.22)
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Therefore, the structure constant associated with c¢75 and cy3 terms is completely
determined.

Now we consider the quasi primary operator which is cubic terms in the spin-1 currents.
For the coefficient cs3, we consider ¢/ /%9 d9d¢ j¢ jé je(w) term. In this case, we have

207 Siesm oV 0 (3.23)
V—/————————= — 17C ——1C = V. .
(2k + M)?2 BTk M) T

It is rather nontrivial to extract the exact contribution from the c53 term with corresponding
dgbede tensor. The other contribution from cra can occur here. Therefore, from (3.22)
and (3.23), we determine the coefficient cs3

2N(2k + M + N)
=— 3.24
€58 3(2k + M)? (3:24)
By considering the f®f dfcs q9de je¢ jé j¢(w) term, we have
. 2N? 3 3 o N 43 N 0 (3.25)
15— 1=Cy2—1=C 1———<Cr—1—=a ——C73 = U. .
kM2 272 2T k) Ty 27T (k)

Again the first term can be obtained from the first two terms in the second line of (3.15)
with Jacobi identity. In this case also, the corresponding invariant tensors associated with
¢s52 and cs3 terms look complicated in appendix (A.1) but if we use the symmetric property
of the indices between ¢, d and e we will obtain simpler expression and we can extract the
exact coefficients we presented above. For the c7o term, the Jacobi identity is used. It is
easy to obtain the coefficient c52 by substituting (2.22), (3.24), (3.22) and (3.20) into the
above (3.25)

2kN(2k + M + N)
_ , 2
€52 = 300k - M)2(3k + 2M) (3.26)
For the f¢.j¢J? J¢(w) term, we have
4 46 1 6 6
i S | sy — i ~esy = 0. (3.27
L R VAT v v R R VAR Vi (3:27)

We can observe the first term with previous structure constant (3.16) in the spin-3 current.
It is obvious to see the as; term and we obtain the ¢52 and c53 terms with above coeffi-
cients. Again, from (2.22), (3.6), (3.18), (3.26) and (3.24), we determine the coefficient c51
from (3.27)

A(6K3+TE2M +2kM?+12k* N +10kM N +2M?N +6kN?+2M N?)

__ 2
1= kM (2k-+ M) (3k+2M) (3:28)

We also realize that as ¢y can be obtained from ascy in (3.18)

1
as,cH = 6(1 —3as.cH)

1
= —12k% — 18K*M — 6kM?* — 24k*N — 26kM N
6(k2 — 1)MN(2I<:+M+N)( 8
+ 2k3MN — TM?N + k*M?N — 12kN? — TMN? + kE2M N?). (3.29)
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Note that this (3.29) is not an independent structure constant because this can be obtained
from a3 cp. Therefore, we have determined the structure constants with cs1, cs2 and cs3
terms appearing in the cubic spin-1 current terms.

We are left with one final quasi primary operator of spin-3 which contains the deriva-
tive terms. This is the most nontrivial parts to extract the correct structure constants
because the derivative terms appear all over the places. Let us determine the remaining
two coefficients, c4; and cy3. For the former, by looking at the fob¢ fede g je jé(w), we

eventually have

4 3M . 3M
— | —2a3 — a1 — ——a17 | +2ca1 +ics1 — —— (cs52 + ¢53)
al 2 2
12 8 — M? N?
— =3 — — =0. 3.30
+<M oM >C53+(2k+M) (3.30)

It is not difficult to check the coefficient for the cs; term because it contains already one
of the f symbols. For the cso term, we should move the spin-1 currents to the left in order
to obtain the above derivative term with some identity including the f or d symbols. For
the c53 term, the identity for ffdd [24, 25] is used. The last term of (3.30) comes from
the fifth line of (3.15) which should be simplified further. Then this will give us the final
expression as above. The above (3.30) leads to

1
= —24k* —40k3 M —22k2 M? — 4k M> — 48Kk3 N —64k>* M N
L= A2k M2 (3h 20 |
+2k* M N — 28k M?N +3k3M?*N —AM3N + k> M3 N —24k* N? —20k M N?> + k3 M N2
—4M?*N? 4 k2 M?N?), (3.31)

where the previous results (2.22), (3.28), (3.26) and (3.24) are used in (3.30).
Now we would like to determine the final undetermined coefficient. For the c43 coeffi-

. Then we have the relation

1
(z—w)

cient, we consider the expression of f*K?(z) Kb(w)

(2k + M +2N) (M2 — 4)

4
~N—(k+M+N)+NM—N

kM (2k + M) M
4 4 2 (M?2—4) (M?2-4
=L 12M |2iag +ian 4 <M+M+( = ), ( - )) o

: 6 3 (M? — 4)
—2(2M 41 + c43) —2Mics — <2MM - §2M M) (cs2 + ¢53)

12 (M? — 4)
—|2M — M-———-= =0. .32
< M+3 M >C53 0 (33)

The fourth line of (3.15) contributes the first term of (3.32) if we further simplify nonstan-
dard normal ordering product in the composite operator. Again the fifth line of (3.15) can
be simplified and we can check the contribution from this will be the remaining two terms
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in the first line of (3.32). Now we can move to the next line. For the a3 term, we obtain
the above factor by moving the spin-1 current to the left. For the ai; term, we will have
ff term which is proportional to 2M. We collect all the contributions from the a7 term.
From the above (3.32) by substituting (2.22), (3.31), (3.28), (3.26) and (3.24), we arrive at

2MN (2k + M + N)
k(2k + M)?

Cq3 = — (333)

Therefore, we have determined all the structure constants associated with c41 and c43
appearing in the first order pole.®

3.3 The final OPE

After collecting the previous results (3.3), (3.5), (3.7) and (3.15), we summarize the OPE,
in the notation of [2], between the charged spin-2 current and itself as follows:

1 ﬂ-i— 1
z—w)* 2  (z—w)

K%z) Kb(w) = 5iCo £ Jge(w)

1 1 2
b |Zicy fe g ge  SMCH A sabp g o gabe fee
(z—w)? |2 c

1
+ (031 8 8¢ 4 50 d3%S) + c33 5%y + 34 6°° 5bd> 3 (Je T+ J¢ JC)] (w)

1 1 1. /2
b iczf“bc(?QJC—l—8(W6“bT+2cﬁd“chc
(z—w) |6 2 c

(31 0% 0% + g d§ih + a3 didy + 300%™ % (J¢ g4 4 g JC))
+icyascm fO° <T JC— % 0? JC)

+ (enn il + s 076" <8JC J4— ot e - % i fedeg? Je>

+ ( cs1 fabc 59 1 ¢sy dgllncde T ess dggcde)

X 1(JCJdJeJrJCJeJd+JEJCJdJrJdJCJe+JdJ€JC+JeJdJC)

6
- 4 aoc C
+(C72di%ﬁ2+073d%%’) JCKd‘Ha*lf ’ P](w)‘F"', (3.34)

8We have checked that all the structure constants are consistent with each other when we consider the
(N, M) = (6,5) case and the (N, M) = (7,6) case.
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where the structure constants are given by (3.4), (3.6), (3.9), (2.9), (3.11), (3.14), (3.18),
(3.31), (3.33), (3.28), (3.26), (3.24), (3.22), and (3.20) and we present them here

_ 8(k*—1)N(2k+ M + N) _ A(K*—1)N(2k+ M + N)
“a= (2k + M) ’ 2= k(2k + M) ’

(2k + M)(—k? + k>M? — 2kN — MN + 2k*M N + kM?N — N? + kM N?)

GL.CH = 2(k2 — 1)MN(2k + M + N) ’
_ (—k*+k*M? —2kN — MN + 2k*MN + kM?N — N? + kMN?)
N (k+ N)(k+M+N) ’
o — k(2k + M + 2N)
(2k+M)
4(4k3 + 4k*M + kM? + 8k*N + 6kMN + M?N + 4kN? + M N?)
= M (2k + M)? ’
2kN(2k + M + N) N2k + M + N)
BT T ok M)z BT T @k M)
4N(2k+ M + N) 2(2k + M)(k 4+ N)(k + M + N)
T TRk + M) WO =2 “1)MN(2k+ M+ N)
= kT M1)2(3k o) (—24k* — 40k° M — 22k> M?* — 4kM® — 48K° N
— 64k* M N + 2k*M N — 28k M?N + 3k3M?N — AM3N + k*M3N — 24k*N*?
— 20kMN? + E*MN? — 4AM?N? + k>M?N?),
2MN(2k + M + N)
BT TRk M2
4(6k3 + TK?M + 2kM? + 12k*N + 10kMN + 2M?N + 6kN? + 2M N?)
1= ]eM (2k + M) (3k + 2M) ’
2kN(2k + M + N) 2N(2k + M + N)
2= 32k + M)2(3k + 2M)’ BT T T30k + M2
2k + M + 2N k(2k+ M + 2N
era = ! (2k + M) 3 =t (k:(+ M)(2k + M))‘ (3.35)

In the last line of the second order pole in (3.34), there exists a quasi primary spin-2
operator. In the first two lines of the first order pole there are descendants for the spin-1
and spin-2 operators. In the next five lines, there are quasi primary spin-3 operators. More
precisely, the last one is a primary spin-3 current where the coefficient a; is the overall
factor in (2.14). In general, the quasi primary spin-3 operator in the last line is given by
(Je K4 — Li fede 9K°)(w). However, the derivative term vanishes when we multiply the
tensors of ¢y and c73 terms.”

Let us emphasize here that although the operator contents appearing in the right

hand side of (3.34) except the spin-3 current are the same as the ones in [2], the structure

°Due to the symmetric or antisymmetric properties of the right hand side of this OPE, we can obtain the
quantities by multiplying the antisymmetric f symbols, the symmetric d symbols, or symmetric Kronecker
delta symbols. The c31-c34 terms are symmetric, the cq1-c43 terms are antisymmetric, the cs1-cs53 terms are
antisymmetric and the cr2-crs terms are antisymmetric under the exchange of the indices a and b.
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constants are completely different from theirs. We can check that the difference between
our results and theirs will provide the factor (k + 2V).

When we take the infinity limit of k after substituting N = @ k into the various
structure constants (3.35) we have determined, we obtain the corresponding values in terms
of A\, k and M. We present them in appendix C. Although we do not compare here the exact
values for the structure constants with the ones in [30], we can check the k dependence as
well as M dependence. We observe that their (4.40) — (4.42) are consistent with our results
with A = 2 in appendix C by focusing on the k£ dependence. Moreover, our coefficients c3;

and c51 do depend on the factor ﬁ which can be seen from [30] also.!”

4 The OPE between the charged higher spin-2 current and the charged
higher spin-3 current

4.1 The fifth, fourth and third order poles

First of all, we can calculate the fifth order pole of the OPE K%(z) P’(w) for the fixed
(N,M) = (5,4). It turns out that the nonzero contribution appears when the indices a
and b are the same. The coefficients contain ag, a12 and aq3 from Pb(w) and moreover the
common factor appears in the sum of a12 and a;3. Then this contribution becomes zero
from the footnote 5 and (2.22).

