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We study the effect of the Lorentz violation on the Casimir energy and pr essur e of a charged 

Dirac field in a background uniform magnetic field. In the model, the Lorentz violation is 
parameterized not only by the intensity but also by its direction. We investigate two cases of 
the direction of violation, namely, time-like and space-like vector cases. We use the bound- 
ary condition of the MIT bag model to r epr esent the property of the plates. We show how 

the Lorentz violation and the magnetic field affect the structure of the Casimir energy and 

its pr essur e. We also investiga te the weak and strong magnetic field cases with two dif ferent 
limits, heavy and light masses. In addition, we compute the ratio of the influence of the 
strong magnetic field to that of the weak one for the Casimir energy and its pr essur e. We 
find that the strong magnetic field enhances the magnitude of the Casimir energy and its 
pr essur e, wher e the parameter of the intensity of Lorentz violation could scale the plate’s 
distance. 
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1. Introduction 

The Casimir effect r epr esenting quantum field effects under macroscopic boundaries was first
predicted by H. B. G. Casimir in 1948 [ 1 ]. He showed that the quantum vacuum fluctuations
of the electromagnetic field confined between two parallel plates generate an attracti v e force.
One decade later, in 1958, Sparnaa y perf ormed the experimental measurement of the effect;
howe v er, with only rough precision [ 2 ]. He found that the attracti v e force of the plates does
not contradict the theoretical prediction. After his work, studies have shown the Casimir effect
to be experimentally confirmed with high precision [ 3–6 ]. The Casimir effect itself has many
applications in nanotechnology [ 7 ], and the theoretical discussion was elaborated in connec-
tion to se v eral r esear ch ar eas, e .g. cosmology [ 8 ] and condensed matter physics [ 9 , 10 ] (see e .g.
Refs. [ 11 , 12 ] for re vie ws). 

The studies showed that the Casimir effect also arises not only for the electromagnetic field
but also for other fields. The geometry of the plate’s surface r epr esented by the form of the
boundary conditions also determines how the Casimir effect behaves. To discuss the Casimir
effect of the scalar field, one can use the Dirichlet boundary conditions of the vanishing field at
the surface of the plates. In such a case, one can also employ Neumann and/or mixed boundary
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License (https://creati v ecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
Funded by SCOAP 3 
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conditions [ 13 ]. Howe v er, in the case of the fermion field, one cannot a ppl y such boundaries
because the solution for the fermion field is deri v ed from the first-order differential equation.
Alternati v ely, one may use a bag boundary condition that guarantees the flux vanishing at the
plate’s surface. The well-known form covering this property is the boundary condition from
the MIT bag model [ 14 , 15 ] (see Ref. [ 16 ] for a re vie w). The e xtension of this boundary that
includes the role of the chiral angle has been employed in the literature (see, e.g. Refs. [ 17 , 18 ],
cf . Ref . [ 19 ] for the self-adjoint variant). 

The Casimir effect phenomenon could be investigated in the system with charged quantum
fields under the magnetic field background. With such a system, one can investigate how the
charged quantum field couples to the quantum fluctuation [ 19–25 ]. On the other hand, the
Casimir effect in the system involving a Lorentz violation has also attracted some attention
[ 26–33 ] (see also Refs. [ 34 , 35 ] for another approach under the Horava–Lifshitz theories [ 36 ]).
Within the frame wor k of string theories, spontaneous Lor entz br eaking may occur through
a dynamic of the Lorentz covariant [ 37 ]. Such a dynamic will gener ate inter actions to gain
nonzero expectation values for Lorentz tensors. This is the same analog as in the Higgs mech-
anism in the context of the standard model. Several studies have investigated a system under
Lor entz symmetry br eaking and the CPT anomaly [ 38–40 ]. These violations could possibly be
measured in the proposed experiment, e.g. the measurements of neutral-meson oscillations [ 41–
47 ], the quantum electrodynamics test on Penning traps [ 48–53 ], and the baryogenesis mecha-
nism [ 54 ] (see Ref. [ 55 ] for the experimental data of Lorentz and CPT violations). Hence, in this
work, we study a system of charged fields involving both Lorentz violation and a magnetic field
background. In particular, we investigate the Casimir effect of the system under such effects. 

In our setup, the magnetic field is raised in parallel to the normal pla te’s surface. We investiga te
two cases of the Lorentz-violating direction, i.e. time-like and space-like directions. For the
space-like case, we restrict ourselves to discussing the violation in the z -direction only because
Lorentz violation in the x - and y -directions does not affect the behavior of the Casimir energy
of a Dirac field [ 28 ]. In the present study, we employ the boundary condition from the MIT
bag model [ 14–16 ], which was originally used to describe quark confinement. It is natural to
show that the presence of the boundary condition in the confinement system leads the allowed
perpendicular momentum to the boundary surface to be discrete. To discuss the Casimir effect,
we investigate the mode expansion of the field consisting of the linear superposition of the
positi v e- and negati v e-energy solutions associa ted with the crea tion and annihila tion opera tors.
We can evaluate the vacuum energy by a ppl ying the boundary condition to the mode expansion.
In the present study, we use the Abel–Plana-like summation [ 56 ] to extract the di v ergence of 
the vacuum energy in the presence of boundary conditions. Then, the Casimir energy can be
ma thema tically obtained by taking the difference between the vacuum energy in the presence
of the boundary conditions and that in their absence, where both vacuum energies are infinite,
but their difference is finite. 

The structure of the rest of this paper is organized as follows. In Sect. 2 , we describe the model
of our system, namely, a Dirac field confined between two parallel plates with a background
magnetic field under the Lorentz violation in the quantum field theory frame wor k. In Sect. 3 ,
we investigate the Casimir energy. In this section, we deri v e the solution for the field inside the
confinement area following the procedure used in the literature (see, e.g. Refs. [ 19 , 57 , 58 ]). In
Sect. 4 , we discuss the Casimir pr essur e. Section 5 is devoted to our summary. In this paper, we
use natural units so that c = � = 1. 
2/22 
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Fig. 1. Physical setup: Dirac field confined between two parallel plates separated by the distance � . The 
plates with the surface area L 

2 are placed at the xy -plane. In this work, we assume the limit L → ∞ 

a pproximatel y. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Model 
We consider the charged Dirac field confined between two parallel plates placed at z = 0 and z
= � in the presence of a uniform magnetic field. The normal surface of the plates is parallel to
the z -axis (see Fig. 1 ). 

In our model, the Lorentz symmetry is not preserved. Models with the spirit of Lorentz
violation have been proposed in Refs. [ 28 , 33 , 59–64 ]. The Lagrangian density of a Dirac field
with mass m for such a system is gi v en by 

L = �̄
[
iγ μ∂ μ − eγ μA μ − m + iλu 

μu 

νγμ∂ ν
]
�, (1) 

where �̄(≡ �γ 0 ) is the Dirac adjoint, λ is the dimensionless parameter with | λ| � 1, A μ is the
four vector potential, and u 

μ is an arbitrary constants vector where u 

μu μ can be 1, −1, 0 for
time-lik e, space-lik e, and light-lik e, respecti v ely. The Lorentz symmetry breaking is character-
ized by the last term of Eq. ( 1 ); the parameter λ contributes to the violation intensity whereas
the vector u 

μ describes the violation direction [ 33 ]. In the present study, we use 4 × 4 gamma
matrices γ μ written in the Dirac r epr esentation as follows: 

γ 0 = 

( 

I 0 

0 −I 

) 

and γ j = 

( 

0 σ j 

−σ j 0 

) 

, j = 1 , 2 , 3 , (2) 

wher e I r epr esents the 2 × 2 identity matrix and σ j is the 2 × 2 Pauli matrices. The gamma
ma trices sa tisfy the anticommuta tion rela tion as { γ μ, γ ν} = ημν , where ημν( ≡ diag.(1, −1, −1,
−1)) is the metric tensor of the Minkowski spacetime. 

