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Abstract We investigate gravitational lensing in the strong
deflection regime by loop quantum gravity (LQG)-motivated
rotating black hole (LMRBH) metrics with an additional
parameter l besides mass M and rotation a. The LMRBH
spacetimes are regular everywhere, asymptotically encom-
passing the Kerr black hole as a particular case and, depend-
ing on the parameters, describe black holes with one horizon
only (BH-I), black holes with an event horizon and a Cauchy
horizon (BH-II), black holes with three horizons (BH-III), or
black holes with no horizons (NH) spacetime. It turns out that
as the LQG parameter l increases, the unstable photon orbit
radius xps , the critical impact parameter u ps , the deflection
angle αD(θ) and angular position θ∞ also increases. Mean-
while, the angular separation s decreases, and relative mag-
nitude rmag increases with increasing l for prograde motion
but they show opposite behaviour for the retrograde motion.
Using supermassive black holes (SMBH) Sgr A* and M87*
as lenses, we compare the observable signatures of LMRBH
with those of Kerr black holes. For Sgr A*, the angular posi-
tion θ∞ ∈ (16.4, 39.8) µas, while for M87* ∈ (12.33, 29.9)
µas. The angular separation s, for SMBHs Sgr A* and M87*,
differs significantly, with values ranging∈ (0.008–0.376)µas
for Sgr A* and ∈ (0.006–0.282) µas for M87*. The devia-
tions of the lensing observables �θ∞ and �s for LMRBH
(a = 0.80, l = 2.0) from Kerr black holes can reach up
to 10.22µas and 0.241 µas for Sgr A*, and 7.683 µas and
0.181 µas for M87*. The relative magnitude rmag ∈ (0.047,
1.54). We estimate the time delay between the first and sec-
ond relativistic images using twenty supermassive galactic
centre black holes as lenses to find, for example, the time
delay for Sgr A* and M87* can reach approximately 23.26
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min and 33,261.8 min, respectively. Our analysis concludes
that, within the 1σ region, a significant portion of the BH-I
and BH-II parameter space agrees with the EHT results of
M87* and Sgr A*. The possibility of LMRBH being a BH-III
with three horizons has been almost ruled out, except for a
small portion of parameter space, by θsh bounds of Sgr A*
and M87* measured by EHT. In contrast, NH without a hori-
zon is completely ruled out. We discover that the EHT results
of Sgr A* place more stringent limits on the parameter space
of LMRBH black holes than those established by the EHT
results of M87*.

1 Introduction

Einstein’s general relativity (GR) has been validated by the
Event Horizon Telescope (EHT) observation of shadows cast
by supermassive black holes M87* [1] and SgrA* [2]. These
also serve as further evidence of the remarkable accuracy of
GR. The black hole shadow results from strong gravitational
lensing of light by the intense gravitational field of the black
hole. The extreme gravitational field of the black hole bends
the light from the surrounding matter and stars, creating a
dark area in the centre known as the “black hole shadow”,
and it is surrounded by a bright ring of light known as the
“photon ring” which is caused by the bending and amplifi-
cation of light around the black hole. Utilizing gravitational
lensing can offer a robust means to investigate gravitation on
a large scale. By using strong-gravitational lensing by black
holes and compact objects, it is possible to conduct gravity
tests on a smaller scale, surpassing the limitations imposed by
the Solar System [1,2]. In its strong field limit, gravitational
lensing exhibits intriguing characteristics, making it one of
the most remarkable phenomena in astronomy. Gravitational
lensing has proven to be a valuable tool for gaining insights
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into the structure of spacetime [3–8]. In the case of strong
gravitational fields, where light passes close to the source,
and the bending angle is much greater, phenomena such as
shadow, photon rings, and relativistic images can occur [9–
16]. Recent discussions have focused on strong-field grav-
itational lensing by black holes as another avenue to test
general relativity [13–23]. Virbhadra and Ellis [17] provided
a numerical method for studying the large deflection of light
rays resulting in strong gravitational lensing. Later, Bozza
[13–16] and Tsukamoto [21] analyzed the strong-field gravi-
tational lensing analytically for general spherically symmet-
ric and static spacetimes. Gravitational lensing by black holes
has been critical in quantitative studies of the lensing by Kerr
black holes [13,24,25]. With current observational facilities,
the gravitational deflection of light by rotating black holes
has received significant attention [26–35]. It turns out that
we can understand the properties of black holes from the
gravitational lensing effect. The observables in strong grav-
itational lensing can diagnose the properties of black holes
in modified theories of gravity and compare them with their
counterparts in GR. Moreover, the photon region of grav-
itational lensing also provides vital properties in the black
hole shadow. In addition, gravitational lensing by regular
or non-singular black holes exhibit several exciting features
compared to Kerr black holes [33,34,36].

