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Novel approach to the global analysis of proton form factors in elastic electron-proton scattering
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We present a method for the global analysis of elastic electron-proton scattering when combining data
sets from experiments with different overall normalization uncertainties. The method is a modification of one
employed by the NNPDF collaboration in the fitting of parton distribution data. This method is an alternative
to the ‘penalty trick’ method traditionally employed in global fits to proton electric and magnetic form factors,
while avoiding the statistical biases inherent in that approach. We discuss issues that arise when extending the
method to nonlinear models. For data with Q2 > 1 GeV2 we find relatively minor differences to traditional model
fits when the normalization uncertainties from different experiments are correctly accounted for. We discuss
implications of this method for the well-known discrepancy between the form factor ratio GE/GM extracted
from the Rosenbluth and polarization transfer techniques.

DOI: 10.1103/PhysRevC.109.015503

I. INTRODUCTION

Elastic electron-proton scattering can be described
by two functions of the squared four-momentum trans-
fer Q2: the Sachs electric and magnetic form factors
GE (Q2) and GM (Q2), respectively. Experimentally there
are two main techniques to determine the form factors: a
longitudinal-transverse (LT) separation of unpolarized cross
section data [1] and polarization transfer (PT) measurements
of the ‘polarization ratio’ GE/GM . After taking into account
standard radiative corrections, separate fits of the form factors
to these data lead to fits that disagree significantly with one
another as Q2 increases. Model-dependent two-photon ex-
change (TPE) corrections to LT data are considered the most
viable explanation for this discrepancy [2,3], but definitive
experimental evidence at high Q2 is lacking.

Under the one-photon exchange (OPE) assumption the dif-
ferential cross section for elastic electron-proton scattering is
proportional to the reduced cross section

σred = ε G2
E (Q2) + τ G2

M (Q2), (1)

where τ = Q2/(4M2) and ε−1 = 1 + 2(1 + τ ) tan2 θ/2.
Here, θ is the scattering angle in the laboratory frame, M is
the proton mass, and the electron is taken to be massless.

The traditional Rosenbluth LT separation [1] of GE and
GM uses measurements of σred at fixed Q2 with a linear fit
to the virtual photon polarization ε by varying the scattering
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angle. This produces form factors that are model-independent
but are of limited range in beam energy and scattering angle.
Alternatively, one can make a global fit of models of GE and
GM to cross section data over a wide range of kinematical
conditions [4]. This second method often requires combining
data sets from different experiments, or different experimental
setups within the same experiment, with different absolute
normalizations and associated uncertainties.

A key question, which we address in this paper, is how to
combine such measurements from different data sets in a sta-
tistically rigorous and meaningful way. To do so we introduce
a method based on a modification of one employed by the
NNPDF collaboration [5], which we call the iterated model fit
(IMF). As a proof of concept, we compare this method to two
recent analyses of cross section data that use the traditional
‘penalty trick’ method, which we will describe below. The
first analysis is that of Gramolin and Nikolenko [6], who use
a linear parametrization for σred in the model functions G2

E
and G2

M . They use three experimental data sets [7,8] with Q2

in the range from 1 to 8.83 GeV2. The second analysis is by
the GMp12 collaboration [9], who use the same three data sets
plus six additional data sets, including their own new precision
data with Q2 up to 15.75 GeV2. They use a more flexible
parametrization of model functions for GM and (μpGE/GM )2,
which leads to a nonlinear model for σred. We discuss how
the IMF method can be adapted to such a nonlinear fitting
procedure.