The Dirac field � satisfies the modified Dirac equation as follows: 

[ iγ μ∂ μ − eγ μA μ − m + iλu 

μu 

νγμ∂ ν ]� = 0 . (3) 

The positi v e-energy solution for the abov e Dirac equation is gi v en as 

� (+) (r ) = e −iωt ψ (r ) = e −iωt 

( 

χ1 

χ2 

) 

, (4) 

where χ1 and χ2 are the upper and lower two-component spinors, respecti v ely. We use ω to
r epr esent the eigenenergy of the Dirac field. In our model, the magnetic field is raised in the
z -direction B = (0 , 0 , B) , where one can choose the corresponding four-vector potential com-
3/22 
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ponents as follows: 

A 0 = A 2 = A 3 = 0 and A 1 = −yB, (5) 

with B as the magnetic field strength. 
The geometry of the plates is described by the boundary condition from the MIT bag model

as follows [ 14–16 ]: 

in μγ μ� = �, (6) 

where n μ is the unit normal inward four-vector perpendicular to the boundary surface. The
consequence of this boundary is the vanishing flux or normal probability density at the plate
surface n μJ 

μ(≡ n μ�̄γ μ�) = 0 . The idea of this boundary is that the mass of the field is writ-
ten as a function of its position; inside the confinement area, the mass has a finite value and
becomes infinite at the boundary surface. Then, one can suppose that the field outside the con-
finement area vanishes (see Ref. [ 65 ] for the confinement model of a relativistic particle). While
inside the confinement area, the solution for the field is written as the superposition between
the left- and right-field components. 

3. Casimir energy 

In this section, we deri v e the Casimir energy of a Lorentz-violating charged Dirac field in a
background magnetic field. We study two directions of the Lorentz violation, namely, time-
like and space-like vector cases. We do not consider the light-like case because the contribution
from the Lorentz violation term will vanish and the result of the Casimir energy is the same
as in Ref. [ 19 ]. We deri v e the solution for the Dirac field inside the confinement area under the
boundary condition from the MIT bag model [ 14–16 ]. We follow the general procedure gi v en
in Refs. [ 19 , 57 , 58 ]. Then, we compute the Casimir energy using the Abel–Plana-like summation
[ 56 ] following Refs. [ 17 , 33 , 66 ]. In addition, we also investigate the Casimir energy a pproximatel y
for the case of weak and strong magnetic fields. 

3.1. Time-like vector case 

We consider the positi v e-energy solution for the time-like vector case with u 

( t ) = (1, 0, 0, 0). In
this case, the Dirac Eq. ( 3 ) gi v es two equations as follows: 

[(1 + λ) ω − m ] χ (t) 
1 = (−iσ j ∂ j + eyB σ 1 ) χ ( t) 

2 , (7) 

[(1 + λ) ω + m ] χ (t) 
2 = (−iσ j ∂ j + eyB σ 1 ) χ ( t) 

1 , (8) 

from which we have the equation for the upper two-component spinor χ (t) 
1 as 

[(1 + λ) 2 ω 

2 − m 

2 ] χ (t) 
1 = (−iσ j ∂ j + eyB σ 1 ) 2 χ ( t) 

1 

= [ −∇ 

2 + e 2 y 

2 B 

2 − eB (i2 y∂ 1 + σ 3 )] χ ( t) 
1 . (9) 

In the above equation, we have used the commutation and anticommutation relations of the
Pauli matrices gi v en as [ σ l , σ m ] = 2 i εlmn σ

n and { σ m , σ n } = 2 δmn I , respecti v el y, w here δmn is a
Kronecker delta and εlmn is a Le vi-Ci vita symbol. To find the solution for χ (t) 

1 in Eq. ( 9 ), one
can propose the following form: 

χ
(t) = e ik 1 x e ik 3 z F 

(t) (y ) . (10) 
1 

4/22 
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The presence of the Pauli matrix σ 3 in Eq. ( 9 ) leads to two independent solutions for F 

( t ) ( y ) as
follows: 

F 

(t) 
+ 

(y ) = 

( 

f (t) 
+ 

(y ) 
0 

) 

and F 

(t) 
− (y ) = 

( 

0 

f (t) 
− (y ) 

) 

. (11) 

Then, it is convenient to introduce s = ±1 so that the solution for f (t) 
s (y ) can be read in a general

way as 

σ 3 F 

(t) 
s (y ) = s F 

(t) 
s (y ) , (12) 

and introduce a new parameter as 

ξ (+ ,t) = 

√ 

eB 

(
y + 

k 1 

eB 

)
. (13) 

Then, Eq. ( 9 ) can be read as Hermite’s equation for arbitrary s as follows: [
d 

2 

dξ (t)2 
− ξ (t)2 + a 

(t) 
s 

]
f (t) 
s (y ) = 0 , (14) 

where 

a 

(t) 
s = 

(1 + λ) 2 ω 

2 − m 

2 − k 

2 
3 + eBs 

eB 

. (15) 

We now have the eigenenergies as 1 

ω 

(t) 
n ′ ,k 3 

= (1 + λ) −1 
√ 

m 

2 + k 

2 
3 + | eB| (2 n 

′ + 1) − | eB| s , (16) 

where we have used a 

(t) 
s = 2 n 

′ + 1 with n 

′ = 0, 1, 2, 3, ···. The appropriate solution for f (t) 
s (y )

with positi v e value eB tha t sa tisfies Hermite’s Eq. ( 14 ) is gi v en by 

f (t) 
s (y ) = 

√ 

(eB) 1 / 2 

2 

n n 

′ !(π ) 1 / 2 
e −ξ 2 / 2 H n ′ (ξ (t) ) , (17) 

where f (t) 
s (y ) has been normalized. The solution for F 

(t) 
s (y ) is characterized by two conditions,

namely, n 

′ = n for s = + 1 and n 

′ = n − 1 for s = −1. They can be written as follows: 

F 

(t) 
+ 

(y ) = 

( 

f (t) 
k 1 ,n 

(y ) 
0 

) 

and F 

(t) 
− (y ) = 

( 

0 

f (t) 
k 1 ,n −1 (y ) 

) 

. (18) 

We note that the eigenenergy for both values of s gi v es the same expression as 

ω 

(t) 
n,k 3 

= (1 + λ) −1 
√ 

m 

2 + k 

2 
3 + 2 n | eB| , (19) 

where n = 0, 1, 2, 3, ··· is the Landau le v el. Then, we can finally deri v e the spatial solution for
the right-moving field component as follows: 

ψ 

(+ ,t) 
k 1 ,n,k 3 

(r ) = 

e ik 1 x e ik 3 z 

2 π

√ 

2(1 + λ) ω 

(t) 
n,k 3 

((1 + λ) ω 

(t) 
n,k 3 

+ m ) 

×

⎡ 

⎢ ⎢ ⎢ ⎣ 

C 1 

⎛ 

⎜ ⎜ ⎜ ⎝ 

( ( 1 + λ) ω 

(t) 
n,k 3 

+ m )f (t) 
k 1 ,n 

(y ) 
0 

k 3 f 
(t) 
k 1 ,n 

(y ) √ 

2 neB f (t) 
k 1 ,n −1 (y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ C 2 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 

( ( 1 + λ) ω 

(t) 
n,k 3 

+ m )f (t) 
k 1 ,n −1 ( y ) √ 

2 neB f (t) 
k 1 ,n 

(y ) 
−k 3 f 

(t) 
k 1 ,n −1 (y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

(20) 
1 We have used | eB | to avoid imaginary values of ω. 
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and 

ψ 

(+ ,t) 
k 1 , 0 ,k 3 

( r ) = 

e ik 1 x e ik 3 z 

2 π

√ 

2( 1 + λ) ω 

(t) 
0 ,k 3 

( ( 1 + λ) ω 

(t) 
0 ,k 3 

+ m ) 
C 0 f 

(t) 
k 1 , 0 

( y ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

( 1 + λ) ω 

(t) 
0 ,k 3 

+ m 

0 

k 3 

0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (21) 

for n ≥ 0 and n = 0, respecti v el y, w here C 0 , C 1 , and C 2 r epr esent the complex coefficients and
f (t) 
k 1 ,n 

(y ) is gi v en by 

f (t) 
k 1 ,n 

(y ) = 

√ 

(eB) 1 / 2 

2 

n n ! π1 / 2 
exp 

[ 

− eB 

2 

(
y + 

k 1 

eB 

)2 
] 

H n 

[ √ 

eB 

(
y + 

k 1 

eB 

)] 

, (22) 

with H n ( ξ ) as the Hermite polynomial. In a similar way, we can obtain the solution for the
left-moving field component as follows: 

ψ 

(+ ,t) 
k 1 ,n, −k 3 

(r ) = 

e ik 1 x e −ik 3 z 

2 π

√ 

2(1 + λ) ω 

(t) 
n,k 3 

((1 + λ) ω 

(t) 
n,k 3 

+ m ) 