The prevailing belief is that singularities are an artifact
of classical GR, and they can be resolved through a quan-
tum theory of gravity [37]. Although a complete quantum
gravity theory is not yet available, we must focus on regu-
lar models motivated by quantum arguments. Bardeen sug-
gested the first regular solution for a black hole [38]. In
Bardeen’s model, there are horizons, but there is no curva-
ture singularity. Instead, the center of the black hole develops
a de Sitter-like region, resulting in a black hole with a reg-
ular center. Since then, several regular black hole models
have been proposed based on Bardeen’s idea, which mimic
the behaviour of the Schwarzschild black hole at large dis-
tances. It is a wide belief that loop quantum gravity (LQG)
could potentially address singularities in classical general
relativity [39–41]. Because of the complexity of the com-
plete LQG system, research has mainly focused on spheri-
cally symmetric black holes [42–46]. Semiclassical polymer-
ization, which preserves the discreteness of spacetime sug-
gested by LQG, has proved to be an effective technique for
resolving the singularity issue [44–46]. As different polymer-
izations can cause various types of regularized spacetimes,
exploring a broader range of models and methods is of great
interest. Building upon previous research [42–49], Peltola
and Kunstatter [50] used effective field theory and partially
polymerized theory arguments to construct a static, spher-
ically symmetric black hole that is asymptotically flat and
encompasses the Schwarzschild black hole [50,51]. Notably,
unlike most regular black holes with two horizons, this LQG-

corrected black hole has just one horizon. However, astro-
physical observations cannot test non-rotating black holes,
as the black hole spin plays a critical role in any astro-
physical process. Using the modified Newman-Janis algo-
rithm, prompted us to generalise these regular solutions to
the axially symmetric case or the Kerr-like solution – LQG-
motivated rotating black holes (LMRBH) [52,53]. Testing
LMRBH metrics with astrophysical observations, like the
EHT observations, is crucial. The spin is essential as it sig-
nifies the current-dipole moment of the gravitational field
produced by a compact object. It serves as the primary cor-
rection to the term mass-monopole.

The prime aim of this investigation is to explore the gravi-
tational lensing properties of recently obtained LMRBH met-
ric [52,53] and compare them to the gravitational lensing
by Kerr black holes. In addition, we investigate the observ-
able characteristics of LMRBH versus Kerr black holes when
supermassive black holes such as Sgr A* and M87* act as
lenses. Notably, although strong deflection lensing effects
by LMRBH black holes could be detected using the Event
Horizon Telescope (EHT), distinguishing between two black
holes is challenging because of deviations being on the order
of O(µas).

The paper is organized as follows: We briefly review
the horizon structure and calculate the deflection angle by
LMRBH spacetime in Sect. 2. The strong-lensing observ-
ables by the LMRBH, including the image positions θ∞,
separation s, and magnifications μn are also part of Sect. 2.
The time delay between the first and second images on the
same side of the source has been calculated for supermassive
black holes SgrA*, M87* and those at the centers of 19 other
galaxies in Sect. 2. A numerical analysis of the observables
by taking the supermassive black holes Sgr A* and M87* as
the lens is part of Sect. 3. The constraints on the LMRBH
parameters inferred using black hole shadow observational
data of Sgr A* and M87* are discussed in Sect. 4. Finally,
we summarize our results to end the paper in Sect. 5.

Throughout this paper, unless otherwise stated, we adopt
natural units (8πG = c = 1)

2 Gravitational lensing by LQG-motivated rotating
black holes

We derived the metric for the LQG-motivated rotating black
hole (LMRBH) by building upon a partially polymerized
static and spherically symmetric black hole solution [50,54].
To construct the rotating spacetime LMRBH, we employed
the revised Newman–Janis algorithm (NJA) described in
[55,56]. This procedure has been successful in generating
imperfect fluid rotating solutions in Boyer–Lindquist coor-
dinates from spherically symmetric static solutions, and it
can also produce generic rotating regular black hole solu-
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Fig. 1 Parameter space
(a/M, l/M) for LMRBH
spacetime [52]. The red line
corresponds to the extremal
black holes with degenerate
horizons, where the outer two
horizons merge. The blue line
also corresponds to the black
hole with degenerate horizons,
but unlike the red line, the inner
two horizons merge. For the
green line, �(r) = 0 admits two
positive and the third root at
r = 0, while for the dashed
green line, we have r = 0 as the
only root. The black dot
corresponds to the black hole
with three degenerate horizons
located at r = 0.5M

tions [55–59]. We express the metric of the LMRBH in the
Boyer–Lindquist form as [52,53].

ds2 = −
[

1 − 2M(r)
√
r2 + l2

ρ2

]
dt2 + ρ2

�
dr2 + ρ2dθ2

−4aM(r)
√
r2 + l2

ρ2 sin2 θdtdφ + A sin2 θ

ρ2 dφ2 (1)

where

M(r) = M − r − √
r2 + l2

2
ρ2 = r2 + l2 + a2 cos2 θ,

� = r2 + l2 + a2 − 2M(r)
√
r2 + l2,

A = (r2 + l2 + a2)2 − a2� sin2 θ. (2)

The rotating metric, derived from the NJA, captures
important elements of LQG, such as a transition surface at
the black hole centre and the global regularity of spacetime.
It is noteworthy that LMRBH (Eq. (1)) encompasses the Kerr
spacetime [60] in the limit l → 0 and spherical LQG black
hole [50,54] in the limit a → 0. When a = M = l = 0, then
Eq. (1) gives flat spacetime. The horizons of the LMRBH are
determined by the roots of the null surface �(r) = 0, which
is a coordinate singularity of Eq. (1). Depending on the val-
ues of a and l, up to three real roots may exist, with one to
three positive roots. Only positive roots correspond to hori-
zons, and we label them as r1, r2, and r3 with r3 ≤ r2 ≤ r1,
where r1 is the event horizon and r2, if present, is the Cauchy
horizon. The additional root r3 lies inside the Cauchy hori-
zon. The parameter space (a, l) for the LMRBH is illustrated
in Fig. 1. There exists a critical value of l (a) on the red
line, denoted by lc (ac), such that �(r) = 0 has a double
root, for given a (l), corresponding to an extremal LMRBH
with degenerate horizons. For a < ac (l > lc), �(r) = 0
has two simple positive roots, corresponding to LMRBHs

