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Abstract

We propose a supersymmetric SU(5) ×Gf GUT model with flavor symmetry Gf = D4 ×U(1) provid-
ing a good description of fermion masses and mixing. The model has twenty eight free parameters, eighteen 
are fixed to produce approximative experimental values of the physical parameters in the quark and charged 
lepton sectors. In the neutrino sector, the TBM matrix is generated at leading order through type I seesaw 
mechanism, and the deviation from TBM studied to reconcile with the phenomenological values of the mix-
ing angles. Other features in the charged sector such as Georgi–Jarlskog relations and CKM mixing matrix 
are also studied.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Standard Model (SM) of elementary particle physics is a great achievement of modern quan-
tum physics; but despite this success basic questions still remain without answer; one of them 
concerns the origin of the three generations of fermions, quark–lepton masses and mixing angles. 
Although the SM is sufficient to describe the masses of charged leptons and quarks, neutrinos 
(νi)i=1,2,3 are considered as massless particles in this model which is in conflict with observa-
tions. Indeed, neutrino oscillation experiments have shown that they have very tiny masses mi
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Table 1
The global fit values for the squared-mass differences �m2

ij
and mixing angles θij as reported by 

Ref. [6]. NH and IH stand for normal and inverted hierarchies respectively.

Parameters Best fit(+1σ,+2σ,+3σ)
(−1σ,−2σ,−3σ)

(NH) Best fit(+1σ,+2σ,+3σ)
(−1σ,−2σ,−3σ)

(IH)

�m2
21

[
10−5 eV2

]
7.60(+0.19,+0.39,+0.58)

(−0.18,−0.34,−0.49)
7.60(+0.19,+0.39,+0.58)

(−0.18,−0.34,−0.49)∣∣∣�m2
31

[
10−3 eV2

]∣∣∣ 2.48(+0.05,+0.11,+0.17)
(−0.07,−0.13,−0.18)

−2.38(+0.05,+0.10,+0.16)
(−0.06,−0.12,−0.18)

sin2 θ12 0.323(+0.016,+0.034,+0.052)
(−0.016,−0.031,−0.045)

0.323(+0.016,+0.034,+0.052)
(−0.016,−0.031,−0.045)

sin2 θ23 0.567(+0.032,+0.056,+0.076)
(−0.124,−0.153,−0.174)

0.573(+0.025,+0.048,+0.067)
(−0.039,−0.138,−0.170)

sin2 θ31 0.0226(+0.0012,+0.0024,+0.0036)
(−0.0012,−0.0024,−0.0036)

0.0229(+0.0012,+0.0023,+0.0036)
(−0.0012,−0.0024,−0.0036)

and that the different flavors are mixed with some mixing angles θij . The PMNS matrix which 
describe the mixing in the lepton sector contains two large angles θ12 and θ23 consistent with 
tribimaximal mixing matrix (TBM) [1], and a vanishing angle θ13 which is in disagreement 
with the recent neutrino experiments1 [2–5]. The measurements of the mixing angles and the 
squared-mass differences was reported by several global fits of neutrino data [6–8]; see Table 1. 
This mixing together with the non-zero neutrino mass might be the best evidence of physics be-
yond the standard model; in this context, many models have been proposed in recent years, and 
Supersymmetric Grand Unified Theories (SUSY-GUTs) are one of the most appealing extension 
of the SM unifying three forces of nature in a single gauge symmetry group [9–11]. These quan-
tum field theories contain naturally the right-handed neutrino needed to generate light masses for 
neutrinos through the seesaw mechanism. Moreover, particles are unified into different represen-
tations of the GUT groups; for instance, in SO(10) GUT model [11], all the fermions including 
the right-handed neutrino belong to the 16-dimensional spinor representation of SO(10), and 
in SU(5) GUT model, all the matter fits into two irreducible representations, the conjugate five 
F = 5̄ and the ten T = 10 [10]. In addition, extending GUT models with flavor symmetries might 
be the key to understand the flavor structure; indeed many flavor symmetries have been suggested 
in GUT models, in particular, the non-abelian discrete alternating A4 and symmetric S4 groups 
are widely studied in the literature. These discrete groups have been used in many papers to re-
alize the TBM matrix [15], and used recently to accommodate a non-zero reactor angle [16–20], 
and lately, the models studied in Refs. [21,22] provided successfully the masses for all fermions 
and the mixing in the charged and chargeless sectors including spontaneous CP violation. In ad-
dition, there are many other non-abelian discrete groups proposed as family symmetry with the 
SU(5) GUT group; for example the SU(5) ×T ′ model [23], and the SU(5) ×�(96) model [24]. 
As for the flavor models based on SO(10) gauge group, we refer for instance to the SO(10) ×A4
model [25], SO(10) × S4 model [26], SO(10) × PSL(2, 7) model [27], and SO(10) × �(27)

model [28].
In this paper, we propose a supersymmetric SU(5) × Gf GUT model with flavor symme-

try Gf = D4 × U (1) providing a good description of fermion masses; and leading as well to 
neutrino mixing properties agreeing with known results. The model has twenty eight free pa-
rameters in which we need to fix eighteen in order to produce the approximative experimental 

1 In addition to the TBM matrix approximation, similar mixing matrices with vanishing θ13 have been proposed such 
as Bimaximal (BM) [12], Golden-Ratio (GR) [13] and Democratic [14] mixing pattern.
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values of the physical parameters in the quark and lepton sectors as given by Tables (5.2)–(5.3)
and Tables (5.5)–(5.9). To fix ideas, let us comment rapidly some key points of this Gf based 
construction and some motivations behind the choice of the discrete D4 dihedral symmetry.

First, notice that the discrete flavor D4 symmetry is the finite dihedral group; and, like the al-
ternating A4, it is also a non-abelian subgroup of the symmetric S4 with particular properties. It 
has 5 irreducible representations: four singlets 1p,q with indices p, q = ±1; and one doublet 20,0
offering therefore several pictures to engineer hierarchy among the three generations of matter; 
for example by accommodating one generation in a given 1p,q representation, while the two oth-
ers in the 20,0 doublet. Another example is to treat the three generations in quite similar manner 
by accommodating them in 1-dimensional representations 1pi,qi

but with different characters. 
Recall that the order of D4—which is 8—is linked to the sum of the squared dimensions of its 
five irreducible representations R1, ..., R5 like 8 = 12+,+ + 12+,− + 12−,+ + 12−,− + 22

0,0; the four 
representations Ri ≡ 1p,q and the fifth R5 = 20,0 are indexed by the characters χ (α) , χ (β) of 
the two non-commuting generators α and β of the dihedral D4; a remarkable feature of discrete 
group theory allowing to distinguish the four D4 singlets in a natural way.

Besides particularities of its singlet representations as well as its similarity with the popular 
alternating A4 group; our interest into a flavor invariance Gf ⊃ D4 has been also motivated 
from other reasons; in particular by the wish to complete partial results in supersymmetric GUTs 
which aren’t embedded in brane picture of F-theory compactification along the line of [33]; and 
also by special features of the dihedral group. The discrete D4 symmetry has been considered 
as flavor symmetry in several models to study the mixing in the lepton sector, see for instance 
[29–31], and one of its interesting properties is that it predicts the μ − τ symmetry in a natural 
way as noticed by Grimus and Lavoura (GL) [29]. It was considered also in heterotic orbifold 
model building [32], as well as in constructing viable MSSM-like prototypes in F-theory [33]. 
But to our knowledge, the dihedral group D4 was never used as a flavor symmetry in GUT models 
which doesn’t descend from string compactification; this lack will be completed in present study.

To build the supersymmetric model SU(5) × D4 × U (1)f , we need building blocks of the 
construction and their couplings; in particular the chiral superfields 
i of the prototype; their 
quantum numbers under flavor symmetry and their superpotential W (
). After identifying the 
SU(5) superfield spectrum with appropriate D4 quantum numbers, we introduce an additional 
global U(1)f symmetry which will make our model quasi-realistic—U (1)f ≡ U (1). As we 
will show; this extra continuous symmetry is needed to control the superpotential in the quark-
and lepton-sectors, and also to prevent dangerous operators that mediate rapid proton decay. 
Our SU(5) × D4 × U (1) model involves, in addition to the usual SU(5) superfield spectrum 
collected in Tables (2.7)–(2.8), eleven flavon superfields carrying quantum numbers under the 
flavor symmetry D4 × U (1) as given by (2.13)–(2.14); these flavon superfields will play an 
important role in obtaining the appropriate masses for the quarks and leptons. Moreover, we 
have twenty eight free parameters—fifteen Yukawa coupling constants, eleven flavon VEVs, the 
45-dimensional Higgs VEV and the cutoff scale �—where we fix eighteen of them; eight in the 
quark and charged lepton sectors and ten in the neutrino sector. We end this study by performing 
a numerical study, where we use the experimental values of sinθij and �mij to make predictions 
concerning numerical estimations of the parameters obtained in the neutrino sector.

The paper is organized as follows. In section 2, we present the superfield content of the SU(5)

model as well as a superfield spectrum containing flavons superfields in D4 representations. 
Then, we assign U(1) charges to all the superfields of the model. In section 3, we first study the 
neutrino mass matrix and its diagonalization with the TBM matrix; then we study the deviation 
of the TBM matrix by introducing extra flavon superfields, and we make a numerical study 
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to fix the parameters of the neutrino sector. In section 4, we study the mass matrix of the up 
quark sector and we make a comment concerning the scale of the flavon VEVs derived from the 
experimental values of the quark up masses; then, we analyse the down quarks–charged leptons 
sector by calculating their mass matrices as well as the mixing matrix of the quarks. In section 5, 
we give our conclusion and numerical results. In Appendix A, we give all the higher dimensional 
operators yielding to the rapid proton decay which are forbidden by the U(1) symmetry. In 
Appendix B, we give useful tools and details on D4 tensor products.