For the fourth order pole of the OPE K%(z) P®(w) for the fixed (N, M) = (5,4), the
contribution appears in the coefficients, as,ag, az,a12 and a3 of P’(w) and the relevant
fields are given by J*(1) and J¢. Again by substituting the values of (2.22), all these terms
are vanishing.

Now we move on the third order pole of K%(z) P?(w) where the nonzero results appear
explicitly. The relevant coefficients are given by as, as, a7, as, ai1, ai2, a3, aig, and ai7.
For the calculation of a5 terms in (2.14), it is better to rewrite them by using the charged
spin-2 current in (2.11) because the first two terms of (2.11), which are equal to the factor
of a5 terms, can be written in terms of the remaining three quantities. That is,

_ e (glei) g(@i) 4 y(@i) j(pi) — K¢ cde 7d 7e
Op t5; (S T+ JD TP (w) = K(w) + (M+2l<:)d J¢J(w)
oN [M+N . .o
-\ "N JC T (w). (4.1)

Then the a5 term contains d**¢ J¢ multiplied by the above expression to the right. The
nontrivial calculation comes from the OPE between K%(z) and d*? J% K¢(w). Due to the
fact that there is a relation in (2.12), the contribution of the third order pole in the above
OPE can be obtained from the second order pole of the OPE K¢(z) K¢(w) and the third
order pole of the OPE K%(z) K¢(w) we have determined in previous section.

OWe regard d¢%%, as % gad gbe _ pace pebd 4 4 pace gebd 4 4 gace pebd 4 gace gebd 1y yging the symmetric
property in the indices of ¢ and d in (3.34) from the general definition in appendix A. Similarly, d¢2? is
given by i fobf (& ofegde 4 3Gif+ d)f°9 d99¢) by imposing the symmetric property between the indices ¢, d
and e. We also have dg5ede = qgbede 4 (1—]\/2[ i febagle 4 % i fobf qofa qode — % i feaf @79 @94). Finally, we have
dZ,chfﬂl2 =3 (deac fbde + fu.ce dEbd).
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It is also nontrivial to calculate the ag term of (2.14). Then we should calculate the
second order pole of the OPE between K(z) and 6,5 d; (JD) J@9) 4 j@0) J(Pi)) (1) and the
third order pole of similar OPE with different index we have obtained in previous section.

Because the a2 and a3 terms of (2.14) cannot be written in terms of other known quan-
tities, it is rather complicated to extract the corresponding third order poles. Let us con-
sider the OPE between the current K“(z) and the composite operator 6,5 t;’.g JP) § 7@ (w)
which is not exactly the a;3 term because there exists —% N 92 J°(w) from the normal or-
dering in the above composite operator. That is, the commutator 6,5 t?'i [0J @, g (p{)]
provides the above second derivative term although there are other two terms and the
OPEs with K“(z) do not contribute to the final result.

For the coefficient a2 term, we have the following relation
N

i) 7(55 1 i &5
Ope 10 TP D) (w) = 5 O K" (w) = 8,5 115 T 9 T (w) — 5 8 Jb(w)
N bed o ( 7¢ 7d N |[M+N b u(l)
+2(2k+M)d d (J¢ I (w) k,/ iy 0T ) (w).

(4.2)

For the second term of (4.2), we have analyzed them in the context of a;3 term in previous
paragraph. It is easy to observe that the third order pole from the OPE between K%(z)
and 0 K®(w) is given by (0 (K% K®)pore—3 + 2(K® K®)o1e—2)(w) from the previous section.

For the a;7 term of (2.14), in general, there are quintic products in the f and d symbols.
After collecting the three products here correctly we are left with f or d symbols and we
can further use the identities between the triple products by combining these single f or d
symbols with the remaining quadratic products between them.

It turns out that the third order pole, by collecting the above results, is summarized by

K%z) P’(w) =2M azi f%% K°(w)
(zfl’w)3
1
- ON(—8k?+4kM —4k3 M +4M? —2k* M? —8kN+4MN
s | = parkgan Y 8 + *
1
— 2k M N +kM?N)idece febd je g~ N(8k*>— 4k M +4k> M —4M?
+ )ad*c ferJed 2kt ) (8 +
+2k?M?+8kN —4MN +2k*M N —kM?N) d*¢ 9 J¢
(M?—4)(4k*+2kM +4kN+MN) - vab 2N [M+N . . 1)
N abc c = abc 7Cc JU
+ M (2k+ M) i f 8J+k UN L fCJed
: D (5 4(k*~1)N(2k+M+N)
abe ¢ _4c 7(pi) 71(57) abc 7c¢ u(l)
20 [ bp5 15 T T )](w)—{— F@k+ M) azi f4°JC TN (w)
AN |M+N (2k+M+2N)

+ag (2k+M+2N)i fobe g je_oN i fabe gede gd ge

k \ MN (2k+M)

+4(2k+M+2N)i [ 6,515 7D T L 2N (2k+ M +2N) i fabcaJC] (w)
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— M a1 +2a16+(M?46) ar7 i 2 K¢(w).

M+N
MN

N (6k3+3Kk>M +2k*N —4k—2M —2N)
k(2k+M)
(4k3+2k2M — kM N —4k—2M —2N))

k(2k+M)
(4k>+2kM +4kN+MN)
2k+M
2 N)MAN) o uy quy NP [MAN
kM k| MN

M+N N 4k2+2k:M+4k:N+MN) Jobe gu(1) JC_2N(k+M+N) Jagb
k(2k+ M) kM

N ( 2k+M+2N

Ty C2k+M

-2

+(a13—a12) (kN +3N?-50)§%9 1)

kN (2k+M+2N)

dabc a.J¢
(2k+ M)

ifabcajc_i_

i fabe 505 tﬁ P j(@9)

4(k+N)
M

abc c i aj ( a i oj
4% 5p6tsz(P)J( 7 4 5 b5p&5jg<](p)<]( 7)

fabc Ju Jc

d) (i f+d)™e e T =257 % J%Nz‘fabCKC] (w)

MN

dabc K¢
(2k+ M)

la(K K’ Jpole—3+ (K* K’ Jpole—2+ (w). (4.3)

+ai2

We expect that the spin of third order pole is given by 2 and it is natural to consider
K¢(w) term. Let us focus on the term i f¢.J¢ J“U) (w) in (4.3) by remembering the explicit
form in (2.11). We obtain the following result

AMN [M+N +2(M2—4) (4k? + 2kM + 4kN + MN) M+N

k MN ° Mk(2k + M)

4(k> —=1)N(2k + M + N) 4N(2k + M +2N) |[M + N

k(2k + M) ot MN
_2MN [(M+N) N2 IM+N ﬂ M+N
k MN T e\ TN T N
4N |[M + N M2+6)N (M+
o T e N (4.4)

Note that the K(w) term in (4.3) can participate in the expression of (4.4). By substituting
the coefficients in (2.22) into the above (4.4), we obtain the final coefficient of K¢(w) in
the third order pole.

Therefore, finally we determine the third order pole of the OPE K%(z) P?(w) as follows:

(k* — 4)(2k + M)(k 4+ 2N)(3k 4+ 2M + 2N)

2k (k + M)(3k + 2M) ari f* Ko (w).  (45)

(Ka Pb)pole—S =

Because the factor (k + 2N) appears in all the coefficients except a; and ag in the spin-3
current, it is obvious to see that this factor appears in (4.5).
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4.2 The second order pole
4.2.1 Complete second order pole in the coset realization

For a; term in the spin-3 current, we should calculate the OPEs between the first order
poles of the first OPE in (3.1) and .J(°/). Compared to the OPE K%(z) W®) (w) associated

with b7 term, the a; term of (2.14) contains the generator t{;

rather than d,5. In this case,
we have similar relations to (3.2) where the indices a,b,¢,--- are replaced by «, 3,7, -
and M is replaced by N. The identities involving f or d symbols for SU(NN) are used.

For a5 term, from the previous relation in (4.1), we need to calculate the first and
second order poles of the OPE between the charged spin-2 current. For the former, due to
the additional quadratic product of f and d symbols, the identities involving ff fd, fdfd,
ffdd and fddd can be used [24, 25].

For a; term, by using the previous relation in (4.1) where the index c is replaced by b,
we can calculate the OPEs between K and the right hand sides of (4.1). Then as before,
the second order pole of the OPE between K?(z) and K®(w) can be used.

For ag term, as an alternative method, we can use the stress energy tensor and the

second and third terms of (2.7) can be written as

1

= (s..8- g g@I) s 7@ 7000 —
2(k + N + M) (5f’°' 03 JHU T+ 0pz O3 T ) (4.6)
1 1 1
— o Jo a ja w(l) yu(l)| _ + ga o = qu(l) qu(l)
g 2(k+N+M)[JJ+JJ+J 7 1 s T

We can regard the ag term as the product of .J® with the right hand side of (4.6). Then the
nonzero contributions of the OPE with K can be calculated from the 7" term and J¢.J¢
terms in (4.6) by using (2.12) and (2.13) because the OPEs between K and both J* and
J*1) do not have any singular terms.

For aj2 term, due to the relation in (4.2), the second order pole from the OPE between
K%(z) and 9 K®(w) is given by 1 (9 (K® K®)pote—2 + (K K®)pole-1)(w) from the previous
section.

For a;3 term, the second order pole of the first OPE in (3.1) can combine with 9 .J(7)
and similarly the operator .J (P) can be multiplied by the second order pole of the OPE
K%(z) and & J%9) (w). Moreover, there are also contributions from the second order pole
between the first order pole of the first OPE in (3.1) and 8 .J(7) and contributions from
the second order pole between K% and 9 .J(79).

For a7 term, the identities for the quartic products in the f and d symbols are
used [24, 25].

We present the complete second order pole in appendix D.

4.2.2 How to rearrange the second order pole

At first sight, because the spin is given by 3 in this particular pole, we do not expect that
there should be other independent spin-3 current. It is natural to consider the possibility
of spin-3 currents, P°(w) and W) (w) with an appropriate additional SU(M) invariant
tensors because the right hand side of the OPE K“(z) P’(w) should contain the free indices
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a and b. Of course, the descendant of (4.5) with fixed known coefficient should also appear
in the right hand side

1 (k* —4)(2k + M)(k + 2N)(3k + 2M + 2N)
4 2k(k + M) (3k + 2M)

ayi fPC9Ke. (4.7)

The nontrivial things to check explicitly is to write down the remaining composite operators
in terms of the known currents for generic N, M and k.