with Cauchy and event horizons (BH-II). In contrast, for
a > ac(l < lc), �(r) = 0 has no positive roots, correspond-
ing to no-horizon (NH) spacetimes. Similarly, for a given a
(l), we can find the critical value of l (a) on other transi-
tion lines and dots in Fig. 1. We consider four regions for
our study, namely black holes with only one horizon (BH-I),
black holes with an event horizon and Cauchy horizon (BH-
II), black holes with three horizons (BH-III), and black holes
with no horizon (NH). The coloured lines in Fig. 1 denote the
boundaries that divide these regions (see Kumar et al. [52]
for more information). The presence of a black hole has an
influential impact on the motion of nearby photons. The null
geodesics that describe photon orbits around black holes are
crucial for observing gravitational effects caused by the black
hole. Two linearly independent killing vectors, ημ

(t) = δ
μ
t and

η
μ

(φ) = δ
μ
φ , associated with the time translation and rotational

invariance, are admitted by the black hole metric (1) [61]. The
total energy E and the angular momentum L, two conserved
quantities corresponding to the Killing vectors, govern the
photon’s path. We identify u = L/E as the impact parameter
and employ the Hamilton-Jacobi approach to establish the
relationship between the effective potential Veff and impact
parameter u. The relationship between u and Veff determines
the orbit’s qualitative characteristics. Photons with different
impact parameters approach the black hole and are deflected
by its strong gravitational field, reaching a minimum distance
of r0. It is critical to understand that light rays with impact
parameters smaller than the critical value u ps fall into the
event horizon, leading to a dark spot on the observer’s sky.
On the other hand, light rays with impact parameters slightly
larger than the critical value make several loops around the
black hole and are scattered to reach the observer at infinity
(cf. Fig. 2). Finally, photons with impact parameters equal to
the critical value follow unstable circular photon orbits with
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Fig. 2 Effective potential for photons, in LMRBH spacetime, having
different impact parameters u. Black curves correspond to the photons
whose impact parameter u is exactly equal to the critical impact parame-
ter u ps . These photons revolve around the black hole in unstable photon
circular orbits at radial distance x = xps . Photons with u ≈ u ps but

u > u ps make several loops around the black hole and are scattered to
infinity after reaching some closest approach distance x0. These photons
form the (strong) gravitationally lensed image of the source. Photons
with u < u ps fall into the black hole

a constant radius rps (cf. Fig. 2). By considering light rays
near the critical impact parameter, we investigate the effect
of the parameter l on strong gravitational lensing using the
LMRBH model to represent the black holes. The LMRBH
metric, similar to the Kerr metric, exhibits reflection symme-
try θ → π − θ , allowing for studying light ray motion in the
equatorial plane where they initially reside. To explore the
strong gravitational lensing effects, we follow the approach
in Refs. [15,33,35].

We measure the quantities r, a, l, and t in units of M [15]
such that

r/M → x, a/M → a, l/M → l and t/M → t,

and use x instead of radius r to rewrite the LMRBH metric
(1) in the equatorial plane (θ = π/2) as

ds2 =−A(x)dt2+B(x)dx2+C(x)dφ2−D(x)dt dφ, (3)

where

A(x) = 1 − 2M(x)
√
x2 + l2

ρ2 , B(x) = ρ2

�
,

C(x) = A
ρ2 , D(x) = 4aM(x)

√
x2 + l2, (4)

and ρ2 = x2 + l2 and A = (x2 + l2 + a2)2 − a2�.
A photon from a source travels towards a black hole until

it is at least at a distance of x0 away from it before being
redirected by the black hole’s gravitational field to reach the
observer at infinity. The impact parameter, which is the per-
pendicular distance from the black hole’s centre of mass to
the initial direction of the photon at infinity, stays constant
throughout the trajectory because the approach phase resem-
bles the departure phase with time-reversed due to spacetime
symmetry. Furthermore, the minimum approach distance x0

marks the turning point and hence vanishing effective poten-

tial, which gives an expression for the impact parameter u in
terms of the closest approach distance x0 as

u = L
E = 1

(x0 − 2)

√
l2 + x2

0

×
[ (

l2 + x2
0

) √
a2 + (x0 − 2)

√
l2 + x2

0

+a

(
x0

√
l2 + x2

0 − 2
√
l2 + x2

0 − l2 − x2
0

) ]
. (5)

By restricting the light rays to the equatorial plane, the unsta-
ble circular photon orbits radius xps in terms of metric com-
ponents, given by Eq. (4), is the solution of the equation [16]

A(x)C ′(x) − A′(x)C(x) + u(A′(x)D(x) − A(x)D′(x))=0,

(6)

which implies

1

(x − 2)
(
l2 + x2

)[
2a

(
l2 + 2x

) √
a2 + (x − 2)

√
l2 + x2

−2a2 (
l2 + 2x

) − (x − 2)
(
l2 − 2(x − 3)x

) √
l2 + x2

]
=0

(7)

