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The spinor-helicity formalism has proven to be very efficient in the calculation of scattering amplitudes
in quantum field theory, while the loop-tree duality (LTD) representation of multiloop integrals exhibits
appealing and interesting advantages with respect to other approaches. In view of the most recent
developments in LTD, we exploit the synergies with the spinor-helicity formalism to analyze illustrative
one- and two-loop scattering processes. We focus our discussion on the local UV renormalization of IR and
UV finite helicity amplitudes and present a fully automated numerical implementation that provides
efficient expressions, which are integrable directly in four space-time dimensions.
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I. INTRODUCTION

In order to unveil the fundamental components of matter
and their interactions, it is necessary to analyze highly-
precise experimental data obtained from colliders using
accurate theoretical predictions. However, the established
theoretical frameworks, i.e., the Standard Model, involves
very complicated mathematical equations, whose exact
solutions are unknown in many physically relevant proc-
esses. Thus, most of the computations performed nowadays
rely on the perturbative approach, which naturally leads to
Feynman loop amplitudes and loop integrals.
With the purpose of achieving a higher accuracy in the

theoretical predictions, it is mandatory to explore higher
perturbative orders and compute multiloop amplitudes with
high multiplicity. To tackle these calculations, several
methods have been developed in the last years. On the
one hand, there has been enormous progress in the
algebraic handling of scattering amplitudes in gauge
theories by using alternative kinematic variables as the
ones provided by the spinor-helicity formalism [1]. Also,
there was an important improvement due to the study of the
mathematical properties of the scattering amplitudes, for
instance, in the color sector [2–4] and the development

of new regularization strategies [5,6]. These techniques
lead to a much more efficient treatment of the scattering
amplitudes, exploiting several symmetries to simplify the
underlying expressions.
On the other hand, there were also great advances in the

calculation of multiloop Feynman integrals, both analyti-
cally and numerically [7]. In particular, pointing towards a
more efficient numerical implementation, we have been
developing a novel strategy based on the loop-tree duality
(LTD) theorem [9–18]. This theorem allows to decompose
any loop amplitude (or loop integral) as the sum of tree-
level-like objects integrated over a proper phase-space
region. From the physical point of view, loop particles
are converted into real-radiation ones. From the mathemati-
cal side, the integration domain is transformed from a
Minkowski to an Euclidean space. In fact, the numerical
evaluation of multiloop integrals through LTD is, with
respect to the approaches that pass by Feynman para-
metrization or Mellin-Barnes transformations, more
efficient as the number of integrations to be performed
does not scale with the number of external particles. Very
recently, a novel LTD-inspired representation of multi-
loop multileg scattering amplitudes was presented in
Refs. [14–17,19,20]. This strategy, based on the nested
residue strategy, leads to very compact integrand-level
representations, which are free of unphysical or noncausal
singularities. Likewise, alternative studies of LTD have
been presented in Refs. [21–26].
In this paper, we apply the LTD formalism to the

calculation of multiloop helicity amplitudes. We exploit
the fact that LTD works at the level of denominators, and
the structure of the numerator does not generate any
additional difficulties. To this end, we start considering
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illustrative examples in which the simplicity of the latter is
displayed. We make use of the spinor-helicity formalism,
where we write definite helicity states for the external
particles. On top of it, we also use the momentum twistors’
variables [27] to implement simplifications in the integrand
of the helicity amplitudes. These variables, due to their
mathematical properties, allow us to express any kinematic
process in terms of the minimal set of variables. In other
words, for a process with N external massless particles we
have 3N − 10 invariants to deal with [28,29]. Likewise, the
extension to massive particles is straightforward.
Besides the clearness LTD offers us to compute any

multiloop amplitude, in this paper, we also insist on the
local UV renormalization. Hence, for the sake of simplicity,
we consider scattering amplitudes that are IR and UV safe
but might still exhibit a local singular UV behavior. For
the latter, it is known that UV finite integrals might
be locally divergent in the high-energy region [30].
Therefore, a careful treatment in the UV has to be
performed. For instance, at one-loop level, we refer the
reader to Refs. [31–35] (and references therein) and to
Ref. [36] beyond one loop. We remark that the idea of
performing a local UV renormalization is to obtain well-
defined integrands in four space-time dimensions that allow
a straightforward numerical evaluation.
The paper is organized as follows. In Sec. II, we recall the

basis of the LTD formalism, with special emphasis on the
formulae applied in this work. We briefly present its
extension to the multiloop case. In Sec. III, we provide a
description of the generation of kinematical variables by
using the spinor-helicity formalism. In Sec. III A, we focus
on the parametrization of the loop three-momenta to
integrate the dual contributions when external momenta
are complex. The introduction of local UV renormalization
counterterms is reviewed in Sec. IV. The main part of this
manuscript is presented in Sec. V, where we show numerical
results for explicit examples at one-loop level. Special
emphasis is put on the local cancellation of UV singularities,
to render the expressions integrable in four space-time
dimensions. Then, we present a careful study of the local
UV counterterms for H → gg at two loops in Sec. VI. For
this purpose, we make use of the computational tools
developed throughout this paper. This allows us to support
the feasibility of the LTD-based numerical strategy with
realistic scattering processes, as well as its efficiency.
Conclusions and future research directions are analyzed in
Sec. VII.