References [6,9] both apply updated and improved radia-
tive corrections to the original experimental data, but do not
include TPE corrections. Both groups still find significant
disagreement between separate fits of the cross section and PT
data. As it is the intention of this paper to compare method-
ologies rather than construct a state-of-the-art global fit to
GE and GM , we leave it to future work to incorporate TPE
contributions as well as cross section data with Q2 < 1 GeV2.
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II. FITTING WITH NORMALIZATION UNCERTAINTY

The technique of fitting via minimization of a chi-square
emerges out of the more fundamental desire to find the pa-
rameters of a model that, assuming the model is correct,
are most likely to have produced the observed data (a max-
imum likelihood estimate). Thus if one is not careful when
modifying the chi-square to be minimized, one will violate
the underlying assumption that measurements are normally
distributed (the chi-square is by definition the exponent of a
Gaussian likelihood), leading to undesirable statistical biases
in the fitted models. Of course, the Gaussian prior comes from
a maximum entropy argument, namely that if one only knows
the mean and variance of the data, and one believes the model
is correct, then the underlying prior distribution that assumes
the least about the data will be a Gaussian distribution. If one
has reason to modify the prior distribution, then assuming an
underlying Gaussian likelihood will also introduce a bias into
the fitting procedure.

The standard method for dealing with normalization uncer-
tainty is fitting via a modification of the traditional chi-square
known colloquially as the ‘penalty trick’,

χ2
p =

N∑
i=1

⎡
⎣ (ni − 1)2

(�ni )2 +
Ni∑

j=1

(yi j − Mi j /ni )2

(�yi j )2

⎤
⎦. (2)

Here, a model M (in our case M = σred) is fitted, alongside
floating normalizations (ni), to data (yi j) with both additive
(�yi j) and multiplicative (�ni) uncertainties; i indexes the
N experiments, and j indexes the Ni data points of each
experiment (in more naive approaches, one may scale only
the data by the ni). This method fails to be Gaussian in
the normalization parameters ni, so we seek a more sound
alternative.

In a seminal paper by Ball et al. [5], the NNPDF collab-
oration firstly demonstrate the statistical biases in the usual
approaches for combining multiple experimental data sets
with multiplicative uncertainties, and second, for fitting a sin-
gle parameter, construct a Monte Carlo method that takes the
normalization uncertainty into account without compromising
the integrity of the fit. The most important steps in the deriva-
tion of the method are as follows. First, perform the usual error
propagation for multiplying data with uncertainty:

(yi j ± �yi j ) (1 ± �ni ) = yi j ±
√

(�yi j )2 + (yi j�ni )2. (3)

Second, recognizing that a well fitted model will resemble the
data; in the chi-square of that error-propagated data, replace
the instance of the data in the propagated error with a best
guess for the model, M̂:

χ2
t0 =

N∑
i=1

⎡
⎣ Ni∑

j=1

(yi j − Mi j )2

(�yi j )2 + (M̂i j�ni )2

⎤
⎦. (4)

This χ2
t0 has all the nice statistical properties we expect, and its

likelihood remains Gaussian in both model and data. There-
fore, if our assumption of a Gaussian prior is correct, the
only source of bias in our fits will come from the explicit
model-dependence. If our best guess coincides with the model

given from the optimization, the replacements are justified
and we are done. Else, we use the optimized model as our
ensuing guess, iterating until the model converges. This is
the t0 method of Ref. [5], which focuses on fitting single
parameters at specific kinematics.

When one attempts to apply the t0 method to data at
multiple kinematics, it is ambiguous which kinematics the
best-guess model should be evaluated at for off-diagonal el-
ements of the constructed covariance matrix. We propose to
generalize the method by appending the original data covari-
ance matrix covi as follows for each of the i experiments:

covIMF
i, jk = covi, jk + (�ni )

2M̂i jM̂ik . (5)

This generalizes the case of a single data point per experiment
and of all data points being at the same kinematics [5]. With
this, the remaining step used by NNPDF is left unaltered,
and replica data are generated via a two step Monte Carlo
procedure. First, for each datum one generates replica data
yR

i j by pulling from a normal distribution characterized by the
point’s central value and uncertainty. Second, a normalization
factor nR

i is pulled from a normal distribution centered around
1 with a standard deviation defined by the normalization un-
certainty for the datum’s experiment. Thus the final chi-square
to minimize during our Monte Carlo replica iterated model fit
is given in matrix form by