The simplest term we can consider is the by term of W) (w) in (2.25). From the a7
term in the second order pole in the OPE K%(z) P’(w), the corresponding cubic term in
Ju) gab qu) ju(®) jul) g given by Ju(1) (K Kb)pole_g(w) and the coefficient is

4(k+ N)(M + N)

- M ay. (4.8)

By substituting the a7 in (2.22) into (4.8), then this leads to —% bs with (2.32). This
implies that there should be

— 5% % WO (w) (4.9)

in the second order pole of the OPE we are considering.
We can check also other simple term. For example, the ag term of (2.14),
debe J* J® J¢(w), can be seen from both a; and a5 terms in the second order pole. They

are given by
2(2k+ M + N)

(2k + M)

al — 4&5. (410)

By substituting the as value in (2.22) into (4.10), this can be written as

k(3K + 2M)(2k + M + 2N)
(k+ M)(2k + M)

ag, (4.11)

where the relation (2.22) is used. Then the second order pole should contain, from (4.11),

k(3k + 2M)(2k + M + 2N)

G 30k 5 ) de P¢(w). (4.12)

After subtracting (4.7), (4.9), and (4.12) from the second order pole, we have checked
that we are left with the following seven terms for fixed (N, M) = (5,4)

dso J* Kb(w) + dso J* K (w) + dsz £ f% J¢ K (w) (4.13)
+ d38 dqece dbde Jd KC(’UJ) + d39 dace dbde Je Kd(w) + d41 5ab Je KC(’UJ) + d42ifabc 6KC(U)),

where the ordering in the coefficients is not important. Of course, these coefficients are
known for the above fixed values of (N, M). We have obtained (4.13) by assuming the
possible terms with arbitrary coefficients in the right hand side of the second order in the
OPE. Note that the above terms (4.13) also arise in the coefficient of a7 term of the
second order pole. This implies that the second order pole can be written in terms of the
known currents we mentioned before.
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Then the next thing we should consider is to determine the above seven undetermined
coefficients in terms of N, M and k. Let us consider the d33 term in (4.13). Recall that
there exists a relation we mentioned several times before

4
fabc fcde — _M (6(16 5bd _ 6ad 61)6) _ (dbdc deee — dadc dcbe)' (414)

When we meet the ff terms, we should always use this identity in order to collect the inde-
pendent terms. Then by remembering the spin-2 current, the dzs term has d*¢d**?.J¢ K4 (w),
where we can see % M +N debe geed ge gy (). We collect the corresponding terms

in the second order pole as follows.

_ AN M+Na— MN a—ﬂ M+Na + Na (4.15)
k\ MN P @k+M) Y kMmN M - '

Note that there are also contributions from aq7 term we do not write down here but they

are cancelled each other. It turns out that the ff term with above cubic operators in
Jud) (KK b)pole,g provides the final contribution with the help of (4.14). This should be

equal to
k(3k +2M)(2k+ M +2N) 2N [M+N
— 1\ ———d 4.16
G+ M)k+ ) T % TN B (4.16)
where the first term comes from (4.12). Therefore, we determine the coefficient dsz, by
using (4.15) and (4.16) together with (2.22), as follows:

(2k + M)?(k + 2N)(3k 4+ 2M + 2N)
A(k + M)2(3k + 2M) a

ds3 = (4.17)

which can be substituted into (4.13).
We can move on the term 6% JCK¢ where there exists 09 J¢ J¢ J*() with an appro-
priate coefficient concerning on the coefficient ds1. From the second order pole, we have

16N [M4N 4N 8N [M+N 12N M+N (418)
M N N BT e\ N “MN YT

which (there are two contributions from the a7 term with (4.14) and the final result by

summing over them is given as above) is equal to

_ﬂ% /M+N 2N /M+N (4.19)

The first term is obtained from (4.9). By equating these two (4.18) and (4.19) together
with (4.17), we have determined the corresponding coefficient as follows:

k(2K + M)(k + 2N)(3k + 2M + 2N)

dy = — (k+ M)2(k +2M)(3k + 2M)

ai. (4.20)

Now this can be substituted into the (4.13) again.
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We consider the dsg term where there exists the derivative term J%9 J%(w). Recall
that there is a relation from the footnote 4. On the one hand, we have the following result
8 4(4 — M?) 2(k+ M + N)

4
N —6a17+Ma11+M618— gz % i

a3 . (421)

There are two contributions from a7 term as before. For the contributions from ag and
aq1, the previous relation (4.14) is used. Note that by combining the contributions in the
coefficient (a3 — a12) and the coefficient aq2, the final contribution from a2 term becomes
zero. Then we do not have any contributions from ajo term in (4.21). On the other hand,
this should be equal to

N dsp. (4.22)

Note that in (4.21), the relation of (4.14) is used in the second, third and fourth terms
of (4.21). Then from (4.21) and (4.22), the coefficient can be determined

(k% +3kM + M? + 4)(k + 2N)(3k + 2M + 2N)
kM (k + M)(3k + 2M)

d30 = — ai, (4.23)

which can be substituted into the (4.13).
Let us look at the dsp term where we have the derivative term J?9.J%(w) with the

footnote 4. We can collect the possible terms as follows:

2(M? + 4) 4(M? - 4) N 2(2kM + M? +2MN — 4)

N i as — 2 as i as
2(k+ M + N) 2(2k+ M + N)
- — 24 . 4.24
M a2 M a13 + 24 a7 ( )

There are two contributions from both as term and ag term and the final result can be
written as above. The contribution from as term also appears in i fo4¢ d*¢ (K¢ K “)pole-1(w).
Note that the additional contribution from a;s term can be found in % (K*K b)pole_l(w).
From the three places of a17 term, the final result for this coefficient is given above. On
the other hand, there exists

4
N <— dzz + Wi d33> : (4.25)
Then we arrive at the following result, by using (4.24) and (4.25) which are equal to each
other,
(k3 — 2k2M — 3kM? + 4k — M3 + 4M)(k + 2N)(3k + 2M + 2N)
d32 = aj. (426)

kM (k + M)2(3k + 2M)

Then this coefficient can be substituted in (4.13).
For the d3g term, we have the derivative term d®d®*? .J¢9 J%(w). We can collect the

possible terms as follows:
(8k + M?N + 4M)

N|- 2as —
M2kt ) et

(2k + M + 2N)
2(2k + M)

aiz + ai |- (4.27)
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The two contributions from a1 are cancelled each other. Similarly, those from a17 can be
also cancelled. After simplifying the contributions from the as term, the net result comes
from 4 fede dbed (K¢ K “)pole-1 as above. This should be equal to

N dsg. (4.28)

Then from (4.27) and (4.28) by taking them to be equal to each other, we obtain

(k% + kM + 4)(k 4+ 2N)(3k + 2M + 2N)
4k(k + M)(3k + 2M)

dgg = — ai, (4.29)
which can be substituted into the (4.13).

Similarly, the corresponding terms for the d4o term which involves various different
kind of coefficients by considering the term f¢.J¢ 9 J*1)(w) can be obtained

M+ N l4M 2(M? — 4)(k 4+ N) L Ak+N)

N _
MN |k BT kM 5 08
2M (k+ N) N 4 2(M? +6)
2 - = 2 A Th) L
Pkt 012 + 1 013 + 7 016 + A a7 (4.30)

The a3 term and aj; term can be obtained by changing the ordering of the two opera-
tors. After we simplify all the contributions from the as term, the final result comes from
i fade gbed (K¢ K “)pole-1 @s above. Note that there are contributions from various places
corresponding to the a19 and ai3 terms. Then the above should be equal to

2N [M+N 1(k:2—4)(2k+M)(k+2N)(3k+2M+2N)a i d (4.31)
k \ MN |4 2k(k + M)(3k + 2M) R '
Then it is easy to obtain the following result from (4.30) and (4.31)
k—=2)(k+2)M(k+2N)3k+2M + 2N
s (B= DM+ 2N) Bk +2M +2N) )

8k(k + M)(3k + 2M)

This can be substituted in (4.13).
For the final coefficient, we use a little different method. It is straightforward to cal-
culate the OPEs between T'(z) and each term of (4.13) respectively. The third order pole
of these (except the dy4; term) has the form i f%¢K¢(w). By requiring that the expres-
sion (4.13) should be a quasi primary operator, there exists for the vanishing of the third

order pole
M? — 4)

—4
dso — dsy + M dsg — <M M) dsg +4dg = 0. (4.33)

This (4.33) implies that we obtain the coefficient dsg by using (4.23), (4.26), (4.17), (4.29),
and (4.32) as follows:

M2
dss + (

(k% + kM +4)(k 4+ 2N)(3k + 2M + 2N)
4k(k 4+ M)(3k + 2M)

dgg = - ay, (4.34)
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which can be substituted in (4.13). We can also check the above result by following previous
method after extracting the corresponding terms from the second order pole.

Therefore, by substituting (4.23), (4.26), (4.17), (4.34), (4.29), (4.20), and (4.32) into
the previous expression (4.13) the known quasi spin-3 operator can be written as

N(k+2N)(3k +2M + 2N 6(4 + k2 + 3kM + M?
() = NUH2N)Bh+20 £ 2N) [ 6(4+ K+ 3RM 4 MP) o
6(k + M)(3k + 2M) kMN
3 o 2 o 2 3
| O(4k K AN — 2K2M —BkM? - M)
k(k + M)MN
3(2k + M) bd a 304k +k° +4M) bde 7d
ace CJCK daced CJ KC
shrann T Tk AN
3(4 + kz + kM) ace jbde c 1-d
- SN dace ghde je ¢
6k(2k + M) b 3(k2—4)M . .,
- gab e jre — 8 I pabe gpce | (), 4.35
(k + M)(k + 2M)N wN (w) (4:35)

By multiplying f or d symbols into (4.35), we obtain the primary operator having a single
index.!! We observe that the OPEs between the operator (4.35) and J*M)(w) (or J*(w))
are regular because this operator consists of the spin-1,2 currents. We can check the
primary condition for the spin-3 operator having the two indices

T(2) Q(w) = —— 3Q™(w) +

E— Q™ (w) +--- . (4.36)

1
(z —w)

Therefore, the second order pole can be described as

1 (k* —4)(2k + M) (k + 2N)(3k + 2M + 2N))
T4 2k(k + M) (3k + 2M)
b 01 k(3k 4+ 2M)(2k + M + 2N)
0 W)+ S e

(Ka Pb)pole—Q(w) aq if”“bC@Kc(w)

dabc Pc(w) + Qab(w),
(4.37)

where the spin-3 primary (4.36) operator Q*(w) is given by (4.35). Compared to the third
order pole in (4.3) where there exists the term f%¢ K¢(w), the second order pole in (4.37)
has both d®¢ P¢(w) and §%° W (w) terms which are symmetric under the interchange be-
tween the index a and b as well as some descendant. We expect that this alternating feature
will appear through the whole singular terms in the given OPEs.

4.3 The first order pole and charged quasi primary spin-4 current

Compared to other singular terms described in previous subsections, the first order pole can
be obtained by simple contraction between the operators. We present this in appendix E.
We expect that there exists a new quasi spin-4 current in this singular term. In the third

11 .. . . k(A2—4) k(A2 —4) E(A%—4)
Under the large k limit, the coefficients in (4.35) become = z37> a1, —S5=3r a1, ——35z— 01,
k(A2 —4) k(A2 —4) 2(A%—4) d EA2—4)M tivel
— T @1, Tigxz A1, —3yz 41, an sz — 01 respectively.
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order pole, the field content is given by i ¢ K¢(w). Along the line of this behavior, by
introducing the following quantity

Z.fabc (Ka Pb)pole—l(w) = Rc(w)7 (4'38)
and subtracting the corresponding quantity from the descendants with a multiplication of
i ¢ a new quasi spin-4 current is given by!?

e — pc L. abe ab
R(w)=R (w)—ng 0Q"(w)

M (k? — 4)(2k + M)(k + 2N)(3k + 2M + 2N) .
" 20k(k + M)(3k + 2M) a1 0 K°(w), (4.39)

where Q% (w) is given by (4.35). When the f symbols meet the Kronecker delta or d
symbols by two index contractions, we get zero. Let us emphasize that this new quasi
spin-4 current is completely determined via the left hand side of (4.38) from appendix E
and the two terms of the right hand side of (4.39).