II. LOOP-TREE DUALITY IN A NUTSHELL

The LTD theorem [9–17] rewrites any loop integral in
terms of tree-level-like expressions that correspond to
cutting, i.e., setting on shell, a number of internal particles
equal to the number of loops. It relies on a suitable
application of the Cauchy’s residue theorem to reduce
one degree of freedom for each loop. We usually apply it on

the energy component of the loop momenta, which trans-
lates into reducing the original Minkowski integration
domain into the Euclidean space of the loop three-
momenta, although it could be used to remove any other
component of the loop momenta.
In order to explain the formalism, let us consider a

generic L-loop N-particle scattering amplitude, where the
external momenta are labeled as pi with i ∈ f1;…; Ng.
We have L independent primitive integration variables,
fljgj¼1;…;L, and the momenta associated to the different
internal lines can be written as qis ¼ ls þ kis , where ls is a
linear combination of the primitive loop momenta, and kis
is a linear combination of external momenta. All the
propagators depending on the same linear combination
of primitive loop momenta ls are enclosed together inside
the set s. With this notation, a generic amplitude is given by

AðLÞ
N ð1;…; nÞ ¼

Z
l1;…;lL

X
N × GFð1;…; nÞ; ð1Þ

where N represents an arbitrary numerator, and

GFð1;…; nÞ ¼
Y

j∈1∪…∪n
ðGFðqjÞÞαj ð2Þ

is a product of Feynman propagators spanned over all the
possible momenta sets. Each scalar Feynman propagator
can be written as

GFðqiÞ ¼
1

q2i −m2
i þ {0

¼ 1

q2i;0 − ðqðþÞ
i;0 Þ2

; ð3Þ

where qðþÞ
i;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2i þm2

i − {0
p

corresponds to the positive
on-shell energy of the associated internal particle. In
Eq. (2), we also take into account the possibility of arbitrary
powers of the propagators, through the parameters fαjg.
Regarding the integration measure, we have

Z
l
≡ − {μ4−d

Z
ddl
ð2πÞd ; ð4Þ

with μ an arbitrary energy scale to restore the proper units
after the extension to a d-dimensional space-time.
The LTD representation is obtained by defining the nested

residues and closing the integration contour in the lower part

of the complex plane. Explicitly, if AðLÞ
F represents the

integrand of Eq. (1) in the Feynman representation, then the
first iteration of Cauchy’s theorem leads to

AðLÞ
D ð1; 2;…; nÞ ¼

X
i1∈1

ResðAðLÞ
F ; Imðη · qi1Þ < 0Þ; ð5Þ

wherewe sum over all the possible configurations containing
one on-shell propagator of the first set 1, whilst propagators
in the remaining sets are left off shell. In this expression, η is
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a futurelike vector that determines which degree of freedom
of the loop momenta is integrated out. For the sake of
simplicity, we choose ημ ¼ ð1; 0⃗Þ, which corresponds to
apply the nested residues on the energy component of the
propagator’s momenta qi;0. After the rth iteration, we end up
with

AðLÞ
D ð1;…; r; rþ 1;…; nÞ
¼

X
ir∈r

ResðAðLÞ
D ð1;…; r − 1; r;…; nÞ; Imðη · qirÞ < 0Þ;

ð6Þ

where all the propagators in the sets to the right of the
semicolon on the lhs of Eq. (6) are left off shell, and we set
exactly one propagator on shell in each one of the first r sets.
Once we apply the Cauchy’s theorem in the energy
component of the primitive momenta, the integration mea-
sure turns into

Z
l
→

Z
l⃗
≡ − μd−4

Z
dd−1l
ð2πÞd−1 ; ð7Þ

i.e., transforming the d-dimensional Minkowski space into a
(d − 1)-dimensional Euclidean one. The dual LTD repre-
sentation is obtained after the Lth iteration of the residue
computation, i.e.,

AðLÞ
N ð1;…; nÞ ¼

Z
l⃗1…l⃗L

X
σ

AðLÞ
D ðσ1;…; σL; σLþ1;…; σnÞ;

ð8Þ

where we sum over all the possible combinations of
simultaneous L cuts in different momenta sets. This is
equivalent to perform as many cuts as loops, in order to open
the loop amplitude into a set of nondisjoint trees [9].
At one loop, the aforementioned formulae reduce to the

usual LTD representation given in Refs. [9,10]. It can be
easily obtained by summing over all the possible single cuts
and replacing the Feynman propagators by the so-called
dual propagators, namely

GDðqi; qjÞ ¼
1

q2j −m2
j − {0η · kji

; ð9Þ

where qj is the momenta flowing through the line, qi
corresponds to the one that is set on shell, and
kji ¼ qj − qi. As in Eq. (5), η is a generic futurelike vector,

which is usually chosen as ημ ¼ ð1; 0⃗Þ. It is important to
notice that the dual prescription accounts for the informa-
tion contained in the multiple cuts defined within the
Feynman tree theorem [37]. Also, that within the repre-
sentation introduced in Refs. [14–17], there is no need to
explicitly deal with the complex prescription of the dual

propagators since this operation is encoded within the
definition of the nested residues.
In this paper, we present practical applications up to the

two-loop level, although the underlying algorithms can be
extended to any loop order. In the particular two-loop case,
we have lj ¼ fl1;l2g, and there are three sets of propa-
gators, s ∈ f1; 2; 12g, with qi12 ¼ l1 þ l2 þ ki12 , as shown
in Fig. 1. More details about the underlying subtleties of the
two-loop case are available in Refs. [10,36].

A. Multiple poles and IBPs

Multiloop integrals and local UV counterterms can
contribute with multiple powers of the propagators.
Using integration-by-parts identities (IBPs) [38–40], they
can be reduced to linear combinations of other integrals
containing only single powers of the propagators, as done
in [11]. However, this modifies the local behavior of the
integrands and might spoil the point-by-point cancellation
of IR singularities present in the real-emission contribution.
Thus, we will stick to the local approach and avoid
using IBPs.
The master formula given in Eq. (8) handles also

amplitudes with multiple powers of the propagators since
its definition relies directly on the nested application of the
Cauchy’s theorem. A careful discussion about the compu-
tation of the residue is presented in Refs. [9,11]. It is
important to take care of the dual prescription for the
contributions associated to the original amplitude since it
may contain thresholds in the low energy region. In that

FIG. 1. Diagrammatic representation of a generic two-loop
diagram with N external particles.
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case, the propagators associated to off-shell propagators
must be promoted to dual propagators. In contrast, when
applying the LTD formalism to the UV counterterms,
we can neglect the complex prescriptions and straightfor-
wardly use the Cauchy’s formula for computing the
residue.
It is worth noticing that compact formulae to obtain the

LTD representation with higher powers are presented in
Ref. [15]. These expressions are obtained considering the

derivatives, with respect to ðqðþÞ
i;0 Þ2, and taking advantage of

Eq. (3) to express propagators in terms of on-shell energies.