×

⎡ 

⎢ ⎢ ⎢ ⎣ 

˜ C 1 

⎛ 

⎜ ⎜ ⎜ ⎝ 

( ( 1 + λ) ω nk 3 + m )f (t) 
k 1 ,n 

(y ) 
0 

−k 3 f 
(t) 
k 1 ,n 

(y ) √ 

2 neB f (t) 
k 1 ,n −1 (y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ 

˜ C 2 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 

( ( 1 + λ) ω nk 3 + m )f (t) 
k 1 ,n −1 (y ) √ 

2 neB f (t) 
k 1 ,n 

(y ) 
k 3 f 

(t) 
k 1 ,n −1 (y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

(23) 

and 

ψ 

(+ ,t) 
k 1 , 0 , −k 3 

( r ) = 

e ik 1 x e −ik 3 z 

2 π

√ 

2( 1 + λ) ω 

(t) 
0 ,k 3 

( ( 1 + λ) ω 

(t) 
0 ,k 3 

+ m ) 
˜ C 0 f 

(t) 
k 1 , 0 

( y ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

( 1 + λ) ω 

(t) 
0 ,k 3 

+ m 

0 

−k 3 

0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (24) 

for n ≥ 1 and n = 0, respecti v el y, w here ˜ C 0 , ˜ C 1 , and 

˜ C 2 are the complex coefficients. The total
field solution is gi v en by the linear combination of the left- and right-moving field components
as follows: 2 

ψ 

(+ ,t) 
k 1 ,n,k 3 

(r ) = ψ 

(+ ,t) 
k 1 ,n,k 3 

(r ) + ψ 

(+ ,t) 
k 1 ,n, −k 3 

(r ) , (25) 

where we use k 3 l to represent the allowed momentum in the system, as we will see below. 
For arbitrary nonzero complex coefficients, we have the constraint for the momentum com-

ponent in the z -direction ( k 3 ) in the case of n ≥ 0 as follows: 

m� sin (k 3 � ) + k 3 � cos (k 3 � ) = 0 . (26) 

The detailed derivation is given in Appendix A . The solution for Eq. ( 26 ) is gi v en by k 3 l with l =
1, 2, 3, ···, which indicates that the allowed momentum k 3 must be discrete. As a consequence,
the energy of the field under the MIT boundary condition must also be discrete as follows: 

ω 

(t) 
n,l = (1 + λ) −1 

√ 

m 

2 + k 

2 
3 l + 2 n | eB| . (27) 

These properties not only hold for positi v e-energy solutions but also for the negati v e-energy
counterparts. One can see that the magnetic field and parameter λ do not affect the structure
of the momentum constraint ( 26 ). 
2 In the case of preserved Lorentz symmetry ( λ = 0), the solution is completely the same as that of 
Ref. [ 19 ]. 
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We now write down a mode expansion of the Dirac field in the time-like vector case under
the boundary condition from the MIT bag model as 

�
(t) 
k 1 ,n,l (r ) = 

∞ ∑ 

n =0 

∞ ∑ 

l=1 

∫ ∞ 

−∞ 

dk 1 
[

ˆ a k 1 ,n,l �
(+ ,t) 
k 1 ,n,l (r ) + 

ˆ b 

† 
k 1 ,n,l �

(−,t) 
k 1 ,n,l (r ) 

]
, (28) 

wher e � (±,t) 
k 1 ,n,l (r ) ar e the positi v e ( + ) and negati v e ( −) energy solutions. See Appendix B.1 for the

detailed expression of the negative-energy solution. The annihilation and creation operators in
Eq. ( 28 ) satisfy the following anticommutation relations: 

{ ̂  a k 1 ,n,l , ˆ a 

† 
k ′ 1 ,n ′ ,l ′ 

} = { ̂  b k 1 ,n,l , ̂  b 

† 
k ′ 1 ,n ′ ,l ′ 

} = δnn ′ δl l ′ δ(k 1 − k 

′ 
1 ) , (29) 

and the other anticommuta tion rela tions vanish. The Dirac field satisfies orthonormality con-
ditions as follows: ∫ 

d x ⊥ 

∫ � 

0 
d zψ 

( j,t) † 
k 1 ,n,l ( r ) ψ 

( j ′ ,t) 
k ′ 1 ,n ′ ,l ′ 

( r ) = δ j j ′ δnn ′ δl l ′ δ(k 1 − k 

′ 
1 ) , j, j ′ = 0 , 1 , 2 , (30) 

by which we can obtain the relations of the complex coefficients of the field. We use x ⊥ 

≡ (x, y )
to r epr esent the subspa tial coordina te parallel to the normal pla tes’ surface. From the above
Lagrangian density ( 1 ), one can obtain the Hamiltonian density in the time-like vector case as
follows: 

H 

(t) = −�̄ (t) [iγ j ∂ j − eγ μA μ − m 

]
� (t) = i(1 + λ)� (t) † ∂ 0 �

(t) . (31) 

Now we are ready to evaluate the vacuum energy as follows: 

E 

(t) 
Vac . = 

∫ 
�

d 

3 x E 

(t) 
Vac . = 

∫ 
�

d 

3 x 〈 0 |H 

(t) | 0 〉 = −| eB| L 

2 

π

∞ ∑ 

n =0 

∞ ∑ 

l=1 

i n 

√ 

m 

2 + 

(
k 

′ 
3 l 

� 

)2 

+ 2 n | eB| , (32) 

where E Vac . is the vacuum energy density, i n = 1 − 1 
2 δn 0 , k 

′ 
3 l ≡ k 3 l � , and � is the volume of the

confinement area. One can deri v e the Casimir energy by subtracting the vacuum energy in the
presence of the boundary condition from that in the absence of one. We note that the roles of 
λ do not appear in the vacuum energy for the time-like vector case. In other words, the Casimir
energy also does not depend on λ. In the next subsection, we will show that the above result
can be r ecover ed in the case of pr eserved Lor entz symmetry. Ther efor e, it is not necessary to
evaluate further the Casimir energy in this subsection. 

3.2. Space-like vector case 

In this subsection, we investigate the Casimir energy for the space-like vector case in the z -
direction. We start the discussion by deriving the positive energy solution for the space-like
vector case with u 

( z ) = (0, 0, 0, 1). In this case, the Dirac Eq. ( 3 ) gives two equations as follows:

( ω − m ) χ (z ) 
1 = ( −i σ j ∂ j + eyBσ 1 + i λσ 3 ∂ 3 ) χ

(z ) 
2 , (33) 

( ω + m ) χ (z ) 
2 = ( −i σ j ∂ j + eyBσ 1 + i λσ 3 ∂ 3 ) χ

(z ) 
1 . (34) 

Multiplying both sides of Eq. ( 33 ) by ( ω + m ) and using Eq. ( 34 ), we have the equation for the
upper two-component spinor χ (z ) 

1 as follows: 

(ω 

2 − m 

2 ) χ (z ) 
1 = (−iσ j ∂ j + eyBσ 1 + iλσ 3 ∂ 3 ) 2 χ

(z ) 
1 

= [ −∇ 

2 + e 2 y 

2 B 

2 − eB(2 iy∂ 1 + σ 3 ) + 2 λ∂ 2 3 − λ2 ∂ 2 3 ] χ
(z ) 
1 . (35) 

One can propose the solution χ
(z ) 
1 as follows: 

χ
(z ) = e ik 1 x e ik 3 z f (z ) (y ) . (36) 
1 

7/22 
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Along the same procedure used in the previous subsection, substituting back Eq. ( 36 ) into
Eq. ( 35 ) brings us to Hermite’s equation in which we have the eigenenergies given as 

ω 

(z ) 
n,k 3 

= 

√ 

m 

2 + (1 − λ) 2 k 

2 
3 + 2 n | eB| . (37) 

We find that the solution of the Dirac field confined between two parallel plates in the space-
like vector case of the z -direction for the right-moving field with positi v e value eB is gi v en as
follows: 

ψ 

(z ) 
k 1 ,n,k 3 

(r ) = 

e ik 1 x e ik 3 z 

2 π

√ 

2 ω 

(z ) 
n,k 3 

(ω 

(z ) 
n,k 3 

+ m ) 

×

⎡ 

⎢ ⎢ ⎢ ⎣ 

C 1 

⎛ 

⎜ ⎜ ⎜ ⎝ 

( ω n,k 3 + m )F 

(z ) 
k 1 ,n 

( y ) 
0 

(1 − λ) k 3 F 

(z ) 
k 1 ,n 

(y ) √ 

2 neB F 

(z ) 
k 1 ,n −1 (y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ C 2 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 