2. SU(5) model with D4 × U(1) flavor symmetry

In this section, we first describe the chiral superfields content of the supersymmetric SU(5)

GUT model; then we extend this model by implementing the D4 flavor symmetry accompanied 
with extra flavon superfields which are gauge singlets. This extension is further stretched with a 
flavor symmetry U(1) needed to exclude unwanted couplings.

2.1. Superfields in SU(5) model

In this subsection, we review briefly the building blocks of the usual supersymmetric 
SU(5)-GUT model that contain the minimal supersymmetric model (MSSM) quarks and lep-
tons as well as the right-handed neutrino; we also use this description to fix some notations and 
conventions. We will focus mainly on the chiral superfields of the model and the invariant su-
perpotential; the Kahler sector of the model involving as well gauge superfields is understood 
the presentation. The chiral sector of SU(5) model has two kinds of building blocks: matter and 
Higgs; they are as follows

• Matter superfields
In supersymmetric SU(5)-GUT, each family F of quarks Q (with colors r, b, g) and leptons 
L fits nicely into a reducible SU(5) representation involving the leading irreducible 1, 5̄, 10. 
In superspace language, left-handed fermions are described by chiral superfields Fi ≡ 5̄i and 
Ti ≡ 10i ; the right-handed neutrinos are also described by chiral superfields but living in SU(5)

singlets Ni ≡ 1i . The index i = 1, 2, 3 refers to the three possible generations of matter Fi =
{Fi, Ti,Ni}; for example the first family F1, the constituents of F1 and T1 are explicitly as follows 
[35]

F1 =

⎛
⎜⎜⎜⎜⎝

dc
r

dc
b

dc
g

e−
−νe

⎞
⎟⎟⎟⎟⎠ , T1 = 1√

2

⎛
⎜⎜⎜⎜⎝

0 uc
g −uc

b ur dr

−uc
g 0 uc

r ub db

uc
b −uc

r 0 ug dg

−ur −ub −ug 0 ec

−dr −db −dg −ec 0

⎞
⎟⎟⎟⎟⎠ (2.1)

• Higgs superfields
We distinguish several kinds of SU(5)-GUT Higgs superfields; in particular the H5, H5, H24

and the H45. The chiral superfields H5 = 5Hu and H5 = 5Hd
are respectively the analogue of two 

light Higgs doublet superfields Hu and Hd of the MSSM; in general the MSSM Higgs doublet 
Hd is a combination of the H5 Higgs with the 45-dimensional Higgs denoted by H45. This extra 
Higgs superfield will also used later on in order to distinguish the down quarks masses from the 
leptons masses.
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The SU(5) GUT symmetry is broken down to the standard model symmetry SU(3)C ×
SU(2)L × U(1)Y by the VEV of the adjoint Higgs H24. This is done by choosing 〈H24〉 along 
the following particular Cartan direction in the Lie algebra of SU (5)

〈H24〉 =
√

2

15
υ24

⎛
⎜⎜⎜⎜⎝

1
1 0

1
0 − 3

2
3
2

⎞
⎟⎟⎟⎟⎠ (2.2)

so the SU(5) fields are given in standard model terms as

10M → (3,2) 1
3
+ (3,1)−4

3
+ (1,1)2

5M → (1,2)−1 + (3,1) 2
3

5Hu → (1,2)1 + (3,1)−2
3

(2.3)

5Hd
→ (1,2)−1 + (3,1) 2

3

and

24 → (8,1)0 + (1,3)0 + (1,1)0 + (3,2)−5
3

+ (
3,2

)
5
3

(2.4)

as well as

45 → (8,2)1 + (
6,1

)
−2
3

+ (3,3)−2
3

+ (
3,2

)
−7
3

+ (3,1)−1
3

+ (
3,1

)
8
3
+ (1,2)1 (2.5)

In what follows we describe our extension of supersymmetric SU(5)-GUT by a global flavor 
symmetry Gf which is given D4 × U (1)f , the product of the finite discrete Dihedral group and 
the U (1)f global continuous phase.

2.2. Implementing D4 flavor symmetry

Here, we present our extension of the supersymmetric SU(5) GUT model by the flavor sym-
metry D4, details of the Dihedral group D4 are provided in Appendix B. First, we give the 
D4-quantum numbers of the superfields of usual SUSY SU(5) matter; then we describe the 
needed extra matter required by dihedral flavor symmetry.

In the usual SU(5) model reviewed in previous subsection, the matter and Higgs superfields 
are as collected in first line of Tables (2.7)–(2.8); they are unified in the SU(5) representations 
with link to MSSM as

10m = (uc, ec,QL) , 5Hu = (�u,Hu)

5m = (dc,L) , 5Hd
= (�d,Hd)

(2.6)

The three generations of 10i
m and 5

i

m are denoted as Ti and Fi respectively, the three right-handed 
neutrinos denoted as Ni are singlets under SU(5); and the two GUT Higgses denoted as H5 and 
H5 like 5Hu and 5Hd

.
In our extension with a D4 flavor symmetry, we have a larger set of chiral superfields that 

can be organized into two basic subsets: (a) the usual SU(5) matter and Higgs superfields; 
but carrying as well quantum numbers under D4; and (b) an extra subset of chiral superfields 
required by D4 flavor invariance; they are as described below.
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a) Matter and Higgs sectors in SU(5) × D4

The superfield content of this sector is same as the SU(5) matter and Higgs superfields; but with 
extra quantum numbers under D4 flavor invariance as given here below

Matter T1 T2 T3 F1 F2,3 N1 N2,3

SU(5) 101
m 102

m 103
m 5

1
m 5

2,3
m 11

ν 12,3
ν

D4 1+,− 1+,− 1+,+ 1+,− 20,0 1+,+ 20,0

(2.7)

and

Higgs H5 H5 H45

SU(5) 5Hu 5Hd
45H

D4 1+,− 1+,+ 1+,−
(2.8)

The matter superfields 10i
m of the three generations i = 1, 2, 3 are assigned into the D4 repre-

sentations 1+,−, 1+,− and 1+,+ respectively; while the 5
i

m matter superfields are assigned into 
the D4 singlet 1+,− and the D4 doublet 20,0. The right-handed neutrino N1 sits in the D4 trivial 
singlet 1+,+, and the two N2,3 sit together in the D4 doublet 20,0. The GUT Higgses H5, H5 and 
H45 are put in different D4 singlets; 1+,−, 1+,+ and 1+,− respectively.

b) Flavon sector
In addition to the SU(5) superfields of (2.7)–(2.8), the SU(5) × D4 model has eleven flavon 
chiral superfields namely four doublets and seven singlets; they transform as singlets under gauge 
group SU(5), but carry charges under D4 flavor symmetry as follows

Flavons  � � φ ϕ η χ σ ρ ρ′ ζ

SU(5) 1 1 1 1 1 1 1 1 1 1 1

D4 1+,− 1+,− 1+,− 20,0 20,0 1+,+ 20,0 20,0 1+,− 1−,− 1+,+
(2.9)

These flavon superfields couple to the matter and Higgs superfields of the model. The above 
quantum numbers are required by the building of the chiral superpotential WSU5×D4 of the super-
symmetric model. This complex superpotential is a superspace density which, after performing 
superspace integration, leads to a space time lagrangian density LSU5×D4 describing matter cou-
plings through Higgs and flavons. The typical form of LSU5×D4 is given by

LSU5×D4 =
∫

d2θWSU5×D4 (
1, ...) + hc (2.10)

where the generic 
i ’s stand for the chiral superfields of Tables (2.7)–(2.9). This superpotential 
involves several free coupling parameters to be studied in forthcoming sections. The flavons in 
Table (2.9) have been required by D4 invariance; they are briefly commented below:

(i) Neutrinos couplings
Invariant neutrinos superpotential WSU5×D4 (N, ..) under D4 flavor symmetry requires in 
turns the flavons η, χ , ρ, ρ ′, ζ , σ :
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• the flavon η and χ are needed to produce the TBM matrix in the neutrino mass matrix.
• the flavons ρ, ρ′, ζ and σ are added to generate the deviation from TBM matrix.

(ii) Quarks and charged leptons superpotentials
Flavor symmetry invariant superpotentials WSU5×D4 (T ,F, ..) involving quarks and charged 
leptons require the flavon superfields , �, �, φ, ϕ with quantum numbers as listed in (2.9)
for the following purposes:
• the three flavons �,  and � contribute to the up-, charm- and top-quark masses respec-

tively.
• the two flavons  and � are also needed by down quarks/charged leptons in order to 

generate masses for the first two families.
• the flavon φ is required by down quarks/charged leptons in order to produce the mass of 

the third family.
• the flavon ϕ is needed for two goals: first to contribute to the mass of the first two gen-

erations of down quarks/charged leptons together with the flavon singlets  and �; and 
second to couple to the 45-dimensional Higgs H45 in order to distinguish between the 
down quarks and charged leptons mass matrices.

2.3. Need of U(1)f symmetry

In order to engineer a semi-realistic model, we need additional flavor symmetries; in our D4

based proposal, we found that we have to add an abelian U(1) symmetry to fully control the 
couplings of SU(5) × D4 model for reasons such as the ones given below:

(i) Eliminate unwanted couplings
The global U(1) symmetry is necessary to eliminate unwanted couplings and to produce 
the observed mass hierarchies, it makes the model quasi-realistic for the two following 
things:
• first to control the superpotential of the quark and lepton sectors in the SU(5) ×D4 model; 

for example the flavon �, transforming as 1+,−, is used to generate a heavy mass for the 
top quark; but the two other flavons  and � share the same D4 representation 1+,−
and so can couple quark and lepton superfields in a D4 invariant manner. These cou-
pling cannot be dropped out without imposing an extra constraint; moreover, the three 
flavons could be mixed in the operators of each family of the Yukawa up type; so they 
could affect the top quark mass, and consequently risking to lose the mass hierarchy be-
tween the top and the up, charm quarks. This issue is handled by accommodating the 
flavons which possess the same D4 representation in different U(1) representations as in 
Table (2.13).

