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Abstract A new systematic approach extending the notion
of frames to the Palatini scalar—tensor theories of gravity in
various dimensions n > 2 is proposed. We impose frame
transformation induced by the group action which includes
almost-geodesic and conformal transformations. We charac-
terize theories invariant with respect to these transformations
dividing them up into solution-equivalent subclasses (group
orbits). To this end, invariant characteristics have been intro-
duced. The formalism provides new frames incorporating
non-metricity that lead to re-definition of Jordan frames. The
case of Palatini F'(R)-gravity is considered in more detail.
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1 Introduction

Despite many theoretical and experimental triumphs [1],
including recent detection of gravitational waves [2], general
relativity is not considered a fundamental theory describing
gravitational interactions; see e.g. [3—8]. Based on our current
understanding of the workings of Nature, a few arguments
for modifying it can be given. First of all, GR cannot be
satisfactorily quantized, as attempts to renormalize it have
been futile. Secondly, it is not a low-energy limit of theories
regarded as fundamental, such as bosonic string theories [9],
where dilaton fields couple non-minimally to the spacetime
curvature. Another problem concerns the ACDM model: itis
customary to consider that the value of A being responsible
for the current acceleration of the expansion of the Universe
is usually incomprehensibly small (120 order of magnitude
smaller) when compared to the value predicted by quantum
field theory. In fact, more realistic estimations taking into
account Pauli—Zeldovich cancellation effect, quantum field
theory in curved background or supersymmetry, make this
discrepancy not so drastic (for more discussion see [10-12]).
As far as the mathematical reasons for modifying the Ein-
stein’s gravity are concerned, we can take the so-called Pala-
tini formalism into consideration. In the standard gravity,
the underlying assumption of geometric structures defined
on spacetime is that the affine connection is the Levi-Civita
connection of the metric. In the Palatini approach, however,
we consider these two objects as unrelated, since there is
no reason whatsoever we should impose a relation between
them a priori. In case of Einstein gravity, introducing Palatini
formalism does not affect the resulting field equations in any
way; however, in case of more complicated theories, such as
scalar—tensor or F'(R) theories of gravity, both approaches
usually give different results, describing different physics.
Palatini formalism has been investigated especially in the
context of cosmological applications [13-21].
Scalar-tensor (S—T) theories of gravity are a very promis-
ing modification of the Einstein gravity. In these theories, a
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scalar field is non-minimally coupled to the curvature scalar
[22]. Historically, the prototype of all contemporary scalar—
tensor theories was the Brans—Dicke theory [23]. An inter-
esting feature of the scalar—tensor theories of gravity is their
equivalence to the F'(R) theories, which basically means that
the latter can be analyzed using the “mathematical machin-
ery” developed for the former [24]. The reason why the
scalar—tensor theories deserve some attention is that they
can be successfully used to build credible models for cosmic
inflation [25] (utilizing the equivalence between the scalar—
tensor and F (R) theories of gravity) and dark energy [26].

Hitherto, the scalar—tensor theories of gravity have been
considered mostly in a purely metric approach [13,22,26—
30] and the possible effects of adopting the Palatini approach
have been analyzed somewhat less commonly

[31-54]. So far, general conditions for a correct formula-
tion of the scalar—tensor theories have been analyzed [34].
Change of formalism from metric to Palatini applied to S—
T theories has been investigated in the context of cosmol-
ogy, to analyze the problem of cosmological constant [35],
quintessence — to show that equation of state in the Palatini
formalism can cross the phantom divide line [36], and infla-
tion, where it was discovered that in the Palatini approach
[37-45], inflationary epoch is naturally provided [37—40],
and almost scale-invariant curvature perturbations are gen-
erated with no tensor modes [46]. Some authors general-
ized scalar—tensor theories and allowed non-minimal deriva-
tive coupling as well [47-52]. In such theories, one makes
extensive use of so-called “disformal transformations”. It was
shown that for a special choice of parameters characterizing
the theory, adopting Palatini approach allows one to avoid
Ostrogradski ghosts [47]." Also, vector-Horndeski theories
were analyzed with the metric structure decoupled from the
affine structure. It was proven that in the Palatini formalism,
there exist cosmological solutions which can pass through
singularities [53].

The main goal of this paper is to introduce the general the-
ory of scalar—tensor gravity analyzed in the Palatini approach
and to develop mathematical formalism enabling us to ana-
lyze any S-T theory in a (conformally) frame-independent
manner. The outline of this paper? goes as follows: in the
first part, postulated action functional will be presented, and
equations of motion derived. Next, modified conformal trans-
formations in the Palatini approach will be introduced in
order to allow the connection to transform independently of
the metric tensor. A solution of the equation resulting from
varying with respect to the independent connection will be
inspected. Then, following the procedure carried out in [26]

1 It should be noted that the disformal transformations can be combined
together with the conformal transformations considered in the present
paper, see e.g. [48].

2 This is an extension of the results obtained initially in [55].
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(see also [27,29]), invariant quantities defined for the Pala-
tini S—T theory will be obtained. The results will be applied
to an analysis of F'(R) Palatini gravity. In the last part, gen-
eral conditions on the possible equivalence between a given
S-T theory and some F(R) gravity will be discussed. For
reader’s convenience, some supplementary material is col-
lected in four Appendices.

2 Action functional and equations of motion

The main idea behind the Palatini approach is the following:
we no longer consider metric tensor and linear connection
to be dependent on each other. This approach was originally
analyzed by Einstein [56], but then was attributed to an Italian
mathematician Attilio Palatini [57,58]. In this approach, one
decouples causal structure of spacetime from its affine struc-
ture (which determines geodesics followed by particles). In
practical terms, Palatini formalism amounts to varying the
action functional with respect to both the metric tensor and
the torsionless (i.e. symmetric) affine connection, resulting
in two sets of field equations. One of these sets establishes a
relation between the metric and the connection. There is no
particular reason to apply the Palatini variation to the stan-
dard Einstein—Hilbert action, as in that case the independent
connection turns out to be Levi-Civita with respect to the met-
ric tensor, i.e. related to the metric by the standard formula:
Iy, = %g“ﬁ (0u8pv + 0vgBu — 088uv). However, in case of
more complicated theories, such as F(R) theories of grav-
ity, where the curvature scalar in the Einstein—Hilbert action
is replaced by a function of it, both approaches give physi-
cally incompatible results, leading to different field equations
describing different physics in the presence of matter sources.
Instead, in the vacuum case, the Einstein equations enriched
by adding cosmological constant are still valid [59,60].

Consider a triple (M, I', g), where M is n-dimensional
n > 2 manifold® equipped with a torsion-free (= symmetric)
connection I' = I'j;, = I'], and a metric tensor g = gy,
possibly of the Lorentzian signature. The affine connection
is used to build the Riemann curvature tensor:

R% 5 (1) = 9pT%, — 3,1, + T% T, —T% T . (1)

The curvature scalar is a function of both the connection
and the metric tensor:

R(g.T) =g""Ruu(T), @)

where Ry, (I') = R, ().
Utilizing the Palatini approach, we want now to write

down the most general action functional for scalar—tensor

3 For two-dimensional case see e.g. [33,59].
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theories, which is consistent with some class of transforma-
tions (see explanations below and Appendix B). The action
should contain a scalar field ® — or a function thereof —
non-minimally coupled to the curvature defined above and
possibly to the matter fields. Furthermore, one must include
also a kinetic term rendering the scalar field dynamic, and a
self-interaction potential of the field. Presence of additional
terms resulting from the approach we adopt, absent in the
metric version of the theory, cannot be excluded.
Therefore, we postulate the following action functional:

1
Slguv, Ty, 1= Z—ICZ/Qd"X«/—g[A(CD)R(g, )

— B(®)g"'V, dV, d
— Al (g. D)C1(P)V, @

— 45 (. DGOV, & — V(@) |
+ Smatter[eza(cp)g;w» x1. 3)

This action functional contains six arbitrary functions of one
real variable: {A, B, Cy, C2, V, a}, which after composing
with the scalar field ® become the scalar functions on the
spacetime M. They provide, together with the dynamical
variables (T, g, ®), the so-called frame for the action (3).
A change of frame is governed by a consistent action which
will be introduced later on. Some of these coefficients have
exactly the same meaning as their metric counterparts (cf.
Appendix A), i.e. A describes coupling between curvature
and the field, B is the kinetic coupling, V is the potential of
self-interaction of the scalar field, while non-zero o means
that the action functional features an anomalous coupling
between the scalar and matter fields x. One requires A be
non-negative, otherwise, gravity would be rendered a repul-
sive force. The coefficients C; and C> do not have a clear
interpretation yet. Their inclusion in the functional is a direct
consequence of the Palatini approach we adopted; they do
not appear in the metric S-T theory.