χ2
IMF =

N∑
i=1

(
nR

i yR
i − Mi

)ᵀ(
covIMF

i

)−1(
nR

i yR
i − Mi

)
. (6)

For R replica’s generated we will have R best fit models
and R sets of best fit parameters. These fits are averaged to
produce an updated best fit model M̂ of the original data,
which is then fed back into Eq. (5). This process iterates until
we find convergence of the output model.

A. IMF vs. penalty trick (linear model)

Here, we compare fits via the penalty trick method to fits
via the IMF method to understand how the ubiquitous method
compares to the statistically rigorous method. Gramolin and
Nikolenko [6] use a simple linear model for the square of the
form factors to ensure the fitting procedure becomes a linear
algebra problem in the parameters (intentionally utilizing the
more naive version of the penalty trick). They take

G2
E (Q2; a) = (1 − a1τ − a2τ

2 − a3τ
3)G2

dip,

G2
M (Q2; b)/μ2

p = (1 − b1τ − b2τ
2 − b3τ

3)G2
dip, (7)

where μp is the proton magnetic moment, and Gdip(Q2) is
a dipole form factor. The downside to using such a simple
model is manyfold. The squared form factors have nothing
preventing them from becoming negative, the form factors
do not fall off as predicted by quantum chromodynamics
(QCD) scaling laws, and if one wishes to include PT data the
fitting procedure becomes nonlinear. Nevertheless, it makes
for a rather simple point of comparison. For the penalty trick
method we solve the system of equations ∂χ2

p /∂αi = 0 for the
nine parameters αi, giving the results shown in Table I. The
index of ni refers to the Walker and Andivahis (8 GeV and
1.6 GeV) data sets itemized in Ref. [9].
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TABLE I. Form factor parameters extracted from the penalty
trick and iterated model fit (IMF) methods for the linear model of
Eq. (7). We use the same three data sets as Ref. [6], but with updated
radiative corrections from Ref. [9].

Penalty trick IMF

a1 0.23 ± 0.22 0.17 ± 0.22
a2 0.47 ± 0.44 0.55 ± 0.44
a3 −0.35 ± 0.21 −0.38 ± 0.21
b1 −0.407 ± 0.045 −0.413 ± 0.045
b2 0.373 ± 0.045$ 0.375 ± 0.046
b3 −0.076 ± 0.013 −0.077 ± 0.013

n1 1.008 ± 0.012 –
n2 1.008 ± 0.012 –
n3 0.963 ± 0.013 –

χ 2/d.o.f. 28.3/39 28.1/42

To implement the IMF method we begin with a guess
of all parameters being 0, which sets the form factors to
standard dipoles. Convergence required only two iterations of
the IMF procedure with R = 1000 replica data sets fitted at
each iteration. The parameters in the column labeled IMF in
Table I are the mean and standard deviation of the final six
dimensional distribution of 1000 fitted parameters. In Fig. 1

FIG. 1. (a) The normalized G2
M (Q2) for both the IMF method

(solid line) and the penalty trick (dashed line), and (b) the squared
form factor ratio μ2

pG2
E/G2

M , plotted with PT data itemized in the
Supplementary Material of Ref. [9] with Q2 > 1 GeV2 (not included
in the fit).

we can see plots of the G2
M and G2

E/G2
M form factor fits,

suitably normalized.