(ω nk 3 + m )F 

(z ) 
k 1 ,n −1 (y ) √ 

2 neB F 

(z ) 
k 1 ,n 

(y ) 
−(1 − λ) k 3 F 

(z ) 
k 1 ,n −1 (y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (38) 

and 

ψ 

(z ) 
k 1 , 0 ,k 3 

( r ) = 

e ik 1 x e ik 3 z 

2 π

√ 

2 ω 

(z ) 
0 ,k 3 

( ω 

(z ) 
0 ,k 3 

+ m ) 
C 0 F 

(z ) 
k 1 0 

( y ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

ω 

(z ) 
0 ,k 3 

+ m 

0 

( 1 − λ) k 3 

0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (39) 

for n ≥ 1 and n = 0, respecti v el y, w here 

F 

(z ) 
k 1 ,n 

(y ) = 

√ 

(eB) 1 / 2 

2 

n n ! π1 / 2 
exp 

[ 

− eB 

2 

(
y + 

k 1 

eB 

)2 
] 

H n 

[ √ 

eB 

(
y + 

k 1 

eB 

)] 

, (40) 

with the Hermite polynomial H n ( y ). In a similar way, we can obtain the solution for the left-
moving field as follows: 

ψ 

(+ ,z ) 
k 1 ,n, −k 3 

(r ) = 

e ik 1 x e −ik 3 z 

2 π

√ 

2 ω 

(z ) 
n,k 3 

(ω 

(z ) 
n,k 3 

+ m ) 

×

⎡ 

⎢ ⎢ ⎢ ⎣ 

˜ C 1 

⎛ 

⎜ ⎜ ⎜ ⎝ 

( ω 

(z ) 
n,k 3 

+ m )F 

(z ) 
k 1 ,n 

( y ) 
0 

−(1 − λ) k 3 F 

(z ) 
k 1 ,n 

(y ) √ 

2 neB F 

(z ) 
k 1 ,n −1 (y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ 

˜ C 2 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 

( ω 

(z ) 
n,k 3 

+ m )F 

(z ) 
k 1 ,n −1 ( y ) √ 

2 neB F 

(z ) 
k 1 ,n 

(y ) 
(1 − λ) k 3 F 

(z ) 
k 1 ,n −1 (y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (41) 

ψ 

(+ ,z ) 
k 1 , 0 , −k 3 

( r ) = 

e ik 1 x e −ik 3 z 

2 π

√ 

2 ω 

(z ) 
0 ,k 3 

( ω 

(z ) 
0 ,k 3 

+ m ) 
˜ C 0 F 

(z ) 
k 1 , 0 

( y ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

ω 

(z ) 
0 ,k 3 

+ m 

0 

−( 1 − λ) k 3 

0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (42) 

for n ≥ 1 and n = 0, respecti v el y, w here the eigenenergies ω 

(z ) 
n,k 3 

are gi v en by Eq. ( 37 ) (see Ap-
pendix A for the detailed derivation). The complex coefficients in the above Dirac field can be
determined by similar orthonormality conditions gi v en in Eq. ( 30 ). For the case of the negati v e
energy solution, we deri v e it in detail in Appendix B.2 . 

We next write the total spatial solution for the Dirac field inside the confinement area as
follows: 

ψ 

(+ ,z ) 
k ,n,k (r ) = ψ 

(+ ,z ) 
k ,n,k (r ) + ψ 

(+ ,z ) 
k ,n, −k (r ) . (43) 
1 3 1 3 1 3 
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For nonzero complex coefficients C 1 , C 2 , ˜ C 1 , ˜ C 2 , we have the constraint of the momentum k 3 

as follows: 

m� sin (k 3 � ) + (1 − λ) k 3 � cos (k 3 � ) = 0 , (44) 

for arbitrary Landau le v el n . One can see that the parameter λ affects the constraint while the
magnetic field does not. The allowed momentum that satisfies the constraint ( 44 ) is k 3 l with l =
0, 1, 2, 3, ···. The discretized eigenenergies of the field under the MIT boundary can be written
as follows: 

ω 

(z ) 
n,l = 

√ 

m 

2 + (1 − λ) 2 k 

2 
3 l + 2 n | eB| . (45) 

Below we will compute the Casimir energy of the charged Dirac field under the presence of 
the MIT boundary. For this purpose, we write down the Hamiltonian density for the space-like
vector case as follows: 

H 

(z ) = −�̄ (z ) [iγ j ∂ j − eγ μA μ − m 

]
� (z ) = i� (z ) † ∂ 0 �

(z ) . (46) 

The vacuum energy reads 

E Vac . = −| eB| L 

2 

π

∞ ∑ 

n =0 

∞ ∑ 

l=1 

i n 

√ 

m 

2 + (1 − λ) 2 
(

k 

′ 
3 l 

� 

)2 

+ 2 n | eB| , (47) 

where we have used the eigenenergies given in Eq. ( 45 ) and k 

′ 
3 � (≡ k 3 l � ) . From the above vacuum

energy, one can see that its value is di v ergent. To solv e the issue, we employ the Abel–Plana-like
summation as follows [ 56 ]: 

∞ ∑ 

l=1 

π f n (k 

′ 
3 l ) (

1 − sin (2 k ′ 3 l ) 
2 k ′ 3 l 

) = − πbm f n (0) 
2(bm + 1) 

+ 

∫ ∞ 

0 
dz f n (z ) − i 

∫ ∞ 

0 
dt 

f n (it) − f n (−it) 
t+ bm 

t−bm 

e 2 t + 1 

. (48) 

From the momentum constraint in the space-like vector case ( 44 ), the denominator on the left-
hand side of Eq. ( 48 ) can be rewritten in the following form: 

1 − sin (2 k 

′ 
3 l ) 

2 k 

′ 
3 l 

= 1 + 

bm 

k 

′ 2 
3 l + (bm ) 2 

, (49) 

where 

b = � (1 − λ) −1 . (50) 

Then, after a ppl ying the Abel–Plana-like summation to the vacuum energy, Eq. ( 47 ) becomes 

E Vac . = −| eB| L 

2 

π2 b 

∞ ∑ 

n =0 

i n 

[
− πbm f n (0) 

2(bm + 1) 
+ 

∫ ∞ 

0 
dq f n (q ) − i 

∫ ∞ 

0 
dt 

f n (it) − f n (−it) 
t+ bm 

t−bm 

e 2 t + 1 

]
, (51) 

where the function f n ( q ) is defined as 

f n (q ) = 

√ 

m 

2 b 

2 + q 

2 + 2 n | eB| b 

2 

(
1 + 

bm 

q 

2 + (bm ) 2 

)
. (52) 

Next, one can decompose the first and second terms in the vacuum energy ( 51 ) into two parts:
(i) in the absence of the boundary conditions of two plates and (ii) in the presence of one plate.
The latter part is irrelevant to our discussion because it does not contribute to the force. Then,
the last term of Eq. ( 51 ) can be understood as the Casimir energy 

E Cas . = 

i| eB| L 

2 

π2 b 

∞ ∑ 

n =0 

i n 

∫ ∞ 

0 
dt 

f n (it) − f n (−it) 
t+ bm 

t−bm 

e 2 t + 1 

. (53) 
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Fig. 2. (Left) The scaled Casimir energy of the space-like vector case as a function of the dimensionless 
parameter m 

′ for fixed � 2 | eB | = 2. (Right) The scaled Casimir energy of the space-like vector case as a 

function of the dimensionless parameter � 2 | eB | for fixed m 

′ = 1. In both panels, we use three different 
values of the parameter λ = 0, 0.01, 0.1. 

