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We update and improve past efforts to predict the leptonic Dirac CP-violating phase with models that
predict perturbatively modified tribimaximal or bimaximal mixing. Simple perturbations are applied to
both mixing patterns in the form of rotations between two sectors. By translating these perturbed mixing
matrices to the standard parametrization for the neutrino mixing matrix we derive relations between the
Dirac CP phase and the oscillation angles. We use these relations together with current experimental results
to constrain the allowed range for the CP phase and determine its probability density. Furthermore, we
elaborate on the prospects for future experiments probing on the perturbations considered in this work. We
present a model with A4 modular symmetry that is consistent with one of the described perturbed scenarios
and successfully predicts current oscillation parameter data.
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I. INTRODUCTION

With the discovery of the Higgs scalar by the LHC in
2012 the standard model (SM) of particle physics took the
seat as the most predictive high energy theory so far. While
further experimental efforts keep giving results that are
mostly consistent with the SM, one of its sectors has, since
long ago, given the best motivation for physics beyond the
SM: Neutrinos. First proposed as a way to fix conservation
laws in beta decays, they have had an eventful history,
while they went from massless to having tiny masses and
changing flavor—oscillate—while travelling due to mixing
between flavor states. The first evidence of neutrino
oscillations was reported in 1998 [1]. Neutrino oscillations
were firmly established in 2001 using solar neutrinos [2],
and, since then, experiments regularly close in on their
oscillation pattern and the mass differences responsible for
these oscillations. Fast forwarding to 2011 and 2012, the
Double Chooz [3] and Daya Bay [4] experiments measured
θ13 ≠ 0 with enough precision to open the possibility of a
Dirac type CP-violating phase in the mixing of the leptonic

sector of the SM described through the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [5,6].
The usual approach to extend the SM to include neutrino

masses and mixing employs a discrete flavor symmetry at a
very high energy. After the spontaneous breaking of this
symmetry at lower energies, residual symmetries remain in
the charged and neutral leptons mass masses, thus, resulting
in particular mixing patterns in the PMNS matrix, UPMNS.
Before the measurement of the reactor angle, θ13 ≠ 0,
models that predicted no mixing between the first and third
family were popular, in particular models that predicted
two maximal oscillations popularly known as bimaximal
(BM) mixing [7–13] and, as more data accumulated, other
works appeared suggesting maximal mixing of two and
three families, known as tribimaximal (TBM) mixing [14–
17]. Naturally, after the measurement of a nonzero reactor
angle, the exact BM and TBM mixing patterns were ruled
out. In more complicated formulations, these patterns can
be considered the result of residual symmetries that need to
be broken by perturbations that permit the appearance of a
nonzero reactor angle. Interestingly, these types of for-
mulations often result in relationships between oscillation
parameters that allow an estimation of the size of the Dirac
type leptonic CP-violating phase. This is the idea that was
developed in Ref. [18] as well as in several other works
[19–40]. In the present work we attempt to follow up on the
scenarios explored in Ref. [18] and extend the analysis to
probability densities for the CP-violating phase based on
currently allowed ranges for oscillation parameters from
experiments. Moreover, we simulate the effects of the
constraints from these scenarios to estimate their chances
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of survival in three long-baseline experiments that may be
operative in the near future. We complete this work by
showing how one of these scenarios can be realized in a
flavor model of neutrino masses and mixing.
The rest of the paper is laid out as follows: In Sec. II we

introduce the perturbations to TBM mixing that will be
used in this work and their constraints on oscillation
parameters. In Sec. III we present probability densities
related to the CP-violating phase considering constraints
from the cases of Sec. IIİn Sec. IV we describe the
perturbed scenarios applied to BM mixing and comment
on the effects of current experimental constraints. In Sec. V
we present the prospects of future experiments expected to
constrain the scenarios considered here. In Sec. VI we
construct a model using A4 modular symmetry that is
consistent with one of the perturbed scenarios and expand
on its properties. Finally, in Sec. VII we discuss the most
relevant details of this work and conclude.