• second, the U(1) charge assignments are chosen to produce the TBM as well as its de-
viation to get a non-zero reactor angle in the neutrino sector which will be discussed in 
section 3.

(ii) Avoid rapid proton decay
The U(1) flavor symmetry is also needed to forbid the operators yielding to rapid proton de-
cay such as the couplings of type 10m.5m.5m. The SU(5) ×D4 model have several invariant 
operators of this type and of other types which will be discussed in Appendix A; they are 
prevented by the extra global U(1) symmetry with charge assignments as in the following 
tables:
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* families

matter T1 T2 T3 F1 F2,3 N1 N2,3

SU(5) 103
m 101

m 101
m 5

1
m 5

2,3
m 11

ν 12,3
ν

D4 1+,− 1+,− 1+,+ 1+,− 20,0 1+,+ 20,0

U(1) 12 7 −27 14 14 −6 −6

(2.11)

* Higgs

Higgs H5 H5 H45

SU(5) 5Hu 5Hd
45H

D4 1+,− 1+,+ 1+,−
U(1) −8 11 10

(2.12)

* flavons

flavons  � � φ ϕ

SU(5) 1 1 1 1 1

D4 1+,− 1+,− 1+,− 20,0 20,0

U(1) −6 −16 62 2 −31

(2.13)

flavons η χ σ ρ ρ′ ζ

SU(5) 1 1 1 1 1 1

D4 1+,+ 20,0 20,0 1+,− 1−,− 1+,+
U(1) 12 12 −24 −24 −24 36

(2.14)

3. Neutrino sector in SU(5) × D4 × U(1) model

In this section, we first study the mass matrices of Dirac and Majorana neutrinos; then we use 
the seesaw type I to get a neutrino mass matrix compatible with TBM as a leading approximation. 
Next, we study the deviation from TBM by adding new flavons. Notice that the right-handed 
neutrinos are SU(5) singlets, thus the light neutrino masses are only generated through type-I 
seesaw mechanism [34]

mν = mDM−1
R mT

D (3.1)

where the mD and MR are the Dirac and the Majorana mass matrices respectively.

3.1. Neutrino mass matrix and tribimaximal mixing

We begin by considering Dirac mass matrix involving left- and right-handed neutrinos; and 
turn after to calculate the Majorana masses.

3.1.1. Dirac neutrinos
The Dirac mass matrix couples the left-handed neutrinos in the (Fi)i=1,2,3 to the right-handed 

ones (Ni)i=1,2,3 living in different representations of SU (5) × Gf with flavor symmetry Gf =



438 R. Ahl Laamara et al. / Nuclear Physics B 916 (2017) 430–462
D4 × U (1). As described in section 2, the F1 lives in the non-trivial D4 singlet 1+,− while 
F2 and F3 live together in the D4 doublet 20,0; they have the same U (1) charge qFi

= 14. 
The right-handed neutrinos have different quantum numbers under D4; the N1 lives in the D4
representation 1+,+ while N2 and N3 live together in the D4 doublet 20,0; they have the same 
U (1) charge qNi

= −6. The chiral superpotential WD (F,N,H) for neutrino Yukawa couplings 
respecting gauge invariance and flavor D4 × U(1) symmetry is given by

WD = λ1N1F1H5 + λ2N2,3F2,3H5 (3.2)

where λ1 and λ2 are Yukawa coupling constants. Using the tensor product of D4 irreducible 
representations given in Eqs. (B.4)–(B.5) and denoting the Higgs by Hu, the superpotential (3.2)
become

WD = λ1Hu(νeLe) + λ2Hu

(
νμLμ + ντLτ

)
(3.3)

When the Higgs doublet develop its VEV as usual 〈Hu〉 = υu, we get the Dirac mass matrix of 
neutrinos

mD = υu

⎛
⎝λ1 0 0

0 λ2 0
0 0 λ2

⎞
⎠ (3.4)

3.1.2. Majorana neutrinos
A Majorana mass matrix couples the three right-handed neutrinos Ni to themselves; this mass 

matrix is obtained from the superpotential WM (N, ...) respecting gauge invariance and flavor 
symmetry of the model. Using Tables (2.11)–(2.14), one can check that this chiral superpotential 
is given by

WM = λ3N1N1η + λ4N2,3N2,3η + λ5N1N2,3χ (3.5)

In this expression, we have added the third term involving the flavon χ to satisfy the TBM 
conditions and to generate appropriate masses for the neutrinos. This term—which is at the renor-
malizable level—will contribute to the entries (12) and (13) in the Majorana mass matrix. By 
using the multiplication rule of D4 representations, the superpotential WM develops into

WM = λ3 (ν1ν1) η + λ4(ν2ν3 + ν3ν2)η + λ5ν1 (ν2χ2 + ν3χ1) (3.6)

and by taking the VEVs of the flavons χ and η as

〈χ1〉 = 〈χ2〉 = υχ, 〈η〉 = υη

we find the Majorana neutrino mass matrix MR as follows

MR =
⎛
⎝λ3υη λ5υχ λ5υχ

λ5υχ 0 λ4υη

λ5υχ λ4υη 0

⎞
⎠ (3.7)

The light neutrino mass matrix is obtained using type I seesaw mechanism formula mν =
mDM−1

R mT
D , and we find

mν = υ2
u

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ2
1λ4υη

λ3λ4υ
2
η−2λ2

5υ
2
χ

− λ1λ2λ5υχ

λ3λ4υ
2
η−2λ2

5υ
2
χ

− λ1λ2λ5υχ

λ3λ4υ
2
η−2λ2

5υ
2
χ

− λ1λ2λ5υχ

λ3λ4υ
2
η−2λ2

5υ
2
χ

λ2
2λ

2
5υ

2
χ

λ3λ
2
4υ

3
η−2λ4λ

2
5υηυ2

χ

− λ2
2

(
λ2

5υ
2
χ−λ3λ4υ

2
η

)
λ3λ

2
4υ

3
η−2λ4λ

2
5υηυ2

χ

− λ1λ2λ4λ5υηυχ

λ λ2υ3−2λ λ2υ υ2 − λ2
2

(
λ2

5υ
2
χ−λ3λ4υ

2
η

)
λ λ2υ3−2λ λ2υ υ2

λ2
2λ

2
5υ

2
χ

λ λ2υ3−2λ λ2υ υ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.8)
3 4 η 4 5 η χ 3 4 η 4 5 η χ 3 4 η 4 5 η χ
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this form of mν can realize the TBM matrix by adopting the following

λ1 = λ2
λ4υη = λ3υη + λ5υχ

(3.9)

so the above mass matrix mν is diagonalized as Mν = UT mνU = diag(m1, m2, m3) with the 
TBM matrix U given by

U =

⎛
⎜⎜⎜⎝

−
√

2
3

1√
3

0

1√
6

1√
3

− 1√
2

1√
6

1√
3

1√
2

⎞
⎟⎟⎟⎠ (3.10)

It predicts the mixing angles as follows

sin2 θ12 = 1

3
, sin2 θ23 = 1

2
, sin2 θ13 = 0 (3.11)

the eigen-masses are

m1 = λ2
1υ

2
u

λ3υη − λ5υχ

, m2 = λ2
1υ

2
u

λ3υη + 2λ5υχ

, m3 = − λ2
1υ

2
u

λ3υη + λ5υχ

(3.12)

which yield to a non-vanishing solar and the atmospheric mass-squared differences �m2
21 and 

�m2
31.

3.2. Deviation of mixing angles θ13 and θ23

In this subsection we study the deviation from TBM matrix which consists of breaking the 
μ–τ symmetry in the neutrino mass matrix in order to reconcile the reactor angle θ13 with the 
global fit data in Table 1. Recently, the deviation from TBM using additional flavons has been 
extensively studied in the literature and there are two matrix perturbations that allow for a suit-
able deviation of the mixing angles (for deviation by using non-trivial singlets, see for example 
Ref. [36]), they are:

δM12
33 = ε

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ , δM13

22 = ε

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ (3.13)

where the indices (12), (33), (13) and (22) are the elements that should be perturbed in the 
neutrino matrix to deviate from TBM and ε is the deviation parameter.