Then the first order pole is given by

1 (k2 — 4)(2k + M)(k +2N)(3k +2M +2N) .,
K*P% . - — abe 52 pee
( Jpote-1 (w) = 55 2% (k + M)(3k + 2M) a1 1 f7 07 K*(w)
- éaab 91 @) () 1 k(3k + 2M)(2k + M + 2N)

1

b 3 (k+ M)(2k+ M)
+ %a Q®(w) + R™(w), (4.40)

¢ d & P*(w)

where we introduce the operator R (w) which is given by the first order pole subtracted by
the descendant terms. Then how we can connect this with the above quasi spin-4 current?
From the relation

(K* P)poser(2) = — 171 7 Re(w) + 5™(w), (4.41)

and by equating (4.40) and (4.41) each other, we can write down the above R®(w) in
terms of R¢(w), S®(w) and other known operators. Note that the above behavior can
be seen from the first order pole of the OPE between the spin-2 current and itself (3.34).
This (4.41) can be seen from the fixed (N, M) = (5,4) case. In other words,

1 .
R — ~517 i f‘lbc R¢(w) + other terms. (4.42)

Therefore, the R®(w) contains the previous quasi spin-4 current in (4.39) and can be
treated as similar quasi spin-4 current with two indices. We can easily see that the over-
all factor 577 in (4.42) can be checked by multiplying i f**® into (4.41) and using (4.38)

12We have the nontrivial fourth order pole in the OPE between T(z) and R®(w) which is given

by 7288(kfjgiiii;?:i:ig;(k+m) a1 K*(w) for (N,M) = (5,4). By adding i f**°(J*0K® — 20 J° K° —

% el K d)(w) into this new quasi primary spin-4 current and removing the fourth order pole above, we

can make a primary spin-4 current at least for (N, M) = (5,4). For generic (N, M) case, we should find
out the above fourth order pole for the general case. Then we can easily fix the above relative coefficient
we want to add above. See also the footnote 13.
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and (4.39). When we substitute (4.42) into (4.40) and use (4.39), then the above “other
terms” can be read off explicitly. Note that the left hand side of (4.40) is given by ap-
pendix E in terms of coset realization.

Although the expression of S%(w) can be determined for general N and M by following
the procedure we have described in the construction of Q% (w) in (4.35), it will be rather
nontrivial and complicated due to the fact that there are tensorial structures having five
indices. Instead we present them for fixed (N, M) = (5,4) as follows:

1 al b k‘(k‘ + 7)
S (1w =_—Asabagw® iy + dec 9 Pe(w
W =75 @)+ 5D (w)
(k + 7) Ccoa . CQ C Qa C
(k + 6)(k + 10) ar | — 3(7k — 4) (Jdbeca _ 3(7k — 4) (Jeadcb
(k +4)2(3k + 8) 40k ! 40k °1
N 3(5k% + 33k + 4) Jedeba_ 3(20k% + 59k + 12) dbeca
80k ol 40k 52
~ 3(10K% 4 21k — 12) ebdea _ 3(15k% + 23k — 36) gedeba
40k 52 80k 52
3i(k + 2 3i(k + 4 3i(k + 4
+ Z( 4+ )fabc (5de + Z( 8+ )fabe 6dc+ Z( ]:— )faed 5bc Jc Jd Ke(w)
kE+6)(k+ 10 3(10k3 + 75k? + 346k + 568
a1 | — oJ Kb
(k+4)23k+8) 40k
kE+4)2 103 — 202 — 149k — 132 k2 — 4k —1
—3(+)J“8Kb+3(0 9 3)6JbKa+3( 6)JbaKa
8 40k 8
3(20k3 4+ 165k2 + 277k — 44 3k(k + 2
+ ( + 40]:— ) face fbde 8Jc Kd + ( 4+ ) face fbde JcaKd
3(10k3 + 5k — 78k — 104 3k2
+ ( + 0 ) dace debd 6Jd K¢ + ? dace debd Jd 8Kc
2k3 + 6k2 — 9k — 2 k(k+4
_ 3( +6 % 9 0) dece debdaJch . 3 ( + ) dece debd JcaKd
3(45k3 + 233k% + 268k + 32) ., 3k? b
— §PHICKC — —— 5% J¢9 K¢ . 4.43
A0k (k + 8) 2(k + 8) (w) (4.43)

It is rather nontrivial to extract this expression without any unwanted terms like as
JD (w), J*(w), JP)(w), or J@)(w) explicitly. The other unwanted spin-1 currents can
be absorbed in the new quasi primary current in (4.39). Note that the operator contents
in (4.43) consist of the spin-1,2,3 currents and some of the derivative terms can be seen
from the derivative of Q®(w) in (4.35). This implies that the right hand side of (4.43)

depends on the adjoint operators (or singlet operator) living in SU(M).'3

13We can check the following properties. The J* W (w) is a primary spin-4 operator and the J* P?(w)—
14 f**¢ 9 P¢(w) is a primary operator. On the other hand, J* 9 K®(w) — 20 J* K*(w) — & f**° 0> K°(w) is
quasi primary spin-4 operator and the fourth order pole in the OPE between the stress energy tensor and
this operator is given by —2 4 f*° K(w).
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Moreover, the OPE between the spin-1 current and the above quasi primary spin-4
current for fixed (N, M) = (5,4) is described by

5 1 28(k — 2)(k +2)%(k + 6)(k + 10)
(z —w)3 5k(k +4)(3k +8)

1 (kz+2)(k+6)(k+10)< (k +4)(Tk + 4)
+ 5 - .

(z —w) (k+4)%(3k +8)
2 _
(k4 ]161(5 16) b ey
2 _ —
o (5k ik 16) ai dece debd Jd K¢
(k+4) b 4  Gk?
ace je ¢ Kd _
ko g (k+8)
(k — 2)(k + 4)(7k + 24)
* 5k

al] 7:fabc Kc(w)

aj JaKb

ai face fbde Je Kd

6(k — 4)(k + 2)
2

ai 5ab JC K¢

wirore)

 4k(k +T7)(3k +8)
(k+2)(k + 4)

G _1 o i fCR(w) 4. (4.44)

We observe that there exists a factor (k + 10) which comes from the factor (k + 2N).
The first order pole is what we have expected. Contrary to the spin-2,3 currents, there

dabcPc‘| (w) +

are more singular terms in addition to the first order pole in (4.44). In principle, the
above calculation can be done for any N and M but it will take time to complete this

computation.

4.4 The final OPE

In summary, we present the OPE between the charged spin-2 current and the charged

spin-3 current as follows:

K9(2) PP(w) = . _1w)3 [(k2 - 4)(2/{2;;(241(; J;é]]jzr(:;/% 2M + 2N)] 03§ £ ()
e —1w)2 Ll; = 4)(%22(]1%;?(:2:151(2% B o ke
e - ) [210 = 4)(%2:(]/;?(%(2?&% I oy g 1

1 1 aj
) ab_iéabiaw(B)
+ 3 @ 3 by +

1 k(3k +2M)(2k + M + 2N)

abc c
P
5 Gram@ekran 40

+ R®|(w) +--- . (4.45)
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In the right hand side of (4.45), there exists an overall factor a;.!* Although the explicit
form for the quasi primary spin-4 current ]%C(w) is determined via the known currents and
coset operators, the explicit form for the R® for general (N, M) is not known but it is
known for (N, M) = (5,4) because we do not know how appendix (E.1) can be written in
terms of the known currents. Their operator contents are known but the relative coefficients
are known for (N, M) = (5,4). Or if we interpret R itself as the whole new charged quasi
primary spin-4 current (without splitting the quasi primary spin-4 current with a single
free index and others), we do not worry about the fact that this is written in terms of coset

realization.®

5 The OPE between the charged spin-3 current and itself with
(N, M) = (5, 4)
5.1 The sixth, fifth, fourth order poles

For the sixth order pole we expect to have the Kronecker delta 6*° term. For the fifth order
pole, there exists i f%¢ J¢(w) term. For the fourth order pole, there are symmetric 6?° and
d® tensor terms and other symmetric tensor terms in (3.34) as well as the descendant term.

5.2 The third order pole

We can take the operator contents in the first order pole of (3.34) at the third order pole of
this OPE. In other words, in addition to the descendant terms, there are i f2%¢ P¢(w) and
the quasi primary spin-3 operator including the stress energy tensor. Compared to (3.34),
the other two kinds of quasi primary spin-3 operators do not appear in this OPE.

5.3 The second and first order poles
Then we obtain the OPE as follows:

. 1 15(k% — 4)(k* — 1)(k + 6)(k + 10)(2k + 9) “
P(z) P(w) = - [ 2%k + 4)(3k + 8) af o
1 15(k% — 4) (k2 — 1)(k +6)(k +10)2k +9) | 5. Labe e
(> —w) 2k2(k + 4)(3k + 8) api [ (w)
1 3(k? —4)(k +5)(k +6)(k + 9)(k + 10) 2 sab
(z — w)! 1k(k + 4) “
3(k? — 4)(k +6)(k+7)(k+ 10
+ ( )( 4_2_]6 _)|_(4)—: )( + )CL% dabc K¢
115(k% —4) (k2 = 1)(E+6)(k+10)(2k+9) 5 . .ube o v
T3 2k2(k + 4)(3k + 8) waifro

k2 (A2—4) h . . -
EBY a1 when we take the infinity limit of k.
The one appearing in charged spin-3 current of the second order pole becomes %

5For the first order pole of the OPE in (3.34), we can treat the sum of four quasi primary spin-3

MThe structure constant in the third order becomes —

operators (after subtracting the descendant terms) and a single primary spin-3 current as the whole single
quasi primary spin-3 current having two free indices. Then we do not need to specify the above four quasi
primary spin-3 currents in terms of multiple products between the known currents.
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15(k? — 4)(2k +9)

(k+6)(k+10) (15(k — 2)(2k +9) a2 Jobed a2 Jabed
(k+4)(3k + 8) 8 174551 8k 174552
3(k —2)(180 + 191k + 44k + 3k3) 5 up cca 152 —4)(2k+9) 5 ue ba
— Sk ai o®’ o — 572 ay 0% o
« %(JC J4 4 i JC)] (w)
1 13(k* —4)(k+5)(k+6)(k+9)(k+10) 5 .
_ a T
TEowr |2 4he(k + 4) a19™0
13(k2—4)(k+6)(k+7)(k+10) 5 .
— aoc Kc
T3 A(k + 4)2 ard™o
115(k% —4) (k> = 1)(k+6)(k +10)(2k +9) 5 . .ube 12 1
% 2k2(k + 4)(3k + 8) aifrond
1 (k +6)(k +10) (15(k —2)(2k +9) 2 sabed _ 15(k* — 4)(2k +9) o2 gobed
9 (k‘+4)(3k‘+8) ;) 1%45S51 Sk 144552
_ 2 3 2
 3(k —2)(180 + 191k 4 44k> + 3k%) 22 gob g 15(k% — 4)(2k +9) a2 goe g
8k 22
1
X 58(J&7d+fh70)
N (15K5 + 278K> + 1648k* + 2208k3 — 10480k? — 37088k — 34560) ayi fbe pe
2k (k + 4)2(3k + 8) !
3(k? — 4)(k +5)(k+6)(k+9)(k +10) , W 1o
4 ey o2 (TJ -39 J) (w)
vo[—1 )+ (5.1)
e . .