Two vectors A} and A} are also a novelty. They are con-
structed purely from metric and linear connection, and their
presenceis adirect result of lack of a priori established depen-
dence of the connection on the metric tensor. The two vectors
are defined to be:

A (g, T) = "¢V, gap = 8" 8% Qrap. (4a)
AY (g, T) = —g" g Vygup = —8"" 8% Qg (4b)

The V operator is defined with respect to the independent
connection, hence covariant derivative of the metric tensor
does not have to vanish in general. The extent to which theory
fails to be metric is quantified by the so-called non-metricity
tensor Qg v = Vaguv-

The form of the action functional follows necessarily from
our requirement that the action remain form-invariant under

conformal and almost-geodesic transformations, accompa-
nied by a re-parametrization of the scalar field. This condition
states that if one changes the metric tensor, the connection
and the scalar field according to the transformation relations
given below (we shall call such transformation “changing
the frame”, and the choice of particular metric, connection
and scalar field — “(conformal) frame”), solutions to the field
equations are mapped into corresponding solutions obtained
in the transformed frame.

Palatini approach is based on the assumption that the met-
ric and the symmetric connection are independent quantities
and thus should transform independently of each other. In the
standard approach only the metric tensor is transformed, and
the Levi-Civita connection, being a function of the metric,
changes accordingly. In our case, one must devise a way to
transform these two objects separately, as it should be possi-
ble, for instance, to conformally transform the metric while
keeping the connection intact. We introduce the following
transformations (cf. [32]):

g/w = ezyl((b)g/w, (5a)
Lo, =T%, +26% 0 (P) — guvg™ dpys(®), (5b)
O = f(P). (50)

These transformations are invertible:

8uy = 62)}‘@)@“}, (6a)
re, =T%, +26% 0, 72(®) — §uug*P0p73 (@), (6b)
= f(D), (6¢)

so that the transformations and their inverse are related in the
following way:

‘})i =-Yio f’ (73)
f=r (7b)

The transformations are governed by three smooth functions
of the scalar field: {y1, y2, y3}, depending on the space-time
position indirectly, through the scalar field y; (®(x)). Equa-
tion (5¢) provides the possibility of field re-definition by the
diffeomorphism f € Diff(R) (see Appendix B). Equa-
tion (5a) clearly represents the conformal transformation of
the metric tensor. It can be further generalized to include the
disformal transformations of the metric tensor, given by:

8uv = 62)71@))(@;1,1) + D(é)aua)au&),

with a disformal factor D(®); for an example of disformal
transformation use within the Palatini framework, see [47].
In this paper, however, we limit our attention to the case when
D(®) = 0.

@ Springer
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Equation (5b) is called a generalized almost-geodesic
transformation of type m3; the word “almost” suggests that
one needs to distinguish between the transformation (5b)
and a transformation which genuinely preserves geodesics
on the space-time (see Appendix D). In fact, if the function
y3 was equal zero, one would have precisely the geodesic
transformation of the affine connection. The new connection
preserves also the light cones, leaving the causal structure
of spacetime unchanged. If all functions y; were equal, one
would recover standard conformal transformation formulae,
identical to the case when the connection is Levi-Civita with
respect to the metric tensor. One can also think of the trans-
formation as Weyl transformation, i.e. without assuming that
the connection is metric; in particular setting y| # y2 = y3.

One obtains field equations in the standard way, varying
with respect to all independent variables entering the action.
Unlike in the metric approach, now it is also necessary to vary
w.r.t. the linear connection. Three sets of resulting equations
are given below:

Metric:
1
- Eguuﬁ(fb, g D)+ A@) Ry (I') — B(P)9d, @3, P
+ Cé(@)aucbavd) — Ci (d))gu,)g”’g 0o Pog P
+C(P)V, V, @ — Ci (D) gD

1
+ 0pr; 0o P [ECQ(®)5&3£})gM

1
—C1(®) <§gwg”ﬁg“ — gug”teft + 6;’,155)5'“)]

= KZT,“,,
(8)
Connection:
Ve [ V8 (87€85 — 8755 )]
C2(®) — 2C1 (@) — A'(P)
Y acsh) (22
=V ek [g % ( A(®) >
—Co(P) — A'(P)
g [ _Z2AFS O RAEI
80 ( A(®) )} ’
9
Scalar field:
A (®)R(g, T) + B (9)g"d,dd,® + 2B(P)Id
+2B()3, D Q0 (%g’“g”"S - g““gﬁ”)
1 "
+ \/T_g [C1(®)V, (V=28A](g.T))
+Co (D), (V—gAL (5. 1))] = V' (®) = 22/(D)T,
(10)

@ Springer

where T, = —\/%Wg#, L is simply the gravi-
tational part of Lagrangian; furthermore, all primes denote
differentiation with respect to the scalar field ®.

An analysis of the equations written above will not be par-
ticularly illuminating unless one inspects the equation result-
ing from varying with respect to the affine connection. As
it turns out, it is always possible to find a frame in which
the independent connection is the Levi-Civita connection of
the metric tensor g;,,. One transforms the connection using
Eq. (5b), with y, and y;3 specified by the field equations.
Denoting the Levi-Civita connection of the metric tensor g,
by { :v ]g, we find out that it is related to the initial indepen-

dent affine connection in the following way:

re = { ] + F ((I))(Sa 0D — Fr(P) “’38 o
v vl 1 (nov) 2 8uv8 B
(1)

where the functions Fj, 7, of the scalar field ® take the
form:

2C1(®@) + (n = 3)Cao(P) + (n — DA(P)

F1(®) = A®)(n — DH(n —2)
and
Ay = 1@ —C®) + A (@)

A(P)(n —2)

This result simply means that one can always choose a frame
in which the theory is effectively metric, with vanishing vec-
tors A’f , Ag . More generally, if C; = C = C, then one has
Fir=F=F= %%M_(;) and the metric providing the
connection has the form exp ( [ F(@)d® ) guv- This gives a
link to the so-called C-theories of gravity studied recently in
[61-63].

Since the connection can be always solved in terms of the
metric and the scalar field, there are no additional physical
degrees of freedom carried by it. The connection always turns
out to be an auxiliary field [64].

The relation (11) is defined by two functions, which in
general (except the case mentioned above) are not equal. One
can identify them as the functions y, and y3 relating affine
connections of two different frames. Frame, in which the the-
ory turns out to be fully metric, can be obtained by plugging
back the connection (11) in the action functional (3). Such
a change of frame should not affect the form of action func-
tional (otherwise solutions of equations of motion in one
frame would not be mapped to solution in another frame,
which would contradict one of our basic assumptions), and
the coefficients {4, B, C1, C2, V, o} will change in a way that
preserves the functional form of the action. Exact transfor-
mation relations will be presented in the next section.

Because the transformation (5b) depends on two indepen-
dent parameters, one cannot in general end up in a frame
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in which the initial independent connection is Levi-Civita
with respect to some metric tensor, as the transformation of
the metric is governed by a single function y;. However, if
C1 = Cy, then it is possible to transform the metric tensor in
such a way that the initial independent connection becomes
a Levi-Civita connection of the transformed, new metric.