Using the flavon superfields σ , ζ , ρ and ρ′ of Table (2.14), we see that we can perform 
a symmetric perturbation of the superpotential (3.5) that induces a deviation of the Majorana 
neutrino mass matrix MR of Eq. (3.7). Thus, the additional higher dimensional operators that 
respect the symmetries of the model are as follows:

δWM = 1

�

(
λ6N1N2,3σζ + λ7N2,3N2,3ρζ + λ8N2,3N2,3ρ

′ζ
)

(3.14)

The invariance of δWM may be explicitly exhibited by using the D4 representation language,

N1N2,3σζ ∼ 1+,+ ⊗ 20,0 ⊗ 20,0 ⊗ 1+,+
N2,3N2,3ρζ ∼ 20,0 ⊗ 20,0 ⊗ 1+,− ⊗ 1+,+
N N ρ′ζ ∼ 2 ⊗ 2 ⊗ 1 ⊗ 1

(3.15)
2,3 2,3 0,0 0,0 −,− +,+
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Hence, to obtain the desired D4 invariant, the tensor product between the D4 doublets should be 
1+,+ for the first term, 1+,− for the second term and 1−,− for the last term. Thus, we obtain

δWM = 1

�

(
λ6(ν1ν3)σζ + λ7 (ν2ν2 + ν3ν3) ρζ + λ8 (ν2ν2 − ν3ν3) ρ′ζ

)
(3.16)

Assuming that

λ7 = λ8, λ6 = 2λ7 (3.17)

and if we choose the VEVs of the flavons as

〈ρ〉 = 〈
ρ′〉 = 〈σ 〉 , with 〈σ 〉 = (υσ ,0)T (3.18)

we get the second matrix perturbation in Eq. (3.13)

δM = �

⎛
⎝0 0 ε

0 ε 0
ε 0 0

⎞
⎠ , with ε = λ6

〈ζ 〉 〈σ 〉
�2

(3.19)

With this correction, the previous Majorana neutrino mass matrix MR gets deformed as

M ′
R = �

⎛
⎜⎜⎝

λ3υη

�

λ5υχ

�

λ5υχ

�
+ ε

λ5υχ

�
ε

λ3υη+λ5υχ

�
λ5υχ

�
+ ε

λ3υη+λ5υχ

�
0

⎞
⎟⎟⎠ (3.20)

In order to extract the mixing matrix and the neutrino masses, we will parameterize M ′
R in the 

following way

a = λ3υη

�

c = λ5υχ

�

(3.21)

which leads to

M ′
R = �

⎛
⎝ a c c + ε

c ε a + c

c + ε a + c 0

⎞
⎠ (3.22)

Notice that since the Dirac mass matrix mD is diagonal (see Eq. (3.4)), it does not affect the 
correction induced in the Majorana matrix M ′

R , and by using type I seesaw mechanism formula 

m
eff
ν = mDM ′−1

R mT
D , we obtain the new neutrino mass matrix with elements given explicitly as

m11 = m0

k

(
a2 + 2ac + c2

)
m22 = m0

k
(c2 + 2cε + ε2)

m33 = −m0

k
(aε − c2)

m12 = m21 = −m0

k

(
aε + cε + ac + c2

)
m13 = m31 = m0

k

(
cε − ac − c2 + ε2

)
m23 = m32 = −m0

(−a2 − ac + c2 + εc)

(3.23)
k
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where k = a3 + 2a2c − ac2 − 2acε − 2c3 − c2ε + 2cε2 + ε3 and m0 = λ2
1υ

2
u

�
. This is a symmetric 

matrix that can be diagonalized by a similarity transformation like mdiag
ν = ŨT m

eff
ν Ũ . The 

system of eigenvectors and eigenvalues can be computed perturbatively; we find up to order 
O(ε2), the unitary matrix Ũ which diagonalize the neutrino mass matrix meff

ν given in terms of 
its eigenvectors as

Ũ =

⎛
⎜⎜⎜⎝

−
√

2
3

1√
3

− ε

2a
√

2
1√
6

+ 3ε

4a
√

6
1√
3

− 1√
2

+ ε

4a
√

2
1√
6

− 3ε

4a
√

6
1√
3

1√
2

− ε

4a
√

2

⎞
⎟⎟⎟⎠ + O

(
ε2

)
(3.24)

consequently, the reactor and atmospheric angles develops into

sin θ13 =
∣∣∣∣ ε

2a
√

2

∣∣∣∣ , sin θ23 =
∣∣∣∣ ε

4a
√

2
− 1√

2

∣∣∣∣ (3.25)

while the solar angle θ12 maintain its TBM value; sin θ12 = 1√
3

. It is easy to check that the matrix 

Ũ coincides with the TBM matrix in the limit ε → 0. As for the eigenvalues of meff
ν , they read 

up to order O(ε2),

m1 = m0

−c+
√

a2−aε+ε2

m2 = m0
ε+a+2c

m3 = − m0

c+
√

a2−aε+ε2

(3.26)

Using these masses, we calculate the solar and the atmospheric mass-squared differences

�m2
sol = �m2

21 = −4
m2

0

(
3aε+3cε+6ac+3c2)

4(a−c)(a+2c)
(
aε−4cε+ac+a2−2c2

)
�m2

atm = �m2
31 = 2m2

0
c(ε−2a)(

a2−c2
)(−2aε+a2−c2

) (3.27)

Since the parameters a and c contribute to the tiny mass of neutrinos (see Eq. (3.26)), the VEVs 
υη and υχ should be small and close to the cutoff υη, υχ � � which means that

|a|� 1, |c|� 1 (3.28)

3.2.1. Fixing a for allowed sin θij

Focusing on relations in Eq. (3.25), we fix the parameter of deviation ε in the range of O( 1
10 ), 

and we use the experimental values of sinθij given in Table 1; then, we plot in Fig. 1 sin θ23 as 
a function of sin θ13 in terms of the ratio ε

a
induced by the VEV of the singlet η. The values of 

the ratio ε
a

that are compatible with both sinθ13 and sin θ23 are shown in the left panel (right 
panel) of Fig. 1 within their 3σ allowed range for the normal hierarchy (inverted hierarchy) case; 
see Table 1. We observe that for the left panel, the mixing angles θ13 and θ23 vary within the 
acceptable 3σ ranges

0.138 � sin θ13 � 0.161

0.626 � sin θ23 � 0.638
(3.29)
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Fig. 1. Left: sin θ23 as a function of sin θ13 with the relative parameter εa shown in the palette. Right: The same variation 
as in the left panel but for inverted hierarchy. (For interpretation of the colors in this figure, the reader is referred to the 
web version of this article.)

for the orange line which corresponds to

0.38 � ε

a
� 0.45 (3.30)

and

0.138 � sin θ13 � 0.162

0.776 � sin θ23 � 0.788
(3.31)

for the blue line which corresponds to

−0.45 � ε

a
� −0.38 (3.32)

As for the right panel of Fig. 1, the mixing angles θ13 and θ23 vary within the acceptable 3σ

ranges

0.139 � sin θ13 � 0.144

0.634 � sin θ23 � 0.637
(3.33)

for the orange line which corresponds to

0.39 � ε

a
� 0.41 (3.34)

and

0.139 � sin θ13 � 0.163

0.776 � sin θ23 � 0.788
(3.35)

for the blue line which corresponds to

−0.46 � ε

a
� −0.39 (3.36)

In order to get estimations of the parameter a, we plot in the left panel in Fig. 2 sin θ13 as a 
function of ε with the parameter a shown in the palette on the right while sinθ23 is considered as 
an input parameter to get the value of the parameter a compatible with both mixing angles. We 
observe that the values of sinθ13 in the interval [0.138, 0.162] for ε of O( 1

10 ) corresponds to

−0.25 � a � −0.0007 (3.37)
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Fig. 2. Left: sin θ13 as a function of ε with the relative parameter a shown in the palette. Right: The same as in the left 
panel but for sin θ23 instead of sin θ13.

while for values of sin θ13 in the interval [0.138, 0.161], we have

0.0003 � a � 0.25 (3.38)

Normally, the left panel in Fig. 2 is sufficient to obtain the allowed ranges of the parameter a
because the intervals obtained in Eqs. (3.37)–(3.38) are compatible with both mixing angles θ13
and θ23, but the allowed range of the parameter a in the left panel provide us only the allowed 
values of sin θ13. To extract the allowed ranges of sin θ23 that are compatible with the ranges of 
the parameter a obtained in Eqs. (3.37)–(3.38), we plot in the right panel of Fig. 2 sin θ23 as 
a function of ε with the parameter a shown in the palette on the right while sinθ13 is consid-
ered as an input parameter. We observe that the values of sinθ23 in the interval [0.776, 0.788]
corresponds to the range of the parameter a given in Eq. (3.37)

−0.25 � a �−0.0002 (3.39)

while for values of sin θ23 in the interval [0.626, 0.638], we have the range of a given in 
Eq. (3.38).

0.0004 � a � 0.25 (3.40)

3.2.2. Fixing c for allowed �mij

To fix the parameter c, we consider the second relation in Eq. (3.27) where we have two 
unknown parameters (namely m0 and c). Thus, we plot in Fig. 3 �m31 as a function of m0 with 
the parameter c presented in the palette on the right. In the left panel of Fig. 3, �m31 vary within 
its 3σ allowed range for the normal hierarchy case; see Table 1. For the rest of the parameters 
of Eq. (3.27), we have earlier fixed the parameter ε in the range of O( 1

10 ), and from Eqs. (3.37), 
(3.38), (3.39), and (3.40) we have fixed the parameter a in the interval [−0.25 : 0.25]. We also 
have restricted the parameter c in the range [−1 : 1] in Eq. (3.28). Gathering all these restrictions, 
we observe from the color palette in the left panel of Fig. 3 that c can take any value in the range 
[−1 : 1]—except the zero value which is easy to notice from the second relation in Eq. (3.27)). 
One can also see that for the 3σ allowed range of �m31, the values of c close to zero—presented 
by the green light color—corresponds to the values of m0 close to zero, and as m0 increases—say 
m0 � 0.03 eV—the parameter c vary from large negative (blue–purple colors) to large positive 
values (orange–red colors).
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Fig. 3. Left: �m31 [eV] as a function of m0 [eV] with the parameter c presented in the palette on the right for normal 
hierarchy. Right: same variation in the left panel but for inverted hierarchy. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)

Fig. 4. �m21 [eV] as a function of m0 [eV] with the parameter c presented in the palette on the right.