The unstable photon orbit radius is the largest root of the
Eq. 7. It turns out that the photon sphere depends on the param-
eter l and the rotation parameter. By fixing the winding of light
rays to be counterclockwise, we assign a > 0 (prograde orbits),
if the black hole also rotates in the counterclockwise direc-
tion and a < 0 (retrograde) if the black rotates in the opposite
direction of photon winding i.e., clockwise. Figure 3 shows the
decrease in radius xps with the rotation parameter a while the
opposite behaviour concerning the parameter l and suggests that
the xps of LMRBH is greater than the Kerr black holes. Figure 3
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Fig. 3 Behavior of the photon sphere radius xps with respect to the parameter a (left) for different l and with respect to the parameter l (right) for
different a for LMRBH spacetime. Negative values of a in the left diagram correspond to the retrograde motion of the photon

Fig. 4 Behavior of the critical impact parameter ups with respect to the parameter a (left) for different l and with respect to the parameter l (right)
for different a for LMRBH spacetime. Negative values of a in the left diagram correspond to the retrograde motion of the photon

also suggests that the photons forming prograde orbits can get
closer to the black hole than the photons forming retrograde
orbits. The critical impact parameter u ps is the parameter for
which the closest approach distance x0 equals the photon orbit
radius xps . We have plotted the critical impact parameter (cf.
Fig. 4) with varying a and l and found that it varies similarly to
unstable photon orbit radius.

Moreover, the deflection angle of a photon moving in the
equatorial plane of the LMRBH spacetime can be obtained by
using the null geodesic equations, which are first-order ordinary
differential equations [61]. The light bending angle in a general
rotating stationary spacetime described by the line element (3),
for a closest distance approach x0 is given by [15,33,35,62]

αD(x0) = −π + 2
∫ ∞

x0

dx

×
√
A0B (2Au + D)√

4AC + D2
√
A0C − AC0 + u (AD0 − A0D)

,

(8)

This integral is non-trivial to solve, and hence, we expand it near
the unstable photon sphere radius [15,17,63] by defining a new
variable z = 1 − x0/x in strong deflection limit (SDL) [21,64].

This technique not only shows the behaviour of photons near
the photon sphere but also provides an analytical representation
of the deflection angle as [15,65,66]

αD(u) = ā log

(
u

u ps
− 1

)
+ b̄ + O(u − u ps), (9)

where ā, b̄ are the lensing coefficients. The details of this calcula-
tion can be found in [15,65,66]. The deflection angle increases as
x0 approaches xps , eventually exceeding 2π radians and diverg-
ing logarithmically at x0 = xps . We can investigate the deflec-
tion angle of strong gravitational lensing by LMRBH and com-
pare it with the analogous results of the Kerr black hole. Like
Kerr black hole, the deflection angle for LMRBH spacetime
in SDL (cf. Fig. 5) is more than 2π . The effect of the LMRBH
parameter l and spin a can be seen in Fig. 5. The deflection angle
diverges at larger u ps for larger l while at smaller u ps for larger
a. As can be seen in Eq. (9) if a light beam’s impact parameter
is sufficiently close to its critical value, it may also approach
the unstable photon orbit radius and make one, two, or even
more turns around the lens before it reaches the observer. As
a result, a strong gravitational field can generate many images,
creating what may appear to be an endless series of images. The
two infinite sets of relativistic pictures represent the clockwise
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Fig. 5 Variation of deflection angle, in strong field limit, for LMRBH spacetime as a function of the impact parameter u for different values of the
parameters a and l. Dots on the horizontal axis represent the values of the critical impact parameter ups at which the deflection angle diverges

Fig. 6 Formation of primary images of source space (S) in case of gravitational lensing. Light rays are deviated by the black hole to be observed
at an angular position θ by the observer space (O)

and anticlockwise winds of the black hole. In Fig. 5, we show
that for higher impact parameter values, the deflection angle for
some parameters can become negative, which shows that the
path of the light or particles is bent opposite the black hole’s
centre, causing photons to be deflected away from the black
hole’s location. But for our configuration in which the black
hole lies between a light source and observer, we calculated
the deflection angle using the expression in Eq. (9), which is
valid for SDL. However, this expression of the deflection angle
in SDL technique is valid only in close vicinity to the critical
impact parameter. In reality, a negative deflection angle value is
not achievable. Still, as is usually done in the literature, one can
utilise the weak deflection limit technique to get the deflection
angle at larger impact parameters [13].

2.1 Lens equation and observables

The lens geometry is essential in understanding black hole lens-
ing because it can be used to identify the exact positions and
magnifications of relativistic images in particular. Since the light
source and observer are placed far enough from the black hole
for the gravitational forces around them to be insufficient, the
lens configuration we are interested in positions the black hole
between a light source and observer [15,67] (cf. Fig. 6). Assum-
ing that the source and observer are almost aligned, the lens
equation reads

β = θ − DLS

DOL + DLS
�αn . (10)
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Fig. 7 Formation of outermost relativistic Einstein ring for spherically symmetric case and values of l taken to be 0, 0.5, 1.0, 1.5, 2.0 (innermost
to outermost) for Sgr A* (left) and M87* (right). The inner rings, respectively, correspond to the case when Sgr A* and M87* are considered as
Schwarzschild black holes (a = l = 0)

Instead of using a full deflection angle, we used an offset of
deflection angle �αn = α − 2nπ with n being an integer with
n ∈ N , and 0 < �αn 	 1. Here, β and θ are the angular posi-
tions of the source and image from the optical axis, respectively.
The distances of the source and lens from the observer are given
by DOS and DOL , respectively (cf. Fig. 6).

