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1 Introduction

Soon after the renormalisation of pure Wilson loops or lines [1–5], the renormalisation and

short distance properties of operator insertions into Wilson loops as well as of nonlocal

gauge invariant gluonium and hadron operators have been studied [4, 6–11]. In compar-

ison to smooth contours, cusps or self-crossings of the contour require additional renor-

malisation. Using a one-dimensional auxiliary field living on the contour [4, 5, 9], one can

formulate both the presence of cusps and self-crossings as well of the insertion of additional

operators in the language of correlation functions of local composites on the contour.

Besides their importance for the formal theory, operator insertions into Wilson loops

play a crucial role also in the theory of parton distributions one needs in phenomenology.1

In particular since the invention of AdS-CFT duality [14], a huge amount of activity

has been devoted to the N = 4 supersymmetric Yang Mills theory with its high degree

of symmetry as superconformal invariance, integrability and access to the strong coupling

regime. One aspect related to the present paper concerns the study of operator insertions

in the Maldacena-Wilson loop [15] along straight lines or circles [16–20]. A complementary

setting is connected with the duality between scattering amplitudes and Wilson loops [21].

Here one needs Wilson loops for polygons with light-like edges. One has to study not a

1Instead giving a list of references we cite only two recent papers [12, 13] and refer to further citations

therein.

– 1 –



J
H
E
P
0
3
(
2
0
2
0
)
1
6
6

given fixed contour with varying insertion points on it, but a contour determined by its

special points, the corners of a light-like polygon.

Only recently a generalisation to another case with a Wilson loop contour fixed by the

position of its cusp points plus a finite number of parameters has been studied, a triangle

with circular edges [22, 23] in a plane. As a result they get a dependence on the three

corner points as for a three point correlator of local composites with conformal dimensions

equal to the cusp anomalous dimensions. Instead of the structure constant for the three

local operators there appears a three cusp structure function, which is a new function of

the three cusp angles.

The aim of our paper is to fully exploit conformal properties to constrain the structure

of Wilson loops for arbitrary polygon-like contours with edges made of circular arcs, either

in full 4D Euclidean spacetime or in two- or three-dimensional Euclidean subspaces of 4D

Minkowski space. We consider N = 4 SYM, but leave it open to have in mind either

ordinary Wilson loops or their supersymmetric extensions [15]. The resulting structure

will be the same, only the relevant cusp anomalous dimensions differ. Our strategy will

closely follow [24] in deriving the appropriate anomalous conformal Ward identities. While

for the light-like polygons studied in [24] only cross ratios formed out of corner points are

available as conformal invariant parameters, we will have to identify and handle a larger

set of conformal invariants.

The paper is organised as follows. In section 2 we derive the anomalous conformal Ward

identities for our circular N -gons. For large enough N it will turn out that the number of

metrical parameters and the number of conformal parameters, needed in addition to those

for the set of corners, are equal. Section 3 is devoted to this generic case. The exceptional

cases N = 2, 3, 4 are treated in section 4. We conclude with section 5 and have put various

technical details in four appendices.

2 Derivation of the anomalous conformal Ward identities

The contours under consideration are polygon-like with edges made of circular arcs. Their

geometry is fixed by the set of corner points (vertices) {xj} and the set of centers for the

circular arcs {zj}, j = 1 . . . N . We will call the transition from the set of corners to the

complete circular N -gon as dressing. There is a constraint

(xj − zj)
2 = (xj+1 − zj)

2 , (2.1)

and the radii of the arcs are given by

Rj = |xj − zj | . (2.2)

We start with the anomalous Ward identities for dilatations and special conformal

transformations for Wilson loops in dimensionally regularisedN = 4 SYM as derived in [24]

D log〈Wǫ〉 = − 2iǫ

g2µ2ǫ

∫

dx4−2ǫ 〈L(x)Wǫ〉
〈Wǫ〉

, (2.3)

Kν log〈Wǫ〉 = − 4iǫ

g2µ2ǫ

∫

dx4−2ǫ xν
〈L(x)Wǫ〉

〈Wǫ〉
. (2.4)
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For smooth contours the integrals on the r.h.s. of both equations are finite for ǫ → 0.