III. GENERATION OF THE KINEMATICS

In order to provide helicity amplitudes, we take advan-
tage of the momentum twistor parametrization proposed in
Ref. [27], where the standard spinor products, h••i; ½••�, are
replaced by a minimal set of independent variables zi. The
number of variables in the latter depends on the kinematic
process. In particular, any n-point massless amplitude can
be expressed in terms of 3n − 10 independent variables.
Hence, the extension to amplitudes with massive particles
is straightforward. In Appendix A, we briefly recall the
main features of these variables.
Within the LTD approach, the evaluation of integrals is

performed in the momentum space instead of using
Feynman parameters or, equivalently, Mellin transforma-
tions. Then, the most suitable way of computing helicity
amplitudes is through the form factors’ decomposition,
which has been applied within the LTD framework in
Refs. [30,36]. Very recently, some alternative methods to
bypass this decomposition were proposed [41,42]. Since
the representation of the polarization vectors may be an
obstacle depending on the regularization scheme being
applied, we use the one in which external wave functions
are kept in four dimensions, i.e., ’t Hooft-Veltman (HV)
[43] and four-dimensional helicity (FDH) [44,45].
The use of HV and FDH allows us to project objects in

d dimensions into a four-dimensional space by making use
of the following properties [49]:

qi;½d� · pj;½4� ¼ qi;½4� · pj;½4�; ð10aÞ
qi;½d� · εj;½4� ¼ qi;½4� · εj;½4�; ð10bÞ

where we contracted the loop momentum with external
momenta or polarization vectors. Therefore, we only need
to keep track of squared loop momenta, qi;½d� · qj;½d�. It turns
out that due to the cuts performed within the LTD
formalism, we can easily remove this dependence and
work with objects in four dimensions. Let us also remark
that, within this approach, we do not need to include extra-
dimensional products, i.e., qi;½d−4� · qj;½d−4�.
Then, working in four space-time dimensions, we

can parametrize the loop momenta in terms of a four-
dimensional basis, i.e., E ¼ feig. Therefore, to reduce as

much as possible the number of scalar products to be
evaluated, we choose E ¼ fp1; p2; ε12; ε21g. With this
choice, the loop momenta is expressed as

qαi ¼ xi;1pα
1 þ xi;2pα

2 þ xi;3εα12 þ xi;4εα21; ð11Þ

where p1 and p2 are the massless momenta built from the
parametrization obtained from the momentum twistors of
an n-point kinematics and εαij ¼ 1

2
hijγαjj�. We remark that

for the elements of the basis, we explicitly work with the
components of the four-vectors. Hence, with this decom-
position, all the scalar products involving external momenta
or polarization vectors contracted with the loop momenta
can always be expressed in terms of scalar products among
the elements of the basis and the loop momenta, i.e., qi · ej.
The aim of this refinement is twofold, firstly, to reduce the
number of scalar products required for the computation,
and in the second place, to cancel redundant expressions
that appear at integrand level. This prevents some noncon-
tributing terms that pop up in intermediate steps of the
computation before performing an explicit evaluation.

A. Parametrization of the loop momentum

As discussed in Sec. II, once LTD is applied to any loop
integral or virtual amplitude, the integration over the loop
energy component is removed, and the remaining one is
performed over an Euclidean space. Thus, the loop three-
momentum needs to be properly parametrized to improve
the computational efficiency. We remark that we are
considering a complex-valued parametrization of the exter-
nal momenta. Explicitly, the second component of the
three-momentum is purely imaginary; this is due to the
method applied to build their representation starting from
scalar invariants [50]. It is worth noticing, however, that the
scalar products among themselves do not contain any
complex phase (i.e., they are purely real), as expected in
any physical kinematic configuration. Hence, to overcome
any possible issue when using a real parametrization of the
loop three-momentum, we express it in cylindrical coor-
dinates,

li ¼ ðξi cosϕi; ρi; ξi sinϕiÞ; ð12Þ

for the ith loop three-momentum. Then, the resulting
integral is given by

Ii ¼
Z

∞

0

ξidξi

Z
2π

0

dϕi

Z
∞

−∞
dρiI iðξi;ϕi; ρiÞ; ð13Þ

where I i is the integrand after plugging the explicit
parametrization of the loop three-momentum (12). We
note that carefully integrating I i over ρi brings large
cancellations, in particular, when considering kinematical
configurations below threshold. This is because the imagi-
nary part introduced by the prescriptions must cancel in
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these configurations, and the ρi variable captures all the
imaginary contributions due to the explicit functional form
of the parametrization of the external momenta. Of course,
we are excluding from this claim the presence of imaginary
terms introduced by the numerators (for instance, origi-
nated by the polarization vectors). Hence, to account for the
simplifications that occur in the ρi integration, we rewrite
Eq. (13) as

Ii ¼
Z

∞

0

ξidξi

Z
2π

0

dϕi

Z
∞

0

dρi

× ½I iðξi;ϕi; ρiÞ þ I iðξi;ϕi;−ρiÞ�; ð14Þ

which turns out to be equivalent to consider the real-part of
the integrand in the previously mentioned conditions.
Furthermore, we notice that the ðξi; ρiÞ − plane can be

compactified by changing variables and using polar coor-
dinates. Explicitly, we define

ðξi; ρiÞ →
xi

1 − xi
ðcos θi; sin θiÞ; ð15Þ

with 0 ≤ xi < 1 and 0 ≤ θi < π=2. In the last part, we
restricted the angular integration to the first quadrant
because both ξi and ρi are positive.