3 Transformation formulae

Redefinition of the transformations leads to a modification
of conformal mapping formulae for all quantities built from
the connection, i.e. Riemann tensor and its contractions. This
is an obvious consequence of decoupling metric tensor from
the connection. In the metric approach, transformation of the
Riemann tensor is fully determined by the way the metric
transforms; here, one must take into account the fact that the
transformation is governed by the functions y, and y3. Addi-
tionally, covariant derivative of the metric does not vanish
in general, and this fact plays an important role in the pro-
cess of deriving transformation relations. If the calculations
are performed in n dimensions, requiring the transformations
be defined by Egs. (5a)—(5¢), the formulae relating Riemann
tensors of two different conformal frames are the following:

= R%, +82VpV,75(®) — 84V, V, 12 (®)
— 8V (P)Vu12(®) + 85 Vi1 (P) V. 72(P)
+ 8.8 Vo Va3 (@) — 2,08 VpVaya (®)
+ 828,87 Vo 73 (D) Vi 72 (P)
— 842,08" Vo 73 (P) V1 72(P)
+ 2% 210 Vo 73(@) Vg 73(D)
— 82,8V y3(P)V, 13 (P)
+ 8V 2up Va3 (®) — 24 Vg2, Vays (®)
+ 8up Vo2 Vi (®) — 2,0 V¥ Virs(P).
(12)

o
Ruﬂv

The formula for the (symmetrized) Ricci curvature tensor
reads as follows:

Ry = Ry — (0 = DV Vo1 (@) + V, V, 73(P)
+ (1 = DV (@) Vi (@)
— V3 (@) Vu73(P) — 2,008 Ve Vp73(P)
— (1= Dgug*Vay3(®) Vg1 (D)
+ 2108 Va3 (D) V73 (D)
+ [08 8 Vuipo — F Vi | V173 (®).
(13)

Finally, contracting the previous formula with the metric ten-
sor, we get an expression for the Palatini—Ricci scalar:

R=e @R~ 1g" 9,9, (72(®) + 5($)
+<§’w<§)ﬂ (”l@ug’vo - _vau>§)\173(q_>)
+(n = DEM (V32 (D) Vy 72 (D)
—nVu @)V 7(®) + V@ V@) | (4)
In the Weyl case y3 = y» + const one gets
R—=e¢ 2N (é)[,@ —2(n — DGV, VP (®)
+ 878 (29800 — Vo) V72 (®) (1)

— (1= D1 = " V72 (@), 72() .

When y» + y3 = const the expression (14) reduces instead
to

R = e—2)71(<i>) I:R + g’lwé_’)ﬂ (nﬁugvo - 603_’11“)6)\7;2(&))
1= D +2)8" 9,72V 2 @) . (16)

Since the functions y; and y3 do not depend on the space-
time position explicitly, derivatives of these quantities can be
cast in the following form:

V,74(®) = dng) Vb = 79,
where i = 2, 3.

Conformal transformation and almost-geodesic mapping,
accompanied by re-definition of the scalar field, applied to
the three independent variables should map solutions of equa-
tions of motion in one frame to corresponding solutions in
another frame. For it to be true, the way functions {4, ..., o}
transform must be governed by equations analogous to (A.6),
as the action functional needs to preserve its form. The con-
dition of form-invariance of the action leads to the following
transformation equations for the five independent scalar field
functions:

A(@) = " IN@ Af(@)),
B(®) = "N B(f(@)(f' ()

(17a)

+ (1= D (nAG@N7@)F(®)
— AF(®) (4 (®))°
— AF(®) (7 (®)°

dAF(®) ., = . =
- df—&)m«b) + (@)

— (1 = DA @NH @) FH(®) + 74(®))

@ Springer
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+ @ (@)@
=200+ D@ +27(®) — (@) T ()
— 1+ HT@) + (n+ DFH@)) . (17b)

C1(®) = "M@ [ F(@)Cy(f(®))

—A(f (@) (" S L@ + " > 3%@))} ,
(17¢)
C2(®) = "M@ F@)Ca(f(B))
— AGF@) (0= D@ - @) | (170)
V(@) = M @V(f(d)), (17e)
&(®) = a(f (D)) + 71 (D). (17f)

These transformations are induced by the transformations
(52)—(5¢) of independent variables which are invertible.
This means that (17a)-(17f) allow us to transform solu-
tions obtained in one frame into another, therefore we have
split theories given by the action (3) into classes which are
solution-equivalent. Next task is to find a typical represen-
tative in each class. One choice mentioned before is the so-
called Einstein frame, another one is known as the Jordan
frame.

As we can see, some of the transformation relations
involve nothing but a simple multiplication of the “old” coef-
ficients by a factor related to the transformation of the metric
tensor. These relations do not depend on the approach we
adopt — they retain the same form regardless of whether we
work within metric or Palatini formalism. However, coeffi-
cients C1, C2 and B transform in a more complicated way
depending on whether the theory is metric or not. The trans-
formation relations preserve the sign of the A4 coefficient.
Similarly, if 5 is subject to a scalar field re-parametrization
only, then its sign does not change as well. By the same token,
if the potential V vanishes in one frame, it cannot emerge in
any other.

Due to our freedom of choice of three functions {y1, y2, ¥3}
and re-parametrization of the scalar field ® = f (P), it is
always possible to fix four of the above six coefficients. We
shall call such fixing “choosing a frame”, as it was mentioned
before. If we specify the remaining two functions, we choose
a theory. For example, the four functions {y1, y», y3, f} can
be chosen in such a way that four coefficients {B, Cy, C», o}
vanish, simplifying the calculations. Results obtained in a
given frame can be always “translated” to another frame if
the two frames can be related by a conformal transformation
accompanied by a re-parametrization of the scalar field. It
must be also noted that increased number of functions used
to change the frame (from two in scalar—tensor theory in the
metric approach — see Appendix A — to four in case of the

@ Springer

Palatini formalism) result in additional coefficients appear-
ing in the action functional. However, analogously to the
metric case, despite the fact we are able to fix four of them,
we are always left with two functions, defining the particular
theory.

Conformal and generalized almost-geodesic transforma-
tion establish a mathematical equivalence of two frames. On
the physical ground, they may constitute two very differ-
ent theories [65-73]. The multitude of equivalent theories
poses a problem of identifying frames which can be related
by the transformations given by Egs. (5a)—(5¢). Such frames
may bear no resemblance to one another and yet, be two dif-
ferent manifestations of the same theory, but written using
different variables. This situation suggests that it would be
desirable to formulate the general scalar—tensor theory in a
frame-independent way, fully analogous to the way GR cir-
cumvents the problem of deciding upon the “right” coor-
dinate system to describe physical phenomena by resorting
to the language of tensors, allowing one to write equations
in a covariant manner. In case of scalar—tensor gravity in
the Palatini approach, we decided to follow on [26] and find
invariant quantities built from coefficients {A, . . ., «}, metric
and connection, whose values are independent of the choice
of frame — just like, for instance, value of R* vRa”“ B does
not depend on our choice of coordinate frame. This anal-
ogy, however, should not be taken too seriously, as gen-
eral covariance in case of GR is a consequence of the fact
that our description of Nature should not depend on an arti-
ficial construct of coordinate frame, whereas such invari-
ance of physical laws is not present when changing con-
formal frames. For example, geodesic curves, due to covari-
ant formulation of geodesic equations, are the same in every
coordinate frame; on the other hand, if the mapping (5b)
is applied, geodesics are not preserved (unless y3 = 0),
thus leading to emergence of an unobserved “fifth force”,
causing particles to deviate from their standard trajectories,
see e.g. [74] for application to explaining galaxy rotational
curves.