For the right panel, �m31 vary within its 3σ allowed range for the inverted hierarchy case, and 
the parameters m0 and c vary in the same ranges as in the left panel. One can see approximately 
the same distribution of colors as in the left panel, and the only difference is the 3σ allowed 
range of �m31. Now we consider the first relation in Eq. (3.27) to get the allowed ranges of m0
and c in the case of �m21, thus, we plot in Fig. 4 �m21 as a function of m0 with the parameter 
c presented in the palette on the right. We observe that range of the parameter c is reduced to

−0.6 � c � 0.6 (3.41)

and the range of the parameter m0 is reduced to

0.00018 eV � m0 � 0.77 eV (3.42)

4. Charged fermions in SU(5) × D4 × U(1) model

In this section we give the invariant operators under SU(5) × D4 × U(1) that determine the 
mass matrices of the up-, down-quarks and the charged leptons. Moreover we add operator which 
contain the 45-dimensional Higgs in order to avoid the bad relation between the down quarks and 
the leptons Yd = YT

e predicted in the GUT scale. Recall that the mass matrices of the quarks and 
charged leptons can be embedded in the Yukawa couplings given by

10M.10M.5Hu ⊃ QLucHu (4.1)
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for the up-quarks type, and

10M.5M.5Hd
⊃ QLdcHd + LecHd (4.2)

for the down-quarks and charged leptons.

4.1. Up quark sector

We start with the mass matrix of the up quark which originate from the up-type Yukawa 
couplings 10.10.5 ≡ T .T .Hu. The leading order (LO) D4 × U(1) invariant superpotential giving 
rise to the mass matrix of the up quarks reads

Wup = y1

�
T1T1�H5 + y2

�
T2T2H5 + y3

�
T3T3�H5 (4.3)

where y1, y2 and y3 are the Yukawa coupling constants and � is the cutoff scale of the model. 
The superpotential Wup decompose into the SM Yukawa couplings as follows

Wup = y1

�

(
QL1u

c
)
�Hu + y2

�

(
QL2c

c
)
Hu + y3

�

(
QL3 t

c
)
�Hu (4.4)

When the flavon develop their VEVs as

〈�〉 = υ�, 〈〉 = υ, 〈�〉 = υ� (4.5)

and the Higgs as usual 〈Hu〉 = υu, this leads to a diagonal up quark mass matrix given by

Mup = υu

⎛
⎜⎝

y1
�

υ� 0 0

0 y2
�

υ 0

0 0 y3
�

υ�

⎞
⎟⎠ (4.6)

where the eigen-masses are

mu = υu

y1υ�

�
, mc = υu

y2υ

�
, mt = υu

y3υ�

�
(4.7)

By using the experimental values of the up quark, the charm quark and the top quark masses 
as given by the Particle Data Group [39] namely mu � 2.3 MeV, mc � 1.275 GeV and mt �
173.21 GeV, and by taking the VEV υu ≈ 174 GeV we obtain the following constraints

y1υ� ≈ 1.32 × 10−5�

y2υ ≈ 7.32 × 10−3�

y3υ� ≈ 0.995�

(4.8)

Notice that if we assume the coupling constant y3 ≈ O(1), the VEV υ� should be close to the 
cutoff scale � in order to accomodate the numerical value of the top quark mass.

4.2. Down quark and charged lepton sector

The D4 ×U(1) invariant superpotential generating the masses of the down quarks and charged 
leptons is given by

We,d = y4
T2F1��H5 + y5

T1
(
F2,3ϕ

)
H5 + y6

T3
(
F2,3φ

)
H5 (4.9)
�2 �2 �
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where y4, y5 and y6 are the Yukawa coupling constants associated to the down quarks and 
charged leptons sector. The masses of the down quarks and charged leptons are generated from 
the same down-type Yukawa couplings (namely 10M.5M.5Hd

) leading to the GUT mass relations

mb = mτ , ms = mμ , md = me (4.10)

which are acceptable for the third generation at the GUT scale but fails for the first and second 
generations due to their inconstancy with the experimental values; so the alternative relations 
which are much closer to the present data are the well known Georgie–Jarskog (GJ) [37] formulas 
given by

mb = mτ , md = 3me , 3ms = mμ (4.11)

These relations may be predicted by allowing additional couplings to the Higgs field that belongs 
to the 45-dimensional representation of SU(5). The Higgs H45 couple to operators TiFi and lead 
to different mass matrices of the down quarks and the charged leptons. Moreover, in additional to 
the GJ formulas, several relations between the down quarks and charged leptons are possible by 
considering Higgses that belong to different SU(5) representations [38]. In order to reproduce 
the difference between the charged lepton mass and the down type quark mass in our model, we 
introduce the 45-dimensional Higgs denoted as H45 which transform as non-trivial singlet under 
D4 flavor symmetry (namely H45 ∼ 1+,−) as well as carrying the U(1) charge qU(1) = 10, this 
Higgs is antisymmetric and satisfy the following relations

(H45)
ab
c = −(H45)

ba
c , (H45)

ab
a = 0〈

(H45)
i5
i

〉 = υ45 , i = 1,2,3〈
(H45)

45
4

〉 = −3υ45

(4.12)

With respect to the invariance under SU(5) × D4 × U(1) symmetry model, the H45 Higgs can 
only combine with the operator given by

W 45
e,d = y7

�
T2

(
F2,3ϕ

)
H45 (4.13)

Thus, the total superpotential of the down quarks and charged leptons reads as

We,d = y4

�2
T2F1��H5 + y5

�2
T1

(
F2,3ϕ

)
H5 + y6

�
T3

(
F2,3φ

)
H5 + y7

�
T2

(
F2,3ϕ

)
H45

(4.14)

which becomes after performing tensor product under D4 as

We,d = y4

�2
T2F1��H5 + y5

�2
T1 (F2ϕ2 + F3ϕ1)H5 + y6

�
T3 (F2φ2 + F3φ1)H5

+ y7

�
T2 (F2ϕ2 + F3ϕ1)H45 (4.15)

• Down mass matrix
Using Eq. (4.14), the D4 × U(1) invariant superpotential of the down quarks in terms of the 

SM Yukawa couplings reads

Wd = y4

�2

(
QL2d

c
)
��Hd + y5

�2
QL1

(
scϕ2 + bcϕ1

)
Hd + y6

�
QL3

(
scφ2 + bcφ1

)
Hd

+ y7
QL2

(
scϕ2 + bcϕ1

)
h45 (4.16)
�
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where Hd and h45, are the doublet components of the SU(5) Higgses H5 and H45 respectively. 
Taking the VEVs of the Hd as usual—〈Hd〉 = υd—and the flavons  and � as in Eq. (4.5), and 
assuming the VEVs of φ and ϕ as

〈φ〉 = (
υφ,0

)T
, 〈ϕ〉 = (

0, υϕ

)T (4.17)

the mass matrix of the down quarks is given by

Md =
⎛
⎝ 0 υdα 0

υdβ h 0
0 0 υdδ

⎞
⎠ (4.18)

where

β = y4
υ2

�

�2
, α = y5

υυϕ

�2
, δ = y6

υφ

�
, h = y7

υ45υϕ

�
(4.19)

• Leptons mass matrix
Using Eq. (4.14), the D4 × U(1) invariant superpotential of the charged leptons in terms of 

the SM Yukawa couplings reads

We = y4

�2

(
L1μ

c
)
��Hd + y5

�2 (L2ϕ2 + L3ϕ1) ecHd

+ y6

�
(L2φ2 + L3φ1) τ cHd − 3

y7

�
(L2ϕ2 + L3ϕ1)μch45 (4.20)

As the flavons VEVs are the same as in the down sector, we find the following charged leptons 
mass matrix

Me =
⎛
⎝ 0 υdβ 0

υdα −3h 0
0 0 υdδ

⎞
⎠ (4.21)

where α, β and δ are the same as in Eq. (4.19). Recall that the Higgs H45 contribute to the 
element 2–2 for both down quark and charged lepton mass matrices with the factor −3 in Me to 
differentiate between the two sectors, this factor is an SU(5) Clebsch–Gordan coefficient which 
come from the properties of the Higgs H45 given in Eq. (4.12). Diagonalizing the mass matrices 
Md and Me, the down-type quark masses are given by

md =
∣∣∣∣1

2
h − 1

2

√
h2 + 4υ2

dαβ

∣∣∣∣ =
∣∣∣∣∣y4y5

y7

υ2
dυυ2

�

υ45�3

∣∣∣∣∣
ms =

∣∣∣∣1

2
h + 1

2

√
h2 + 4υ2

dαβ

∣∣∣∣ =
∣∣∣∣∣y7

υ45υϕ

�
+ y4y5

y7

υ2
dυυ2

�

υ45�3

∣∣∣∣∣ (4.22)

mb = |υdδ| =
∣∣∣y6υd

υφ

�

∣∣∣
while for the charged leptons masses, we find

me =
∣∣∣∣−3

2
h + 1

2

√
9h2 + 4υ2

dαβ

∣∣∣∣ =
∣∣∣∣∣y4y5

3y7

υ2
dυυ2

�

υ45�3

∣∣∣∣∣
mμ =

∣∣∣∣−3

2
h − 1

2

√
9h2 + 4υ2

dαβ

∣∣∣∣ =
∣∣∣∣∣3y7

υ45υϕ

�
+ y4y5

3y7

υ2
dυυ2

�

υ45�3

∣∣∣∣∣ (4.23)
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mτ = |υdδ| =
∣∣∣y6υd

υφ

�

∣∣∣
Thus, the masses of the quarks and charged leptons of the first and the second family are suc-
cessfully differentiated by 45-dimensional Higgs H45, and the GJ relations are guaranteed if we 
assume

h � υdα ≈ υdβ (4.24)

To get the experimental values of down quark masses taking into account the GJ relation between 
the down quarks and charged leptons, we take several estimations of the mass parameters in 
(4.22). Taking into consideration the estimations assumed in the up quark sector (see Eq. (4.8)), 
to reach the numerical values of the down, strange and bottom quark masses as given by the 
Particle Data Group [39], namely md � 4.8 MeV, ms � 95 MeV and mb � 4.66 GeV, we assume 
that υd ≈ 174 GeV and

y4y5

y7y2y
2
1

1
υ45

= 12.45 × 104 GeV−1

y7υ45υϕ = 90.2� MeV

y6υφ = 2.67 × 10−2�

(4.25)