 

 

 

 

 

 

 

 

 

Using Eq. ( 52 ) and introducing a variable of t = bu , the Casimir energy reads 

E Cas . = −2 | eB| L 

2 

π2 

∞ ∑ 

n =0 

i n 

∫ ∞ 

0 
du 

√ 

u 

2 − M 

2 
n 

(
b ( u − m ) − m/ (m + u ) 

(u + m ) e 2 bu + u − m 

)
, (54) 

where 

M n = 

√ 

m 

2 + 2 n | eB| . (55) 

The range of integration of Eq. ( 54 ) can be split into two intervals, i.e. [0, M n ] and [ M n , ∞ ].
The integration result of the first interval vanishes while the second one remains. To proceed
further with the Casimir energy, we next rewrite the following quantity as 

b (u − m ) − m/ (m + u ) 
(u + m ) e 2 bu + u − m 

= −1 

2 

d 

du 

ln 

(
1 + 

u − m 

u + m 

e −2 bu 
)

, (56) 

which leads the Casimir energy to 

E Cas . = 

| eB| L 

2 

π2 b 

∞ ∑ 

n =0 

i n 

∫ ∞ 

0 
d y 

√ 

y 

2 + 2 ybM n 
d 

d y 

ln 

(
1 + 

y + b(M n − m ) 
y + b(M n + m ) 

e −2(y + bM n ) 
)

, (57) 

where we have introduced a new variable as 

y = bu − bM n . (58) 

Performing integration by part for Eq. ( 57 ), we finally find the simpler form of the Casimir
energy as follows: 

E Cas . = −| eB| L 

2 

π2 b 

×
∞ ∑ 

n =0 

i n 

∫ ∞ 

0 
dy (y + bM n )(y 

2 + 2 byM n ) −1 / 2 ln 

(
1 + 

y + b(M n − m ) 
y + b(M n + m ) 

e −2(y + bM n ) 
)

. 

(59) 

We next numerically evaluate the expression of the Casimir energy given in Eq. ( 59 ). The left
panel of Fig. 2 depicts the scaled Casimir energy as a function of the dimensionless parameter
m 

′ ( ≡ m � ) for various values of the parameter λ = 0, 0.01, 0.1 with a fixed parameter � 

2 | eB | =
2. From this figure, we find that the scaled Casimir energy converges to zero as the parameter
m 

′ becomes larger. The right panel of Fig. 2 depicts the scaled Casimir energy as a function
of the dimensionless parameter � 

2 | eB | for a fixed parameter m 

′ = 1. From this figure, one can
10/22 
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Fig. 3. The scaled Casimir energy of the space-like vector case as a function of the dimensionless param- 
eter m 

′ ( ≡ m � ) for v arious v alues of the parameter � 2 | eB | = 0, 0.05, 0.5, 1 and the fixed parameter λ = 

0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

see that the scaled Casimir energy also generally converges to zero as the parameter � 

2 | eB |
increases. Howe v er, in the small region of � 

2 | eB | ( � 

2 | eB | < 0.005), the behavior of the scaled
Casimir energy is not trivial. This can be understood from the formula in Eq. ( 60 ) when we
take the vanishing magnetic field B → 0. This nontrivial behavior also appears in Ref. [ 22 ],
where the authors have discussed the Casimir energy of the fermion field in the framework
of standard quantum field theory (preserved Lorentz symmetry). Both panels of Fig. 2 show
that as the parameter λ increases, the magnitude of the Casimir energy will decrease and vice
v ersa, as pre viously shown by Ref. [ 33 ] for the absence of the magnetic field. Figure 3 plots the
scaled Casimir energy as a function of the dimensionless parameter m 

′ for various values of the
parameter � 

2 | eB | = 0, 0.05, 0.5, 1 and the fixed parameter λ = 0.1. One can see that increasing
� 

2 | eB | leads to the converging of the Casimir energy to zero. 
In the rest of this part, we investigate the approximate cases of the Casimir energy. In the

case of the weak magnetic field � 

2 | eB | � 1, the above Casimir energy ( 59 ) for an arbitrary m 

′ 

( ≡ m � ) reduces to 

E Cas . � − L 

2 

π2 b 

3 

∫ ∞ 

bm 

d xx 

2 
∫ ∞ 

0 
d v (v + 1) 

1 √ 

v (v + 2) 
ln 

(
1 + 

x (v + 1) − bm 

x (v + 1) + bm 

e −2 x (v +1) 
)

. (60) 

To obtain the above expression, we have used the replacement of summation with integration,
v = y /( bM n ), and x = bM n . Taking the case of light mass m 

′ � 1 for Eq. ( 60 ), we recover the
earlier result by Ref. [ 33 ] as follows: 

E Cas . � −7 π2 (1 − λ) 3 L 

2 

2880 � 

3 

[
1 − 120 m 

′ 

7 π2 (1 − λ) 

]
, (61) 

where we have expanded the integrand up to the order of O(m 

′ ) and omitted the higher ones.
The first term corresponds to the Casimir energy in the massless case with the effect of the
Lor entz violation, wher eas the second term corr esponds to the correction part. In the case of 
pr eserved Lor entz symmetry, λ = 0, we r ecover the well-kno wn Casimir ener gy of the massless
fermion deri v ed by Johnson [ 16 ]. 
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To obtain the approximated result of Eq. ( 61 ), one can also start from the general Casimir
energy ( 59 ) and take its light mass case m 

′ � 1 for the arbitrary magnetic field as 

E Cas . � −| eB| L 

2 

π2 b 

∞ ∑ 

n =0 

i n 

∫ ∞ 

0 
dy 

⎡ 

⎣ 

(y + b 

√ 

2 neB ) ln (1 + e −2(y + b 
√ 

2 neB ) ) √ 

y 

2 + 2 yb 

√ 

2 neB 

− 2 bme −2(y + b 
√ 

2 neB ) √ 

y 

2 + 2 yb 

√ 

2 neB (1 + e −2(y + b 
√ 

2 neB ) ) 

⎤ 

⎦ . (62) 

Then, taking the limit of the weak magnetic field, the above expression reduces to Eq. ( 61 ). 
In the case of heavy mass m 

′ 
 1, we find that the Casimir ener gy appro ximately reduces to 

E Cas . � −| eB| L 

2 (1 − λ) 3 / 2 

16 π3 / 2 � 

√ 

m 

′ 

∞ ∑ 

n =0 

i n e 
−2 

√ 

m ′ 2 +2 nB ′ 
(1 −λ) , (63) 

where we have expanded the integrand of Eq. ( 59 ) up to the order of O(1 /m 

′ ) and omitted the
higher ones. In the case of the weak magnetic field � 

2 | eB | � 1, the above Casimir energy ( 63 )
reads 

E Cas . � −L 

2 (1 − λ) 5 / 2 
√ 

m 

′ 

32 π3 / 2 � 

3 
e −

2 m ′ 
(1 −λ) . (64) 

We can see that, in the case of heavy mass, the Casimir energy goes to zero as the mass increases.
We next investigate the Casimir energy in the case of the strong magnetic field � 

2 eB 
 1. In
this case, together with light mass m 

′ � 1, the Casimir energy in Eq. ( 59 ) a pproximatel y reduces
to 

E Cas . � −| eB| L 

2 (1 − λ) 
48 � 

. (65) 

Meanwhile for the case of the strong magnetic field � 

2 | eB | 
 1 and taking the limit of heavy
mass m 

′ 
 1, the Casimir energy reads 

E Cas . � −| eB| L 

2 (1 − λ) 3 / 2 

32 π3 / 2 � 

√ 

m 

′ e 
−2 m ′ 
(1 −λ) . (66) 

From the above expression, we note that the Casimir ener gy conver ges to zero with the increase
of parameter m 

′ . Based on the above result, we can investigate the role of the magnetic field by
computing the ratio of the Casimir energy in the case of the strong magnetic field to the weak
one as follows: 

E Cas (� 

2 | eB| 
 1) 
E Cas (� 

2 | eB| � 1) 
= 

60 | eB| � 

2 

7 π2 (1 − λ) 2 
, for m 

′ � 1 , (67) 

E Cas (� 

2 | eB| 
 1) 
E Cas (� 

2 | eB| � 1) 
= 

2 e 
−2 m ′ 
(1 −λ) ∑ ∞ 

n =0 i n e 
−2 

√ 

m ′ 2 +2 n� 2 eB 
(1 −λ) 

, for m 

′ 
 1 . (68) 

It can be inferred from the above expressions that the magnetic field increases the Casimir
energy. In such cases, we can also see that the roles of the Lorentz violation scale the plate’s
distance. 