4 Invariant quantities and their applications

In order to check whether two frames can be conformally
related, we may introduce the notion of invariants [26]. The
invariants are quantities which are built from the functions
{A, B,C1, Ca, V, o} such that their functional dependence on
them is the same in every frame. Also, their value at a given
spacetime point remains unchanged. If the invariants calcu-
lated for one theory coincide with the invariant quantities
computed for another one, we can always find a conformal
transformation relating these two theories (this transforma-
tion, however, may not obey group composition law, and the
solutions to equations in both frames may not be mathemat-
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ically equivalent). The way the invariants are constructed
comes from transformation properties of the five arbitrary
functions. Some of the functions get multiplied only by a
factor, while the coefficients 13, C; and C; transform in a
more sophisticated manner. Taking this into account, we can
find the correct combinations of the functions giving us quan-
tities expressed in terms of the same coefficients irrespective
of the frame we are in. Two exemplary invariants are given
below*:

AP
L@ = s (18)
)
L) = — 2 (19)
(A@))72

In four dimensions, the invariant 7Z; characterizes the
non-minimal coupling [75]. Apart from the case when
A = &2 its constancy means that both A and 2 are
some numbers, implying that in such theory scalar field is
entirely decoupled from curvature and matter. The invari-
ant 7, generalizes the notion of self-interaction poten-
tial. It should be obvious that any function of the invari-
ants is invariant itself. Moreover, spacetime derivatives of
the invariants are invariant, as well as derivatives with
respect to other invariants (if we treat an invariant as
a function of another invariant quantity) [26]. It is also
possible to construct invariant metrics and connections.
In the case of the metric there is no unique way of
doing so, but in this paper, only two possibilities will be
considered:

~ 2

uy = (A(D)) -2 8uvs (20)
or

guv = e2a(¢)guu- (21)

As for the affine connection, it is possible to choose the fol-
lowing:

0o, =Tf, = 2P1(®)87,00) @ + g™ P2(®)3p P, (22)

v

where:

_ 2C1(®P) + (n — 3)Ca (D)
PU®) = = - D=2
and
Py(®) = —2C1 (D) 4+ Cr(D)

A(®)(n —2)

From a purely algebraic point of view, invariance of the
quantities given above means that when changing the frame,

4 In [26], this invariant is defined as Z; (®) = j%")’ (in four dimen-
sions).

the additional terms multiplying the metric or added to the
connection transform in a way balancing out multiplicative
or additive terms containing transformation-defining func-
tions Y1, y» and y3. Their physical invariance is much more
profound a can be a subject for various phenomenological
speculations (see e.g. [76-78]). It is obvious that confor-
mal transformation of the metric tensor does not preserve
the line element on a (pseudo-)Riemannian manifold due to
the fact that conformal change is not equivalent to a sim-
ple coordinate transformation. Thence, two observers using
conformally-related metric tensors will agree only on the
causal structure of space-time but will measure distances dif-
ferently; the same can be said about affine connections used
to determine geodesic curves. Observers of different frames
will, in general, disagree on whether a test particle moves
along its geodesic, as the general almost-geodesic mapping
(or conformal transformation in case of the purely metric
approach) changes geodesics (except for the null ones) on a
given space-time. Introduction of invariant metric tensors and
connections aims at resolving — at least partially — this ambi-
guity. If two observers of different frames agree on using the
same invariant quantity to describe geometry, the measure-
ments they make shall give exactly the same outcome. In case
of the invariant metric, all distances will be the same, while
the invariant connection guarantees invariance of geodesic
curves. There is, however, more than one invariant metric
(and in fact, there are also multiple invariant connections,
but in this paper, we introduce only one), so that no unique
way of choosing invariant objects to describe the geometry
of space-time exists.

4.1 Integral invariants

Let us define the following quantity”:

(@) = / <ﬁ: (n —2)A(P)B(P) + 2A/(P)[C2(P) — nCi(P)]
(n —2)A(P)?

(n* = 5)C2(P)? — 4C1 (@)* +2(4 + n — n®)C1(P)C2 (D)) ) :
+ dd.
(n—2)(n —1)A(P)?

(23)

Such quantity is a genuine invariant for arbitrary transforma-
tion {£, y1. 2. y3} € DLEED (R).
In four dimensions, the quantity Zz° can be written as:

> This is integral invariant, which is determined up to arbitrary integra-
tion constant. The choice of the sign =+ in (23) has to ensure positivity
of the expression inside the square root.

% From now on, all invariants shall be written without the superscript
denoting the number of dimensions if n = 4.
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To(®) = / < L A@B®) - 2C1®)? — 3C1(P)C2 (D) + L Co (D)2 — 4C1 () A' (D) L Q@A)

A(D)?

1
2
AP ) do. 24)

It will be shown later on that in the Einstein-like frame it
plays the role of the scalar field.

In can be noticed that the function A(®) in the denomi-
nator of (23) can be replaced by e ~2%(®) without changing
its transformation properties. We will arrive at an invariant
closely related to Z%.. Its importance shall be revealed while
investigating different frame parametrizations of the S—T the-
ories.

(@) = f o~ 2@ ( L (1= DA@B®) + 2A(D)Co(®) — nCy ()]
(n —2)A(D)

" (1 = 5)C2()? — 4C1(P)* +2(4 + 1 — n?)C 1 (P)C2 (D)) %dCD
(n=2)(n — 1) A(®) ) )

(25)

This invariant was given the subscript “J” to indicate that
it arises naturally in the Jordan frame. It is obvious that if 7},
vanishes, so does 7.

5 Einstein and Jordan frames, and their invariant
generalizations

So far, we have been using terms “Jordan/Einstein frame”
without defining it in an unambiguous way. As it is widely
known, the notion of a (conformal) frame has been applied
to an analysis of the S-T theories primarily in the metric
approach. It is straightforward to extend the concepts of Ein-
stein and Jordan frames to Palatini theory as well. We define
the former in the following way:

Definition 5.1 The Einstein frame in the Palatini theory is
characterized by specific values of four out of six arbitrary
functions {A, ..., a}: A=1, B = epalatini, C1 =C> =0.
The action functional is given by:

Slgk (P, @1 = 5 /Q d"x/ g (R TF)
— cpuaini (85)" V, OV, ® — V(@)
+ Smatter [eza@)g,}fw X] ;
where €palatini = (&1, 0) is a three valued function.
It follows from the very definition that there are three

types of Einstein frames, depending on the value of the
parameter €p,jaiini, Which cannot transform each other by a
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diffeomorphism.” In the simplest case y; = y» = y3 = O its
values can be identified with the signature of 5, i.e. €pjaini =
sign(B). In fact, Einstein frames can be labelled as a triple
(€palatini, V, @). They include the original Einstein—Hilbert—
Palatini action as a particular case: €pylaini = V = o« = 0.
One should notice that the frames with €pajatini = O are
singular in the following sense: scalar field re-definition by
an arbitrary diffeomorphism f € Diff(R) transforms one
Einstein frame into another (within the same orbit) without
changing the value of epyjaini = 0. This is not the case for
€palatini = *1: such frames are not preserved under diffeo-
morphisms. In the Einstein frame, the choice €pjatni = +1
suggests that the scalar field has positive energy, whereas for
€Palatini = — 1, the theory features a ghost8 [22].

Because the transformations (5a) and (5b) act in a self-
consistent way, any theory has a mathematically equivalent
Einstein frame representation. Therefore, all possible scalar—
tensor theories in the Palatini approach can be also labelled
by the triple (€palatini, V, &) in the Einstein frame.

More generally, one can show (cf. (29b)) that the theory
written in the Einstein frame becomes effectively metric.

For completeness, let us also write the invariants we have
introduced so far for the Einstein frame:

I (®) = e~ "7PP), (26)
7(P) = V(®), (26b)
T (P) = /Eepatatini (P — Po). (26¢)

As one can see, the quantity 7}, plays the role of the scalar
field in the Einstein frame.