In the second order pole, there exist spin-4 quasi primary operators in addition to the
descendant terms as usual. We expect that there will be symmetric terms, 6% W® (w)
where the neutral primary spin-4 current will be presented in next section and d2¢ Rc(w)
by recalling the second order pole of (4.45). We observe that in the second order pole there
exists a term Jo=! Jo=1 jo=22 jo=23(y) which is one of the terms in the neutral primary
spin-4 current W® (w) for the equal indices a = b. So far we do not obtain the explicit
form for the second order pole due to the fact that there are two many candidates with
various tensorial structures at this singular terms. We expect that there is a new primary
field of spin-5 in the first order pole.

6 The OPE between the uncharged higher spin-3 current and itself

6.1 For fixed (N, M) = (5,4) case
6.1.1 The sixth, fifth, fourth and third order poles

We expect that the highest order pole contains the central term. We observe that this con-
tains the factor (k+10) which is given by (k+2N) for general N. There will be no fifth order
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pole because we are considering the OPE between the spin-3 current and itself. The fourth
order pole should contain the spin-2 current as usual. It turns out that there is also the
quadratic term J¢ J%(w). Then the third order pole should contain the descendant terms.

6.1.2 The second and first order poles with the presence of uncharged primary
spin-4 current

The second order pole can provide us to have a new primary current of spin-4. It turns
out that the final OPE for fixed (N, M) = (5,4) is given by

1 ¢ 1

®3) ) (w) = c [ 9T
W (2) W (w) —w)3 (z—w)42T(w)+(z—w)3aT(w)
1 3 on 16(k+4)(k+5)(k+9) (A ~ 3 9 >
+(z—w)2 [10a T+3(37k3+216k2+337k+510) T 108 g
+W(4)] (w)
1 11 4+ 1 16(k+4)(k+5)(k+9) <A n 3 0 )
(z—w) [15(9 T 2 3(37/634—2161{:2—i—3§.’>7k:+510)a T 108 s
1
+§aw(4) (w)+--, (6.1)

where the b? of the overall constant in the neutral primary spin-3 current WG s fixed as

follows:
_ 8k(k + 8)
= 27(k2 — 4)(k 4 5)2(k + 6)(k + 9)2(k + 10)” (6.2)

In (6.2), the requirement we impose is that the central term of (6.1) should be equal to
g with (6.3). As described before, there exists a J* J*(w) term in the fourth order pole.
Note that the modified central charge and stress energy tensor are given by

L 15k 20(k* —1)(2k 4+ 9)
T T k) (k+9)

2 1 a 7a

T;T_WJ Je. (6.3)

We can easily see that the OPE between the spin-1 current and the modified stress energy
tensor is regular

JU2)T(w) =0+ . (6.4)

We can calculate the OPE between the stress energy tensor and the J* J%(w) term and

this leads to the central charge (éi’fl). Due to the fact that there is a relation in (6.4),

we obtain the modified central charge is given by (6.3). Therefore, the spin-1 current is

decoupled from the modified stress energy tensor according to (6.4). See also [31] where
the U(1) spin-1 current is decoupled from the stress energy tensor, spin-3,4 currents in the
specific model.
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We have explicit form for the primary spin-4 current ° as follows:

9(k +2)(k 4 5)(k + 9)(53k* + 800k® + 3409%> + 3078k — 3600)
2k(k + 8)(37k3 4 216k2 + 337k + 510)

x J4T = = ~(w) + other terms, .
Jo=t ja=1 ja=1 ja=1 her 9330 6.5

w@ (w) = 2

together with (6.2). We can also check that the regularity between the spin-1 current and
this spin-4 current (6.5)

JUWHD(w)y =0+ . (6.6)

This implies that the spin-1 current is decoupled. We will observe in next section that the
regularity between the spin-1 current and this spin-3 current

JWO (w)=0+---. (6.7)

This fact can be seen from the closure of the OPE between K%(z) and W& (w).

Therefore, we have the spin-2,3,4 currents 7', W®) and W®, having the regularity
behavior in (6.4), (6.6) and (6.7). The OPE between the spin-2 current and itself takes the
standard form with modified central charge. The (quasi)primary condition under the stress
energy tensor is preserved when we modify the stress energy tensor because the J* J%(z)
term does not spoil the spin-3,4 currents according to the regularity.

6.2 For general (N, M) case

The coefficient appearing in the quasi spin-4 operator (T T— 13—0 2T ) is fractional function
of k and both numerator and denominator are polynomials of k. The highest power is
given by three. We can express this coefficient in terms of the central charge. It turns
% for fixed N and M with (6.3).
Because the structure constant depends only on the central charge, we expect that when
we change the different values of N and M, the OPE of (6.1) still satisfies together with
the corresponding central charge. The structure constants do not change and are given by

out that this is equal to the well known quantity

function of central charge as above. Therefore, we obtain the general OPE for arbitrary N
and M by realizing modified central charge written in terms of N, M and k.
We claim that the OPE between the neutral spin-3 current and itself is described as

1 ¢ 1 ~ 1 ~
b ]38 g 32M_32A> (4)
Cowe|10? T Ger oy (TT 2 T) W (w)
L 1l gspn, b 32 o(an 3 2A> 1oww
(z —w) [158 T+2(56+22)8<TT 108 T +28W (w)
. (6.8)

"*Then we have T(z) W (w) = =5 AW W (w) + 5 0W D (w) + -+

w)?2
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where the modified central charge and modified stress energy tensor for generic (N, M) are

given by
. R(M2-1) (B —1)MN(2k+ M+ N)
T+ M) T (kM) (k+ N)(k+ M+ N)
T(w) = T(w) — 2(k41—M) J% % (w). (6.9)

The central charge in (6.8) is fixed by manipulating the overall constant b7 in the spin-3
current (2.25). Once we fix the structure constant in the fourth order pole as two, then
the corresponding descendant terms with known coefficients are determined automatically.
Moreover, the first order pole can be determined from the information of the second order
pole. Because the additional term in the modified central charge in (6.9) under the infinity
limit of k contributes to —(M? — 1) which can be ignored, the modified central charge
behaves as ¢ — M (1 — A?)k where \ = ﬁ [2]. The coefficient of the quadratic
J* J%(w) in (6.9) becomes — - under the infinity limit of k. We expect from the experience
of [24, 32] that the neutral primary spin-4 current contains d®®¢ d°@¢ Jje jb j¢ J4(2) as well

as other terms.

7 The OPE between the charged (higher) spin currents and the
uncharged higher spin-3 current

7.1 The OPE J%(2) W) (w)

We can calculate the OPE between J%(z) and W®)(w). The third order pole is given by
{Q(k—i—M) aio+ N (a2 +a13)} J%(w) which vanishes by imposing the condition (2.32). Fur-

thermore it turns out, under the condition of (2.32), that the nontrivial second order pole is

JU2) WO (w) = E _1w)2 2(2;1 A (=3(k+ N) (k+2N)by + M (k +2M) b7)
+ % (3(k+ M)by + N bﬁ] d®e J° Jé(w) 4 - - - . (7.1)

According to the discussion of next subsection, the coefficients by and b7 can be deter-
mined completely in terms of b; and leads to the vanishing of second order pole in (7.1).
Therefore, the spin-1 current is decoupled. In other words,

JUOWO (w)=0+--- . (7.2)

In addition to the modified stress energy tensor (6.9) with (6.4) and the spin-4 current (6.5)
with (6.6), this neutral spin-3 current with (7.2) belongs to the generators of W algebra.

— 41 —



7.2 The OPE K%(z) W®) (w)

For the calculation of b; term in the second order pole of the OPE K%(z) W®) (w), the
following identity

1 1
Tr(te P e td) = 7 52 5ed 4 L f+ d)® (i f + d)=? (7.3)

is used. It is rather nontrivial to calculate the OPEs between the composite operators (eval-
uated at z) appearing in the first order pole in the first equation of (3.1) and d,5 t;’.g J@3) (w).

We focus on the particular singular terms in the second order pole. It is rather non-
trivial to calculate the contributions from by and bg terms. We can collect J J*(1) Ju(1) (1)
term coming from b5, by and bg terms as follows:

2N [M+ N 4 4 M+ N
2M7 TN b5—kM(k+N)(M+N)b7+EN(2k+M+2N) TN bs
= CFiw aa, (7.4)

where the corresponding coefficient of P?(w) is given by a4 and the coefficient of P%(w)
is denoted by Ckayy we should determine. For the d®.J? J¢ J*(M) (w) term coming from
bo, b5, b7 and bg terms we have

2N |M + N N 2N (4k* + 2kM + 4kN + MN) |M + N
3M=—— by — 2M b b
K\ TN % ek K2k + M) MN T
(2k + M +2N) pa
—2N bs = C'ka 7.5
(2k+M) 8 K Wag? ( )

where the corresponding coefficient of P?%(w) is given by ag in the right hand side. Moreover,
the d®¢ dde j® j? Jé(w) term leads to the following relation
N (2k+ M + 2N)

—3M ———— by~ N
2k + M) * (2k + M)

a3
b7 = CIIzGW 5 aiy, (7.6)

where the corresponding coefficient of P%(w) is 3ai7. By solving the equations (7.4), (7.5)
and (7.6) together with (2.22) and (2.32), we obtain

y — _ N+ N)(k +2N) ,_ 3(k + N)(k +2N)
T U M(k+ M)(k+2M) " T M(k+2M) M
opt 120k +2M)(k+ N)(k+ M+ N) by (.7
W M (k + 2M) ar’ '

Then all the coefficients in the neutral spin-3 current are completely fixed. See appendix F.
From the term of i f%¢ 4,5 £ Jb ) Je) J%5 (w) associated with a7 term of (2.14),
the following relation satisfies

M+ N
b 4| o gy bsl . (7.8)

b pc
2a7 Ofalyy =4 VS

— 492 —



Then by substituting (2.22), (2.32) and (7.7) into (7.8), we obtain the structure constant

Kew = M (k +2M) ar’

(7.9)

Also other terms can be checked. See appendix G.

Therefore, we have the following OPE between the charged spin-2 current and the
uncharged spin-3 current

K2) W& (w) = - _1w)2 [12(3k+2M]\)4((kk1];[J)\y;+M+N) Zpa(w)
1 1123k + 2M)(k + N)(k+ M+ N) by o,
(z—w)| 3 M(k +2M) a

24(k+N)<k+M+N) bl - rabc 7b pc M a
TCESTT al(zf JP+36P>](w)

Foee (7.10)

where the relation (7.9) is used. Note that the last line in (7.10) is a primary operator
written in terms of the known spin-1 and spin-3 currents. Compared to the one in (4.45),

the OPE structure is rather simple because in this case, there exists only one free index.