Next, we shall estimate the observables for the strong gravita-
tional lensing by LMRBH spacetime as in [15,16,34,35]. Using
the lens Eqs. (10) and (9), and following the condition where the
source, lens and the observer are aligned, the angular separation
between the lens and the nth image is given by [16]

θn = θn
0 + �θn, (11)

where

θn
0 = um

DOL
(1 + en), (12)

�θn = DOL + DLS

DLS

umen
āDOL

(β − θn
0), (13)

en = exp

(
b̄

ā
− 2nπ

ā

)
. (14)

Here θn
0 is the angular position of the image when a photon

encircles complete 2nπ and the second term in Eq. (11) is the
extra term exceeding 2nπ such that θn0 
 �θn [15]. When β =
0 is entered into Eq. (11), one can obtain the angular radius of the
Einstein rings for spherically symmetric cases [3–8]. Einstein
rings for Sgr A* and M87* are plotted in Fig. 7.

In gravitational lensing, the light is deflected while maintain-
ing the surface brightness, but the appearance of the solid angle
changes, enhancing the brightness of the images. The magni-
fication, for the n-loop images, is evaluated as the quotient of
the solid angles subtended by the nth image and the source as

[15,16]

μn = 1

β

[
um
DOL

(1 + en)

(
DOL + DLS

DLS

umen
DOLā

)]
. (15)

The magnification μn is inversely proportional to D2
OL and so

the images are faint. But they can be bright in the limit β → 0,
i.e., when the source, lens and observer are perfectly aligned.
When β → 0, the Eq. (15) diverges, suggesting that the per-
fect alignment maximises the possibility of the detection of the
images. The brightness of the first image is dominant over the
other images, as a result, we will focus on the most straightfor-
ward scenario, in which just the outermost image, θ1, is resolved
as a single image, while the subsequent images are all crammed
together at θ∞. In practice, if the 1-loop image can be distin-
guished from the rest packed images, we can have three charac-
teristic observables [15] as

θ∞ = um
DOL

, (16)

s = θ1 − θ∞ ≈ θ∞ exp

(
b̄

ā
− 2π

ā

)
, (17)

rmag = μ1∑ ∞
n=2μn

≈ 5π

ā log(10)
. (18)

In the above expression, θ1 is the angular position of the outer-
most single image, θ∞ is the angular position of the rest packed
images, s is the angular separation between the θ1 and θ∞, rmag

is the ratio of the flux of the first image and the all other images.
There is a time discrepancy between the two images because

the time taken by the light routes corresponding to the various
images is different. A further significant observable known as
the time delay is the interval between the creation of relativistic
images that take the source’s varying brightness into account.
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Fig. 8 Behavior of strong lensing observables θ∞ in strong field limit, as a function of the parameters a and l by considering that the spacetime
around the compact objects at the centers of Sgr A*(left panel) and M87*(right panel) is LMRBH spacetime

Fig. 9 Behavior of strong lensing observables s in strong field limit, as a function of the parameters a and l by considering that the spacetime
around the compact objects at the centers of Sgr A*(left panel) and M87*(right panel) is LMRBH spacetime
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Fig. 10 Behavior of strong lensing observable rmag, for LMRBH spacetime as a function of the parameters a and l. It is independent of the black
hole’s mass or distance from the observer

Finally, the time delay �T2,1 when the images are on the same
side of the lens can be tentatively calculated as follows [68]

�T2,1 ≈ 2πum . (19)

The source must be variable to measure the time delay, which
is not a stringent condition as variable stars are common in all
galaxies. It could calculate the time difference between the rela-
tivistic images by implicitly assuming these fluctuations, which
will manifest themselves with a temporal phase in all images.
From an observational standpoint, the accurate measurement of
the time delay has a significant advantage of dimensional mea-
surement of the system’s scale, which can be used to accurately
estimate the black hole’s distance.

3 Strong gravitational lensing by supermassive black
holes, Sgr A* and M87*

Assuming that Sgr A* and M87* as characterised by LMRBH,
we study the consequences of strong gravitational lensing by
these supermassive black holes. By computing observables viz.,
θ∞, separation s, and relative magnification rmag for different
values of parameter l, we contrast the lensing outcomes between
Kerr and LMRBH black holes. We depict our results in Figs. 8,
9 and 10, while Tables 1 and 2 show the lensing observables and
their deviation for various values of a, and l in comparison with
Schwarzschild (a = l = 0) and Kerr black hole (l = 0). Our
analysis of LMRBH as the lens reveals that the angular position
of images for Sgr A* and M87* is consistent with the EHT-
measured angular shadow diameters of Sgr A* and M87*. The
results in Tables 1 and 2 show that in the case of LMRBH, the
angular positions of images are larger than their corresponding
values in GR and vary slowly concerning the position of the
source β. In fact, the deviation from the Kerr black hole can
go up to 10.23 µas and 7.68 µas, respectively, for Sgr A* and
M87*, at a = 0.8 and l = 2.00, an effect too tiny to be observed
with current telescopes. Further, the separation s in the case
of LMRBH for Sgr A* and M87* range between 0.008–0.376
µas and 0.006–0.282µas, respectively. The angular separation
s between the first and other packed images due to the LMRBH