Then the whole r.h.s. vanishes in the limit and restores conformal invariance. In the

presence of cusps between spacelike edges the integrals have simple poles in ǫ, and there

remain anomalous terms on the r.h.s.

The further analysis in [24] is tailored for polygons with lightlike edges where the

presence of simple and double poles in logWǫ requires a more involved discussion.

Instead we can use2

log〈Wǫ〉 = logZ + log〈W〉 , (2.5)

logZ = −1

ǫ

∫

γ(g)

g
dg , i.e. D logZ = 0 , Kν logZ = 0 , (2.6)

γ(g) =
N
∑

j=1

Γj , (2.7)

and continue with a combination of the standard RG equation3 and dimensional analysis

D log〈W〉 = −
N
∑

j=1

Γj . (2.8)

Comparing this with (2.3), using (2.5), (2.6), and taking into account that the UV divergent

contribution to the integral is located at the points x = xj , one gets in the limit ǫ → 0

N
∑

j=1

Γj δ(x− xj) =
2iǫ

g2µ2ǫ

〈L(x)Wǫ〉
〈Wǫ〉

. (2.9)

For the renormalised Wilson loop this implies with (2.6) after insertion of (2.9) into (2.4)

Kν log〈W〉 = − 2

N
∑

j=1

xνj Γj . (2.10)

The advantage of this equation for practical applications crucially depends on the

choice of variables used to specify the contour of the Wilson loop. The first naive possibility

would be

〈W〉 = W ({x}, {z}) . (2.11)

For the corner points xj we can use the standard infinitesimal transformation (Kνx)µ =

2xνxµ − x2δµν . However, in generic cases, under conformal transformations the center of

the image of a circle is not the image of the original center. A detailed discussion of this

issue one can find in appendix A. From there, see (A.12), we get for a center of a circle

(Kνz)µ = 2zνzµ − z2δµν − 2R2nµnν +R2δµν , (2.12)

where R and n are radius and unit normal direction to the plane in which the circle is

located.4

2Γj = Γ(αj , g) denotes the cusp anomalous dimension for the cusp with opening angle αj at xj .
3We have vanishing β-function in N = 4 SYM.
4This is for 3D. In 4D there appear two normals.
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Then (2.10) appears as

N
∑

j=1

(

2xνjxj∂xj
− x2j∂

ν
xj

+ 2zνj zj∂zj − (z2j −R2
j )∂

ν
zj
− 2R2

jn
ν
jnj∂zj

)

logW ({x}, {z})

= − 2
N
∑

j=1

xνj Γj . (2.13)

It is hard to disentangle some explicit constraints on the function W ({x}, {z}) out of this
version.

As further input, as in the case of local correlation functions, one should use unbroken

Poincaré invariance. The metrical properties of the set of corners depend only on the

distances

Dij = |xi − xj | , (2.14)

and one can apply the well-known

Kν Dij = (xνi + xνj ) Dij . (2.15)

Then a complete set of variables for our Wilson loops, which in 3D immediately intrudes

oneselves, is {Dij , Rj , αj}. The cusp angles αj are invariant. The transformation law

of the Dij contains only the distances themselves and the corners xj , which anyway are

needed to fit their appearance on the r.h.s. of (2.10). But the transformation of the radii,

see appendix A (A.13), contains the centers of the circles which are fixed by a nontrivial

function of Dij , Rj , αj .

Let us look in the next section for a more convenient choice of variables.

3 Anomalous conformal Ward identities in the generic case N ≥ D + 1

In appendix B we present a detailed counting of variables fixing with respect to their metri-

cal and conformal properties both the set of corners {xj} as well as our complete polygons

{xj , zj}. As found in (B.5), the number of variables needed for dressing the set of corners to

the full circular N -gon is both in the metric as well as the conformal case equal to N(D−1).

Therefore, we should parameterize our Poincaré invariant Wilson loop from the start by

the distances between the corner points and the N(D − 1) conformal dressing invariants.

Clearly, N of these invariants are the cusp angles αj . The other N(D−2) conformal invari-

ants are torsion angles βa,j , a = 1, . . . , D − 2, j = 1, . . . , N . They will be specified below.