B. IMF vs. penalty trick (nonlinear model)

The application of the IMF method to nonlinear models
creates a potential difficulty. Generically, the average of sev-
eral functions that share the same functional form F (x; α) will
only maintain that functional form when the function is linear
in α. This ruins the iterative step because we do not have the
same functional form at each iteration. There are two possible
ways out of this. First, one could find the parameters α for
the chosen functional form that are closest to the average of
the replica fits 〈FR(x)〉 by minimizing the L2 norm

∂

∂α

∫ xmax

xmin

dx (F (x,α) − 〈FR(x)〉)2 = 0. (8)

This minimization is computationally expensive, but it en-
sures that the functions are similar as possible over the
relevant range. Alternatively, one may simply keep tak-
ing average parameters and plugging them into the model,
understanding that this is only an approximation for the afore-
mentioned closest model to the average model, and hope for
convergence, as convergence is all one needs for the results
to be statistically sound. The second option works for the
following model, and is used throughout the remainder of this
paper.

A flexible parametrization for the form factors is the z-
expansion model presented in Ref. [10]. The model is

GE (z; a) =
kmax∑
k=0

akzk, GM (z; b)/μp =
kmax∑
k=0

bkzk,

z(Q2) =
√

tcut + Q2 − √
tcut − t0√

tcut + Q2 + √
tcut − t0

. (9)

In all fits we use the values tcut = 4m2
π and t0 = tcut (1 −√

1 + Q2
max/tcut ), but the fits are rather insensitive to these

particular values. To ensure that GE (Q2) ∼ 1/Q4 as Q2 → ∞
there are constraints

kmax∑
k=n

k!

(k − n)!
ak = 0, n = 0, 1, 2, 3, (10)

and similarly for bk . Additionally we require GE (0) = 1 and
GM (0) = μp. Choosing kmax = 8 therefore leaves four free
parameters for each form factor, which we designate to be
those with k = 0, 1, 2, 3.

For the following fits we use the global cross section data
from the GMp12 analysis [9] with Q2 < 16 GeV2 (115 points,
only six points are excluded). This compilation was built
specifically from experiments for which past radiative cor-
rections could be undone and then recalculated with updated
corrections to ensure the analysis was consistent across all the
data. The GMp12 analysis uses the penalty trick to account for
the normalization uncertainty in their fits, but with a different
parametrization than given in Eq. (9). Implementing the IMF
method, and comparing against PT data, gives us another
clean comparison between the fitting procedures.
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TABLE II. Form factor parameters from the penalty trick and
IMF methods for the nonlinear model of Eq. (9). Fitted normaliza-
tions for the nine data sets (not shown) range from 0.95 to 1.06,
consistent with Ref. [9].

Penalty trick IMF

a0 −0.847 ± 0.028 −0.847 ± 0.028
a1 1.269 ± 0.065 1.269 ± 0.067
a2 0.47 ± 0.34 0.45 ± 0.34
a3 −2.36 ± 0.49 −2.31 ± 0.51
b0 −0.821 ± 0.015 −0.822 ± 0.015
b1 1.374 ± 0.058 1.377 ± 0.057
b2 −0.513 ± 0.086 −0.516 ± 0.083
b3 −1.082 ± 0.056 −1.085 ± 0.059

χ 2/d.o.f. 76.9/98 76.5/107

Using the IMF method with 1500 replicas per iteration we
find convergence within five iterations. In each iteration about
10% of replica form factor fits were discarded as they rapidly
changed sign in the region Q2 < 1 GeV2. This happens be-
cause the model is insensitive to the sign of the form factors,
and we have not included any data in this region in the fit. The
z-expansion model form factors for both the IMF and penalty
trick methods are given in Table II and plotted in Fig. 2. These
fits demonstrate that unless further PT data reveals an upturn,
TPE corrections become increasingly important at large Q2.
The relative sizes of the error bands are not surprising. The
Hessian method for approximating parameter errors in nonlin-

FIG. 2. The z-expansion model fits to the global cross sec-
tion data from the nine data sets of Ref. [9] with Q2 < 16 GeV2.

ear model fitting is known to be less accurate than bootstrap
methods. We also note that the central value of the penalty
trick fit pulls further away from the PT data than the IMF fit
does. Thus it may be the case that the use of the penalty trick
method accentuates the disagreement with the PT data.