IV. LOCAL UV RENORMALIZATION

Since we are aiming for a complete numerical imple-
mentation, it is necessary to build integrand-level counter-
terms, in order to cancel the local singular behavior at very
high energies of the amplitudes under consideration. In the
following, we recall how to generate these counterterms
very easily from the original amplitudes [30,36].
For a given loop momentum lj, we consider the

integrand-level replacement

Sj;UV∶fl2
j jlj · kig → fλ2q2j;UV þ ð1 − λ2Þμ2UVjλqj;UV · kig;

ð16Þ

where μUV is an arbitrary scale that can be identified with
the renormalization scale and qj;UV ¼ lj þ kj;UV. The
vector kj;UV is arbitrary, and we can set kj;UV ≡ 0 without
any loss of generality.
By applying Sj;UV to an unintegrated and uncut one-loop

amplitude Að1Þ
N with loop momentum lj, and then expand-

ing in λ around infinity up to logarithmic degree (this
operation will be represented by the operator Lλ in the
following), we directly obtain an integrand-level expression

that cancels the local UV singularities exhibited by Að1Þ
N .

This procedure is equivalent to expanding around the UV
propagator [31,32,34,35], i.e.,

GFðqj;UVÞ ¼
1

q2j;UV − μ2UV þ i0
; ð17Þ

and then keeping only the most divergent terms: the
resulting object mimics locally the UV behavior of the
original expression. It is important to note, though, that this
counterterm may generate a finite part after integration,
which must be fixed through a scheme fixing parameter
dj;UV. Therefore, the counterterm reads,

Að1Þ
j;UV ¼ LλðAð1Þ

N jSj;UV
Þ − dj;UVμ2UV

Z
lj

ðGFðqj;UVÞÞ3; ð18Þ

where the integral multiplying dj;UV integrates to the same
finite quantity in both four and d space-time dimensions.
By construction, the first term in the rhs of Eq. (18) exactly
contains the UV divergent part of the original amplitude,
extracted through the operator Lλ at integrand level. Thus,

the quantityAð1Þ
j;UV locally cancels the UV behavior ofAð1Þ,

while giving the required finite part (which is 0, for
instance, in the MS scheme).

For a two-loop amplitudeAð2Þ
N , the general local renorm-

alization procedure has been extended in Ref. [36]. In
the two-loop case, it is necessary to consider three
UV divergent configurations involving the two internal
momenta, l1 and l2. For instance, we can consider the
regimes

� jl1j → ∞
jl2jfixed

;

� jl1jfixed
jl2j → ∞

;

� jl1j → ∞
jl2j → ∞

: ð19Þ

The counterterms relative to the singular behavior of the
first two regimes can be generated using the replacement in
Eq. (16). These contributions are known as the single UV
counterterms because only one integration loop momenta
goes to infinity, whilst the other remains subdominant. To
obtain the local counterterm needed to cancel the third one,
we need the additional replacement,

SUV2∶

l2
j → λ2q2j;UV þ ð1 − λ2Þμ2UV;

lj · lk → λ2qj;UV · qk;UV þ ð1 − λ2Þμ2UV=2;
lj · ki → λqj;UV · ki; ð20Þ

to build the counterterm

Að2Þ
UV2 ¼ Lλ

��
Að2Þ

N −
X

j¼1;2
Að2Þ

j;UV

�����
SUV2

�

− dUV2μ4UV

Z
l1l2

ðGFðq1;UVÞÞ3ðGFðq2;UVÞÞ3; ð21Þ

where once again, the term proportional to the scheme-
fixing coefficient dUV2 integrates to a finite quantity.
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This last terms accounts for the so-called double UV
divergence, i.e., when both integration loop momenta go
to infinity.
The one- and two-loop versions of this algorithm were

explicitly implemented in a MATHEMATICA code [36]. It is
fully process independent and can be directly applied to
any scattering amplitude, producing the appropriate local
counterterm to regularize the divergent behavior in the
high-energy region.

V. APPLICATIONS AT ONE LOOP

In this section, we give explicit examples in which the
techniques described in Secs. III and IV are applied. We
explore the computational advantages of the LTD-based
representation combined with the spinor-helicity formal-
ism, which constitutes the central part of this paper. We
focus on processes that contain two to four kinematic
invariants, and we consider the nonvanishing helicity
configurations. We summarize the description of our
examples in Table I. In the following, the kinematic
invariants are implicitly given in GeV2.
Since we are aiming at a calculation performed purely in

four space-time dimensions, we restrict the analysis pre-
sented in this paper to helicity amplitudes that are simulta-
neously IR and UV finite. Although the processes under
consideration exhibit these features, they might still posses
a local UV-divergent behavior that prevents to perform the
calculation directly in four space-time dimensions, without
introducing any additional regularization. This is because,
in the most general case, the associated integrands turn
out to be nonintegrable functions in the high-energy limit
(or UV limit).
Eventually, in the context of dimensional regularization,

setting d ¼ 4 from the beginning of the calculation can
generate wrong results. This situation was exhaustively
discussed in Ref. [30] for the computation of the decay
width of H → γγ at leading order. Therefore, we need to
build local UV counterterms that take care of the singu-
larities that appear at integrand level in the UV limit.
In other words, we need to locally renormalize our
amplitude, as explained in Sec. IV, to render the expres-
sions integrable in four space-time dimensions.
The calculation of the amplitude H → γγ performed in