For the moment we continue with

〈W〉 = W ({xj}, {zj}) = W({Dij}, {αj}, {βa,j}) (3.1)

and get from (2.10) and (2.15)

∑

i<j

(

xνi + xνj
)

Dij
∂

∂Dij
logW({Dij}, {αj}, {βa,j}) = − 2

N
∑

j=1

xνj Γj . (3.2)
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The general solution of this equation is5

〈W〉 = W = Ω
(

{c}, {α}, {β}
)

∏

i<j

D
mij

ij , (3.3)

where Ω is a function of the cusp and torsion angles as well as of the independent cross

ratios {c} formed out of the set {Dij}. The mij depend only on the cusp angles {α}6 and

have to obey mij = mji and
∑

j 6=i

mij = − 2Γi . (3.4)

We found a structure very similar to that for correlation functions of local operators

with conformal dimension Γj at points xj . There the remainder factor multiplying the

powers of the Dij depends only on the cross ratios. Here this factor depends in addition

on the cusp and torsion angles, but on nothing else.

We still have to explain the torsion angles. In the planar case D = 2 the metric struc-

ture is fixed by the corner distances Dij and the cusp angles. Going to higher dimensions,

the circular polygon can wind out of a given plane. Concerning the metrical issues one could

this describe by angles relative to planes. But under conformal transformations planes are

not mapped to planes in general. To choose from the beginning additional variables which

are conformally invariant, one has to rely on angles to circles and spheres.

Let us discuss the case D = 3 in detail and make some comments on D = 4 afterwards.

In figure 1 we present a generic piece of a circular polygon between five consecutive corners

and circumcircles for three triangles with corners, which are consecutive on the polygon.

Since circles are mapped to circles, all angles at the central corner of figure 1 are conformally

invariant. What are the correlations between these angles and which ones are sufficient to

describe the dressing of the corner set by the circular edges? In figure 2 we show the unit

tangent vectors of the three circumcircles and the two circular edges meeting at xj . The

circumcircles are fixed by the corners. To fix in addition the circular edge {xj , xj+1}, it
is sufficient to know the direction of its tangent relative that of the circumcircles. From

the metrical data of the set of corners one can reconstruct the angle to the straight line

between xj and xj+1 which fixes the radius of the circular edge. Together with the known

direction this fixes then also the position of its center zj .

Let us introduce a short hand notation for the circumcircles ccj = {xj−1, xj , xj+1},
cc+j = {xj , xj+1, xj+2}, cc−j = {xj−2, xj−1, xj}. Now we start at xj and fix the edge

{xj−1, xj} by the angles ∡({xj−1, xj}, ccj) and ∡({xj−1, xj}, cc−j ).
Then we fix the edge {xj , xj+1} by the angles

αj = ∡({xj , xj−1}, {xj , xj+1}) , (3.5)

βj = ∡({xj , xj+1}, ccj) . (3.6)

5We suppress here and below a factor µ
∑

Γj necessary to fit the correct engineering dimension (with µ

as RG scale).
6According to common belief the cusp anomalous dimension depends on the cusp angle only. In weak cou-

pling perturbation theory this is well established. Using AdS/CFT it has been proven at strong coupling for

the general planar case [25]. To my knowledge there is still lacking an explicit proof in the presence of torsion.
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Figure 1. In black is shown a generic piece of our contours (between corners

xj−2, xj−1, xj , xj+1, xj+2) . The circumcircle {xj−1, xj , xj+1} appears in red and the circumcir-

cles {xj−2, xj−1, xj} and {xj , xj+1, xj+2} in blue.

Figure 2. The unit sphere at a corner xj with five directions corresponding to the three circum-

circles and the two polygon edges as in the previous figure. Note that the numerics of both figures

is not tuned.
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In this manner we continue along the circular polygon, fixing all edges by the cusp angles

αj and the torsion angles βj , defined by (3.6) at each corner xj as the angle to the corre-

sponding red circumcircle ccj . Reaching corner xj−1 we have to remember that the edge

{xj−1, xj} has been fixed already at the beginning of our tour along the polygon. But from

figure 1 it is obvious that

∡({xj , xj−1}, ccj) = ∡({xj−1, xj}, cc+j−1) , (3.7)

∡({xj , xj−1}, cc−j ) = ∡({xj−1, xj}, ccj−1) = βj−1 . (3.8)

Since at the corner xj−1 the r.h.s. of (3.7) can be expressed in terms of αj−1 and βj−1,

we altogether have shown that our circular polygons, up to Poincaré transformations, are

fixed by the set of variables {Dij , αj , βj}, confirming (3.3).