In order to understand better how the invariants can be used
to find out whether a given theory is equivalent to some other
theory written in the Einstein frame via transformations (5a)—
(5¢), let us consider the following example: an S—T theory is
described by the action functional:
b= 5 [ @/ [ AdRE D)

2k 2 Q
—B(®)§"'V,dV,d
—AY (g, T)C1(D)V, P

SI&uv. 7%,

7 However, it can be changed by making use of disformal transforma-
tions [47].

8 In the metric case, when one considers weak-field approximation,
due to the presence of non-minimal coupling, the negative value of the

parameter €paatini does not necessarily mean that the physical, interact-
ing field is a ghost, even if the initial field ® is [22].
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— A (3. 1)y (D), D — D(cb)]

~+Smatter [62&(4)) guv »x1 27

Such theory always possesses the Einstein frame representa-
tion. The comparison of the quantities Z{ and Z7 will yield
the exact form of the V and « functions in the transformed
frame:

a(®) = @(D(P)) — — In A(®()),
V(@) = _V_L%,
(A(@(@)))"2

where @ is the scalar field in the new frame; it becomes a
function of the “old” scalar field ®.
The Jordan frame is defined as follows:

Definition 5.2 The Jordan frame in the Palatini theory is
characterized by specific values of four out of the six arbitrary
functions {A, ...,a}: A=V, Ci=C =a =0.

The action functional is given by:

1

Sl ()0 W1 = 55 Qd"x\/—gf(\DR(g’, r')
—BW)(g) )"V, UV, W — u(w))
~+Smatter [g,fv, X] .

Therefore, the Jordan frame can be described by two
functions (B, ). In the Jordan frame, there is no coupling
between the scalar field and matter; the field — or a function
of it, but it can always be re-defined appropriately — is cou-
pled directly to the curvature. We impose no conditions on
the kinetic coupling 3 and the potential /. It can be shown,
varying the action expressed in the Jordan frame w.r.t. all
dynamical variables, that the curvature scalar is in fact built
from a metric conformally related to the initial one. Thence,
the Jordan frame in the Palatini approach is in fact almost
identical to its metric counterpart, except for a difference in
the kinetic coupling. This difference is simply a Brans—Dicke
term %, where w is a constant and depends on the number
of dimensions. This term shall be given explicitly later on
when considering the invariant generalizations of the Jordan
frame.

‘We may now attempt to express the action (3) for S—T the-
ories fully in terms of invariant quantities. Such an approach
would be advantageous because any computations performed
in an invariant — or generalized — frame will become inde-
pendent of the variables we use. Unfortunately, there is no
unique way of choosing an invariant frame, as one needs to
choose between two invariant metric tensors that have been
introduced. The existence of (at least) two non-equivalent
invariant metric tensors forces us to analyze the theory in two

distinct invariant frames. In each frame, we shall be using the
invariant connection [ given by (22). If we decide to use the
variables (g, f‘, I]’;-) (assuming that the relation (23) between
the invariant 7’ ’g and the scalar field ® is invertible; see [26]),
the action functional (3) will take on the following Einstein
frame form:

A A 1 ~ oA
S[@un, 1%, Tp] = m/ d"x\/—g[R(g, )
Q
- EPalatinig’uv@MIZ” @UIZ' - Ig:l
-2 N
+ Smatterl:(I?)mg;w, X]’ (28)

where 7 and 7} are functions of the invariant 7%

Let us notice that if the invariant 7' ;’5 vanishes, the scalar
field has no dynamics, as the kinetic term is not present
in the Lagrangian. In this case, the invariant Z7 can be
thought of as a function of the invariant Z} (the case in
which 7, = 0 and Z7 = 0 will not be considered, as
such a theory is ill-posed). Regardless of which invari-
ant will play the role of the scalar field, at the level of
field equation the relation between the scalar field and the
remaining fields will be purely algebraic, so that no addi-
tional physical degree of freedom will correspond to the
extra scalar field included in the action. Since the trans-
formation group acts always in a self-consistent way, this
property must hold for all conformally related frames, for
which 7j; = 0. This is the case when epyaini = 0
in the Einstein frame, thence all theories located on its
orbit have no additional physical degree of freedom due
to the presence of the scalar field. Moreover, at the level
of the action functional, a given theory may look as if
it featured a dynamical scalar field (e.g. when B # 0,
Ci # 0 and C; # 0) but in fact it would be just an
artifact of poorly chosen independent variables (metric and
connection).

As it can be seen, it is possible to find out a short
cut passage from the complicated general action func-
tional given by (3) to a surprisingly simple and familiar
form written above without using the group transforma-
tion rules. In the new frame, the scalar field is coupled
only to matter part of the Lagrangian, which means that
the Principle of Equivalence does not hold any more. The
gravitational part is now free of terms C; and Cp, which
were difficult to handle due to their coupling to the non-
metricity tensors. Also, the kinetic coupling 5 is now equal
tO €palatini» leading to a further simplification of the field
equations.

Variation with respect to all dynamical variables (assum-
ing non-vanishing invariant Z%) gives the following field
equations:

@ Springer
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3g : G//_v = KZT;LV + GPalatiniVaI%VﬁI% <8Z55 - Egaﬂg;w>

1

- Eg;wznv (293-)

ST Vi(V—-88"") =0, (29b)
~ dZ’i 22—n 1 dI{' N

613 : 26palaﬁmDI}§ — dIZ— =K 7 f? dI'é T (29¢)

In the Eq. (29¢), the box operator is defined as gW@,ﬁu. It
we consider the second equation, we immediately recognize
the well-known relation between connection and metric ten-
sor: if a connection is symmetric and the covariant derivative
of the metric multiplied by its determinant vanishes, then the
connection is necessarily Levi-Civita with respect to the met-
ric. This shows an interesting result: after writing the action
functional in terms of invariants, the initially independent
invariant connection becomes Levi-Civita with respect to the
invariant metric g,,,. Consequently, the curvature scalar also
depends on the metric. Apart from the presence of scalar field
in the matter part of the action functional, this suggests that
the Einstein frame is supposedly the simplest.

Alternatively, we can express the action functional in
terms of the invariant metric §,,, = ¢**(®)g,,,,, and the invari-
ant linear connection f‘l"jv. Also, the invariant If shall now
play role of the scalar field. This will give us an action func-
tional cast in a Jordan frame:

o 1 =
Il = 2—1@/961")6\/ -8

Sl&uv, Ty,

n

N A dT"\?> . .
X [I{'R(g, r) — gy (ﬁ) VIV IE — g’]
1

+ Smatter[g;ws x1. (30)

For simplicity, we introduced another invariant, 77,
defined in the following way:

7§ = (@),

denoting a modified potential.

Let us now obtain equations of motion for the theory. Vari-
ation with respect to all three dynamical variables yields the
following formulae:

2

-~ A -~ A K™ ~
8g : G;w(ga F) = ﬁTuv
1

dI0N\> o e 1. 1.

+ <dI{z> VO,Z?V,gZ? <838€ - Eg/wgaﬁ) - ngz—?,
(31a)

8T Vo (T1V/—538"") =0, (31b)

s NN d7m\*
8T :R(E, 1) — gﬂwvﬂz{‘vvzf[ (dIi>
1
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.42 1) ) dTy
Yariaahr|  dIy

2 . d7"\? .
—ég""I?( ’) V,Z!') =0. (3lc)
( dzt

+ =V
-8
Making use of the field equations, we can eliminate the inde-
pendent invariant connection from (30) and arrive at the
action functional dependent on the metric and the scalar field
only:

- 1 =
S[gw,l—?] = ﬁ d"x\/—§
Q

d7%\* =11\ e
x |:Ii’R(g)—g’“’ (I{‘(dz?> T VIV T — T8

+ Smatter [g’uv X1

(32)
For simplicity, let us introduce another invariant 7 : 7j} =
n (4T 2 n—1 1 . . . . n
i <@ T As it can be seen, if the invariant IJ
is equal to zero, then If" reduces to —%Ln, so that the
n—2 17
resultant theory in four dimensions is simply the standard

Brans—Dicke theory with v = —% and the modified self-
interaction potential Z5 added.