36k2

237 and

Under the large k limit, the structure constant in the second order pole becomes

the one in the last line of (7.10) leads to 3.

7.3 The OPE P%(z) W®) (w) with (N, M) = (5,4)
7.3.1 The sixth, fifth, fourth and third order poles

Because the free index of this OPE is given by the index a, there will no singular terms
in sixth and fifth order poles. The nonzero singular terms appear in the fourth order pole.
The natural candidate is given by the charged spin-2 current K*(w). In the third order
pole, there will be a quasi charged spin-3 operator in addition to the descendant term. It
turns out that there exists a i f%¢ .J® K¢(w) term with derivative term which is a primary.

7.3.2 The second and first order poles

The quasi charged spin-4 current can also arise and the composite operators between the
spin-1 operator and the spin-3 current with appropriate tensor structures occur. We can
consider the derivative terms with free index a without any difficulty.
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We summarize the OPE as follows:

P%(z)
2)(k +2)%(k +5)(k + 6)(k + 9)(k + 10) “
l Ak(k + 4)(k + 8) ar b K% (w)
1.9( 2)(k +2)%(k +5)(k + 6)(k + 9)(k + 10) “
l 2 Ak(k+ 4)(k + 8) ab oK
)k +2)(k+5)(k+ )(k‘+9)(k‘—|—10)a b
8k(k + 4)(k + 8) H
X (2 f“bCJbKCJr]\j@K“) (w)
1 3 9(k —2)(k+2)*(k+5)(k+6)(k+9)(k + 10) 9 a
5| — a0 a1618 K
(z —w) 20 dk(k+4)(k+38)
+19(k:—2)(k:+2)(l<:+5)(k+6)(k+9)(k'+10)a b
2 8k(k + 4)(k + 8) H
M 1
- pabc 1b 7 | T a a
8(zf JK—|—28K>+R2 (w)+0<(z—w)>+ . (7.11)
Note that there is a (k 4 10) factor. A quasi primary spin-4 takes the form
" _ 3(k+5)(k+9) (k+4) _, (k+4) a1 4 (3
Rj(w) = S b | ) - S L WO )
k(k+7)(3k;+8) abc 16 pc
U R
9(k +2)(k +5)(k + 6)(k + 9)(k + 10) k beda 7 7 Ird
(k+2)(k+8)(3k+3) aby | gy disse 7T K
(K +16)  bacd 15 e pod , (K2 H6k+16) 0 a1 e o
T 16k -4y S S K G O TR
L he cda 76 e g-d (k=2)(K+3k=8) 5 .0
+86 0 JP I K + 50k 0°K
_ 2 _
_ (k 21)6(:+8) ,L-fabc JbaKC _ (k +8kk 16) ,L-fabcan Kc‘| (w)’ (712)

where R*(w) is given by (4.38). Again by using the relation (4.39), we can rewrite the
above in terms of quasi primary spin-4 current. Compared to the previous OPE between
the spin-3 current and itself (5.1), the OPE structure is rather simple. We expect that in
the first order pole there will be no new (quasi)primary field. Although the construction
in (4.45) provides the information on the quasi primary spin-4 current, due to the presence
of free two indices, we should multiply the f symbols into the first order pole. On the
other hands, the construction in (7.11) is rather complicated because the spins of the left
hand side are given by three and three. Nonetheless, due to the one single free index,
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once we have determined the second order pole, then the quasi primary spin-4 current is
determined without manipulating further. After subtracting the descendant terms, we are
left with the quasi primary spin-4 current.

8 Conclusions and outlook

In particular, we have constructed i) the OPE between the charged spin-2 current and itself
in (3.34) with (3.35), ii) the OPE between the charged spin-2 current and the charged spin-3
current in (4.45) where the first order pole is known for (N, M) = (5, 4) case by rearranging
it in terms of the known operators, iii) the OPE between the neutral spin-3 current and
itself (6.8) where the neutral primary spin-4 current is known for (N, M) = (5,4) and iv)
the OPE between the charged spin-2 current and the neutral spin-3 current in (7.10).

In doing this, we have determined the charged quasi primary spin-4 current in (4.39)
together with (4.38) and appendix (E.1) in terms of coset realization completely. In the
OPE between the charged spin-3 current and the neutral spin-3 current for fixed (N, M) =
(5,4) values, we have checked that the above charged quasi primary spin-4 current (4.39)
occurs at the second order pole of this OPE. We have some evidence for the presence of
the above neutral primary spin-4 current in the second order pole in the OPE between the
charged spin-3 current and itself for fixed (N, M) = (5,4) by focusing on the particular
nontrivial term.

Under the presence of the charged higher spin currents, the algebra obtained from the
whole charged and neutral higher spin currents leads to the one in an extension of [5]. The
algebra coming from the neutral ones is closed. Its extension is closed and the right hand
side contains the whole charged and neutral higher spin currents in general.

We list the possible open problems along the line of this paper as follows:

e More OPEs

So far, the charged spin-2, 3,4 currents and the neutral spin-3 current are known in
terms of coset realization. It is an open problem to determine the neutral spin-4
current in terms of coset realization for generic (N, M). Moreover, some of the OPEs
we have presented in this paper do not have their complete expressions. In doing this,
the new quasi primary spin-5 current will be determined. In the bulk theory side,
it is an open problem to construct an extension of the higher spin algebra studied
in [33, 34] for general M by adding the SO(2NM) factor in the numerator of the
coset (1.1). It is better to oberve how the case M = 2 and the case M = 4, where
the nontrivial SU(M) invariant tensors can occur, appear explicitly.

e Three point functions

Because the charged spin-2, 3,4 currents and the neutral spin-3 current are known
explicitly, it is natural to ask what are the three-point functions by evaluating the
zero mode eigenvalue equations of these currents in the large N limit. The relevant
primary states in the coset (1.1) are given by (Ax4ar; An,m) where Ap represents
the highest weight of SU(L) and m is the U(1) charge [35]. Recall that the previous
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relevant works are given in [24, 32, 36-38] and we will keep track of the nonsinglet
parts of the construction. The nontrivial part is to identify the SU(M ) adjoint indices
in the three point functions explicitly.

e Orthogonal group

So far we have considered the special unitary group in the coset model. We can
apply the present results for the unitary group to the orthogonal group [39] where

L M(M—1)
they decompose the SU(M) generators into =—=—*

antisymmetric matrices and
(M?—-1) - % traceless symmetric matrices. For the former, we do have spin-
1 current and for the latter, we can associate with the spin-2 current. Then the
nontrivial OPE between the spin-1 current and the spin-2 current will give us the
nontrivial structure constant whose indices are mixed together at the first order pole.
This will be an extension of [40, 41]. We need to classify the various invariant tensors

in this context correctly.

e Supersymmetric case

By the additional SO(2N M) factor, which leads to NM complex fermions, in the
numerator of (1.1), the A/ = 2 supersymmetric model is studied in [35] where the
spin contents are given by one U(1) spin-1 current, two (M 2 _ 1) spin-1 currents,
2M? spin-s currents (s = 2,3, --- ,n), M? spin-(n+1) currents and 2M? spin-(s — %)
currents (s = 2,3,---,(n 4+ 1)). Note that the standard U(1) spin-1 current, two
spin—% currents and spin-2 stress energy tensor of NV = 2 superconformal algebra
can be seen from the above spin contents. It is natural to observe how the previous
works in [42, 43] can be generalized in this enlarged model. Furthermore, for the
particular level k = N or k = N + M [44], we expect to have the supersymmetric
models and it is an open problem to observe how an extension of [45, 46] arises.
See also the relevant work in [47] for different supersymmetry and there are some
partial lists on the supersymmetric cases in [48-57]. Due to the complex fermions,
the (higher) spin currents will contain the bosonic currents as well as these complex
fermions. Moreover, it is known that under the superalgebra description on [23], we
have similar coset construction. Then it is an open problem to consider the coset

construction [35] where the numerator is given by the superalgebra.
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A  An SU(M) invariant tensors in terms of Kronecker delta, f and d
symbols

Let us present the various SU(M ) invariant tensors in terms of f and d symbols of rank 3

dabcd i 5ab 5cd + dabe decd

4551 — M

dig‘cg‘g — % 6ad 6bc 4+ % §ac 5bd . %face febd + %face debd + %dace febd + %dace debd

1 bece read i bece jead i bce read 1 bee jead
2f f +2f d +2d f —|—2d dc*?,

dabed _ qabe peed  gabed _ pabe pecd
dobed % 5ac ghd _ % sad ghe _ % face pebd % fade febe % face gebd

_ % fade gebe % doce pebd _ % dode pebe % Jace gebd _ % dode gebe
dobede _ % se gde o % sle el 4 % sid gee o % flea gade | %dfcg J9de

+ % ffeg d9cd 4 % dfes qocd % ffdg dsce + % dfde doee,
dobede _ gabede | ebf (]\14504” 5o %(if +a)IGf + d)gde)

SO G LG+ )G + d)gd€>

1 1
+i ff (Maaf 5°d + JGf + d)*79(if + d)9e

N——

i peat <J\145bf 5ol 4 i(if+d)bfg(if+d)ged>
i e (]\14504 5o 4 %(if + )G f + d)gcd)
ifed (;46’”‘ 6° + i(if +d)Po(if + d)ng>
+i f* (Azcsaf 5 + i(if +d)*9if + d)g%)
i pdof (J\;(Sbf 5 4 i(if A f + d)gce)
+i f (]\145‘# 5 + i(if +d)*9(if + d)gec)
i (500 8 4 L F + PG + )
L+ feb (J\l/j(;af s 4 i(if +d)(if + d)gdc)
—i fe (;45’”’ 5% + i(if +d)YIf + d)gdC) (A.1)

We can further simplify these relations when they are multiplied by some composite oper-
ators having symmetric or antisymmetric properties in the indices.
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B The first order pole in the OPE between the charged spin-2 current
and itself

B.1 The substitution of charged spin-2 current

In this appendix, we simplify (3.15) by rearranging the operators and substituting the
spin-2 current (2.11) and obtain

N

dcfa jf g9
(M—i-Qk')

i fYCNOKC(w) =1 fP N [5;)5 tjg(J(p?) J@D 4 @) Jloi)y

2N |[M+N
k MN

J¢ Ju(l)‘| (w)’

N

' gqefe gt g9
(M +2k)

i face Jbed Ke Jd(w) —j face dbcd Jd 510& t% (J(Pg) J(C_fj) _|_J(C_fj) J(pg)) _

2N [M+N
k MN

Je jua )] (w)+M d*d [5,)0 te; (J ) J@0) 4 j @) ylei))

N 2N M
_ cfg yf j9 u(1)
BV A T Vo ]( )
~ . — . ~ N

; rade jbed g pre _  rade gbed 7c _qe_( 7(pi) 7(57) (a7) 7(pi)y\ _ efg 1f 719
AT I  f T 5y 5 (001D 0D D) s e

oN [M+N ,

W\ w7 (1)] (w),

ifabc K¢ Ju(l)(w):ifabc Ju®) l&p&t;i(J(ﬂi) J@i) 4 y(@i) J(rﬁ))

N ON |M+N
_ cfg 7f 19 S e qu@)
oian T T T ]( )
- A kN
8o ths 0F 1 (T4 J#0). 7)) (w) = l 52 gut)