Concerning the conformal analysis of contours, we have found in the mathematical

literature only papers on smooth contours, see [26] and references therein. In analogy to

the description of metrical invariants by the Frenet formulas, they introduce conformal

length, conformal curvature and conformal torsion, see appendix C. In their language an

edge of our polygons is a conformal vertex, the conformal length stays constant. It would

be interesting to fit our conformal description of piecewise smooth contours to that of

smooth contours by allowing distributional conformal curvature etc.

We close this section with a comment on D = 4. While, as just discussed, in D = 3

the direction of one of the black arrows in figure 2 is fixed by the angle to the other black

arrow (αj) and the angle to the red arrow (βj = β1,j), in D = 4 one needs in addition the

angle to one of the blue arrows (β2,j).

4 The exceptional cases N < D + 1

According to the tables in appendix B, the circular two-gon has three metrical invariants

in D = 2, and four in higher dimensions. We take D12, R1, R2 and the cusp angle α, under-

standing that in a plane α is fixed by the other three variables. The set of the two corners

defines no plane or circumcircle as used for higher N-gons to describe torsion. In all dimen-

sions our two-gons have one conformal invariant, it is of course the cusp angle α = α1 = α2.

Due to Poincaré invariance we can start from

〈W2〉 = W2(x1, x2, z1, z2) = W2(D12, R1, R2, α) (4.1)

and get with (2.15) and (A.13) as anomalous conformal Ward identity (note Γ1 = Γ2 = Γ)

(

∑

j=1,2

2zνjRj
∂

∂Rj
+ (xν1 + xν2)D12

∂

∂D12

)

log W2 = − 2(xν1 + xν2) Γ . (4.2)

The solution is logW2 = −2ΓlogD12 + log ω2 where log ω2 now obeys the homogeneous

variant of (4.2). Using translation invariance to put z2 = 0 one gets

(

2zν1R1
∂

∂R1
+ (xν1 + xν2)D12

∂

∂D12

)

log ω2(D12, R1, R2, α) = 0 . (4.3)

– 7 –



J
H
E
P
0
3
(
2
0
2
0
)
1
6
6

In a generic case in D > 2, rotation invariance can be used to get e.g. z11 = 0 and x11+x12 6= 0

or vice versa. This implies that ω2 does not depend on D12 and R1, and then for symmetry

reasons also not on R2.

In the case D = 2 the points z1, (x1 + x2)/2, z2 are located on a straight line, thus

obstructing the argument just given. But then, since α is fixed by D12, R1, R2, the function

ω2 can be treated from the beginning as ω2(D12, R1, α). Dimensional analysis then yields

D12∂D12
= −R1∂R1

, and in combination with (4.3) we get for ω2 again independence of

D12 and of the radii.

In conclusion we found for the circular two-gon in arbitrary dimensions

〈W2〉 = W2 = D−2Γ
12 ω2(α) . (4.4)

The circular triangle in D = 2 still belongs to the generic case of the previous section.

There are three conformal invariants, the cusp angles., hence we get

W3 = DΓ3−Γ1−Γ2

12 DΓ1−Γ2−Γ3

23 DΓ2−Γ1−Γ3

13 Ω3(α1, α2, α3) , for D = 2 . (4.5)

For a detailed discussion of the conformal triangle geometry in D = 3 we have added

appendix D. From there, as well from the tables in appendix B, we know 5 invariants,

i.e. 3 cusp and 3 torsion angles with one closing constraint (D.7). For fixing the Poincaré

invariant structure, we need 6 variables in addition to the distances of the corners. Then,

similar to the two-gon discussion above, we have to study a function of the distances and e.g.