To end this section, let us compare qualitati v ely the Casimir energy formulation of both scalar
and fermion fields under Lorentz violation and a magnetic field background. The case of the
scalar field has been studied with Dirichlet and mixed (Dirichlet–Neumann) boundary con- 
ditions in Refs. [ 29 , 67 ]. For the present work, we study the fermion field under the boundary
condition of the MIT bag model. In comparison to Refs. [ 29 , 67 ], we note that their method of 
12/22 
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Fig. 4. (Left) The scaled Casimir pr essur e of the space-like vector case as a function of the dimensionless 
parameter m 

′ for fixed � 2 | eB | = 2. (Right) The scaled Casimir pr essur e of the space-like vector case as 
a function of the dimensionless parameter � 2 | eB | for fixed m 

′ = 1. In both panels, we use the various 
values of the parameter λ = 0, 0.01, 0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

deriving the Casimir energy differs from ours, where they used the zeta function regularization
technique to tackle the infiniti v e issue. Besides that, their plate’s distances are scaled differently.
Namely, it is scaled by (1 − λ) 1/2 whereas ours is scaled by (1 − λ). In the large mass limit
and strong magnetic limit, the resulting Casimir energies are consistent with Refs. [ 29 , 67 ]. In
particular, the magnetic field | eB | appears linearly in the front factor of the Casimir energy. 3 

The quantitati v e difference between the Casimir energy of the scalar and Dirac fields using the
Abel–Plana form ula generall y a ppears as a statistical factor, as shown by Ref. [ 21 ]. In particular,
we have an exponential factor ( t+ bm 

t−bm 

e 2 t + 1) −1 for the fermion field in our result (see Eq. ( 53 )).
In comparison to Ref. [ 21 ], it is consistent in the case of preserved Lorentz symmetry ( λ = 0). 

4. Casimir pr essur e 

In this section, we investigate the Casimir pr essur e for the space-like vector case. It can be ob-
tained from the Casimir energy ( 59 ) by taking the deri vati v e with respect to the plate’s distance
as 

P Cas . = − 1 

L 

2 

∂E Cas . 

∂� 

= −
∞ ∑ 

n =0 

i n 

∫ ∞ 

0 
dy 

1 

(1 − λ) b 

2 π2 (y (2 bM n + y )) 3 / 2 

× eBy 

{
2 b (b M n + y )(2 b M n + y )(b 

2 M n (M 

2 
n − m 

2 ) + 2 bM 

2 
n y + y (m + M n y )) 

b 

2 (M 

2 
n − m 

2 ) + 2 bM n y + y 

2 + e 2(bM n + y ) ( b( m + M n ) + y ) 2 

+(b 

2 M 

2 
n + 3 bM n y + y 

2 ) ln 

(
1 + 

e −2(bM n + y ) ( b( −m + M n ) + y ) 
b(m + M n ) + y 

)}
. (69) 

We plot the behavior of the scaled Casimir pr essur e in Figs. 4 and 5 . In general, we can see
that its behavior is similar to that of the Casimir energy. From the left panel of Fig. 4 , one
can see the scaled Casimir pr essur e converges to zero as the parameter m 

′ incr eases; wher eas,
from the right panel, it generally converges to zero with the increasing of � 

2 | eB | . Howe v er, for
a small region of � 

2 | eB | ( � 

2 | eB | < 0.02), its behavior is not trivial. We can also understand
this behavior with a similar argument to that used for the scaled Casimir energy discussed in
3 We should take the large mass limit of the Casimir energy Eq. ( 49 ) mentioned is that in Ref. [ 29 ] and 

not that in the present work. 
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Fig. 5. The scaled Casimir pr essur e of the space-like vector case as a function of the dimensionless pa- 
rameter m 

′ ( ≡ m � ) for various values of parameter � 2 | eB | = 0, 0.05, 0.5, 1 and fixed λ = 0.1. 

 

 

 

 

 

 

 

 

the previous subsection and the explicit expression is given below (Eq. ( 70 )). Both panels of 
Fig. 4 show that the magnitude of the Casimir pr essur e decr eases as the parameter λ increases.
Figure 5 plots the scaled Casimir pressure as a function of parameter m 

′ with various values of 
� 

2 | eB | and fixed parameter λ = 0.1. From this figure, we can see that the scaled Casimir pressure
converges to zero with the increasing of parameters m 

′ and � 

2 | eB | and it supports the behavior
shown in Fig. 4 . 

We next investigate the Casimir pr essur e in the cases of weak and strong magnetic fields. In
the case of the weak magnetic field � 

2 | eB | � 1, the Casimir pr essur e ( 69 ) a pproximatel y reduces
to 

P Cas . � − 1 

(1 − λ) b 

4 π2 

×
∫ ∞ 

bm 

dx 

∫ ∞ 

0 
dv 

x 

2 

v 1 / 2 (2 + v ) 3 / 2 

(
2 x (1 + v )(2 + v )(x 

2 (1 + v ) 2 + tbm − (bm ) 2 ) 
x 

2 (1 + v ) 2 − (bm ) 2 + e 2 x (1+ v ) (bm + x (1 + v )) 2 

+ (1 + 3 v + v 2 ) ln 

(
1 + 

e −2 x (1+ v ) (−bm + x (1 + v )) 
(bm + x (1 + v )) 

))
. (70) 

We further take the light mass limit m 

′ � 1 for the above expression, then we have 

P Cas . � − (1 − λ) 2 (7 π2 (1 − λ) − 80 m 

′ ) 
960 � 

4 
, (71) 

which covers the earlier result of Ref. [ 33 ]. As discussed in the previous section, to obtain the
abov e e xpression we can use the re v erse way , namely , taking its light mass limit and then con-
sidering the weak magnetic field. 

The Casimir pr essur e for the case of light mass with an arbitrary magnetic field is approxi-
mately gi v en as follows: 

P Cas . � P 

(0) + P 

(1) 
, (72) 
Cas . Cas . 
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where P 

(0) 
Cas . is the Casimir pressure for the massless case explicitly given as 

P 

(0) 
Cas . = −

∞ ∑ 

n =0 

i n 

∫ ∞ 

0 
dy 

| eB| y 

b 

2 π2 (1 − λ) 
(

y 

(
2 b 

√ 

2 neB + y 

))3 / 2 

×
⎧ ⎨ 

⎩ 

2 b 

√ 

2 neB 

(
2 b 

√ 

2 neB + y 

)(
b 

√ 

2 neB + y 

)
(

1 + e 2 ( b 
√ 

2 neB + y ) 
)

+ 

(
b 

2 2 neB + 3 b 

√ 

2 neB y + y 

2 
)

ln 

(
1 + e −2 ( b 

√ 

2 neB + y ) 
)} 

, (73) 

and P 

(1) 
Cas . is the first-order correction to the Casimir pressure O(m 

′ ) explicitly given as 

P 

(1) 
Cas . = 

∞ ∑ 

n =0 

i n 

∫ ∞ 

0 
dy 

2 | eB| yb 

√ 

2 neB 

(
1 + e 2 ( b 

√ 

2 neB + y ) (1 + 2 y ) + 4 e 2 ( b 
√ 

2 neB + y ) b 

√ 

2 neB 

)
bm 

b 

2 π2 
(

1 + e 2 ( b 
√ 

2 neB + y ) 
)2 (

y 

(
y + 2 b 

√ 

2 neB 

))3 / 2 
(1 − λ) 

. 

(74) 

We ne xt inv estigate the Casimir pr essur e ( 69 ) in the case of heavy mass m 

′ 
 1. In this case,
we have 

P Cas . � − | eB| √ 

m 

′ 

(1 − λ) 1 / 2 8 π3 / 2 b 

2 

∞ ∑ 

n =0 

i n e −2 
√ 

m 

′ 2 +2 neB , (75) 

and with the limit of the weak magnetic field � 

2 | eB | � 1, the above Casimir pr essur e approxi-
mately reduces to 

P Cas . � − (1 − λ) 5 / 2 m 

′ 3 / 2 

16 π3 / 2 � 

4 
e −

2 m ′ 
(1 −λ) . (76) 

Showing similar behavior to the Casimir energy ( 66 ), one can see that the Casimir pr essur e in
the limit of heavy mass ( 75 ) converges to zero as the particle’s mass increases. 