II. PERTURBATIVE MODIFICATIONS TO
TRIBIMAXIMAL MIXING

Let us begin by recalling the form of the exact TBM
mixing matrix [14]

UTBM
0 ¼

0
BBBBB@

ffiffi
2
3

q
1ffiffi
3

p 0

−
ffiffi
1
6

q
1ffiffi
3

p 1ffiffi
2

p
ffiffi
1
6

q
− 1ffiffi

3
p 1ffiffi

2
p

1
CCCCCA
: ð1Þ

As mentioned before, this mixing matrix form has been the
motivation for a great number of models that attempt to
predict the neutrino oscillation parameters employing
discrete symmetries. It is this sort of pattern with a
vanishing 1–3 matrix element that were ruled out by the
measurement of the nonzero reactor angle θ13. In this paper
we will consider the following minimal perturbations to the
TBM mixing matrix:

V ¼

8>>>>><
>>>>>:

UTBM
0 U23ðθ;ϕÞ ðCase AÞ;

UTBM
0 U13ðθ;ϕÞ ðCase BÞ;

U†
12ðθ;ϕÞUTBM

0 ðCase CÞ;
U†

13ðθ;ϕÞUTBM
0 ðCase DÞ;

ð2Þ

where the Uijðθ;ϕÞ matrices are given by

U12ðθ;ϕÞ ¼

0
B@

cos θ − sin θeiϕ 0

sin θe−iϕ cos θ 0

0 0 1

1
CA; ð3Þ

U13ðθ;ϕÞ ¼

0
B@

cos θ 0 − sin θeiϕ

0 1 0

sin θe−iϕ 0 cos θ

1
CA; ð4Þ

U23ðθ;ϕÞ ¼

0
B@

1 0 0

0 cos θ − sin θeiϕ

0 sin θe−iϕ cos θ

1
CA: ð5Þ

Finding the equivalence between the mixing matrix V of
each case and the UPMNS can be done elementwise
with Vjk expðiðωj þ ψkÞÞ ¼ UPMNS

jk expðiφkÞ.
The exact TBM pattern of Eq. (1) can be regarded as the

result of a residual symmetry in the charged lepton and
neutrino sectors from a flavor model defined at a higher
energy. In this case, the mixing matrices of cases A and B in
Eq. (2) can be considered the consequence of additional
effects that break this residual symmetry on the planes (2,3)
and (1,3) in the side of the neutrino sector, respectively,
leaving a residual Z2 symmetry. Similarly, but on the side
of the charged leptons, cases C and D would break the
residual symmetry of the TBM pattern down to Z2,
resulting in additional rotations on the planes (1,2) and
(1,3), respectively. Note that cases A and C were also
studied in Refs. [41–43]. It is also worth noting that cases A
and B are popularly known in the literature as trimaximal
mixing 1 and 2 [25,44–48]. To simplify the notation, we
will be using the shorthand sij ¼ sin θij and cij ¼ cos θij in
the rest of the paper.

III. CP-VIOLATING PHASE FROM
PERTURBATIVE SCENARIOS

One of the most relevant points of enabling a nonzero θ13
is opening up the possibility of having a Dirac-type CP-
violating phase in the PMNS mixing matrix. Due to the
features of the cases mentioned in Eq. (2) it is possible to
relate either θ12 (cases A and B) or θ23 (cases C and D) with
the reactor angle θ13 and, lastly, to relate the δCP phase to
the pair of free mixing angles. This is achieved by
identifying the parametrizations that result from Eq. (2)
with the standard PDG parametrization of the PMNS
matrix. In this way, in Ref. [18] the following relations
between oscillation parameters were worked out:

A: s212 ¼ 1−
2

3ð1− s213Þ
; cosδCP ¼ 5s213 − 1

η23s13
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− 6s213

p ;

ð6Þ

B: s212 ¼
1

3ð1− s213Þ
; cosδCP ¼ 2− 4s213

η23s13
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− 3s213

p ; ð7Þ
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C: s223 ¼ 1 −
1

2ð1 − s213Þ
;

cos δCP ¼ s213 − ð1 − 3s212Þð1 − 3s213Þ
3s13ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2s213

p ; ð8Þ

D: s223 ¼
1

2ð1 − s213Þ
;

cos δCP ¼ ð1 − 3s212Þð1 − 3s213Þ − s213
3s13ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2s213

p ; ð9Þ

where η23 ¼ 2 tan 2θ23 and ξ ¼ sin 2θ12. Considering the
form of the matrices of Eqs. (3)–(5) we can write the
following expressions for the other oscillation parameters
in terms of the angle θ and the phase ϕ:

A: s213 ¼
sin2θ
3

; s223 ¼
3 − sin2θ þ ffiffiffi

6
p

sin 2θ cosϕ
6 − 2sin2θ

;

ð10Þ

B: s213 ¼
2sin2θ

3
; s223 ¼

3− 2sin2θþ ffiffiffi
3

p
sin2θ cosϕ

6− 4sin2θ
;