4.3. Quark mixing matrix

Regarding the mixing matrix of the quark sector, the unitary matrix that diagonalizing the up 
quark mass matrix is the identity matrix UUp = Iid since the up quark matrix obtained is diagonal 
(4.6), in the other hand, the down quark mass matrix (4.18) is diagonalized by the unitary matrix

UDown =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−h−
√

h2+4αβυ2
d

βυd

√√√√4+
(

h+
√

h2+4αβυ2
d

βυd

)2

−h+
√

h2+4αβυ2
d

βυd

√√√√4+
(

h−
√

h2+4αβυ2
d

βυd

)2
0

2√√√√4+
(

h+
√

h2+4αβυ2
d

βυd

)2
2√√√√4+

(
h−

√
h2+4αβυ2

d
βυd

)2
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.26)

and consequently the total mixing matrix for the quark sector is given by

∣∣UQ

∣∣ =
∣∣∣U†

UpUDown

∣∣∣ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣−h−
√

h2+4αβυ2
d

∣∣∣∣∣∣∣∣∣∣∣βυd

√√√√4+
(

h+
√

h2+4αβυ2
d

βυd

)2
∣∣∣∣∣∣∣

∣∣∣∣−h+
√

h2+4αβυ2
d

∣∣∣∣∣∣∣∣∣∣∣βυd

√√√√4+
(

h−
√

h2+4αβυ2
d

βυd

)2
∣∣∣∣∣∣∣

0

2∣∣∣∣∣∣∣
√√√√4+

(
h+

√
h2+4αβυ2

d
βυd

)2
∣∣∣∣∣∣∣

2∣∣∣∣∣∣∣
√√√√4+

(
h−

√
h2+4αβυ2

d
βυd

)2
∣∣∣∣∣∣∣

0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.27)

Using the estimations in Eqs. (4.8)–(4.25) and assuming

α ≈ β � 12.6 × 10−5 (4.28)
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we obtain the total quark mixing matrix as follows

∣∣UQ

∣∣ =
∣∣∣U†

UpUDown

∣∣∣ =
⎛
⎝0.9743 0.225 0

0.225 0.9743 0
0 0 1

⎞
⎠ (4.29)

which are reasonably close to the experimental values—
∣∣UQ

∣∣ ∼ |UCKM |, especially the elements 
|Uud |, |Uus |, |Ucd | and |Ucs |, while the zero mixing elements predicted in (4.29), have non-zero
but small values comparing to the observed values given by [39]

|UCKM | =
⎛
⎝0.97427 0.22536 0.00355

0.22522 0.97433 0.0414
0.00886 0.0405 0.99914

⎞
⎠ (4.30)

We end this section by noticing that spontaneous breaking of discrete symmetry leads in general 
to cosmological domain walls [40]. To avoid this problem, various scenarios have been proposed, 
the most common ones are either based on inflation ideas [43] or by using explicit symmetry 
breaking which is used in several models such as the minimally extended supersymmetric stan-
dard model (NMSSM) and string theory inspired prototypes [41,42]. The inflation based scenario 
might be a nice solution of domain walls problem for GUT models provided the inflationary scale 
is big; say around O(1016) GeV [43]; at this scale, the topological defects are formed before the 
end of inflation. This is the case in our SUSY GUT model where the discrete symmetry D4 is 
broken by the flavon superfields getting their VEVs at the GUT scale, and consequently the do-
main walls are inflated away. Notice by the way that the greatest danger of domain walls arises 
for broken symmetry at lower scale as topological defects may occur after the inflationary stage. 
For example, in the model proposed in Ref. [44] with superpotential W (X) having Zn+3 as 
discrete symmetry, the domain walls problem occurs in the degenerate minima of W (X); and 
it has been suggested that the annihilation of such walls as due to a small deformation of the 
superpotential that breaks explicitly Zn+3 symmetry. This idea is realized by adding to W (X) a 
small deformation term δW = αX linear in the chiral superfield X which breaks Zn+3 symmetry 
explicitly, for further details see [44].

5. Conclusion and numerical results

In this paper we have constructed a supersymmetric SU(5) × D4 × U(1)f GUT model pro-
viding a good description of quarks and leptons mass hierarchies and neutrino mixing properties. 
Besides the bosonic gauge field degrees of freedom and their superpartners described by vector 
superfields V valued in the Lie algebra of SU (5), the supersymmetric GUT model has also chiral 
superfields {
} that play a basic role in this construction; they can be classified into three kinds 
as follows:

(a) matter sector described by the generation superfields (Ti,Fi,Ni) carrying quantum num-
bers under the gauge symmetry as Ti ∼ 10i , Fi ∼ 5̄i and Ni ∼ 1i ; but also under the flavor 
symmetry Gf = D4 × U(1)f as in (2.7)–(2.8).

(b) Higgs sector described by the superfields (H5, H5, H45) transform under the gauge sym-
metry as H5 ∼ 5H , H5 ∼ 5̄H and H45 ∼ 45H ; and they carry as well non-trivial quantum 
number under Gf = D4 × U(1)f as in (2.8)–(2.12).
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(c) Flavons sector described by eleven chiral superfields; they are scalars under SU(5) gauge 
invariance; but distinguished by quantum numbers under flavor symmetry Gf = D4 ×U(1)f
as shown on Tables (2.13)–(2.14).

The invariant chiral superpotential W (
) of the model has twenty eight free parameters in 
which we need to fix eighteen in order to produce the approximative experimental values of 
the physical parameters in the quark and lepton sectors as given by tables reported below; see 
Tables (5.2)–(5.3) and Tables (5.5)–(5.9). The total superpotential W (
) = Wch + Wchs of the 
model has a contribution Wch coming from the charged sector and another Wchs from the charge-
less sector; they are as follows

Wch = Wup + We,d

Wchs = WD + WM + δWM

(5.1)

where the superpotentials Wup and We,d of the charged sector are given in Eqs. (4.3)–(4.15) and 
the superpotentials of the chargeless sector WD , WM and δWM are given in Eqs. (3.2), (3.5)
and (3.14).

Notice that the role of the discrete D4 dihedral group factor in the flavor symmetry Gf may 
be compared with the role of the alternating group A4 used in other SU (5) based GUT models 
building; see for instance [21]. Here D4 has been motivated by its natural description of μ–τ

symmetry as well as by the wish to complete partial results in supersymmetric GUTs. The extra 
continuous global U(1)f invariance is necessary to control the superpotential W (
) of the GUT 
model and also to forbid higher dimensional operators that yields to rapid proton decay.

Among the key steps of this work, we mention the following ones: First, we have required a 
scale difference among the VEVs of the flavons , � and � to fulfill the hierarchy among the 
three generations of up quarks. We then allowed for the presence of the flavon superfields ϕ and 
φ along with the flavons  and � used in the up sector, and the 45-dimensional Higgs in the 
down quarks–charged leptons sector in order to reconcile with the GJ relations which allow to 
distinguish between the two sectors. Next, we have studied the neutrino sector where the effective 
light neutrino mass matrix arise at LO through the type I seesaw mechanism; and by using the D4
representation properties, the Dirac mass matrix was found diagonal thus allowing the Majorana 
mass matrix to control the TBM matrix. Finally, in order to generate a non-zero reactor angle, 
we have added four extra flavon superfields to induce the deviation from TBM pattern.

We end this study by giving comments and a summary of the numerical results obtained in the 
charged and chargeless fermion sectors. As noticed before, our model involves in total twenty 
eight free parameters in which we need to fix eighteen to produce the approximative experimental 
values of the physical parameters in the quark and lepton sectors.

5.1. Numerical results

First we give numerical results for the chargeless sector; see Tables (5.2) and (5.3); then we 
turn to give numerical estimations of flavon VEVs that lead to masses of the quarks and charged 
leptons; see Tables (5.5)–(5.9).

5.1.1. Neutrino sector
The neutrino sector in our model involves fourteen free parameters in which we have fixed 

ten parameters to reproduce the experimental values of the physical parameters in the allowed 
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Fig. 5. Left: �m31 [eV] as a function of m0 [eV] and the parameter c presented in the palette on the right for NH with 
the parameters a, ε, sin θ13 and sin θ23 as inputs. Right: same variation in the left panel but for �m21 [eV].

ranges. To produce the TBM pattern in the neutrino mass matrix as well as generating the non-
zero reactor angle θ13, we have fixed six parameters by imposing the constraints in Eqs. (3.9), 
(3.17), (3.18). The four remaining parameters to fix (namely ε, a, c and m0), come from the pa-
rameterizations used in Eqs. (3.19)–(3.21). These four parameters are successfully confined to 
produce the physical parameters �mij and sin θij in the neutrino sector.

As we have mentioned in section 3, the parameter of deviation ε is fixed in the range [0 : 0.1], 
while the parameter a is fixed as in Eqs. (3.38)–(3.39). In the other hand, the remaining two 
parameters c and m0 are fixed using the 3σ allowed ranges of �m31 and �m21 (see Figs. 3–4).

As a final comment, notice that more precise ranges of the parameters c and m0 may be ob-
tained if we consider their compatibility with the mixing angles sinθ13 and sin θ23. We distinguish 
two cases as follows:

i) m0 and c for allowed �m31, sin θ13 and sin θ23
We plot in the left panel of Fig. 5 �m31 as a function of m0, with c presented in the palette 

on the right, while the 3σ allowed ranges of sin θ13 and sin θ23 are included as input parameters. 
This inclusion of the mixing angles has reduced the allowed values of m0 and c as can be seen in 
the left panel of Fig. 5. Since �m31, sin θ13 and sin θ23 depend also on the parameters a and ε, 
their values get also restricted. To summarize, we take few examples of the allowed values of a

and ε that are compatible with the mixing angles sinθ13 and sin θ23 and the parameters c, m0 and 
�m31 as shown in the left panel of Fig. 5 (see Table (5.2)).