Ref. [30], through the form factor decomposition, exploited

several analytical properties in order to simplify the results.
In particular, due to gauge invariance, it was possible to
remove vanishing terms at integrand level. In contrast, in
the present calculation, we directly generate the proper UV
counterterm to render the amplitude integrable in four
space-time dimensions, without taking into account any
kind of analytical property to achieve further simplifica-
tions. The numerical integration performed by LTD was
compared with the analytic expression of the amplitude.
For the latter, we rely on two MATHEMATICA packages, the
integral reduction provided by FEYNCALC [51–53] and the
analytic expressions for the one-loop scalar integrals
collected in PACKAGE-X [54]. Our results are shown in
Fig. 2, where we plot the value of the amplitude as a
function of the fermion internal mass m2

f for different
values of s12. An excellent agreement is found, as expected
from our previous studies of this process [30,36].
Regarding the scale of the vertical axis of Fig. 2, we used
the default normalization provided by the aforementioned
packages, and all the invariants are expressed in GeV2. The
same choice is applied for the remaining plots shown in this
article.
For the processes including more kinematic scales,

namely γγ → γγ and H → ggg, we do not rely on
FEYNCALC because it becomes inefficient when the
rank of the loop momentum in the numerator starts
increasing. Therefore, instead of decomposing the inte-
grals, we work at the integrand level by reducing the
amplitudes to scalar one-loop integrals. In order to do so,
we follow the Ossola-Papadopoulos-Pittau method [55]
together with the integrand reduction algorithm [56–63].
For the evaluation of the scalar one-loop integrals, we keep
using PACKAGE-X. Our results are shown in Figs. 3 and 4,
where we plot the amplitudes as a function of the fermion

TABLE I. Processes considered at one-loop level with their
kinematic scales. We indicate the nonvanishing helicity configu-
rations.

Process Kinematic scales Helicity configuration

H → γγ s12; m2
f þþ

γγ → γγ s; t; m2
f þþþþ −þþþ − −þþ

H → ggg s12; s13; s23; m2
f þþþ −þþ

s12=8

s12=10

s12=12

Helicity: ++

100 120 140 160 180 200

0.0030

0.0025

0.0020

0.0015

0.0010

mf
2

A
3(1

)

FIG. 2. H → γγ at one loop as a function of the internal mass
m2

f . We plot the predictions for s12 ∈ f8; 10; 12g. The solid blue
lines correspond to the analytical results, while the red points are
computed through the LTD-based numerical approach.
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internal mass m2
f. For γγ → γγ, we fixed s ¼ −5 and

considered t ¼ f−8;−10;−12g. In the case of H → ggg,
s12 ¼ −1=3 and s23 ¼ −1=7 remained fixed, while we
varied s13 ∈ ½8; 12�. The agreement is very good for both
processes, in all the kinematical and helicity configura-
tions that we explored. Small numerical instabilities
arise for m2

f > 180 in H → gggg, although they can be
fixed by slightly increasing the numerical precision of the
integration.
Let us stress that in the processes we consider within the

LTD approach, we do not perform any integral or integrand
reduction. We directly evaluate them with the proper
inclusion of the UV local counterterms, as explained in
Sec. IV. Regarding the evaluation of the required integrals,

t 12

t 10

t 8

Helicity:
s 5

100 120 140 160 180 200
0.2

0.4

0.6

0.8

1.0

1.2

1.4

mf
2

A
4(1

)

t 8

t 10

t 12

Helicity:
s 5

100 120 140 160 180 200

0.04

0.03

0.02

0.01

0.00

mf
2

A
4(1

)

t 8

t 10

t 12

Helicity:
s 5

100 120 140 160 180 200

0.12

0.10

0.08

0.06

0.04

mf
2

A
4(1

)

FIG. 3. One-loop contributions to the process γγ → γγ, as a
function of the internal mass m2

f. We consider all the possible
helicity configurations for a fixed ordering of the external legs:
þþþþ, −þþþ and − −þþ : In each case, we fix s ¼ −5
and plot the predictions for t ∈ f−8;−10;−12g. The solid blue
lines correspond to the analytical results, while the red points
were computed through the LTD-based numerical approach.

s13 12

s13 10

s13 8

Helicity:
s12 1/3, s23 1/7

100 120 140 160 180 200

0.004

0.006

0.008

0.010

0.012

0.014

mf
2

A
4(1

)

s13 8

s13 10

s13 12

Helicity:
s12 1/3, s23 1/7

100 120 140 160 180 200

6. 10 9

8. 10 9

1. 10 8

1.2 10 8

1.4 10 8

mf
2

A
4(1

)

FIG. 4. One-loop contributions to the process H → ggg, as a
function of the internal mass m2

f. We consider all the possible
configurations for a given helicity amplitude, þþþ and −þþ:
In each case, we show the predictions for s13 ¼ f8; 10; 12g. The
solid blue lines corresponds to the analytical results, while the red
points were computed through the LTD-based numerical ap-
proach.
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we use the built-in MATHEMATICA function NIntegrate
on a desktop machine with an Intel i7 (3.4 GHz) processor
with eight cores and 16 GB of RAM. The computing time
for each phase-space point was Oð3000Þ. It is worth
appreciating that we did not implement any further opti-
mization for performing the numerical integration. In future
developments, we plan to improve this point, by using
parallel integration strategies or optimized integrators to
speed up the computation. In any case, we would like to
highlight that the main advantage of our framework relies
on the smooth behavior of the integrand and the fully local
cancellation of singularities.