ð11Þ

C;D: s213 ¼
sin2θ
2

; s212 ¼
2

3

�
1 − sin 2θ cosϕ

2 − sin2θ

�
;

ð12Þ

Note that, for every case, there is a relationship between θ13
and θ, consistent with the idea that the matrices in Eqs. (3)–
(5) are perturbations that deviate θ13 from zero. Using
Eqs. (6)–(12), other noteworthy consequences of these
perturbations include that for case A s212 < 1=3, while for
case B s212 > 1=3, resulting in case B not being able to
reproduce the current best fit value for this oscillation
parameter. For cases C and D we obtain s223 < 1=2 and
s223 > 1=2, respectively, meaning that whenever the octant
of θ23 is resolved at least one of these two cases will be
ruled out.

A. Probability densities of cos δCP
Using the expressions in Eqs. (6)–(9) and the measured

oscillation parameters from NuFIT 5.1 global fit [49], we can
calculate probability densities for the predictions of the δCP
phase in every scenario. The process for calculating these
densities follows Ref. [50]. There are three facts that
simplify the process in the present case:

1. Considering 0 ≤ sin2 θ ≤ 1, Eqs. (10)–(12) imply an
upper bound on s213 that completely contains the
acceptable experimental range and, thus, has no
relevant effect in this analysis.

2. With the same equations, the values we can get for
s223 in cases A and B are not particularly limited by
specific values of s213 in the range of interest from the
global fit, therefore, we can consider s213 indepen-
dent of s223.

3. Using input values around the 3σ range for s213 and
s223 in cases A and B predicts only physical values
for cos δCP.

Points 2 and 3 above are also true for cases C and D
replacing s223 by s212. Considering these details, we can
calculate the probability density for cos δCP directly using
the probability densities of s213, s

2
23, and s212. The integral

that we have to perform to calculate the probability density
at some particular value z of cos δCP is given by

PðA;BÞ
cos δCP

ðzÞ ¼
Z

dx dyδðfA;Bðx; yÞ − zÞPs2
13
ðxÞPs2

23
ðyÞ;

ð13Þ

PðC;DÞ
cos δCP

ðzÞ ¼
Z

dx dwδðfC;Dðx; wÞ − zÞPs2
13
ðxÞPs2

12
ðwÞ;

ð14Þ

where w, x, y represent values of s212, s
2
13, s

2
23, respectively,

that we have to integrate over. The functions fj, with
j ∈ fA;B;C;Dg, represent cos δCP for each case and the
delta function ensures that the integration is performed over
a line where cos δCP ¼ z. Independently of the three points
enumerated before, the probability densities Ps2ij

can be any

TABLE I. Oscillation parameters for three neutrino flavors as reported in NuFIT 5.1 [49] for normal ordering (NO)
(Δm2

3k ¼ Δm2
31) and inverted ordering (IO) (Δm2

3k ¼ Δm2
32), including the tabulated χ2 data from Super-

Kamiokande.

Parameter Best fit� 1σ (NO) 3σ range (NO) Best fit� 1σ (IO) 3σ range (IO)

sin2θ12 0.304� 0.012 [0.269, 0.343] 0.304þ0.013
−0.012 [0.269, 0.343]

sin2 θ13 [10−2] 2.246� 0.062 [2.060, 2.435] 2.241þ0.074
−0.062 [2.055, 2.457]

sin2 θ23 0.450þ0.019
−0.016 [0.408, 0.603] 0.570þ0.016

−0.022 [0.410, 0.613]
δCP [deg] 230þ36

−25 [144, 350] 278þ22
−30 [194, 345]

Δm2
21 [10−5 eV2] 7.42þ0.21

−0.20 [6.82, 8.04] 7.42þ0.21
−0.20 [6.82, 8.04]

Δm2
3k [10−3 eV2] 2.510� 0.027 [2.430, 2.593] −2.490þ0.26

−0.28 ½−2.574;−2.410�
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normalized function where the values of z arewell defined in
the integration intervals. Note that, in general, one of the two
probability densities in each integral should be a conditional
probability distribution dependent on the input of the other,
however, given point 2 above, we are considering both
distributions in each integral as independent.
For this work, we are interested in using Eqs. (13) and (14)

to calculate cos δCP probability densities from currently
observed oscillation parameters. For this purpose we use
the χ2 tables provided by the NuFIT collaboration available
on their website [51]. The data used corresponds to the
normal (NO) and inverted (IO) ordering results that include
Super-Kamiokande’s tabulated χ2 data (lower part of Table 3
in Ref. [49]), these have been collected in Table I for