5.1 Scalar—tensor extension of F(R) gravity

By means of a simple transformation, it can be shown that
F(R) gravity is equivalent to special cases of [15], both in the
metric and Palatini approach.” This is achieved by a simple
trick, as presented in the Appendix C. In fact, the metric F (R)
is equivalent to the Brans—Dicke (BD) theory with wpp = 0
(no kinetic term), while the Palatini F' (Ié) is equivalent to
the Brans—Dicke theory with wpp = —% (with potential
added to the Lagrangian in both cases and in # dimensions).
However, we may invert the problem and ask whether a given
scalar—tensor gravity is equivalent to some F (R) theory (in
mathematical, not physical sense). Answering this question
might be much easier thanks to the introduction of invariant
quantities, which are the same for different theories related
to each other via conformal transformation. In order to find
out whether two arbitrary theories can be linked by a trans-
formation, we need to calculate the invariants and compare
them. In this chapter, we will focus on F (R) gravity and
discuss conditions for equivalence with an S—T theory. First,
let us introduce the notion of Brans—Dicke theory in Palatini
approach, which is a particular case of the Jordan frame (cf.
Definition 5.2.)

QA In this section R denotes, for short cut, Palatini-Ricci scalar, i.e.
R=R(gT)=g"R,D).
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Definition 5.3 Brans—Dicke theory in Palatini approach is
given by the following action functional expressed in the
Jordan frame:

S8 Ty, W1 = 55 Qf%v—g(WR@JU

WPalatini
_$gl“’vu\yvuq; - Z,[(q!)) + Smatter [g;un X] )
Wwith wpalatini = const.

Brans—-Dicke theory in the Palatini approach is not to
be confused with the (original) BD theory in the metric
approach, despite both of them having exactly the same func-
tional form (see Appendix C). These theories are not phys-
ically equivalent, albeit one can show their mathematical
equivalence. The proof goes as follows: using the fact that
the BD theory in the Palatini approach is effectively metric,
as it was proven in the previous section, one can express it
the form analogous to (32). Here, invariants 7} and 77 have
exactly the same form, whereas the invariant Z'; for a special
choice of the function B is now: '’

v
I; (V) = /= @paatini In (\IJ_()) .

Therefore, the (metric) action (32) written for BD theory
given initially in the Palatini approach, reads now as follows:

S[guv. W] = d"x«/_(\llR(g)
Opata s — =1
B Palatm:y n—2 FAVRVA R Z/{(\I’))
~+Smatter [g;w’ X] : o

Let us observe that this action differs from (C.7), as the one
written above is already evaluated on-shell, when the con-
nection is Levi-Civita of the metric tensor. As it can be seen,
when wpglaiini = 0, the only difference is that the functions
Cy and C, do not vanish, so that they contribute to the field
equation obtained from varying w.r.t. the metric and the inde-
pendent connection. Therefore, the actions (33) and (C.7) are
fully equivalent on-shell.

The action written in the Einstein frame will have the
following form (assuming wpajatini 7 0):

S[gu.v, “IJ]

fdxf(R(g)zF VLB - UWD))

Vv, —U
n— 2 A/ inalatml) ]
(34)

+ Smatter [exp (

We may introduce the Brans—Dicke coefficient in the met-
ric approach given in terms of!!

10 The sign “—" corresponds to wpajaginj < 0.
1" This result has been also found in [31,32].

n—1
WBDp = WPalatini — 5 -
n—2
Hence, the BD theory in the Palatini approach is equiva-
lent to a BD in the metric formalism with the coefficient w
changed. Let us now ask a more general question: under what
conditions is an arbitrary S-T theory equivalent to the BD
theory by means of the transformation (5a)—(5¢)? In order to
resolve this issue, one needs to observe that for any theory
to be equivalent to the BD, it must necessarily be express-
ible in the Jordan frame representation. In the transformed
frame, one arrives at an action functional given by (30). For
this new action to describe a BD theory, it must possess the
kinetic coupling of the form CO\TJ““, where W is a function
of the “old” scalar field ¢. Therefore, one might write the
following equivalency condition:

dz'n 2

T} ($) ( v ) =
From this point on, it will be very easy to give general con-
ditions for mathematical equivalence between F' (R)-Palatini
gravity and S-T theories. Asitis shown, F'(R) gravity can be
thought of as a (Palatini) Brans—Dicke theory with wpajatini =
0 (or, equivalently, wpp = —3=5, cf. Appendix C). There-
fore, in order to find out Whether a given S-T theory in the

Palatini approach arises from some F (R) gravity, one needs
to examine the condition (35) for wpaiatini = 0. Such a con-

(WPalatini

U(p)

35)

dition is satisfied only when dg’l = 0, which means that (up

to an additive constant) 7'} = Ij’é = 0. This reproduces the
well-known result that there are only two physical degrees of
freedom (graviton) in Palatini F (ﬁ) theories of gravity [64].
When the equivalence is established, one may also wish to
see what the exact form of the F (Ié) function is. It is obvious
that information about the F (Ié) theory in the scalar—tensor
representation is stored in the form of the potential defined as
UWY) = WE(W)—F(E(V)) (and R(W) = B(W) = U
(see Appendix C). We find out that (assuming the coefficients
defining the “old” frame — the one being subject to our inquiry
—are {A, B,Ci,C>, V, &}, and the variables: {g, ', ¥'}):

UW) = (T} (B (W)™ T3 () — R(W). (36)
where
RW) = (T () T B ()

_ n_d _
+ (Z7 (W (w))) "2 d_lIJIS (W (W)). (37)

The resulting equation is a non-linear differential equation of
the first order, as W can be now identified with ‘;—g. Solving

this equation will result in an exact form of the function F (ﬁ).
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6 Conclusions

In this paper, we have combined two frequently used ways of
altering general relativity, Palatini variation and addition of
a scalar field non-minimally coupled to the curvature, into a
single theory of gravity. Our motivation for considering such
coalescence of modifications of classical gravity was the lack
of formalism of invariants defined for Palatini approach in S—
T theories. Although the prevalent approach to the analysis
of S—T theories is the metric one, the Palatini formalism has
many interesting features to offer.

In the course of the paper, we placed special emphasis
on the notion of conformal and almost-geodesic transforma-
tions, as it allows us to establish — under well-defined and
strict conditions — mathematical equivalence between two
different conformal frames. We did not aim to take a stand
on the issue of which frame is the physical one; the main pur-
pose of this paper was to obtain solution-equivalent classes
of frames and introduce proper language enabling one to
analyze the theory in a frame-independent manner. The first
step to creating such language was to recognize that in case
of the Palatini approach, one must transform the metric and
the connection independently. Decoupling of metric from
affine structure of spacetime influenced the action functional
defined for a general S—T theory, devised to preserve its form
under conformal change, enforcing us to add special terms
linear in scalar field derivatives. These terms do not have any
clear interpretation yet.

We singled out two frames most commonly used in the lit-
erature — Jordan and Einstein. Quantities behaving as invari-
ants on the orbits of the two frames were also introduced and
the role they play when comparing equivalent theories was
discussed. In general, the theory possesses three degrees of
freedom: one introduced by the scalar field, and the remaining
two being a property of the metric. However, the indepen-
dent scalar field turns out to be an auxiliary field in case the
invariant 77, vanishes; then, the theory has only two degrees
of freedom.

It was discovered that there exists a subclass of conformal
frames with C; = C, = 0 fully analogous to the metric
frames. In such frames, the (initially independent) connection
is always Levi-Civita with respect to a metric g conformally
related to the initial metric g. This class is invariant under
the action of the subgroup y» = y3 = 0.