M—}—N(
MN

M+N
MN

1707055 ( f+d)b“tc) 3pe 07D J(@9)

+N aju( )Ju(l)+%Nfabc Jcaju(l)_%dabc Jcaju(l)

+5,m( "6+ (zf+d)bactc>J“(l)J(pz)J("j)] (w),
8yt ((J* T #D) D) (w) = (5“”6 = (zf+d)“bctc>5p58J<Pi>J(Uj)

—NOJ* T +8p5 % T J i) J(C"ﬂ] (w),
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1

. 2k+M+2N acd 7 c I i . rabc c
S5 11 < f—wcz) Fr e (g 7Py JED) (w) = [—Qszf be g2 J
J— —_— —_ 2 0 — .
— kN(;(’;Z—’ZVJ\}_)QN) dabc 62 Je— 2( 4k ]\;jw@ki]]\\;’—i)_M N) 5ab 5p6 5]'{8‘](“) J(O'J)
(2N+M+2k) 2 abc ¢ 4c (pi) 7(59) M+N abe c yu(l)
Ghean 31 e 500 O[S N 0

2N+M+2k) [M+N
_( (2_};_'_]\}_) ) M+N Ndab08JCJu(1)

N (.. (2k+M+2N) \** ebd A 7e 7e
_2<Zf_(2k+M) d> (if+d)M D0 T

2k -+ M4+2N) \* /1 o
(1= Gt i)™ (e () o 009 1) ),

80 1250M 8, 7, (12) 7P 10 ((J O J D) () =
l(ta)ap go (o) 7(pd) (

i 5“”6 = (zf—i—d)“bctc )

(N2_1) ab bac rc_ (pi) 7(5%) ab o Jo
" M5 St (zf+d) £5) 85 0T T 169 7 J° | (w),
Syt ()0 190 9T w) by (11.6% 8545 (zf+d)abctc> 9,10 (1),

5p6t%5ﬂ_tiﬂ(d) Ju() J(&k)(w): [%a (5ab5 4= ( f+d)abctc ) Ju) g(pi) y(a9)

M+N5p (

MN

27 5B i) 0 50 J“’”] (w),

Oper 157 TP T T (w) =

85 0.7 J (1) 7 (@)
PO 44

+0p5 (Maaba = (zf+d)bactc> 9.7 J("j)] (w),

(2k+M+2N) iy o 5
b d_ g(pi) 7c 7(ok) _
o L (ZH (2k+ M) d) 5”1%‘1‘7'0 JEST (w) =
(2k+M+2N) Nan dbe e) ¢ 7(p1) 7(5)
(ZH (2k+ M) d) 5”"( "ty WM) i) I
2k+M+2N)
+( 2/<;+M) d) o0
x ( 5bctd 5de (Zf+d)bce5 4= (Zf—I—d)bce (’Lf—l—d)deftf) aJ(Pl) J(UJ)]( )’
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8y 10707 8,y (1)1 1077000 72 J (O () =
_ 1 1. abe 4c o i o
[(ta)pa (M5“b6ﬁ+2(zf+d) b tji> Jo g jok)
(n-L iaab5—+3(if+d)ab%€ 85,5620 J°D J@I) | (1) (B.1)
N)\Mm" T ji) e ' '

The quadratic terms in the Kronecker delta, f or d symbols appearing in the second relation
from the last in appendix (B.1) can be simplified further.

B.2 The adjoint spin-1 dependent terms in the first order pole

Now we collect the adjoint spin-1 dependent terms only from appendix (B.1) and (3.15) in
the first order pole as follows:

if**No lN dJ¢ — (MJX%) dels gt Jg] (w)
N N
. - acedbcd d N e defg f 719
(M+2k)<’f ‘][ 07 = rramy @7

+ M d [N&Jc - (MJI%) defa g7 ng ) (w)

. N - pade jbed 7C e N efg 1f 719
(M+2k)<zf d J[N&J aream | @)
i _ a 7b _ _1 . rabc 92 7C
+ 7 (K M+ N) (=N)9.J* T (w) 2[ SN[ oR ]
_ kN(2k+ M +2N)
2(2k + M)

N (. (2k + M + 2N
_2<1f_ (2k + M)

dabc a2 Je¢
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which should be equal to the terms of the first order pole in (3.34) by putting all the other
spin-1 currents to zero. The cubic terms in appendix (B.2) will participate in the various
places in the first order pole of (3.34). In the calculations of (3.23), (3.25) and (3.27), the
above relation appendix (B.2) is used.
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B.3 The first order pole

Eventually we obtain the first order pole as follows:
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It is rather nontrivial to rewrite this in terms of the known currents as well as the charged
spin-3 current. This can be written in terms of various quasi primary operators and the
charged spin-3 current as well as the descendant terms in (3.34). The expression in ap-

pendix (B.3) will be used in the second order pole of the OPE between the charged spin-2
current and the charged spin-3 current.
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C The structure constants in the infinity limit of k of section 3

The structure constants appearing in (3.34) under the infinity limit of k£ become
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It is not clear whether there are some relations between these structure constants ap-
pendix (C.1) and appendix (C.2) and the ones in the free field realization given in ap-
pendix H. Because the structure constants are given by the three parameters, we can take
any limits among these. For example, the infinity limit of IV can be taken for fixed A and M.

D The second order pole in the OPE K“(z) P’(w)

The second order pole of the OPE between the charged spin-2 current and the charged
spin-3 current can be described as
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We will further simplify these expressions in next subsections.
D.1 The a5 terms of the second order pole
In the as terms, we have the following results
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We should analyze these complicated results in order to rewrite them in terms of the known
currents. Moreover, we have the following expression
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Then by substituting appendix (D.2) and appendix (D.3) into appendix (D.1), we obtain
the corresponding as terms explicitly. This is necessary step we should do in order to
obtain the final result in (4.45).

D.2 The (a13 — a12) terms of the second order pole

In particular, in order to calculate the (aj3 — aj2) terms in appendix (D.1) we should
calculate the following first order poles which can be obtained in the OPEs between the
first order poles at the point z in the OPE between K¢ and J®) with 05 t;).g and the
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+89 7% T (w) 4| ST (N2 1) 6% 0.0 (w) 4 5 (N2 1) (—i f+d) ™ 0T (w).

Note that the first order pole of the OPE between d,; (t)ik 9 J(pl_)(z) and J(9) (w) is zero.
Then it is obvious to obtain the corresponding (ai3 — ai2) terms simply by differentiating
these appendix (D.4) with respect to the variable w. We can easily calculate the second
order poles of the OPE between K® and 9.J(7) from (3.1) by differentiating the first

relation with respect to the variable w consisting of five terms.

— 56 —



Finally, we obtain the (a13 — a12) terms as follows:
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where the last four relations in appendix (B.1) are used here in appendix (D.5).
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Therefore, we will obtain the final second order pole by collecting all the relevant terms
from appendix (D.2), appendix (D.3) and appendix (D.5) explicitly. It seems that they
have rather complicated coset operators. However, the second order pole can be written
in simple form as the one in (4.45).

D.3 The relations between the remaining coefficients of W) (w) in the second
order pole

In (4.9), we have identified the coefficient of W) (w) in the second order pole of the OPE
between K%(z) P’(w) and we present the remaining terms of the neutral spin-3 current
including the b3 term as follows:
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It is easy to observe that the above relations appendix (D.6) are satisfied by substitut-
ing (2.22), (2.32) and (7.7).

D.4 The relations between the remaining coefficients of P?(w) in the second
order pole

In (4.12), the structure of charged spin-3 current in the second order pole of the OPE
K%(z) P°(w) is found and we present the remaining terms in the charged spin-3 current
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including the as term as follows:
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The above relations appendix (D.7) are satisfied by substituting (2.22).
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E The first order pole in the OPE K“(z) P?(w)

The first order pole of the OPE between the charged spin-2 current and the charged spin-3
current can be obtained
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In this case, from appendix (E.1), we do not have to consider the additional contractions
between the operators because we are focusing on the first order pole. We can also further
simplify the above expressions by changing the ordering of operators appropriately. Then
the above expression appendix (E.1) plays an important role of a new quasi primary spin-4
current R¢(w) by multiplying i f%¢ together with (4.38) and (4.39).

F The second order pole in the OPE K%(z) W® (w)

The second order pole of the OPE between the charged spin-2 current and the neutral
spin-3 current can be described as
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Moreover, in order to calculate the (b13 — b12) terms the following relations can be used by
considering the similar relations as in appendix (D.4)

M+ N a i aj
1 - _ /W(sp&tﬁj(p)t]( 7 (w)

(z2—w)

8p 03 8% 12, 74 T (2) 7O ()

— N J*D Jo(w),

Sy 6577 J(pi)(z) J@) () = 0o 1% gD J@) (w)

(z—w)

M+ N

EMNOJ*—
+ 0J UN

M N J* J"D(w),

— 61 —



(2k + M + 2N)

8ps 857 (i f — d)2ed gFigd —ge gei) () g9 (w)

(2k + M) Rt o
2 3 2 -
2(2kM?® — Ak + M” + M°N —2M — 4N) S 12 70D 79 (1)
M(2k + M) gt
., (2k+ M +2N) >°‘“’C b e
(i - d) NI (F:2)
S5 skis ()P g e J(@j‘l)(z) J(aj)(w) — _M 1a_ g - g(ei) J(6j)(w)
po Ji 0201 kljl ) N PO It .

(z—w)

Then we obtain the d,5 65 (K J(”E))pole_l 9 J@)) 011 in appendix (F.1) by taking the
appropriate derivatives in appendix (F.2). By simplifying appendix (F.1), we will end up
with the second order pole in (7.10).

G The first order pole in the OPE K%(z) W®) (w)

In the b term of W) in (2.25), after moving the second factor to the left in the second
term, there exists a 9 J term. But the OPE with K%(z) does not contribute to nonzero
expression. In the by term of W), there exists a d J® term by moving the second factor
to the left in the second term. We should include this contribution also. In the bg term of
W®)| there exists a 8 J*) term by moving the second factor to the left in the second term.
But the OPE with K“(z) does not contribute to nonzero expression. Finally, in the b3
term of W), there exists a 82 J“1) term, by moving the second factor to the left, which
does not contribute to the nonzero result. It is easy to observe that the OPEs between
K%(z) and other terms in the W®)(w) vanish.