convenience. The χ2 values are used to construct probability
densities of the form PðαÞ ¼ N expð−χ2ðαÞ=2Þ, whereN ¼
ðR dα expð−χ2ðαÞ=2ÞÞ−1 ensures that theprobability density
integrates to one. The probability densities obtained with the
method described above are shown in Fig. 1 for cos δCP and
δCP. For cases A (blue line), C (green dotted line), andD (red
dashed line), the prediction for cos δCP lies inside the
½−0.5; 0.5� range, with case D mostly positive while case
C is mostly negative. Case A has a more spread distribution
but the most probable range for cos δCP is predicted close to
−0.25. The probability that corresponds to case B (orange
dash-dotted line) is distributed along nearly all the ½−1; 1�
range with its highest peak around 0.5. For the CP-violating
phase δCP thismeans thatA,C, andDare close to 90° or 270°.

FIG. 1. Probability densities for cos δCP (left) and δCP (right) using experimental results for normal ordering. The probability densities
were obtained using the method detailed in Sec. III A and are normalized to one. The y-axis value is meaningless and does not indicate
preference for any case; taller (shorter) densities indicate a more narrowly (widely) predicted cos δCP.

FIG. 2. Differences in the distribution of cos δCP for cases A (left) and B (right) when considering data for NO (solid) and IO (dashed).
The probability densities were obtained using the method detailed in Sec. III A and are normalized to one. The y-axis value is
meaningless and does not indicate preference for any case; taller (shorter) densities indicate a more narrowly (widely) predicted cos δCP.
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Note that the right side of Fig. 1 only shows the range
½180°; 360°�, which is currently favored by observations. The
range ð0; 180°Þ is just a mirror image of said figure.
The changes in the distributions of cos δCP from con-

sidering NO or IO data from Table I is mostly related to
changes in central values and χ2 projections. Cases C and
D, which depend on s213 and s212, do not change notably
between using NO or IO data. However, in the case of A
and B, due to the significant change in the χ2 projection of
s223, the distribution of cos δCP changes to display two more
leveled peaks with the higher peak changing side in both
cases. This can be seen in detail in Fig. 2, where we can see
that for case A in IO (left pane, dashed line) the highest
peak changes to ∼0.3 while for case B using IO data (right
pane, dashed line) the highest peak moves to ∼ −0.65.
These changes can be interpreted as the delta CP phase δCP
in case A changing from 256° in NO to 288° in IO, while
for case B it changes from 297° in NO to 230° in IO.

IV. PERTURBATIVE MODIFICATIONS TO
BIMAXIMAL MIXING

In the same way we modified the TBM mixing case in
Sec. II, we can apply perturbations to the very well-known
BM mixing [7–13]. The exact form of the BM mixing
matrix is given by

UBM
0 ¼

0
BBB@

ffiffi
1
2

q
1ffiffi
2

p 0

− 1
2

1
2

1ffiffi
2

p

1
2

− 1
2

1ffiffi
2

p

1
CCCA: ð15Þ

From here, perturbations proceed identically as for the
TBM case. We can define the following scenarios

V ¼

8>>>>><
>>>>>:

U†
12ðθ;ϕÞUBM

0 ðCase EÞ;
U†

13ðθ;ϕÞUBM
0 ðCase FÞ;

UBM
0 U23ðθ;ϕÞ ðCase GÞ;

UBM
0 U13ðθ;ϕÞ ðCase HÞ;

ð16Þ

with the Uijðθ;ϕÞ matrices given in Eqs. (3)–(5). Cases G
and H were considered ruled out by experimental data
above 3σ when they were studied on Ref. [18]. For cases E
and F the expressions for s223 are identical to those of cases
C and D, respectively. The relationships between mixing
angles and the CP-violating phase are given by

E: cos δCP ¼ 3s213 − 1

η12s13
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2s213

p ; ð17Þ

F: cos δCP ¼ 1 − 3s213
η12s13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2s213

p ; ð18Þ

where η12 ¼ 2 tan 2θ12.
To provide an update for cases E and F, we find that they

cannot predict physical values for cos δCP within the 3σ
ranges using current results from Ref. [49]. In Fig. 3 the 3σ
rectangles for s213 and s

2
12 are shown together with the closer

physical boundary (colored contours) for the predicted
cos δCP for both cases E and F. Interestingly, in both panes
of Fig. 3, the boundary of the physical predictions for
cos δCP is barely outside the 3σ rectangle, almost touching
the upper right corner, indicating that this level of exclusion
must be quite recent.
With these results, all the cases with UBM

0 considered in
Ref. [18] can be considered ruled out at 3σ or above.
Considering this, we will not follow the detailed analysis of
the previous section on the CP-violating Dirac phase for

FIG. 3. Border of the physical region for cos δCP closest to the �3σ rectangle for s213 − s212 (dotted lines). Predictions for cos δCP use
cases E (left) and F (right) from Ref. [18]. White regions indicate unphysical cos δCP.
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the cases of this section and the rest of this work will be
focused on cases A, B, C, and D.