Based on the results of the Casimir pr essur e in the cases of light ( 72 ) and heavy masses ( 75 ),
we will analyze the behavior in the strong magnetic field. Taking the limit of the strong magnetic
field � 

2 | eB | 
 1 for Eq. ( 72 ), the Casimir pr essur e a pproximatel y reduces to 

P Cas . � −| eB| (1 − λ) 
48 � 

2 
, (77) 

while for Eq. ( 75 ), we obtain 

P Cas . � −| eB| (1 − λ) 3 / 2 
√ 

m 

′ 

16 π3 / 2 � 

2 
e 

−2 m ′ 
(1 −λ) . (78) 

One can also deri v e both of the above equations by taking the deri vati v e of the Casimir energy
(Eqs. ( 65 ) and ( 66 )) with respect to the plate’s distance. In the same way as with the Casimir
energy, we can also analyze the role of the strong magnetic field by computing the ratio of the
Casimir pr essur e in the case of the strong magnetic field to the weak one as follows: 

P Cas . (� 

2 | eB| 
 1) 
P Cas . (� 

2 | eB| � 1) 
= 

20 | eB| � 

2 

7 π2 (1 − λ) 2 
, for m 

′ � 1 , (79) 

P Cas . (� 

2 | eB| 
 1) 
P Cas . (� 

2 | eB| � 1) 
= 

2 e 
−2 m ′ 
(1 −λ) ∑ ∞ 

n =0 i n e 
−2 

√ 

m ′ 2 +2 � 2 eB 
(1 −λ) 

, for m 

′ 
 1 . (80) 

From the above expressions, we can see that the magnetic field increases the Casimir pressure. 
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5. Summary 

We have studied the Casimir effect of a Lorentz-violating Dirac field with a background uni-
form magnetic field. In the model, the Lorentz violation is described by two parameters: (i) λ,
which determines the intensity of the violation; and (ii) vector u 

μ, which determines the direc-
tion of the violation. In the present study, we investigated two vector cases, namely, time-like
and space-like vector cases. For the space-like vector case, we only discussed the z -direction. The
purpose of the study is to find the effect of the Lorentz violation parameter λ together with the
presence of the magnetic field on the behavior of the Casimir energy as well as its pr essur e. We
used the boundary condition from the MIT bag model [ 14–16 ] to r epr esent the property of the
plates. From our derivation, we find that for the time-like vector case, the magnetic field and the
Lorentz violating parameter do not affect the structure of the momentum constraint, whereas
for the space-like vector case, only the Lorentz violating parameter appears. 

We noted that the vacuum energy under the MIT boundary condition is di v ergent. Using
Abel–Plana like summation [ 56 ], we can extract this vacuum energy into three main parts,
namely, vacuum energy in the absence of a boundary condition, vacuum energy in the pres-
ence of a single boundary condition that is not relevant to the Casimir effect, and the term for
the rest that refers to the Casimir energy. We can deri v e the Casimir energy by subtracting the
vacuum energy in the presence of the boundary condition from that in the absence of one. The
Lorentz violation for the time-like vector case does not affect the structure of the Casimir en-
ergy or its pr essur e, wher eas for the space-like vector case, the viola tion af fects it. We also found
that the magnetic field has an effect on the Casimir energy and the pr essur e for both time-like
and space-like vector cases. 

We have demonstrated the behavior of the scaled Casimir energy and the pr essur e as a func-
tion of mass, the parameter λ, and magnetic field. For the fixed parameter λ and magnetic field,
the scaled Casimir energy (pr essur e) converges to zero with the increase of mass (see the left
panel of Figs. 2 and 4 ). For fixed parameter λ and mass, the scaled Casimir energy (pr essur e)
converges to zero with the increase of mass (see the left panel of Fig. 2 converge to zero with the
increasing of the magnetic field; see also the right panel of Figs. 2 and 4 ). We also found that
the increase of the parameter λ leads to the increase of the Casimir energy and the pr essur e,
as has been pointed out by Ref. [ 33 ]. Lastly, we computed the ratio of the Casimir energy and
its pr essur e in the case of the strong magnetic field to those in the case of the weak magnetic
field. As a result, we found that the strong magnetic field increases the Casimir energy and its
pr essur e. 

For future work, it would be interesting to discuss the thermal effect in a similar setup to our
present work (cf. Ref. [ 67 ] for the scalar field). It would also be interesting to study a similar
setup under the general boundary, e.g. chiral MIT boundary conditions [ 18 ]. 
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Appendix A. Detailed derivation of the constraint for momentum 

In this section, we provide the complementary derivation of the momentum constraint. A ppl y-
ing the boundary condition from the MIT bag model ( 6 ) to the solution of the Dirac equation,
we have two equations as follows: 

iσ 3 χ2 | z =0 − χ1 | z =0 = 0 , (A1) 

iσ 3 χ2 | z = � + χ1 | z = � = 0 , (A2) 

where we have used n 

(0) 
μ = (0 , 0 , 0 , 1) and n 

(� ) 
μ = (0 , 0 , 0 , −1) at the first z = 0 and second plates

z = � , respecti v ely. Then, in a more e xplicit e xpression, we hav e four equations for boundary
conditions as follows: 

iχ21 | z =0 − χ11 | z =0 = 0 , (A3) 

iχ22 | z =0 + χ12 | z =0 = 0 , (A4) 

iχ21 | z = � + χ11 | z = � = 0 , (A5) 

iχ22 | z = � − χ12 | z = � = 0 , (A6) 

where we have decomposed the two-component spinors χ1 and χ2 as 

χ1 = 

( 

χ11 

χ12 

) 

, (A7) 

χ2 = 

( 

χ21 

χ22 

) 

. (A8) 

The boundary conditions of Eqs. ( A3 –A6 ) can be sim ultaneousl y written in the form of mul-
tiplication between two matrices as follows: ( 

P 11 P 12 

P 21 P 22 

) ( 

C 0 
˜ C 0 

) 

= 0 , for n = 0 , (A9) 

and ⎛ 

⎜ ⎜ ⎜ ⎝ 

Q 11 Q 12 Q 13 Q 14 

Q 21 Q 22 Q 23 Q 24 

Q 31 Q 32 Q 33 Q 34 

Q 41 Q 42 Q 43 Q 44 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

C 1 

C 2 
˜ C 1 
˜ C 2 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 0 , for n ≥ 1 , (A10) 

where the matrix elements are gi v en by 

P 

(t) 
11 = ik 3 − ( ( 1 + λ) ω 

(t) 
0 k 3 

+ m ) , (A11) 

P 

(t) 
12 = −ik 3 − ( ( 1 + λ) ω 

(t) 
0 k 3 

+ m ) , (A12) 

P 

(t) 
21 = [ ik 3 + ( ( 1 + λ) ω 

(t) 
0 k 3 

+ m )] e ik 3 � , (A13) 

P 

(t) 
22 = [ −ik 3 + ( ( 1 + λ) ω 

(t) 
0 k 3 

+ m )] e −ik 3 � , (A14) 

Q 

(t) 
11 = −Q 

(t) 
22 = ik 3 − ( ( 1 + λ) ω 

(t) 
nk + m ) , (A15) 
3 
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Q 

(t) 
12 = Q 

(t) 
14 = Q 

(t) 
21 = Q 

(t) 
23 = i 

√ 

2 neB , (A16) 

Q 

(t) 
13 = −Q 

(t) 
24 = −ik 3 − ( ( 1 + λ) ω 

(t) 
nk 3 

+ m ) , (A17) 

Q 

(t) 
31 = −Q 

(t) 
42 = [ ik 3 + ( ( 1 + λ) ω 

(t) 
nk 3 

+ m )] e ik 3 � , (A18) 

Q 

(t) 
32 = Q 

(t) 
41 = i 

√ 

2 neB e ik 3 � , (A19) 

Q 

(t) 
34 = Q 

(z ) 
43 = i 

√ 

2 neB e −ik 3 � , (A20) 

Q 

(t) 
33 = −Q 

(t) 
44 = [ −ik 3 + ( ( 1 + λ) ω 

(t) 
nk 3 

+ m )] e −ik 3 � , (A21) 

and 

P 

(z ) 
11 = i(1 − λ) k 3 − (ω 

(z ) 
0 k 3 

+ m ) , (A22) 

P 

(z ) 
12 = −i(1 − λ) k 3 − (ω 

(z ) 
0 k 3 

+ m ) , (A23) 

P 

(z ) 
21 = [ i(1 − λ) k 3 + (ω 

(z ) 
0 k 3 

+ m )] e ik 3 � , (A24) 

P 

(z ) 
22 = [ −i(1 − λ) k 3 + (ω 

(z ) 
0 k 3 

+ m )] e −ik 3 � , (A25) 

Q 

(z ) 
11 = −Q 

(z ) 
22 = i(1 − λ) k 3 − (ω 

(z ) 
nk 3 

+ m ) , (A26) 

Q 

(z ) 
12 = Q 

(z ) 
14 = Q 

(z ) 
21 = Q 

(z ) 
23 = i 

√ 

2 neB , (A27) 

Q 

(z ) 
13 = −Q 

(z ) 
24 = −i(1 − λ) k 3 − (ω 

(z ) 
nk 3 

+ m ) , (A28) 

Q 

(z ) 
31 = −Q 

(z ) 
42 = [ i(1 − λ) k 3 + (ω 

(z ) 
nk 3 

+ m )] e ik 3 � , (A29) 