VI. A TWO-LOOP EXAMPLE: H → gg

In the previous section, we have demonstrated the
viability of the LTD approach to tackle one-loop locally
UV-divergent helicity amplitudes in four space-time dimen-
sions. Here, we will show that it is also a reliable strategy
for two-loop processes. So, we focus on the computation of
Oðe3g2SÞ corrections to the decay process H → gg, where
the internal particles are massive top quarks and Z bosons.
In this case we are dealing with a finite amplitude, whose
contributions are given by the diagrams shown in Fig. 5.
There are neither IR nor UV singularities, but it is
mandatory to perform a local renormalization to smoothly
pass from d to four space-time dimensions when evaluating
this amplitude.
In the same spirit of Ref. [36], we start considering a

minimal set of independent denominators. This is done in
order to match the structures of the planar (P) and non-
planar (NP) contributions at integrand level. Hence, we
express all Feynman diagrams in terms of the following
families of integrals,

IP=NP ¼
Z
l1

Z
l2

1

Dν1
1 D

ν2
2 D

ν3
3 D

ν4
4 D

ν5
5 D

ν6
6 D

ν7
7

; ð22Þ

with

D1 ¼ ðl1 þ l2Þ2 −m2
Z þ {0; ð23aÞ

D2 ¼ ðl1 þ l2 þ p1 þ p2Þ2 −m2
Z þ {0; ð23bÞ

D3 ¼ l2
1 −m2

t þ {0; ð23cÞ

D4 ¼ ðl1 þ p1Þ2 −m2
t þ {0; ð23dÞ

D5 ¼ ðl1 þ p1 þ p2Þ2 −m2
t þ {0; ð23eÞ

D6 ¼ l2
2 −m2

t þ {0; ð23fÞ
D7 ¼ ðl2 − p1Þ2 −m2

t þ {0; ð23gÞ

where the auxiliary propagators areD7 andD3 in the planar
and nonplanar topologies, respectively. In the previous
expressions, we also consider the presence of nontrivial
numerators by allowing νi < 0.
In the following, we discuss the extraction and the

structure of the single and double UV local counterterms.
In particular, we have

(i) Single UV counter-terms,

Að2Þ
1;UV ¼ Að2Þ

2;UV ¼ 0: ð24Þ
Let us remark that single UV counterterms vanish at
integrand level, as a consequence of the way in
which the propagators have been labeled. A different
choice might lead to nonvanishing integrand-level
expressions. In order to profit from this property,
we labeled the propagators in such a way that the
most UV-divergent contributions depend on l1

and l2, whilst those contributions depending on
l1þl2≡l12 exhibit a less UV-divergent behavior.

(ii) Double UV counterterm,

Að2Þ
UV2 ¼ 2{ðd − 2Þgfδa1a2

Z
l1l2

�
−

s12
D2

1UVD2UVD12UV
þ s12
D2

1UVD
2
12UV

þ ðε1 · l12Þðε2 · l2Þ
D1UVD2

2UVD
2
12UV

−
ðε1 · l12Þðε2 · l1Þ
D2

1UVD2UVD2
12UV

þ 2ðε1 · l1Þðε2 · l1Þ
D3

1UVD2UVD12UV
−
2ðε1 · l1Þðε2 · l1Þ

D3
1UVD

2
12UV

−
ðε1 · l1Þðε2 · l2Þ
D2

1UVD
2
2UVD12UV

�
¼ 0; ð25Þ

where δa1a2 accounts for the color factor origi-
nated from the two external gluons, and gf ¼
egg0g2SmZðg2L þ g2RÞ corresponds to the overall cou-
pling constant. In order to refer to the UV limit of
the Feynman propagators, we introduced the short-
hand notation

FIG. 5. Two-loop diagrams for the process H → gg with
internal massive top quarks and Z bosons.
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DjUV ¼ ðGFðqj;UVÞÞ−1; ð26Þ

with qj;UV ¼ lj with j ¼ f1; 2g, and q12;UV ¼ l12.
It is easy to check that after applying integration-

by-parts identities on Að2Þ
UV2 , it vanishes in d dimen-

sions. In fact, as expected from the finiteness of the
amplitude, the UV singularities that emerge from
the planar and nonplanar diagrams cancel exactly at
this point. The latter is indeed in agreement with
the above discussion since we are including an
additional term that does not alter the behavior in
d dimensions, but it collects several local features in
d ¼ 4. In other words, we end up with an integrable
function in four space-time dimensions.

Subtracting the counterterms in Eqs. (24) and (25) from
the originalH → gg amplitude, we tested the UV limit [64].
We parametrized the loop momenta and studied the
large energy limit by performing a series expansion.
Analytically, we found that all the nonintegrable powers
of the loop-energy cancel, supporting the validity of the
local renormalization proposed here.
To test the numerical behavior of the locally renormal-

ized amplitude, we started by reparametrizing the energy
component of the loop momenta. Following the notation
of Sec. III, we used polar coordinates to implement the
transformation,

ðξ1; ξ2Þ → ðr cos α; r sin αÞ; ð27Þ

with r ∈ ½0;∞Þ and α ∈ ½0; π=2�. In this way, the high-
energy limit corresponds to r → ∞, whilst the angle α
allows to control the overlapping singularities associated to
l1 and l2. Thus, the amplitude and the double UV
counterterm can be generally written as

Að2Þ
H→gg ¼

Z
∞

0

drr
Z

π=2

0

dα
Z

dΩ fð2Þðr;α;ΩÞ;

Að2Þ
UV2 ¼

Z
∞

0

drr
Z

π=2

0

dα
Z

dΩ fð2Þ
12;UV2ðr;α;ΩÞ; ð28Þ

where Ω denotes all the angular variables describing the
loop momenta. In Fig. 6, we present a graphical repre-

sentation of the integrand functions fð2Þ and fð2Þ
12;UV2 for

arbitrary fixed values of the angular variables and the
helicity configuration þþ : In these plots, δA corresponds
to the integrands of Eq. (28), whilst