Free parameters Observables

ε a c m0 [eV] sin θ13 sin θ23 �m31 [eV]
0.0647 0.149 −0.732 0.0434 0.153 0.630 0.0484

0.0906 0.214 −0.951 0.0542 0.149 0.632 0.0495

0.0801 −0.199 0.819 0.0350 0.142 0.778 0.0505

0.0566 −0.142 0.903 0.0493 0.140 0.777 0.0492

(5.2)

ii) m0 and c for allowed �m21, sin θ13 and sin θ23
We plot in the right panel of Fig. 5 the same as in the left panel but for �m21 instead of 

�m31; hence, we repeat the same study as in the previous case, and we take a few examples of 
the allowed values of a and ε that are compatible with the mixing angles sinθ13 and sin θ23 and 
the parameters c, m0 and �m31 as shown in the right panel of Fig. 5 (see Table (5.3)).
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Free parameters Observables

ε a c m0 [eV] sin θ13 sin θ23 �m21 [eV]
0.0958 −0.215 0.284 0.0062 0.157 0.785 0.00860

0.0969 −0.240 0.387 0.0143 0.142 0.778 0.00892

0.0779 0.193 −0.244 0.00179 0.142 0.635 0.00877

0.0824 0.207 −0.443 0.0222 0.140 0.636 0.00899

(5.3)

5.1.2. Quarks and charged leptons sectors
The quarks and charged leptons mass matrices in (4.6), (4.18), (4.21) involve in total fourteen 

free parameters that we collect hereafter

y1, y2, y3, y4, y5, y6, y7
υ�, υ, υ�, υ45, υφ, α, β

(5.4)

From these free parameters we need to fix eight of them in order to reproduce the phenomenolog-
ical charged fermion masses by taking into account the GJ relations as well as the quark mixing 
matrix. The choice of the parameters is done in three steps as follows:

• In the up quark sector, we have fixed three parameters as in Eq. (4.8) to generate the 
phenomenological masses of the three up-type quarks. To have masses agreeing with ex-
perimental values taken from Ref. [39]

Observables Model values Experimental values

mu 2.3 MeV 2.3+0.7
−0.5 MeV

mc 1.275 GeV 1.275 ± 0.025 GeV

mt 173.21 GeV 173.21 ± 0.51 ± 0.71 GeV

(5.5)

we need to fix the VEVs of the flavons �,  and � as follows

y1
υ�

�
≈ 1.32 × 10−5

y2
υ

�
≈ 7.32 × 10−3

y3
υ�
�

≈ 0.995

(5.6)

• In the down quarks–charged leptons sector, besides Eq. (4.8) used in the up-quark sector, we 
have fixed four parameters as in Eqs. (4.24)–(4.25) to establish the numerical masses of the 
down quarks. To ensure the values

Down quarks Model values Experimental values

md 4.8 MeV 4.8+0.5
−0.3 MeV

ms 95 MeV 95 ± 5 MeV

mb 4.66 GeV 4.66 ± 0.03 GeV

(5.7)

we have used the following
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y4y5

y7y2y
2
1

1
υ45

≈ 12.45 × 104 GeV−1

y7
υ45υϕ

�
≈ 90.2 MeV

y6
υφ

�
≈ 2.67 × 10−2

α ≈ β

h � υdα

(5.8)

• In addition to Eqs. (4.8), (4.24), (4.25) used to generate the phenomenological masses of the 
charged fermions, we have also imposed α ≈ β � 12.6 × 10−5 fixing one more parameter of 
the GUT model. This choice allowed us to obtain approximately the experimental values of 
the CKM elements 

∣∣Uij

∣∣ collected in following table

Observables Model values Experimental values

|Uud | 0.9743 0.97427 ± 0.00014

|Uus | 0.225 0.22536 ± 0.00061

|Ucd | 0.225 0.22522 ± 0.00061

|Ucs | 0.9743 0.97343 ± 0.00015

|Uub| 0 0.00413 ± 0.000049

|Ucb| 0 0.0414 ± 0.0012

|Utb| 1 0.99914 ± 0.00005

|Uts | 0 0.0405+0.0011
−0.0012

|Utd | 0 0.00886+0.00033
−0.00032

(5.9)

Appendix A. Proton decay in SU(5) × D4 × U(1) model

In this appendix we provide a discussion concerning the proton decay in our model SU(5) ×
D4 × U(1); it is organized into two sub-subsections: the first part concerns the usual 4 and 5 
dimensional operators yielding to fast proton decay. The second part deals with those 7 and 8 op-
erators induced by integrating out the colored Higgs triplets �u and �d from the superpotential 
(4.3), (4.16).

A.1. Four and five dim operators leading to proton decay

We start by recalling that in SU(5) based GUT models, there are several baryon number 
violating terms leading to nucleon decay. The present experimental bounds come from Super-
Kamiokand where the lower limit of lifetime for p → e+π0 is τ(p → e+π0) > 1.4 × 1034 years 
and the lifetime limit for p → νK+ is obtained as 5.9 × 1033 years [45]. In supersymmetric 
SU(5) model, the dangerous proton decay terms arise from the dimension 4 and dimension 5 
operators which have the form

10M.5̄M.5̄M → λQLd(QLLdc) + λudd

(
ucdcdc

) + λell(e
cLL)

10 .10 .10 .5̄ → λ (Q Q Q L) + λ (ucucdcec)
(A.1)
M M M M QQQL L L L uude
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Regarding the dimension 4 operators 10M.5̄M.5̄M , interaction processes involving violating lep-
ton number term (QLiLjd

c
k ) and the violating baryon number 

(
uc

1d
c
1dc

k

)
lead to rapid proton 

decay with family indices as i = 1, 2; j = 1, 2 and k = 2, 3. As we mentioned in subsec-
tion 2.2, the matter superfields Ti = 10i

m are assigned into the D4 representations 1+,−, 1+,−
and 1+,+ respectively; while the Fi = 5

i

m matter superfields are hosted by the D4 singlet 1+,−
and the D4 doublet 20,0. Therefore, the dimension 4 operators yielding to proton decay in 
SU(5) × D4 × U(1) model are given by

T1.F1.F2,3 , T2.F1.F2,3
T1.F2,3.F2,3 , T2.F2,3.F2,3

(A.2)

The operator couplings in the first row of (A.2) are forbidden by D4 discrete symmetry while 
those of the second row are permitted. This feature may be exhibited by taking the tensor products 
of D4 representations. For T1.F1.F2,3 and T2.F1.F2,3 we have 1+,− ⊗ 1+,− ⊗ 20,0 behaving as 
a doublet. The undesired couplings T1.F2,3.F2,3 and T2.F2,3.F2,3 are eliminated by the global 
U(1) symmetry (see Table (A.4)). As for the dimension 5 operators 10M.10M.10M.5̄M which 
are given in the second line in Eq. (A.1) are generically generated via color triplet Higgsino
exchange [48]. For instance, the following dimension 5 operators lead to rapid proton decay

T1.T1.T3.F2,3 , T1.T1.T2.F2,3 , T1.T1.T2.F1 (A.3)

The first two couplings in Eq. (A.3) are excluded by the D4 symmetry while the third one is 
invariant under D4, but is ruled out by the global U(1) symmetry since its charge is qU(1) = 45
and therefore is absent. The dimension 4 and 5 operators leading to rapid proton decay and 
suppressed by D4 symmetry and global U(1) are listed in the following table:

4- and 5-dim operators D4 invariance U(1)

T1.F1.F2,3 No 40

T2.F1.F2,3 No 35

T1.F2,3.F2,3 Yes 40

T2.F2,3.F2,3 Yes 35

T1.T1.T3.F2,3 No 11

T1.T1.T2.F2,3 No 45

T1.T1.T2.F1 Yes 45

(A.4)

Notice that in our SU(5) × D4 × U(1) model, there are also operators with dimension2 equal to 
6 involving flavon superfields as

T1.F1.F2,3.σ.� , T1.F2,3.F2,3.ρ.� , T1.F2,3.F2,3.ρ
′.�

and may lead to rapid nucleon decay; but can be eliminated by the usual R-parity [53]; this 
discrete symmetry is known to avoid all renormalizable baryon and lepton number violating 
operators such as Ti.Fj .Fk in SUSY models. Concerning operators of dimension 5 (A.3), their 
couplings with the flavon superfields to form operators of dimension 6 are forbidden by the 

2 The 6-dimension operators are the highest dimensional couplings used in our model (except for the operators in 
Eq. (A.8) derived from the Yukawa superpotential), thus, we restrict our discussion concerning the higher couplings 
leading to fast proton decay to the 6 dimensional operators.
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global U(1) symmetry. Finally, notice that the MSSM μ-term μHuHd coming from the coupling 
between the SU(5) Higgses 5Hu and 5Hd

is forbidden by the D4 discrete symmetry

A.2. More on proton decay suppression

Here we first examine the seven and eight dimensional couplings inherited from Wup and Wd

superpotentials given by Eqs. (4.3), (4.16); these couplings are mediated by colored Higgsino 
triplet � and are relevant to nucleon decay after including the dressing procedure [54]. Then, we 
discuss the effect of the dressing through the exchange of charged winos w̃± and higgsinos h̃±.