R1, α1, α2, α3, β1, β2, which solves the homogeneous (unbroken) version of the Ward identity

(

2zν1R1∂R1
+
∑

i<j

(xνi + xνj )Dij∂Dij

)

log ω3({Dij}, R1, α1, α2, α3, β1, β2) = 0 . (4.6)

After a translation by −z1 the derivative w.r.t. R1 no longer contributes, and we have a

homogeneous system of three linear equations for the derivatives w.r.t. the distances. Its

coefficient determinant is equal to the scalar triple product (x1 + x2 − 2z1) ·
(

(x2 + x3 −
2z1)× (x1+x3− 2z1)

)

and generically different from zero. Hence the derivatives w.r.t. the

distances are all zero. Using this in the unshifted version of (4.6) one concludes, that also

the derivative of ω3 w.r.t. R1 is zero. As a consequence this yields the structure

W3 = DΓ3−Γ1−Γ2

12 DΓ1−Γ2−Γ3

23 DΓ2−Γ1−Γ3

13 ω3(α1, α2, α3, β1, β2) , for D = 3 . (4.7)

In a similar way, for a circular triangle in D = 4 we have to handle the gap between 6

conformal invariants and 8 metrical variables for dressing the set of corners. Then one can

argue that the derivatives of ω̂3({Dij}, R1, R2, α1, α2, α3, β1, β2, β3) w.r.t. the Dij , R1 and

R2 are zero if the vectors z2 − z1, x1 + x2 − 2z1, x2 + x3 − 2z1, x1 + x3 − 2z1 are linearly

independent, i.e. in the generic 4D case. Hence we get

W3 = DΓ3−Γ1−Γ2

12 DΓ1−Γ2−Γ3

23 DΓ2−Γ1−Γ3

13 ω̂3(α1, α2, α3, β1, β2, β3) , for D = 4 . (4.8)

In dimensions up to four, the circular tetragon in D = 4 is the last exceptional case.

According to the last table in appendix B one needs 12 metrical invariants for dressing, but

– 8 –



J
H
E
P
0
3
(
2
0
2
0
)
1
6
6

has only 11 conformal invariants. Similar to the triangle case in D = 3 there is obviously

a constraint among the angles

F (α1, . . . , α4, β1,1, . . . , β1,4, β2,1, . . . , β2,4) = 0 . (4.9)

One gets for D = 4

W4 =
∏

1≤i<j≤4

D
mij

ij ω4

(

{c}, {αj=1,...,4}, {β1,j=1,...,4}, {β2,j=1,...,3}
)

, (4.10)

with mij obeying (3.4) and {c} =
{D2

12
D2

34

D2

13
D2

24

,
D2

14
D2

23

D2

13
D2

24

}

.

5 Conclusions

Our main result are the anomalous conformal Ward identities for Wilson loops on polygons

with circular edges in the form of (3.2). Due to skilfully chosen parameterisation they look

exactly like the corresponding identities for usual local correlation functions of composite

operators with given conformal dimensions sitting just on the points xj , where the corners of

our Wilson loop contours are located. Then the solutions to these identities have the same

structure. They are given in both cases by a conformally covariant factor composed out of

powers of distances |xi − xj | times a conformally invariant remainder factor, depending in

the case of local correlation functions on the cross ratios formed out of the xj , but depending

in the case of the Wilson loops on the same cross ratios and cusp and torsion angles.

While the general strategy for the derivation of the identities followed standard reason-

ing and [24], on the technical level we had to make some effort to find the most convenient

set of variables to parameterise our polygons. Besides the obvious distances between the

corner points and the cusp angles we found a way to describe the contours torsion freedom.

We did it via angles between the edges and circumcircles fixed by the corresponding corner

points and their neighbours. We also discussed subtleties concerning the number of all

these variables in dependence on the dimension D and the number of corners N .

Our detailed discussion concerned only Wilson loops where nonzero conformal dimen-

sions are generated by the UV renormalisation enforced by the presence of cusps. However,

it is straightforward to apply our formulas also to the case where at the locations of the

cusps additional local operators are inserted. Then the Γj in (3.2) no longer stand for the

cusp anomalous dimension Γ(αj), but for the complete (engineering + quantum correc-

tion) conformal dimension Γj(αj) of the operator number j, dressed by the presence of the

Wilson loop.