δAREN ¼ rðfð2Þ − fð2Þ
12;UV2Þ; ð29Þ

i.e., the integrand after subtracting the UV counterterm.
Also, we set mH ¼ 125 GeV, mt ¼ 175 GeV, and
mZ ¼ 91 GeV, together with μUV ¼ mH as the renormal-
ization scale. In Fig. 6(a), we appreciate that the amplitude
and the counterterm exhibit the same behavior in the

high-energy limit. Additionally, in Fig. 6(b), we notice
that the asymptotic limit satisfies

jrðfð2Þ − fð2Þ
12;UV2Þj ≤ 1=rν for r → ∞; ð30Þ

with ν > 1 since the renormalized integrand (represented
by the solid line) decreases faster than 1=r2 (dashed line).
This constitutes a numerical proof of the convergence of the
integral in the UV region. Furthermore, the corresponding
analytic expressions for the renormalized amplitude, before
integration, are available from the authors upon request.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have presented an efficient numerical
implementation of helicity amplitudes in the LTD repre-
sentation. To achieve this, we exploited the prominent fact
that LTD changes the loop integration domain from a
Minkowski to an Euclidean space. This leads to important
numerical simplifications in the integrand-level represen-
tation of scattering amplitudes and loop integrals due to
the manifest cancellation of unphysical or noncausal

(a)

r f (2)

r f12,UV2
(2)

10 100 1000 104 105 106 107

8. 10 8

6. 10 8

4. 10 8

2. 10 8

0

2. 10 8

r

A

(b) r (f(2)- f12,UV2
(2) )

1/r1

1/r2

1/r3

10 100 1000 104 105 106 107
10 19

10 17

10 15

10 13

10 11

10 9

10 7

r

A
R

E
N

FIG. 6. Integrand-level study of the local cancellation of UV
singularities. (a) The UV counterterm (dotted) exactly reproduces
the high-energy behavior of the amplitude (dashed). (b) The
dotted line scales like 1=r (nonintegrable function); the dashed
one corresponds to 1=r2 (integrable function). The locally
renormalized amplitude (solid line) decreases faster than 1=r2

for high energies.
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singularities [13,14]. Simultaneously, the application of the
helicity formalism leads to expressions depending on a
minimal set of kinematical variables, which contributes to
speed up the numerical calculation.
We have focused in this paper on helicity amplitudes for

physical scattering processes which, although they are UV
and IR finite, cannot be calculated by traditional methods
naively in four space-time dimensions because they still
exhibit a local UV singular behavior. As causal threshold
singularities of loop integrals have already been considered
in Refs. [65,66], we avoided their presence by choosing
proper external kinematics, thus focusing our attention
in the local UV counterterms to achieve proper integrability
in the high-energy region directly in four space-time
dimensions.
The computational framework developed was success-

fully applied to benchmark helicity amplitudes at one
loop. Numerical results were compared to explicit analy-
tical expressions, and we found complete agreement.
Additionally, we applied the local renormalization pro-
cedure at two loops introduced in Ref. [36] to obtain an
integrable four-dimensional representation of the H → gg
helicity amplitudes with internal top quarks and Z bosons.
This work constitutes an important step towards the

automation of a LTD-based framework to compute physical
observables in a fully numerical approach [67]. We expect
to acquire a better understanding of the local UV renorm-
alization at higher orders and how to increase its efficiency.
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APPENDIX A: MOMENTUM TWISTOR
PARAMETRIZATION

For the sake of simplicity, we remark the main features of
the twistor variables. Besides, for an exhaustive study of
them, we refer the reader to Refs. [29,69,70].

1. Little group scaling

Let us remark the little group scaling, a group of
transformations that leaves the momentum of an on-shell
particle invariant. Hence, the spinors jii and ji� can be
rescaled according to

jii → tjii; ji� → t−1ji�: ðA1Þ

This transformation turns out to be very interesting at the
amplitude level. This is because amplitudes with massless
particles can always be written in terms of spinorial
products. Then, we have that:

(i) scalar particles do not scale,
(ii) fermions with spin 1=2 scale as t−2h for h ¼ � 1

2
,

(iii) polarization vectors with spin 1 scale as t−2h

for h ¼ �1.
This implies that an N-point amplitude, after one of the
massless particles is rescaled according to Eq. (A1), can be
expressed as,

ANðfj1i; j1�; h1g;…; ftijii; t−1i ji�; hig; � � �Þ
¼ t−2hii ANðfj1i; j1�; h1g;…; ftijii; t−1i ji�; hig; � � �Þ;

ðA2Þ

with hi the helicity of the particle i.

2. Momentum twistor variables

The momentum conservation rule implies that the
vectors representing the different momenta close into a
contour, which can be defined by the edges or by the
cusps. The former is the usual representation, p1 þ p2 þ
� � � þ pN ¼ 0, whereas, the latter correspond to locate a
point yμi in a dual space. In fact, these points can be
expressed in terms of momentum vectors,

pα
i ¼ ðyi − yiþ1Þα: ðA3Þ

These dual variables satisfy momentum conservation after
imposing a periodicity relation, namely yNþ1 ¼ y1. For the
sake of simplicity, we take into account the ordering of the
external particles. Hence, we define

yαij ¼ ðyi − yjÞα ¼ ðpi þ piþ1 þ � � � þ pj−1Þα: ðA4Þ

Furthermore, because all the particles are massless (i.e.,
p2
i ¼ 0), we write the Dirac equation in terms of holomor-

phic spinors,

pijii ¼ ð=yi − =yiþ1Þjii ¼ 0; ðA5Þ

and we define a new variable jμi�, according to

jμi� ¼ =yijii ¼ =yiþ1jii: ðA6Þ

With these two independent variables, jii and jμi�, we build
a new four-component spinor variable Zi, usually called
momentum twistor. Nevertheless, the antiholomorphic
spinors ji� can be written as
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½ij ¼ hiþ 1ii½μi−1j þ hii − 1i½μiþ1j þ hi − 1i − 1i½μij
hi − 1iihiiþ 1i ;