If a given theory has the same {A, 13, V, a} functions
both in the metric and Palatini approach, the latter one can
be brought to the metric form using the property discussed
above. The only difference between such two theories will be
the exact form of the kinetic coupling B; in the metric formal-
ism resulting from a prior Palatini frame, the coupling will
take on the form B — Z%; %. This fact allowed us to establish
a correspondence between the Brans—Dicke theories in the
metric and Palatini formalism.
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It was also shown that for an arbitrary S-T theory in the
Palatini approach there always exists a unique transformation
defined for the connection such that it renders the theory
effectively metric. This useful property allows us to analyze
a specific theory within the metric formalism.

Finally, F (R) theories were analyzed using the language
of invariants. We made use of the well-established equiva-
lence of these theories to S—T gravity — to the Brans—Dicke
theory, to be precise. Invariants made it possible for us to
address an issue of the relation between S-T and F (12’),
namely, we identified cases in which those two theories could
be related by the transformation (5a)—(5c), meaning that they
are mathematically equivalent. It was discovered that the
coefficients {A, B, C1, C2, V, @}, which characterize a spe-
cific S-T theory, must fulfil certain relations (given by (35))
in order for the theory to be equivalent to F (R) gravity in the
Palatini approach. Furthermore, because the metric and the
Palatini formalisms always give two non-equivalent theories,
if a given scalar—tensor theory results from some F(R) the-
ory, it cannot simultaneously be derived from both the metric
and the Palatini F'(R).

The main aim of this paper was to introduce a new class
of scalar—tensor theories of gravity and analyze some of its
mathematical properties. Due to its introductory nature, it
focuses on the formal aspects of the theory, with a spe-
cial emphasis put on self-consistency conditions, and lacks
direct physical applications. Also, due to adopting the Pala-
tini approach and adding more degrees of freedom into the
theory, it will be straightforward to include torsion and/or dis-
formal transformations in order to investigate theirs impact
on self-consistency of the theory. Analysis of real-world phe-
nomena will be carried out in the forthcoming papers. In
order to find out whether the predictions of the theory are
in agreement with experiment, we plan on computing the
post-Newtonian parameters in the first place. Furthermore,
topics to be covered in the future works will include cos-
mological applications (cf. [20,21]), F(R) theories with non-
minimal curvature coupling (see e.g. [17,19]), the appear-
ance of ghosts and tachyons.
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Appendices
A. Metric scalar-tensor gravity

For the sake of completeness we recall the formalism intro-
duced in [26,27], slightly generalized to arbitrary dimension
n > 2 [29]. The action functional is:

S[guv, @1 =

e / d"x7/=g(A@®R(g)
—B(®)g"'V, &V, ® — V(cb))
+Smater| g x - (A1)
Varying the action functional with respect to the metric tensor
yields:
1

A®@)G 0 + <§B + A”) 88V ®V5 @

—(B+ AV, @V, @ + A (g = Vu V)@
KZT,“, =0,

1

with the standard definition of the energy—momentum ten-

2 /gL
. . . _g aguv
Variation with respect to the scalar field gives:

sor, Ty = m) , L, being Lagrangian for matter.

RA + BV, oV, d+2B00 -V 4+ 2%a'T = 0. (A.3)

The scalar field is sourced by the trace of energy—
momentum tensor. The continuity equation takes the follow-
ing form:

do (D)
dd

VT, = TV, ®. (A.4)

Two of the four arbitrary functions can be fixed by means
of a conformal change accompanied by a redefinition of the
scalar field'?:

(A.52)
(A.5b)

uv = e2y(q))g;w
D = (D).

It is generally assumed that the first and second derivatives
of y exist. Moreover, the Jacobian of the transformation is
allowed to be singular at some isolated point [26].

12 This implies that the Levi-Civita connection undergoes the Weyl

transformation I_‘“ = 1" , 28(“3‘,))/2(@) - gwg“ﬁaf;yz(é).

If we plug the redefined scalar field and metric tensor back
in the action functional, make use of the transformation rela-
tions and neglect boundary terms arising while integrating by
parts, we end up with the action written in a different confor-
mal frame, with the barred dynamical variables. In order for
the Lagrangian to retain its form, the coefficients must trans-
form in the following way (for the notational convention see
next section):

A(D) = em=27@ f(F (DY), (A.6a)
_ .= dd\2 v -
_ ,(n=2)y(®) il
B(®) = 27 ((d =) B (@)
- -2(E) ag@)
PV )dy dAdd)) (A.6b)
dddd dd

V(D) = @Y (D)), (A.6¢)
a(®) = a(f(P) + y(®). (A.6d)

The transformation relations suggest that the conditions
imposed on .4 and V are satisfied in any conformal frame. In
particular, if the potential vanishes in one conformal frame,
then it is equal to zero in all related conformal frames. Let us
also make a comment regarding the nomenclature: choosing
the functions defining the conformal transformation will be
called “fixing the frame”, while setting the remaining two
coefficients will be equivalent to choosing a particular the-
ory.
It is possible to define the following invariants:

(®
L Iy (@) = A5
2. I(®) = X2
(A(d))n—2

3. L@ _ \/ 4 (=D A@)B(®)+(n—1)(A'(®))2
nA2(®)

Alongside the invariants defined above, we may introduce
invariant metrics, remaining unchanged under a conformal
transformation:

guv = (A((D))ég/w»

uv = Pgyy

(A.7a)
(A.7b)

(invariance of this metric follows from transformation prop-
erties of A, ¢2#(® and the metric tensor &uv)- Invariance
of the metric tensor simply means that if observers of dif-
ferent conformal frames being related to each other by
means of (A.5a) and (A.5b) agree on using one of the above
metrics, then the distances measured by them will be the
same.

@ Springer
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B. Transformation groups and their consistent actions
Consider diffeomorphism group of real line Diff(R)!3
with multiplication given by the composition law. It can be
extended (as a semi-direct product) by an arbitrary number
of functions y; € C'(R) acting as generalized translations.
The resulting group with the multiplication law

(Fottseees ¥ o (£ ey )
=(fofin+nof ...
E(ﬁ;la"";r)

is denoted as D1 ££7)(R). The inverse element has the form

vty = =rioficcc,=vro f)
=(f P )

Such group admits several subgroups, e.g. Dif£)(R) C
Dif£®(R) for r < s or by imposing some linear relations
between the generators y;, e.g. y| = —».

Here we are interested in Di f £ (R)-spaces representing
some differential-geometric structures on a manifold. In the
case of Riemannian metric and a scalar field (g, ®) this
action of Dif £ (R) has the form (cf. (A.52)—(A.5b))

(f,y) > (guv, @) = (exp Cy (D)) guv, f o P) = (guv» d_D)

One can notice that y = const acts trivially by rescaling the
metric by anumerical constant. This action obeys consistency
condition: the result of consecutive actions

s Vr+¥ro f_l)
(B.1)

(B.2)

fo B> y) B (gus 1= (F, 7) > (G, @) (B.3)

must be the same as an action by their composition

[(F, 7)o (f. )1 (s D= (F, 1) (2ws P = (Zpurs D).
(B.4)

Similarly, the group Di £ £ (R) acts, in the consistent way
by (5a)-(5c), onto the collection of dynamical variables
(g, T, ®) of the S-T Palatini theory, which represent inde-
pendent variables. The kernel of this action consists of con-
stant functions (y; = const;). In particular, one can reduce
this group to a subgroup isomorphic to Di £ £ (R) contain-
ing, e.g. projective or Weyl transformation of the connection,
i.e. y3 = 0, resp. y» = y3. Strict Weyl transformations can
be defined by the condition y; = y» = y3. The subgroup of
Weyl transformations is isomorphic to Dif £ (R). In this
sense the action (5a)—(5¢) of D1 £ £ (R) generalizes (A.5a)—
(A.5b) of Di ££(D(R).