For further work it would be interesting to identify dependence of the remainder factor

on torsion angles by explicit calculations. Another interesting issue is the generalisation

of our discussion to Maldacena-Wilson loops which, in addition, at the corners have a

discontinuity in their coupling to the scalars. Then one has to parameterise some kind of

torsion in S5 and to fully exploit superconformal invariance analysis.
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A Conformal maps of circular arcs

Here we discuss the mapping of a circular arc with radius R between two points x1 and x2
under a special conformal transformation

x 7→ y =
x+ c x2

1 + 2cx+ c2x2
. (A.1)

To fix the location of the arc, one still has to specify the plane in which the circle is

embedded. The plane is fixed by x1, x2 and the center of the circle z. This center is

constrained by

(x1 − z)2 = R2 = (x2 − z)2 , (A.2)

and there is of course another constraint on R

(2R)2 > (x1 − x2)
2 . (A.3)

The images of the endpoints of the circular arc are given by applying the map (A.1) to x1
and x2, respectively. However, the center of the full circle, of which the image of our arc

is a certain part, is not given by the image of z under (A.1). Instead we have to construct

the image circle out of the intersection of the image of the sphere

(x− z)2 = R2 (A.4)

and the image of the plane

xn = zn , with n = (x1 − z)× (x2 − z) . (A.5)

The image of the sphere (A.4) is another sphere given by

(y − yA)
2 = R2

A , (A.6)

yA =
z + c(z2 −R2)

1 + 2cz + c2(z2 −R2)
,

R2
A =

R2

(1 + 2cz + c2(z2 −R2))2
.

The image of the plane (A.5) is a sphere

(y − yB)
2 = R2

B , (A.7)

yB =
1

2

n+ 2c(nz)

nc+ c2(nz)
,

R2
B =

n2

4(nc+ c2(nz))2
.

– 10 –
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Then the radius R̂ of the image circle is given as a solution of

√

R2
A − R̂2 +

√

R2
B − R̂2 = |yA − yB| (A.8)

and its center ẑ by

ẑ = yA +

√

R2
A − R̂2

|yA − yB|
(yB − yA) . (A.9)

Inserting the information contained in (A.6) and (A.7) we get

ẑ =
2R2(nc+ c2(nz))(n+ 2c(nz)) + n2(1 + 2cz + c2(z2 −R2))(z + c(z2 −R2))

4R2(nc+ c2(nz))2 + n2(1 + 2cz + c2(z2 −R2))2
(A.10)

and

R̂2 =
R2n2

4R2(nc+ c2(nz))2 + n2(1 + 2cz + c2(z2 −R2))2
. (A.11)

Note that in the special case nc = nz = 0 the plane (A.5) is mapped to itself, resulting in

ẑ = yA, R̂ = RA.
7

For the application to conformal Ward identities we need (A.10) and (A.11) for in-

finitesimal c only

ẑ = z + cz2 − 2(cz)z +
2R2(cn)n

n2
−R2c + O(c2) , (A.12)

R̂ = R(1− 2cz) + O(c2) . (A.13)

B Counting of metrical and conformal parameters

Let us start with the well-known counting of metrical invariants for the set {xj}, j =

1, . . . , N inD dimensions. The number of generators of the Poincaré group is D(D+1)
2 , hence

one gets for large enough N the number of metrical invariants as ND− D(D+1)
2 . However,

there is a little subtlety. A generic set of N points spans a (N − 1)-dimensional space.

Then the last expression yields N(N−1)
2 . Putting N points in a space of larger dimension,

the number of metrical invariants remains unchanged. Therefore, one gets altogether

M
{x}
met =

N(N − 1)

2
Θ(D + 1−N) +

(

ND − D(D + 1)

2

)

Θ(N −D − 1) . (B.1)

To avoid double counting in the case where the arguments of the UnitStep functions are

zero, N should be always understood as limδ→0(N + δ).

For our polygon with circular edges the corresponding number is

M
{x,z}
met = 2N(N −1) Θ(D+1−2N) +

(

2ND−N −D(D + 1)

2

)

Θ(2N −D−1) . (B.2)

The term −N in the big bracket is due to the N radius constraints (2.1).

7There is another special case if the image of the sphere (A.4) is a plane. Then one has ẑ = yB , R̂ = RB .
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The analogous numbers for counting the conformal invariants are

M
{x}
conf =

N(N − 3)

2
Θ(D + 1−N) +

(

ND − (D + 1)(D + 2)

2

)

Θ(N −D − 1) , (B.3)

M
{x,z}
conf = 2N(N − 2)Θ(D + 1− 2N)

+

(

2ND −N − (D + 1)(D + 2)

2

)

Θ(2N −D − 1). (B.4)

Note also, that the prefactors of the two UnitSteps agree for N = D and N = D + 1

in (B.1), for 2N = D,D+1 in (B.2) as well as for N = D+1 and N = D+2 in (B.3) and

2N = D + 1, D + 2 in (B.4).