ðA7Þ

due to the Gordon identity. Given n momentum twistors,
denoted ðZ1; Z2;…; ZnÞ, they must fulfil Poincaré and
Uð1Þ symmetries, besides satisfying momentum conserva-
tion and on-shellness. These symmetries allow us to express
any n-point massless amplitude in terms for 3N − 10
variables, which is the minimal quantity required [71].
Since we are interested in parametrizing the external

momenta in terms of the minimal set of variables, we
follow the representation used in Ref. [29]. In particular, for
a four-point kinematics, we have

Z ¼
� j1i j2i j3i j4i
jμ1� jμ2� jμ3� jμ4�

�
¼

0
BBB@

1 0 1
z1

1
z1
þ 1

z2

0 1 1 1

0 0 −1 −1
0 0 0 1

1
CCCA;

ðA8Þ
where we can relate z1 and z2 to the kinematic invariants
according to

z1 ¼ s12; z2 ¼
s14
s12

: ðA9Þ

Likewise, we obtain a particular generalization for N ≥ 5,

Z ¼

0
BBBBB@

1 0 f1 f2 f3 � � � fN−3 fN−2

0 1 1 1 1 � � � 1 1

0 0 0 zN−1
z2

zN � � � z2N−6 1

0 0 1 1 z2N−5 � � � z3N−11 1− z3N−10
zN−1

1
CCCCCA
;

ðA10Þ

with

fi ¼
Xi

k¼1

1Q
k
l¼1 zl

; ðA11Þ

and

zi ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

s12 i¼ 1

− hiiþ1ihiþ21i
h1iihiþ1iþ2i i¼ 2;…;N − 2

s23
s12

i¼ N − 1

Pi−Nþ4
j¼2

hi−Nþ5jjj2�
½12�h1i−Nþ5i i¼ N;…;2N − 6

Pi−2Nþ9
j¼2

h1jð2þ3Þjji−2Nþ10i
s23h1i−2Nþ10i i¼ 2N − 5;…;3N − 11

s123
s12

i¼ 3N − 10:

ðA12Þ

We remark that with this configuration of external momenta,
we drop the physical phase of the amplitude, namely, the
information that accounts for parity invariance. However, it
can be straightforwardly restored by using the prefactor

� h13i
½12�h23i

�
−h1 Yn

i¼2

�h1ii2½12�h23i
h13i

�−hi
; ðA13Þ

where hi are the helicities of the external massless momenta.

APPENDIX B: EXTERNAL MOMENTA

In this Appendix we give the external momenta in terms
of the kinematic scales shown in Secs. V and VI.

1. H → γγ and H → gg

We focus on the process

Hð−p3Þ → gðp1Þ þ gðp2Þ; ðB1Þ

with the kinematics,

pμ
1 ¼

1

2
f−1; 1; {;−1g;

pμ
2 ¼

s12
2

f0;−1; {; 0g;

εμþðp1Þ ¼
1ffiffiffi
2

p f1;−1; {;−1g;

εμ−ðp1Þ ¼
1ffiffiffi
2

p f−1; 0; 0;−1g;

εμþðp2Þ ¼
s12ffiffiffi
2

p f1; 0; 0; 1g;

εμ−ðp2Þ ¼
1ffiffiffi
2

p
s12

f−1; 1;−{; 1g: ðB2Þ

2. γγ → γγ

We consider the light-by-light scattering,

γð−p1Þγð−p2Þ → γðp3Þγðp4Þ; ðB3Þ

with the kinematics,

pμ
1 ¼

1

2
f−1; 1; {;−1g;

pμ
2 ¼

s
2
f0;−1; {; 0g;

pμ
3 ¼

1

2
fstþ 1; sþ t; {ðt − sÞ; 1 − stg;

εμþðp1Þ ¼
1ffiffiffi
2

p f1;−1; {;−1g;

εμ−ðp1Þ ¼
1ffiffiffi
2

p f−1; 0; 0;−1g;
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εμþðp2Þ ¼
sffiffiffi
2

p f1; 0; 0; 1g;

εμ−ðp2Þ ¼
1ffiffiffi
2

p
s
f−1; 1;−{; 1g:

εμþðp3Þ ¼
sffiffiffi
2

p f−1;−t;−{t;−sg;

εμ−ðp3Þ ¼
1ffiffiffi

2
p

s2ðtþ 1Þ
× fs − 1;−ðs − 1Þ; {ðsþ 1Þ;−ðsþ 1Þg;

εμþðp4Þ ¼
stffiffiffi
2

p f0; 1; {; 0g;

εμ−ðp4Þ ¼
1ffiffiffi
2

p
s2t2

f−stþ tþ 1; ðs − 1Þt − 1;

− {ðstþ tþ 1Þ; stþ tþ 1g: ðB4Þ

3. H → ggg

We consider the Higgs decay into thee gluons,

H → gðp2Þgðp3Þgðp4Þ; ðB5Þ

with

pμ
1 ¼

1

2

�
s12þ s13

s23
;1; {;

s12þ s13
s23

	
;

pμ
2 ¼

s12
2
f0;−1; {;0g;

pμ
3 ¼

1

2

�
s23þ 1;

s23
s12

þ s12; {

�
s23
s12

− s12

�
;1− s23

	
;

εμþðp1Þ ¼
1ffiffiffi
2

p f1;−1; {;−1g;

εμ−ðp1Þ ¼
1ffiffiffi
2

p f−1;0;0;−1g;

εμþðp2Þ ¼
s12ffiffiffi
2

p f1;0;0;1g;

εμ−ðp2Þ ¼
1ffiffiffi
2

p
s12

f−1;1;−{;1g:

εμþðp3Þ ¼
1ffiffiffi
2

p f−s12;−s23;−{s23;−s12g

εμ−ðp3Þ ¼
1ffiffiffi

2
p

s12s13s23
× f−ðs12s23þ s12þ s13Þ;−ðs12ðs12þ s13Þþ s23Þ;
þ {ðs12ðs12þ s13Þ− s23Þ;−ðs12þ s13− s12s23Þg:

ðB6Þ
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