One can directly check that the action (A.5a)—(A.5b)
induces a consistent action on the space of metric frames rep-
resented by the collection of functions of one-real variable

13 Since f’ # 0 one can also consider a subgroup f” > 0.

@ Springer

{A, B, V, a} composed with the scalar field ® (see Eq. A.6).
Similarly, the induced action (17a)—(17f) of Diff®(R)
on the collection of functions representing Palatini frames
(dependent variable) { A, B, C1, C2, V, a} is also consistent,
which can be demonstrated directly by composing two sub-
sequent generalized conformal transformations.'*

C. From F (R) to scalar—tensor gravity

In this subsection we review the traditional approach to both
metric as well as Palatini F (R)-gravity. As it is well-known,
in both cases, F (R)- gravity is dynamically equivalent to so-
called Brans—Dicke (BD) theories. Original BD is a metric
S—T theory determined by the gravitational action:

_ 1 ny /= _ @BD L —
SBD(gW)_?/Qd xy/ g<q>R L0, ®0 D U(d>)),
(C.1)

where BD parameter wpp € R and U(®) denotes self-

interaction potential. As we have already pointed out, math-

ematically equivalent theories are not physically equivalent.
Consider the action of minimally coupled F (R)-gravity

1 N
SF(g//-V’ )= ﬁ /Q d*x —gF(R) + Smatter(g,uv, x),
(C.2)

where F(R) is a function either a Ricci or a Palatini scalar.
The matter part of the action Spager 1S assumed metric-
dependent (independent of the connection). In both cases
the action (C.2) is dynamically equivalent to the constraint

system with linear gravitational Lagrangian'>
1
S(@uvs» B) = 55 | d"xy/=g (F/(E)(R - &)
Q

+F(B)) + Smatter(g;ws Xx)- (C.3)

Introducing further a scalar field ® = F’/(E) and taking
into account the constraint equation & = R, one arrives to
the dynamically equivalent S—T action with non-dynamical

scalar field

1
$(8uv> » @) = 73 Qd"xv—g (PR — Ur(P))

‘|’Smatter(g/w . X) (C.4)

either in metric or Palatini case. The self-interaction potential
Ur(®) is induced from the function F(R) by the following
formula

14 More general action with the gradient field 9, P replaced by an arbi-
trary one form will be considered elsewhere.

15 One should stress that Palatini F(R)-gravity is not dynamically
equivalent to metric one with the same function F(R).



Eur. Phys. J. C (2019) 79:335

Page 15 0f 18 335

Up(®) =E(P)D - F(E(D)), (C.5)

where ® = dﬁ )and R = E = %.16 Thus, in the
metric case, the action (C.4) represents Brans—Dicke theory
with the Brans—Dicke scalar wpp = 0 minimally coupled to
the matter field.

Palatini variation of this action provides!’

1
@ (RW(F) — ngg“ﬂRaﬁ(F))

1
+ 28w Ur(®) = KTy =0, (C.62)
Vi (J=gPg"") =0, (C.6b)
P Rypg (D) — Up(®) = 0. (C.6¢)

The last equation due to the constraint g®# Rys(I') = E =
U 1’: (®) is automatically satisfied. The middle equation (C.6b)
implies that the connection I' is a metric connection for the
new metric g, = @ﬁgw

Now, we can switch from the original connection l"A to
Levi-Civita connection of the original metric g,,,, by perform—
ing Weyl transformation of the connection (without chang-
ing the metric), i.e. with the parameters y; = 0, y» = y3 =

1n<1> . As a result one gets the minimally coupled metric
theory with the following action:

S = d*x/—g | PR ——0 oh Lo}

BD(gp.v) 2K2 / X < + ( 2)(1)
+AY0,®+ AYo, P — UF(<I>)>
‘|‘Smatter(gu.u’ x)- (C.7)

In this case, a kinematical part of the scalar field does not
vanish from the Lagrangian (C.4). This action is clearly not
represented in the Jordan frame, as the coefficients C; = Co
do not vanish, but are equal to —1 instead. However, this
theory turns out to be metric on-shell, i.e. the connection
solving EOM is Levi-Civita w.r.t. the initial metric tensor,
even though the action contains the terms which have not
been taken into account so far. Also, despite the presence of
kinetic term for the scalar field, it is not dynamical, as the
invariant Z'; vanishes.

In order to obtain the so-called Einstein frame it is enough
now to choose y = y1 = 1“ CD and to apply it to the action

16 One can observe that the trivial, i.e. constant, potential U (®P) cor-
responds to the linear Lagrangian F(R) = R — 2A. More generally,
for a given F the potential Ur is a (singular) solution of the Clairaut’s
differential equation: Up () = <I>% — F(%).

17 It also corresponds to the Palatini Brans—Dicke theory, in a sense of
Definition 5.3, with wpajatini = O.

(C.4). In the metric case we obtain non-minimally-coupled
theory with the action

2 J v

n—1
= w
X <R (n_z)q)za PO D — Up(d>)>

+Smatter(¢_mg;wa X

S(guv) =

(C.8)

where the potential Ur is now replaced by Ur := Ur_.
dn-2
Performing field re-definition by introducing new scalar field

o= % In ® one can arrive at the action with the param-
eter B = 1:

n—=2 &

! T T z o
SeE(guv) = ﬁLd;szfg (R -9, P"P — Up (e n=1 ))
B -
+ Smatter(e VDD g0 x0).

Palatini case leads to non-minimally coupled metric the-
ory without kinetic term for the scalar field

ﬁLd"xJ?g(R — Up(®))

__2_
+Smatter (P~ 72 8uvs X)),

(C.9)

SEP(g/w) =

(C.10)

which agrees with the Einstein frame Definition 5.1.

We see that in both cases the matter part bears the same
non-minimal coupling between the metric and the matter,
and that the potential Ur is modified in the same way.

Remark Assuming non-minimal coupling in F(R) theory
(ase.g.in [17]) one would be able to reach minimal coupling
in the Einstein frame.

D. Almost-geodesic mappings

The content of this Appendix was written based on [79—
81]. In order to introduce the notion of an almost geodesic
mapping, one must define the following concept:

Definition D.1 A curve y in a space endowed with an affine
connection A, is called almost geodesic if there exists a two-
dimensional parallel distribution along y, to which the tan-
gent vector of this curve belongs at every point

An almost geodesic mapping is defined as follows:

Definition D.2 A diffeomorphism f : A, — A, is called
an almost geodesic mapping if every geodesic curve of A,
is transformed by f into an almost geodesic curve of A,,.

In order for f to be almost geodesic, the condition given
below must be satisfied:

@ Springer
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Theorem D.1 A mapping f: A, — A, is almost geodesic
iff in a common coordinate system {x*}, _,, the connection
deformation tensor Py, := '}, — '}, satisfies the relation:

@ MO = a(x, W) PYAA + b(x, M)A,

B (D.1)

o _ vl pa o po
where A;wﬂ = Vﬂ PW+PW_PUﬂ, m
on A, (and, analogously, qu is a connection on Ay), \¥
is any vector, a and b are some functions of x* and A\*.
The covariant derivative V' is defined with respect to the

: o
connection I' .

o .
'}, is an affine connection

There are three types of almost geodesic mappings, as
distinguished by N. S. Sinyukov [82,83]:

1. type my:
r
Vig Pav) + Pl Phyo = 80.avp) + b Py (D.2)
where a,,, and b, are tensors;
2. type m3:
Py, =80,V + F( ), (D.3a)
r
V(MFI?) + FgF&(ﬁ,,) = S?Ma}v) + F(O;LO'V), (D.3b)

where F}j is a tensor of type (1, 1) and ¥, ¢y, 0y, 0
are covectors;

3. type m3:
PR, =80, W) + ¢%wu, (D.4a)
Vi ¢® = pj, + ¢ ay., (D.4b)

where ), , a;, are covectors, ¢* is a vector, @y, is a sym-
metric tensor and p is a function.
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