Q 

(z ) 
32 = Q 

(z ) 
41 = i 

√ 

2 neB e ik 3 � , (A30) 

Q 

(z ) 
34 = Q 

(z ) 
43 = i 

√ 

2 neB e −ik 3 � , (A31) 

Q 

(z ) 
33 = −Q 

(z ) 
44 = [ −i(1 − λ) k 3 + (ω 

(z ) 
nk 3 

+ m )] e −ik 3 � , (A32) 

for time-like and space-like vector cases in the z -dir ection, r espectively. For arbitrary nonzero
complex coefficients C 0 , ˜ C 0 , C 1 , C 2 , ˜ C 1 , ˜ C 2 , the vanishing of the determinant of the 2 × 2 matrix
of Eq. ( A9 ) and 4 × 4 matrices of Eq. ( A10 ) is r equir ed, which leads to the constraint for
momentum k . 
3 
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A ppendix B . Negative-energy solutions 
B.1. Time-like vector case 

The negati v e energy solution f or the right-moving field component is as f ollows: 

ψ 

(−,t) 
k 1 ,n,k 3 

(r ) = 

e −ik 1 x e −ik 3 z 

2 π

√ 

2(1 + λ) ω 

(t) 
n,k 3 

((1 + λ) ω 

(t) 
n,k 3 

+ m ) 

×

⎡ 

⎢ ⎢ ⎢ ⎣ 

˜ C 1 

⎛ 

⎜ ⎜ ⎜ ⎝ 

k 3 f 
(t) 
−k 1 n 

(y ) 
−√ 

2 neB f (t) 
−k 1 n −1 (y ) 

( ( 1 + λ) ω 

(t) 
nk 3 

+ m )f (t) 
−k 1 n 

(y ) 
0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ 

˜ C 2 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−√ 

2 neB f (t) 
−k 1 n 

(y ) 
−k 3 f 

(t) 
−k 1 n −1 (y ) 

0 

( ( 1 + λ) ω 

(t) 
nk 3 

+ m )f (t) 
−k 1 n −1 (y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

(B1) 

and 

ψ 

(−,t) 
k 1 , 0 ,k 3 

( r ) = 

e −ik 1 x e −ik 3 z 

2 π

√ 

2( 1 + λ) ω 

(t) 
0 ,k 3 

( ( 1 + λ) ω 

(t) 
0 ,k 3 

+ m ) 
˜ C 0 f 

(t) 
−k 1 , 0 

( y ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

k 3 

0 

( 1 + λ) ω 

(t) 
0 ,k 3 

+ m 

0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (B2) 

for n ≥ 1 and n = 0, respecti v ely. The negati v e energy solution for the left-moving field compo-
nent is as follows: 

ψ 

(−,t) 
k 1 ,n, −k 3 

(r ) = 

e −ik 1 x e ik 3 z 

2 π

√ 

2(1 + λ) ω 

(t) 
n,k 3 

((1 + λ) ω 

(t) 
n,k 3 

+ m ) 

×

⎡ 

⎢ ⎢ ⎢ ⎣ 

C 1 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−k 3 f 
(t) 
−k 1 n 

(y ) 
−√ 

2 neB f (t) 
−k 1 n −1 (y ) 

( ( 1 + λ) ω 

(t) 
nk 3 

+ m )f (t) 
−k 1 n 

(y ) 
0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ C 2 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−√ 

2 neB f (t) 
−k 1 n 

(y ) 
k 3 f 

(t) 
−k 1 n −1 (y ) 

0 

( ( 1 + λ) ω 

(t) 
nk 3 

+ m )f (t) 
−k 1 n −1 ( y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

(B3) 

and 

ψ 

(−,t) 
k 1 , 0 , −k 3 

( r ) = 

e −ik 1 x e ik 3 z 

2 π

√ 

2( 1 + λ) ω 

(t) 
0 ,k 3 

( ( 1 + λ) ω 

(t) 
0 ,k 3 

+ m ) 
C 0 f 

(t) 
−k 1 , 0 

( y ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−k 3 

0 

( 1 + λ) ω 

(t) 
0 ,k 3 

+ m 

0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (B4) 

for n ≥ 1 and n = 0, respecti v ely. The total spatial solution inside the confinement area is gi v en
by the linear combination of the left- and right-moving field components as follows: 

ψ 

(−,t) 
k 1 ,n,l (r ) = ψ 

(−,t) 
k 1 ,n,k 3 l 

(r ) + ψ 

(−,t) 
k 1 ,n, −k 3 l 

(r ) , (B5) 

where we use k 3 l to represent the allowed momentum in the system. 
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B.2. Space-like vector case (z-direction) 

The negati v e energy solutions for the right-moving field component are gi v en as follows: 

ψ 

(−,z ) 
k 1 ,n,k 3 

(r ) = 

e −ik 1 x e −ik 3 z 

2 π

√ 

2 ω 

(z ) 
n,k 3 

(ω 

(z ) 
n,k 3 

+ m ) 

×

⎡ 

⎢ ⎢ ⎢ ⎣ 

˜ C 1 

⎛ 

⎜ ⎜ ⎜ ⎝ 

(1 − λ) k 3 F 

(z ) 
−k 1 ,n 

(y ) 
−√ 

2 neB F 

(z ) 
−k 1 ,n −1 (y ) 

( ω 

(z ) 
n,k 3 

+ m )F 

(z ) 
−k 1 ,n 

( y ) 
0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ 

˜ C 2 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−√ 

2 neB F 

(z ) 
−k 1 ,n 

(y ) 
−(1 − λ) k 3 F 

(z ) 
−k 1 ,n −1 (y ) 

0 

( ω 

(z ) 
nk 3 

+ m )F 

(z ) 
−k 1 ,n −1 ( y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

(B6) 

and 

ψ 

(−,z ) 
k 1 , 0 ,k 3 

( r ) = 

e −ik 1 x e −ik 3 z 

2 π

√ 

2 ω 

(z ) 
0 ,k 3 

( ω 

(z ) 
0 ,k 3 

+ m ) 
˜ C 0 F 

(z ) 
−k 1 , 0 

( y ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

( 1 − λ) k 3 

0 

ω 

(z ) 
0 ,k 3 

+ m 

0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (B7) 

for n ≥ 1 and n = 0, respecti v el y, w here 

f (t) 
−k 1 ,n 

(y ) = 

√ 

(eB) 1 / 2 

2 

n n ! π1 / 2 
exp 

[ 

− eB 

2 

(
y − k 1 

eB 

)2 
] 

H n 

[ √ 

eB 

(
y − k 1 

eB 

)] 

. (B8) 

The negati v e energy solutions for the left-moving field component are gi v en as follows: 

ψ 

(−,z ) 
k 1 ,n, −k 3 

(r ) = 

e −ik 1 x e ik 3 z 

2 π

√ 

2 ω 

(z ) 
n,k 3 

(ω 

(z ) 
n,k 3 

+ m ) 

×

⎡ 

⎢ ⎢ ⎢ ⎣ 

C 1 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−(1 − λ) k 3 F 

(z ) 
−k 1 ,n 

(y ) 
−√ 

2 neB F 

(z ) 
−k 1 ,n −1 (y ) 

( ω 

(z ) 
n,k 3 

+ m )F 

(z ) 
−k 1 ,n 

( y ) 
0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ C 2 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−√ 

2 neB F 

(z ) 
−k 1 ,n 

(y ) 
(1 − λ) k 3 F 

(z ) 
−k 1 ,n −1 (y ) 

0 

(ω 

(z ) 
nk 3 

+ m )F 

(z ) 
−k 1 ,n −1 (y ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

(B9) 

and 

ψ 

(−,z ) 
k 1 , 0 , −k 3 

( r ) = 

e −ik 1 x e −ik 3 z 

2 π

√ 

2 ω 

(z ) 
0 ,k 3 

( ω 

(z ) 
0 ,k 3 

+ m ) 
C 0 F 

(z ) 
−k 1 0 

( y ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−( 1 − λ) k 3 

0 

ω 

(z ) 
0 ,k 3 

+ m 

0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (B10) 

for n ≥ 1 and n = 0, respecti v ely. The total spatial solution inside the confinement area is gi v en
by the linear combination of the left- and right-moving field components as follows: 

ψ 

(−,z ) 
k 1 ,n,l (r ) = ψ 

(−,z ) 
k 1 ,n,k 3 l 

(r ) + ψ 

(−,z ) 
k 1 ,n, −k 3 l 

(r ) , (B11) 

where we use k 3 l to represent the allowed momentum in the system. 
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