For large enough N , both in the metrical as well as in the conformal case, the difference

in the number of invariants between the circular polygon and the set of corners {xj} is

equal to

∆M = N(D − 1) . (B.5)

For small N there are deviations from this rule due to the presence of various UnitStep

terms. For some illustration see the following tables. From these tables we see, that

deviations from the rule (B.5) hold at N < D + 1 in the conformal case and at N < D in

the metrical case.

D = 2

N 2 3 4 5 6 . . .

M
{x}
met 1 3 5 7 9 . . .

M
{x,z}
met 3 6 9 12 15 . . .

M
{x}
conf 0 0 2 4 6 . . .

M
{x,z}
conf 1 3 6 9 12 . . .

D = 3

N 2 3 4 5 6 . . .

M
{x}
met 1 3 6 9 12 . . .

M
{x,z}
met 4 9 14 19 24 . . .

M
{x}
conf 0 0 2 5 8 . . .

M
{x,z}
conf 1 5 10 15 20 . . .

D = 4

N 2 3 4 5 6 . . .

M
{x}
met 1 3 6 10 14 . . .

M
{x,z}
met 4 11 18 25 32 . . .

M
{x}
conf 0 0 2 5 9 . . .

M
{x,z}
conf 1 6 13 20 27 . . .

Finally two remarks are in order. For N = 2 formula (B.3) yields a negative value, of course

this has to be replaced by zero. Furthermore formula (B.4) gives zero. Obviously this is
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wrong, since the cusp angle of a circular two-gon is conformally invariant. The failure of

our formula in this special case is due to the fact that there exist nontrivial conformal

transformations which map the circular two-gon to itself.

C Conformal invariants of smooth contours

In the mathematical literature there are various papers on the conformal invariants of

smooth contours, see [26] and references therein. In analogy to the metric invariants length

s, curvature κ and torsion τ they find8 conformal length ω

dω =
√
νds, ν =

√

(κ′)2 + κ2τ2 , (C.1)

conformal curvature Q

Q =
4(ν ′′ − κ2ν)ν − 5(ν ′)2

8ν3
, (C.2)

and conformal torsion T

T =
2(κ′)2τ + κ2τ3 + κκ′τ ′ − κκ′′τ

ν
5

2

. (C.3)

In this framework points where ν = 0 are called vertices, hence our edges are conformal

vertices. Conformal curvature and torsion is localised at the corners of our polygons, where

smoothness is violated.

D Conformal geometry of triangles with circular edges

Here we want to discuss the conformal geometry of a triangle with circular edges in 3 di-

mensions.9 As stated in the main text and in the appendix B, it has 5 conformal invariants.

Obviously, there has to be a constraint among the three cusp angles and the three torsion

angles. The reason for this constraint can be seen by comparing figure 1 and figure 3. In

the case of a triangle there is only one circumcircle at our disposal.

The angles αj are the angles between the black circular arcs at the corners xj . Following

the convention stated in the footnote 9, we denote by βj the angle between the circular arc

opposite to the corner xj and the red circum circle.

Let us still discuss an alternative identification of the independent conformal invariants.

We map a generic circular triangle to one in a conformal frame. Such a frame can be defined

by the conditions

y1 = 0 , y2 = (1, 0, 0) , y3 = ∞ (D.1)

for the corners of the image and the requirement that the center ẑ3 of the circular arc

between y1 and y2 is located in the (1,2)-plane, see figure 4.

Under such a map the circular arcs connecting x1 and x2 with x3 are mapped to the

straight lines passing y1 and y2, respectively. Let the directions of these two straight lines

8We present it for contours in R
3. In higher dimensions there are more torsion invariants.