Therefore, we summarize the first order pole as follows:

Ka(Z) W(3) (w) — (Z fabe K¢ J¢ Jd +Z'face Jb K¢ Jd +Z'fade Jb J¢ Ke) (w) dbcd by
1
(z—w)

i oo 0 (KO JP 4 J0 K€) (w) bs (G-1)
Lo (t;}, 5,3 7% [((K° TN oty JOD) 4 70D (K@ J(6‘j))pole—1]) (w) be

I (z Fabe N K Jb i fe N PO KC 4 24 fabe t;’; 55 K© i) j(@3)

+ 218 8 I (K T et JD) + T (K JD) o1e]) (w) by

+ 2053 85 JO (K T oo JO) + T (KT )11 () b

+ 8530 (K0T et JO) 4 000 (K T )1 ) (w) b

+ 05 0p5 (((K“ J(”g))pole_l 0. J@)Y 4 gD (K 9 J(6j))pole—1) (w) b1s,
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where the four quantities in the above are given, from (3.1), by

K2 I ()| = (KT )poter =

(z—w)

Dk N)By; (£)% .70 () — 2IEN), JMEEN siiga_ ) 7o) ()

2 S .. (2k+M+2N)
+ o (kM +N)J J<P>(w)—(zf—(2k+M)

d) oM 155 I TP (w)
—20M 8z, (17) 70 102 T T (w),

(Ka J(é’j))pole_l :2(]€+N) 5kk_1 (ta)k}j aJ(6k)(w)+2(kZN) /M+N6]lta Ju( )J(&k)(w)

(2k+M+2N)
(2k+ M)

— o (k+ M+ N) J* T (w) - <f+ d) St - TP T ()
+267 6,5, (2%)77 88T TR (w)
D(k-+N)dg; (£4)% 9. e) - 2EER) JAAN i ju(r) 1)

2 a 7(pi) (. ¢ (2k+M+2N)
+ag (R MAN) JETE (lf (2k+M)

(Ka a‘](pg))pole-l =0

abc  _ _
d) grige- gb gien)
J
L G J<03>] (w),

2(k+N) M+N

: 5]lta Ju(l)J(O'k)

(K0T ot =0 | 2(k+N) Sy, (19519 9.7F) 4

(2k+M+2N)

abc
2 o .
—7M(k3—|—M+N) J(ZJ( j)—<lf+ @k a0 d> 5]]1 tC JbJ( k)

2076, (1977 10T J("lk)] (w). (G.2)

Note that we should be careful about the normal ordering [23] in the composite operators
containing the first and the third of appendix (G.2) in appendix (G.1). For any operators,
A, B,C, we have the relation ((AB)C)(w) = ([(AB),C])(w) + (C(AB))(w) where the

bracket stands for the normal ordering between the operators.

H Relevant free field realization

In this section, the free field realization in [15] is reviewed and we comment on its relevance
in the context of previous sections.
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H.1 Free field construction

The generators of W1, algebra [61] are given by V?(z) of spin-(i+2) and the generator of
affine SU(M) algebra is given by the spin-1 current 4¢W~14(2) where a=1,2,---,(M?—1)
and ¢ is a parameter and is fixed by ¢= %. We follow the notation of [15] except that their
N corresponds to our M. Moreover the additional generators are given by W4 (z) of spin-
(142) transforming as the adjoint representation of SU(M). The realization of the algebra
is represented by bilinear free fermions. The complex free fermions satisfy the following
OPE

3(2) P w) = (Z_lw)aaﬂ . (H.1)

where a, 3 =1,2,--- , M. Then the level k = 1 realization is given by the following forms'”

. i=1( Jtl ) _
Vi =2 Ut JZ (j“) QLR 0 0 (2),

(27 + !
,a 2J1]+1 j+1 ]+1 j—1 T Aar ga
W) = Zm D ¢ Z 6] L9t 54 (2). (H.2)

Then we can check that the stress energy tensor V°(z) has the central charge ¢ = M k and
it becomes ¢ = M by using the fundamental relation in appendices (H.1) and (H.2). The
spin-3 operator V!(z) is a quasi primary operator and has the fourth order pole V! (w)
in the OPE with the above stress energy tensor. Moreover, there is a quasi primary spin-4
V?(z) operator.

We can check that there exist two primary spin-1,2 operators W~5¢(z) and W%4(z).
For the quasi primary spin-3 operator W¢(z), the OPE between the stress energy tensor
V0(z) and W%(w) has nonzero fourth order pole W~=1%(w).

We consider two cases as follows:

e The OPEs between the nonsinglet currents and singlet current

When we calculate the OPE between W~14(z) and V!(w), we observe that the
second order pole contains the spin-2 operator W%%(w). This can be compared
to the previous result in (7.1) which eventually becomes zero. The OPE between
W%a(z) and V!(w) implies that the nonzero singular terms are given by W~1%(w) in
the fourth order pole, 3W¢(w) in the second order pole and d W4 (w) in the first
order pole. We can compare this with the one in (7.10) and realize that there are
common linear terms in the (quasi) spin-3 operator. We can further calculate the OPE
between the spin-3 operator W1¢(z) and other spin-3 operator V! (w). It turns out
that there are 4 W% (w), 20 W%(w), 2 02 WO (w)+4 W2%(w), and & 9° WO (w)+
29 W2%(w) in the fourth, third, second and first order poles respectively. Again by
comparing with (7.11), we observe that the same linear terms occur in both cases.

Tn the calculation of OPEs between the free fields in this section we will consider the M = 4 case in
order to see the structure of the algebra and the general calculation for arbitrary M can be done by hand.
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e The OPEs between the nonsinglet currents

The OPE between the spin-1 current and the charged spin-2 current gives us the
nonzero second order pole which is given by (3 d®¢ W~1¢+ 1 §% V=1)(w). Moreover,
the first order pole gives i f%¢ W%€¢(w). Note that there exists a spin-1 singlet current.
This can be compared to the relation (2.12). Similarly, the OPE between the charged
spin-2 current and itself leads to % 5% in the fourth order pole, % i o W=1e(w) in the
third order pole, (1 i f®¢oW=1¢ 4 1§90 V0 4 ¢abe 170¢) () in the second order pole
and (751 fec0? W—le 4 15909 V0 4 L qabe gWw0e 44 fabe L) (w) in the first order
pole respectively. Now we observe that when we compare this with (3.34), both cases
share the common linear terms at each singular term. The OPE between the spin-1
current and the charged spin-3 current leads to %f“bc W=te(w), (—% fabew—le 4
dobe W) (w) and i fWH€(w) in the third, the second and the first order poles
respectively. Note that there are nonzero singular terms in the third order and
second order poles when we compare with the one in (2.24).

We can also check the OPE between the charged spin-2 current and the charged spin-
3 current. It turns out that the fourth order pole is (6% V=1 — L dwcW=1)(w), the
third order pole is 3 i f®%¢W%¢(w), the second order pole is (2§90 V1 — 3 qabejyle 4
% i 2 9 W) (w) and the first order pole is (1 6% OV — £ d®coWhe+ 1—15 i fabe 92 Woe 4
i f2¢W?2)(w). In this case, some of the linear terms of this OPE occur in the (4.45).
Note the presence of a spin-1 singlet current. Finally, the OPE between the charged spin-3

current and itself provides the following singular terms.'®

Therefore, we observe that the presence of a neutral spin-1 current with Kronecker
delta symbols appears in the OPEs between the nonsinglet currents where the sum of spins
of the left hand side is given by odd integer numbers. Although there are some higher order
terms which do not appear in the coset realization, we observe that by simply ignoring the
above uncharged spin-1 current, all the linear terms in the free field realization arise in the
coset realization. One of the lessons from the free field realization is to expect how the new
quasi primary operators arise in the specific singular terms of the given OPEs. From this
fact we can rearrange each singular term in the coset realization by expecting that there
should be a new quasi primary operator at that singular term. If we do not expect a new
quasi primary operator, then we should manage to rewrite each singular term in terms of
the multiple product of known currents.

8The sixth order pole is proportional to the Kronecker delta symbols and is given by %5‘”’. The fifth
order pole contains the spin-1 current and is % i fobe W~¢(w). The fourth order pole contains the two spin-
2 currents as well as the descendant terms and is given by (11 f***9W~1°+6* V° +24d°° W%°)(w). The
third order pole has a spin-3 current as well as various descendant terms and is given by (é ifee? w4
1509V O +ad e owe + 2 £ Whe)(w). The second order pole contains the two kinds of spin-4 currents
and the descendant terms and is (%if“bc PwWhe 4 % 59?2V + % d*e 9?2 woe 4 %ifabcﬁwl’c +
892 V2424 W2°)(w). Finally, the first order pole contains a spin-5 current besides the various descendant
terms and is given by (1251 f*° ' W1+ L5 P VO+ L d* P WO+ i 9> Whe 4 d®c oW +
% 5OV 4 g fabe W) (w). Note that the relative coefficients appearing in the descendant terms are
fixed automatically.
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H.2 After decoupling the neutral spin-1 current

We can construct the nonsinglet and singlet operators which do not have any singular
terms in the OPEs with the above neutral spin-1 current and present them as follows:

() = VO(z) - VIV (),

) 1 1
Vi) =Viz) - 3 VVO(z) + % VlvTlyTi(y),

Wbe(z) = whe(z),
1

Aro,a(z) — Hro,a(z) _ Z V—l I;[r—l,a(z)’
. 1 1
Wh(2) = Wh(2) = S VW) + S VI VI TH(2)
3 00 -1 3 21
— S VOWT(2) + S0P W (z). H.
1OV (z)+208 (2) (H.3)

The central charge is given by ¢ = M — 1 = 3. The singlet and nonsinglet operators are
primary under the new stress energy tensor. Due to the nonlinear terms in the right hand
side, we expect that the algebra between these operators leads to the nonlinear terms in
the right hand side of the OPEs. Note that the OPE between the charged spin-1 current
and the neutral spin-1 current is regular. The charged and uncharged spin-4 currents can
be determined similarly.
Moreover, the above operators in appendix (H.3) can be written in terms of W—14(z)
as follows:
~ 1
VO(Z) - Wfl,a Wﬁl’a(z),
10
~ 1
VI(Z) — % dabc W—l,a W—l,b W_I’C(Z),
W—l,a(z) — W—l,a(z)’

A 1
WO,a(Z) - dabc Wfl,b Wﬁl’c(z),

12
771,a 2 — — —1l,a 1 —1l,a
wh (2) = =5z W Loy -ty -1 (z)—%awv La(z)
9 . abc —1,b —1,c
- ; <(2). H.4
1002f OW P W™H4(z) (H.4)

Note that in terms of the complex free fermions, the above operators in appendix (H.4)
contain the quartic, the sextic, the quadratic, the quartic, and the sextic terms in the free
fermions respectively. The OPE between the spin-1 current and the charged spin-2 current
gives us the nonzero second order pole which is given by %d“bc W‘l’c(w). Moreover, the
first order pole gives i f2¢ WO’C(w). Note that there is no spin-1 singlet current.

The OPE between the charged spin-2 current Wo’a(z) and itself can be calcu-
lated. It turns out that the fourth order pole is given by ié“b, the third order pole
is 1 fabe W—1¢(w), the second order pole is (%z‘f"bcaW—l’c + 5 6% VO 4 dabeyoe
3 (W—Le W—Lb L =10 17—19)) (). Note that there are nonlinear terms in this pole. Fur-

thermore, the first order pole is given by (2—14 i fobe 92y —Le 4 iéab oVO + %dab‘j@WO’c —
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+0 (W—Le W —1b 4 JW—Lb Ji7—1La))(y). This implies that there is no new (quasi) primary
operator in this OPE. Other OPEs can be determined without any difficulty.

Therefore, although we have decoupled the neutral spin-1 current in the above analysis,
the operators in appendix (H.4) do not produce any new (quasi) primary operators due to
the property of the fermions. The charged spin-1 current which generates the affine SU(M)
algebra produces the W algebra between the nonsinglet currents.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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