III. THE IMPORTANCE OF CORRELATIONS

It is clear that the IMF method achieves fits of the same
quality as the penalty trick fits without the need for the ad-
ditional normalization parameters ni, some of which differ
substantially from 1. This demonstrates that these additional
parameters are simply a means to approximate the correlated
nature of the data, and are not physically meaningful on their
own. Correlations enter via the normalization uncertainty due
to the fact that if the true value of the normalization is varied
the whole data set should vary in tandem.

This covariance of whole data sets requires extra atten-
tion when fitting said data, particularly when faced with the
realities of fitting to data subsets. When fitting with only point-
to-point errors, the addition or removal of a data point from
the fit will only affect the fit locally near that point. However,
when covariance is of the order of the point-to-point error,
truncation and binning of the data set can significantly alter
the best fit as the presence of covariance affects the fit function
globally. In principle, the choice of inclusion or exclusion of
a single data point can significantly tense or relax a fit. It is
for this reason we do not perform LT separations invoking the
IMF method, as separate linear fits to the relevant data subsets
would be blind to the covariance of data at different Q2 values.

With the same goal in mind, there is often a temptation
to treat the normalization factors from the penalty trick as a
pseudo-model-independent means to rescale data sets for sub-
sequent analysis. This was done in Ref. [9] to facilitate an LT
separation of the rescaled data, giving ‘model-independent’
form factors that could be compared to those obtained directly
from the penalty trick fit. This approach ignores the other
correlations between data, and therefore, in our view, does
not achieve the goal of improving our knowledge of the true
values of the form factors. Fitted normalizations are designed
to pull the cross section data towards the model, and thus it is
no surprise that an LT separation performed on rescaled data
gives form factors that are very similar to the those obtained
from the penalty trick fit.

All this furthers a point made by Bernauer et al. [4] that LT
separations are not particularly helpful for fitting when com-
pared to using cross section data. A global fit appears the only
reasonable tool for form factor extraction when normalization
uncertainty is present because the total covariance matrix can
be incorporated during the fitting procedure. By contrast, an
LT separation is forced to focus on only a subset of the data,
ignoring said correlations.

IV. SUMMARY AND CONCLUSIONS

In this work a model-dependent but statistically unbiased
global analysis of the proton’s elastic form factors was pre-
sented. To perform these fits we introduced the IMF method,
an extension of the statistically unbiased t0 fitting method used
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by the NNPDF collaboration [5]. We found that statistically
unbiased fitting leads to minor improvements to fits of form
factor models to the world cross section data without the need
for additional normalization parameters for each data set.

The penalty trick, despite its flaws, seems to consistently
provide similar fits of the proton’s elastic form factors. This
begs the question: why put in all the extra effort of the IMF
method for a presumably small gain? D’Agostini [11] gives
a real-world example of how the naive treatment of normal-
ization uncertainties via the penalty trick led to a ‘repulsion’
of the fit from the data, while the chi-square per degree of
freedom remained approximately constant. At the time this
was remedied by updating the penalty trick to scale the uncer-
tainties as well as the data, leading to Eq. (2). However, Ball
et al. [5] show this version still fails to be free of statistical
bias when combining multiple experimental data sets. This
means there is nothing to prevent analogous misbehaviour of

fits with the updated penalty trick. Unfortunately, we know
of no a priori criteria to determine when such misbehavior is
likely to occur.

Both the low Q2 global analysis by Bernauer et al. [4] and
recent work on the proton radius [12] use the penalty trick in
order to fit their global data sets. Encouraged by the success
of the IMF method, we plan to reanalyze these fits to see if the
statistically unbiased approach leads to any improvements in
the extracted values and fits. Additionally, we plan to perform
a combined global analysis of all readily available cross sec-
tion and PT data, including TPE corrections, in a future work.
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