9In contrast to generic N -gons, following tradition in trigonometry, in this appendix we number the

edges according to their opposite corner.
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x_1

x_2

x_3

z_2

z_1

z_3

Figure 3. A triangle with corners x1, x2, x3 and edges out of circular arcs is shown in black. The

corresponding circum circle is depicted in red. The blue lines are the radii connecting the corners

with the centers related to the circular arcs.

be parameterised by ej = (sinϑjcosϕj , sinϑjsinϕj , cosϑj) , j = 1, 2. Then the image of a

generic circular triangle in the conformal frame is fixed by the five parameters

ϑ1, ϑ2, ϕ1, ϕ2 and R̂3 .

Instead of R̂3 we can use the angle β3 between the circular arc and the straight line

connecting y1 and y2. Their relation is

R̂3 =
1

2 sinβ3
. (D.2)

The three angles αj can be expressed via

cosα1 = sinϑ1 cos(β3 + ϕ1) ,

cosα2 = −sinϑ2 cos(β3 − ϕ2) ,

cosα3 = cosϑ1 cosϑ2 + sinϑ1 sinϑ2 cos(ϕ1 − ϕ2) . (D.3)

Our next task is to express the βj in terms of geometrical data of the original triangle with

circular edges. Let us start with β3.

Since the straight line connecting y1 and y2 extends up to y3 = ∞ it is the image of

the circumcircle of the original triangle with corners x1, x2, x3. Angles of crossing lines are

preserved. Therefore β3 is the angle both at x1 and x2 between the circumcircle and the

circular edge connecting these two corners.
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0

1

-0.5

0.0

0.5

0.0

0.5

1.0

y_1

y_2

w_3

Figure 4. The image of a triangle in the conformal frame is shown in black. y1, y2 are the images

of the corners x1, x2. The image of x3 is at infinity. The images of the edges number 1 and 2 are

straight lines. w3 = ẑ3 denotes the center of the circle related to the edge number 3. The red line is

the image of the circumcircle. The βj ’s are the angles between the red line and the black contour: β1

and β3 at y2 and β3 and β2 at y1. α1 and α2 are the angles between the pieces of the black contour

at y1 and y2, respectively. ϑj , ϕj specify the direction of the straight line starting at yj , (j=1,2).

Beyond this characterisation, we still want to have an expression for β3 in terms of

distances between the corners xj and/or the centers of the circular arcs zj .
10 The unit

tangential vector at x1 to the circular edge pointing along the circle in the direction of x2 is

tedge =
x2 − z3 − (x1 − z3)cosδ

R3|sinδ|
(D.4)

with cosδ = 1− D2

12

2R2

3

.

The unit tangent vector at x1 to the circumcircle pointing along this circle in the

direction of x2 is

tcc =
(x2 − x1)D

2
13 − (x3 − x1)D

2
12

D12D23D13
. (D.5)

Then we get for cosβ3 = tedgetcc after some algebra

cosβ3 =
R3

D13D23

√

4R2
3 −D2

12

(

D2
13 +D2

23 −
D2

12(R
2
3 + (x3 − z3)

2)

2R2
3

)

. (D.6)

The other two angles β1 and β2 are obtained by corresponding cyclic permutations of the

indices.
10As in the main text using the notation Dij = |xi−xj |, but with footnote 9 R3 = |x1−z3| = |x2−z3| etc.
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There is a closure condition for the six conformal invariant angles αj , βj , j = 1, 2, 3

f(α1, . . . , β3) = 0 . (D.7)

It reduces the number of independent conformal invariants to five, according to the count-

ing based on the representation in the conformal frame above. We did not find a short

symmetric expression for the function f in (D.7). However its solution, expressing e.g. α3

in terms of the five other angles, can be found by first expressing in the above conformal

frame (ϑ1, ϕ1) by (α1, β2, β3) as well as (ϑ2, ϕ2) by (α2, β1, β3) and putting this into (D.3).

Finally we express the cusp angles in terms of distances

cosα3 =
2R1R2

D13D23

√

(4R2
1 −D2

23)(4R
2
2 −D2

13)
(D.8)

·
(

(x1 − z1)
2D2

23

2R2
1

+
(x2 − z2)

2D2
13

2R2
2

− (z1 − z2)
2D2

13D
2
23

4R2
1R

2
2

+
D2

13 +D2
23 − 2D2

12

2
− D2

13D
2
23

4R2
1R

2
2

(R2
1 +R2

2)

)

,

and corresponding cyclic permutations.
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