for Sgr A* and M87* is beyond the threshold of the current EHT
observation, and we may have to wait for the next generation
event horizon telescope (ngEHT) for this purpose. For higher
spin values, the angular separation s decreases with l while it
increases with l at lower spin levels. The relative magnifica-
tion of the first-order images are presented in Table 1 using
Eq. (15) for black holes in GR and LMRBH. The first-order
images by LMRBH are more highly magnified than the corre-
sponding images of black holes in GR, and the magnification
increases slowly with the parameter l. The LMRBH images are
brighter than their spherically symmetric equivalents, as indi-
cated by the quick decline in the flux ratio of the first image to
all other images with a (cf. Fig. 10). We have also calculated
the time delay for different black holes in nearby galaxies in
Table 3. The time delay of the first image from that of the second
image, �T2,1, for the LMRBH as Sgr A* and M87* can reach
up to 23.25 min and 554.36 h, respectively, while the deviation
from the Kerr black hole for Sgr A* and M87* is 8.93 min and
212.88 h, respectively. Observing the time delay in Sgr A* is
much shorter and more difficult for measurement. In the case of
M87*, the time delay can reach up to a few hundred hours, suffi-
cient for astronomical measurements, provided we have enough
angular resolution separating two relativistic images.

4 Constraints from EHT observations shadows of M87*
and Sgr A*

Black holes within the optically thin accreting region are antic-
ipated to display a dark “shadow” surrounded by a bright ring
[69,70]. The boundary of the shadow is determined by the pho-
ton ring, which principally relies on the black hole’s parame-
ters [71]. The application of the shadow in understanding near-
horizon geometry has sparked a flurry of activity in analyzing,
both analytically and numerically, shadows of black holes in
GR [12,34,72–93] and in LQG [53,54,94–96]. The EHT obser-
vation unveiled the shadows of supermassive black holes Sgr
A* and M87* [1,97] whose sizes are within 10 percent of the
Kerr predictions, furnishing another tool to explore the nature of
strong-field gravity. One can put constraints on potential devia-
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Table 1 Estimates for the lensing observables by considering supermassive black holes at the center of nearby galaxies as LMRBHs. We measure
the quantities a and l in units of the mass of the black hole, M

a l Sgr A* M87* rmag

θ∞ (µas) s (µas) θ∞ (µas) s (µas)

−0.8 0.0 33.760 0.008 25.365 0.006 8.522

0.5 34.194 0.009 25.690 0.006 8.492

1.0 35.440 0.009 26.627 0.007 8.415

1.5 37.363 0.010 28.071 0.008 8.312

2.0 39.804 0.012 29.906 0.009 8.203

−0.4 0.0 30.188 0.016 22.681 0.012 7.755

0.5 30.664 0.016 23.038 0.012 7.736

1.0 32.021 0.017 24.058 0.013 7.687

1.5 34.092 0.018 25.614 0.014 7.626

2.0 36.691 0.020 27.567 0.015 7.568

0.0 0.0 26.330 0.033 19.782 0.025 6.822

0.5 26.869 0.033 20.187 0.025 6.822

1.0 28.389 0.033 21.330 0.025 6.826

1.5 30.668 0.034 23.041 0.026 6.836

2 33.475 0.035 25.151 0.026 6.854

0.4 0.0 21.977 0.087 16.511 0.065 5.587

0.5 22.631 0.084 17.002 0.063 5.634

1.0 24.427 0.078 18.352 0.058 5.752

1.5 27.027 0.071 20.306 0.053 5.897

2 30.131 0.065 22.638 0.049 6.04

0.8 0.0 16.404 0.376 12.325 0.282 3.561

0.5 17.392 0.321 13.067 0.241 3.801

1.0 19.853 0.232 14.916 0.174 4.279

1.5 23.062 0.171 17.327 0.128 4.732

2 26.631 0.134 20.008 0.101 5.099

Table 2 Deviation of the lensing observables of LMRBH black holes from Kerr black hole for supermassive black holes at the center of nearby
galaxies for a = −0.40, a = 0.40 and a = 0.80. Here �(X) = XLMRBH − XKerr

a l Sgr A* M87* �rmag

�θ∞ (µas) �s (µas) �θ∞ (µas) �s (µas)

−0.40 0.50 0.476 0.0003 0.358 0.0002 −0.019

1.00 1.833 0.001 1.377 0.0009 −0.068

1.50 3.910 0.003 2.933 0.002 −0.130

2.00 6.503 0.004 4.886 0.003 −0.188

0.40 0.50 0.653 −0.002 0.491 −0.002 0.047

1.00 2.451 −0.009 1.841 −0.007 0.165

1.50 5.051 −0.015 3.794 −0.011 0.310

2.00 8.155 −0.021 6.127 −0.016 0.453

0.80 0.50 0.989 −0.055 0.743 −0.041 0.241

1.00 3.450 −0.143 2.592 −0.108 0.718

1.50 6.659 −0.205 5.003 −0.154 1.171

2.00 10.227 −0.241 7.683 −0.181 1.534
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Table 3 Estimation of time delay for supermassive black holes at the center of nearby galaxies in the case Kerr (a = 0.8) and LMRBH (a = 0.8
and l = 2.0). Mass (M) and distance (DOL ) are given in the units of solar mass and Mpc, respectively. Time Delays are expressed in minutes

Galaxy M(M�) DOL (Mpc) M/DOL �T s
2,1(Kerr) �T s

2,1(LMRBH)