• Operators mediated by colored Higgsino triplet
First, recall that the minimal supersymmetric SU(5) GUT in the low scale SUSY suffers from 
several problems; and has been ruled out as it predicts a fast proton decay arising from the 
operators of dimension five which are mediated by colored Higgsino triplet �; these operators 
come from the Yukawa superpotential; see for instance [46,47]. In Ref. [47], after examining 
the RGEs for the gauge couplings at one loop, the mass of colored Higgs triplet is found to be 
M� ≤ 3.6 × 1015 GeV which is less than the limit M� ≥ 7.6 × 1016 GeV required to ensure the 
proton stability.

In our SU(5) × D4 × U(1) model, the operators mediated by the colored Higgsino triplet 
are inherited from the superpotentials Wup and Wd in Eqs. (4.3)–(4.16). These superpotentials, 
which have the same structure as homologue considered in [21], read in terms of colored Higgs 
triplets �u ∈ H5 and �d ∈ H5 as follows

W ′
up = y1

�
[QL1QL1 + ucec]��u + y2

�
[QL2QL2 + ccμc]�u

+ y3

�
[QL3QL3 + tcτ c]��u (A.5)

and

W ′
d = y4

�2

[
QL2L1 + ccdc

]
���d + y5

�2

[
QL1L2ϕ2 + ucscϕ2

]
�d

+ y6

�

[
QL3L3φ1 + tcbcφ1

]
�d (A.6)

Integrating out �u and �d in Eqs. (A.5)–(A.6), the remaining operators relevant for nucleon 
decay are of dimension seven and eight as follows

W7,8 = 1

M�

[y1y4

�3

(
QL1QL1QL2L1 + ucecccdc

)
�3

+ y1y6

�2

(
QL1QL1QL3L3 + ucectcbc

)
�φ1

+ y2y5

�3

(
QL2QL2QL1L2 + ccμcucsc

)
ϕ2

2

+ y3y5

�3

(
QL3QL3QL1L2 + tcτ cucsc

)
ϕ2�] (A.7)

where M� is the colored Higgs triplet mass which is expected to be at the GUT scale; say 
O

(
1016

)
. Notice that it is known in GUT literature that the Higgsino mediated proton decay is 

strongly associated with the so called “doublet–triplet splitting” (DTS) problem [50] on how the 
Higgs triplets �u and �d acquire GUT-scale masses M� while leaving their doublet partners Hu

and Hd with only weak-scale masses. Several ways have been proposed to resolve this problem 
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such as: (i) tuning the parameters in the Higgs superpotential, see for instance [49]; (ii) using the 
Missing Partner Mechanism [51]; or (ii) using Double Missing Partner Mechanism [52]. In the 
present paper, the doublet–triplet splitting problem might be circumvented by using the Missing 
Partner Mechanism which is considered as the most used solution of DTS. The general idea 
of this mechanism relies on giving the colored Higgs triplet M� a mass involving additional 
Higgses sitting the 50, 50 and 75 representations of SU(5). We will not develop this issue here; 
we refer to literature where several papers using this approach have addressed this question; see 
for instance Ref. [21].

Returning to eqs. (A.7), the higher dimensional couplings in W7,8 may be exhibited by using 
the superfield assignments of SU(5) × D4 × U(1) model; we have

1

M�

y1y4

�3

[
T1.T1.T2.F1.�

3
]

1

M�

y1y6

�2

[
T1.T1.T3.F2,3.�.φ

]
1

M�

y2y5

�3

[
T2.T2.T1.F2,3.ϕ.2

]
1

M�

y3y5

�3

[
T3.T3.T1.F2,3.ϕ..�

]
(A.8)

By using Eqs. (4.8)–(4.25), it is clear that all the operators in the list (A.8) are highly suppressed 
by a factor proportional to

1

M�

y1y4

�3
〈�〉3 (A.9)

for the first coupling; and

1

M�

y1y6

�2
〈�〉 〈φ〉 (A.10)

for the second coupling; and

1

M�

y2y5

�3
〈ϕ〉 〈〉2 (A.11)

for the third coupling; and finally

1

M�

y3y5

�3
〈ϕ〉 〈〉 〈�〉 (A.12)

for the last coupling. Assuming the Yukawa couplings yi ≈ O(1), the first coupling (A.9) is sup-
pressed by 2.3

M�×1015 which is of order of 10−31 GeV−1; while the suppression of the remaining 

couplings (A.10)–(A.12) are of order 10−23 GeV−1, 10−24 GeV−1 and 10−22 GeV−1 respec-
tively. In what follows, we turn to study the contribution to proton decay coming from dressing 
diagrams with winos and higgsinos mediators.

• Dressing by higgsinos and winos exchange
The dressing of dimension five proton decay operators via the exchange of gluino, charginos 
and neutralinos concerns the processus qq → l̃q̃; and consists of converting the sleptons l̃ and q̃
squarks into leptons l′ and quarks q ′. In order for these operators to be relevant to proton decay, 
the bosons need to be transformed to fermions by a loop diagram through the gluino, neutralino, 
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Fig. 6. Dimension 5 operator diagram mediated by the colored Higgs triplet �. The superparticles (dashed lines) are 
transformed in particles via wino exchange. A similar diagram with higgsino exchange and others can also drawn; see 
appendix C of Ref. [56].

charginos dressing procedure; this leads to four-fermion interactions qqql and ucucdcec with 
baryon and lepton violating dimension six operators [55]. In SUSY SU(5) models, the dressing 
of the dimension five operators is studied in the limit where the dominant contribution to the qqql

operator comes from a diagram with charged wino dressing while the dominant contribution to 
the ucucdcec operator arises from a charged higgsino dressing as illustrated in Fig. 6; see for 
instance Ref. [56] and the references therein.

In our SU(5) × D4 × U(1) model, the dressing of the operators QQQL and ucucdcec of 
(A.7) involves charged winos and higgsinos and an effective coupling depending on the flavon 
field VEVs. For clarity, we split the superpotential W7,8 as the sum of two parts

W7,8 = WL
7,8 + WR

7,8 (A.13)

where the part WL
7,8 contains the operators of type QQQL coupled to flavons as follows

WL
7,8 = 1

M�

[y1y4

�3

(
QL1QL1QL2L1

)
�3 + y1y6

�2

(
QL1QL1QL3L3

)
�φ1

+ y2y5

�3

(
QL2QL2QL1L2

)
ϕ2

2 + y3y5

�3

(
QL3QL3QL1L2

)
ϕ2�] (A.14)

and the WR
7,8 part contains the operators of type ucucdcec like

WR
7,8 = 1

M�

[y1y4

�3

(
ucecccdc

)
�3 + y1y6

�2

(
ucectcbc

)
�φ1 + y2y5

�3

(
ccμcucsc

)
ϕ2

2

+ y3y5

�3

(
tcτ cucsc

)
ϕ2�] (A.15)

The two first operators in Eq. (A.14) are dressed by the charged winos and are significant for the 
decay mode p → K+ν; this wino dressing contributes to the amplitude of nucleon decay with a 
factor proportional to

1

M�

y1y4

�3
〈�〉3

(
mw̃

m
l̃1
mq̃2

)
(A.16)

for the first operator and

1

M�

y1y6

�2
〈�〉 〈φ1〉

(
mw̃

m
l̃3
mq̃3

)

for the second. The mw̃ is the wino mass and m
l̃

and mq̃ are the slepton and the squark masses 
respectively. If we take the masses of the sfermions and the charged winos as in Murayama and 
Pierce paper [47] (msf ∼ O(1 TeV) and mw̃ ∈ [100,400] GeV), these extra contributions from 
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the ratio of the winos and superparticle masses are small and enhance the suppression of the 
factors in Eqs. (A.9)–(A.10).

Regarding the first operator in Eq. (A.15) which is dressed by charged higgsino is relevant to 
the same mode p → K+ν, its contribution to the amplitude of nucleon decay is proportional to

1

M�

y1y4

�3
〈�〉3

(
m

h̃

mẽmc̃

)
(A.17)

where m
h̃

is the charged higgsino mass and mẽ and mc̃ are the masses of the selectron 
and the scharm respectively. Following [47], the mass of higgsino varies in the range m

h̃
∈

[100,1000] GeV; thus the ratio of the higgsino and the superparticle masses is also small and the 
contribution from charged higgsino dressing that arise in Eq. (A.17) is also highly suppressed.

Appendix B. Dihedral group D4

The Dihedral group D4 is a non-abelian discrete symmetry group generated by two non-
commuting generators a and b obeying to the conditions a4 = b2 = e; they have the 4 × 4 matrix 
realization

a =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ (B.1)

The D4 discrete group consists of eight elements which could be classified in the five conjugacy 
classes as

C1 : {e} , C2 :
{
a, a3

}
, C3 :

{
a2

}
, C4 :

{
b, a2b

}
, C5 :

{
ab, a3b

}
(B.2)

It has five irreducible representations; four singlets 1+,+, 1+,−, 1−,+ and 1−,−, and one doublet 
20,0 where the sub-indices on the representations refer to their characters under the two genera-
tors a and b as in the table

χij e a b

χ1+,+ +1 +1 +1

χ1+,− +1 −1 +1

χ1−,+ +1 +1 −1

χ1−,− +1 −1 −1

χ20,0 2 0 0

(B.3)

The Kronecker product of two doublets 2x = (x1, x2)
T and 2y = (y1, y2)

T in the D4 group is 
given by

2x × 2y = 1+1,+1 + 1+1,−1 + 1−1,+1 + 1−1,−1 , (B.4)

where

1+1,+1 = x1y2 + x2y1,

1+1,−1 = x1y1 + x2y2,

1−1,+1 = x1y2 − x2y1,

1 = x y − x y ,

(B.5)
−1,−1 1 1 2 2
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and the singlets product are

1α,β × 1γ,δ = 1αγ,βδ with α,γ,β, δ = ± . (B.6)

For more details on the D4 Dihedral group see for instance Ref. [57].
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