Milky Way 4.3 × 106 0.0083 2.471 × 10−11 14.3254 23.2562

M87 6.15 × 109 16.68 1.758 × 10−11 20488.6 33261.8

NGC 4472 2.54 × 109 16.72 7.246 × 10−12 8461.98 13737.4

NGC 1332 1.47 × 109 22.66 3.094 × 10−12 4897.29 7950.38

NGC 4374 9.25 × 108 18.51 2.383 × 10−12 3081.63 5002.79

NGC 1399 8.81 × 108 20.85 2.015 × 10−12 2935.04 4764.82

NGC 3379 4.16 × 108 10.70 1.854 × 10−12 1385.9 2249.9

NGC 4486B 6 × 108 16.26 1.760 × 10−12 1998.89 3245.05

NGC 1374 5.90 × 108 19.57 1.438 × 10−12 1965.58 3190.97

NGC 4649 4.72 × 109 16.46 1.367 × 10−12 15724.6 25527.7

NGC 3608 4.65 × 108 22.75 9.750 × 10−13 1549.14 2514.91

NGC 3377 1.78 × 108 10.99 7.726 × 10−13 593.005 962.699

NGC 4697 2.02 × 108 12.54 7.684 × 10−13 672.96 1092.5

NGC 5128 5.69 × 107 3.62 7.498 × 10−13 189.562 307.739

NGC 1316 1.69 × 108 20.95 3.848 × 10−13 563.021 914.023

NGC 3607 1.37 × 108 22.65 2.885 × 10−13 456.414 740.953

NGC 4473 0.90 × 108 15.25 2.815 × 10−13 299.834 486.758

NGC 4459 6.96 × 107 16.01 2.073 × 10−13 231.871 376.426

M32 2.45 × 106 0.8057 1.450 × 10−13 8.16214 13.2506

NGC 4486A 1.44 × 107 18.36 3.741 × 10−14 47.9734 77.8812

NGC 4382 1.30 × 107 17.88 3.468 × 10−14 43.3093 70.3094

CYGNUS A 2.66 × 109 242.7 1.4174 × 10−15 8861.76 14386.4

tions from the Kerr, i.e., such as LMRBH stemming from LQG,
as the quantum effects cannot be overlooked in the strong-field
regime. Thus, the EHT observation results of M87* and Sgr A*
shadows can restrict the LMRBH-black hole parameters. We
confine the parameters (a, l) within the 1-σ level by using the
apparent radius of the photon sphere (θ∞) as the angular size of
the black hole shadow. We model the M87* and Sgr A* as the
LMRBH and use their shadow results to test the viability of our
model to explain the astrophysical black holes spacetimes.

4.1 Constraints from M87* shadow

In 2019, the EHT collaboration produced a ring of diameter
θsh = 42 ± 3µas as the first image of the supermassive black
hole M87* [1]. We find that, for all values of a and l, the Kerr
black hole, with a mass of M = (6.5 ± 0.7) × 109M� and
distance of DOL = 16.8 Mpc, casts the smallest shadow that
is contained inside the 1-σ region [1,98,99]. Figure 11 depicts
the angular diameter θsh as a function of (a, l) for the LMRBH
as M87*, with the black corresponding to θsh = 39 µas. The
LMRBH metric, when investigated with the EHT results of
M87* within the 1-σ bound, constrains the parameters (a, l),
viz., 0 < a ≤ 0.03684 and all values of l. Thus, based on
Fig. 11, LMRBH can be a candidate for the astrophysical black
holes.

4.2 Constraints from Sgr A* shadow

The EHT result for Sgr A* approximated the shadow diameter
θsh = (48.7±7)µas besides the emission ring angular diameter
θd = (51.8 ± 2.3)µas with the prior perceived estimates M =
4.0+1.1

−0.6 × 106Mo and DLS = 8.15 ± 0.15 kpc [97].
The EHT observation used three independent algorithms,

EHT-imaging, SIMLI, and DIFMAP, to find out that the aver-
aged measured value of the angular shadow diameter lies
within the range θsh ∈ (46.9, 50) µas. The 1-σ interval is ∈
(41.7, 55.6) µas. The average measured value of the angular
shadow diameter is within the range of θsh ∈ (46.9, 50)µas,
according to the EHT observation, which employed three inde-
pendent techniques, EHT-imaging, SIMLI, and DIFMAP. The
average strongly constrains the parameters a and l for the
LMRBH observed angular diameter of the EHT observation of
Sgr A* black hole i.e., θsh ∈ (46.9, 50)µas, which falls within
the 1 − σ confidence region with the observed angular diam-
eter such that 0.128662 ≤ a ≤ 0.27171 and all values of l
are allowed for the LMRBH. Thus, within the finite parameter
space, LMRBH agrees with the EHT results of Sgr A* black
hole shadow (cf. Fig. 11).
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Fig. 11 Shadow angular diameter θsh = 2θ∞ of LMRBH as a function
of (a, l). The black and black dashed lines correspond to the Sgr A*
black hole shadow at θsh = 46.9 µas and θsh = 50 µas, respectively,
such that the region between these lines satisfies the Sgr A* shadow

1-σ bound (left). M87* shadow angular diameter when considered as
a LMRBH. The black line is θsh = 39 µas, and the region contained
within it meets the M87* shadow 1-σ bound (right)

5 Conclusions

LQG faces challenges in testing its predictions because its
framework lacks rotating black hole models. We recently
addressed this issue, used a nonrotating LQG black hole as a
starting point, and applied the modified Newman–Janis algo-
rithm to construct LMRBH with an additional parameter l
[52,53]. This solution encompasses the Kerr black hole in the
limit l → 0. It can describe different regions of the parame-
ter space, including multi-horizon rotating regular black holes
[52,53]. The spacetime singularities are artefacts of classical
GR, as the prominent singularity theorems also predicted them.
However, it is a widespread belief that singularities do not exist
in nature and are the limitations of general relativity. Therefore,
it is instructive to explore gravitational lensing by LMRBH to
assess the dependence of observables on the parameter l and
compare the results with those for the Kerr black holes.

With this motivation, we have analyzed the strong gravita-
tional lensing of light because of LMRBH, which, besides the
mass M and angular momentum a, has an additional deviation
parameter l. We have examined the effects of the LQG param-
eter l on the light deflection angle αD(θ) and lensing observ-
ables θ∞, s, rmag, um , in the strong field observation, because of
LMRBH and compared them to the Kerr black holes. By study-
ing the observational implications of the gravitational lensing
by this LMRBH, we can constrain the fundamental parameter
l of LQG. Indeed, we can achieve the analysis of strong fields
and the testing of theories of gravity using gravitational lensing,
which is a powerful tool. Comparing lensing by different grav-
ities within the strong-field limit is valuable. In this scenario,
the LMRBH model provides an exciting opportunity to discuss
the observational signatures of LQG over the Kerr black hole of
general relativity. Our investigation focuses on the gravitational
lensing of light around the LMRBH in the strong deflection lim-

its, which reveals that photons get deflected from their straight
path and result in multiple images of a source depending on the
impact parameter u of the photon. At u = u ps , photons follow
circular orbits around the black hole, and the deflection angle
diverges. Interestingly, the unstable photon orbit radius xps , the
critical impact parameter u ps increase with l. We also found an
increase in deflection angle with l such that the LMRBH leads to
a larger deflection angle than the Kerr black hole, and the deflec-
tion angle diverges at larger u ps for larger l while at smaller u ps

for larger a.
By considering the spacetime to be defined by the LMRBH,

we estimated the lensing observables θ∞, s and rmag of the rel-
ativistic images for supermassive black holes, specifically Sgr
A* and M87*. LMRBH exhibit potentially apparent distinctions
from the black holes in general relativity in its predictions for
gravitational lensing caused by supermassive black holes. The
presence of parameter l rapidly increases θ∞ when compared to
the Kerr black hole. We observe that θ∞ for Sgr A* ∈ (16.40,
39.80)µas and its deviation from its GR counterpart can reach as
much as 10.22 µas. While for M87* ranges between 12.32 and
29.91 µas, and deviation is as high as 7.68 µas. The separation
s decreases, with increasing l, for the prograde motion while
it shows opposite behaviour for the retrograde motion. More-
over, the deviation in separation s with l for retrograde motion
is much smaller than the prograde motion. The separation s due
to LMRBH black holes for Sgr A* and M87* range between
0.008–0.376 µas and 0.006–0.282 µas, respectively with the
deviation from Kerr black hole can go as much as 0.241 µas
for SgrA* and 0.181 µas for M87*. Compared to the analogous
images of black holes in GR, the first-order images of LMRBH
are significantly magnified. With increasing l, the magnification
increases for the prograde motion but shows opposite behaviour
for the retrograde motion with the relative magnitude rmag ∈
(0.047, 1.54). Also, the deviation in magnification with l for
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retrograde motion is smaller than the prograde motion. Finally,
the time delay �T2,1 for Sgr A* and M87* deviate significantly
from the Kerr black hole by 8.93 min and 212.8 h, respectively,
and for the LMRBH as Sgr A* and M87*, �T2,1 can reach
up to 23.25 min and 554.3 h, respectively. The time delay in
Sgr A* is smaller and more challenging to measure. If we have
enough angular resolution to distinguish between two relativistic
images, the time delay with M87* can be as little as a few hun-
dred hours, which is sufficient for astronomical measurements.
We show how the shadow-size measurements significantly con-
strain the deviation parameters for the LMRBH. From M87*
results of EHT, we found that 0 < a ≤ 0.03684 and all val-
ues of l are allowed. The EHT results of SgrA* strictly allow
0.128662 ≤ a ≤ 0.27171 and all values of l. Thus, the LMRBH
parameters a and l are constrained by the EHT bounds on θsh of
SgrA* and M87*, within the 1σ region, such that a significant
portion of the BH-I and BH-II parameter space and small por-
tion of BH-III agrees with the EHT results of SgrA* and M87*,
whereas the NH spacetime is entirely ruled out. We have found
that the results obtained by the Event Horizon Telescope (EHT)
for Sgr A* impose stricter constraints on the parameter space
of LMRBH than the limits established by the EHT results for
M87*.

The primary constraint of our approach is that the LMRBH
metric is not a result of the direct loop quantization of the Kerr
spacetime. The LMRBH has thrilling properties, e.g., a transi-
tion surface substitutes the classical ring singularity in the Kerr
black hole and provides a singularity solution of the Kerr black
hole. Thus, we can expect that LMRBH captures some descrip-
tion of LQG. Our analysis reveal that LMRBH being BH-I with
one horizon and BH-II with Cauchy and the event horizons are
also observationally favoured with no restriction on LQG param-
eter l.

The results presented here generalize previous discussions
on black hole lensing in GR and our results go over to Kerr and
Schwarzschild black holes in the limits, l → 0, and a, l → 0
respectively. Although resolving the order estimated in SDL is
challenging, the outlook for future observations looks bright.
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