V. PROSPECTS AT FUTURE EXPERIMENTS

To analyze the prospects for the four cases considered in
this work, we will employ simulations using the GLoBES
software package [52,53]. We will consider three long-
baseline experiments: DUNE, T2HK, and ESSnuSB. For
the DUNE experiment we consider the configuration
detailed in their technical design report [54]. According
to Ref. [54], the DUNE experiment is planned to have a
long-baseline of 1300 km, with a 1.2 MW neutrino beam
produced at Fermi National Accelerator Laboratory and
received at a far detector in the Sanford Underground
Research Facility. This corresponds to 1.1 × 1021 protons
on target (POT). The far detector will consist of liquid argon
time-projection chambers and will have a (fiducial) mass of
(40 kt) 70 kt. In our simulation we assume a total run time of
7 years equally distributed between neutrino and antineutrino
modes. In the case of the T2HK experiment we follow the
setupdescribed inRef. [55].A1.3MWneutrino beamwill be
produced at Japan Proton Accelerator Research Complex.
The neutrinos would arrive to a water Cherenkov detector
with a fiducial mass of 187 kt, at a distance of 295 km. A
second identical detector is under consideration to be built in
Korea. Assuming a total of 10 yr of operation of the first
detector it is possible to achieve 27 × 1021 POT. Following
Ref. [55], we assume that the 10 yr run time is distributed
with a ratio of 3∶1 for antineutrino to neutrino modes. For
ESSnuSB we consider the experimental setup outlined in
Ref. [56]. The neutrino beam would be produced at the
European Spallation Source with a power of 5 MW.
Neutrinos would be received at a MEMPHYS-like [57]
water Cherenkov detector with a (fiducial) mass of (507 kt) 1
Mt, at a distance of 540 km. With this configuration,
ESSnuSB will reach 2.7 × 1023 POT per year. In our
analysis, we assume a run of 10 yr with a ratio of 8∶2 for
antineutrino to neutrinomodes asmentioned in the “Nominal
value” column of Table 1.1 of Ref. [56].
The statistical analysis follows the methodology

described in Sec. III of Ref. [58]. To summarize the steps
in this methodology, we start with GLoBES χ2G function
comparing the Nobs events observed in the simulation of the
experiment against Nth events expected from theory.
GLoBES χ2G function can be written as

χ2Gðθ;ϕÞ ¼
X
i

�
Nth

i ðθ;ϕÞ − Nobs
i þ Nobs

i ln

�
Nobs

i

Nth
i ðθ;ϕÞ

��
;

ð19Þ

where ðθ;ϕÞ refers to a set of parameters in the theory and
the summation run over bins. Additionally, we include two
Gaussian prior contributions to the total χ2 using the
reported central values, s212;obs and s213;obs, and their

respective 1σ errors, σ12 and σ23, that can be read off from
Table I [49]. Considering that currently the octant of s223 is
not known, for its prior we use an interpolation of the
χ2 table provided in NuFIT’s website [51]. The full χ2pr is
given by

χ2prðθ;ϕÞ ¼
�
s212ðθ;ϕÞ− s212;obs

σ12

�2

þ
�
s213ðθ;ϕÞ− s213;obs

σ13

�2

þ χ223;NuFITðs223ðθ;ϕÞÞ: ð20Þ

The total χ2 to be minimized is given by

χ2ðθ;ϕÞ ¼ χ2Gðθ;ϕÞ þ χ2prðθ;ϕÞ: ð21Þ

Following Ref. [58], our results will be presented for
Δχ2 ¼ χ2mod − χ2free, where χ

2
mod is the result of minimizing

Eq. (21) over the model parameters θ and ϕ, while χ2free is
the minimization over oscillation parameters ignoring
constraints from the scenarios of Sec. II. For a similar
analysis on DUNE and T2HK see Ref. [59], and for one on
ESSnuSB see Ref. [60].
We performed scans over the true values in the plane

s223 − δCP, while fixing other true values to their central
values, given in Table I. Note that, due to Eqs. (6) and (7),
cases A and B cannot simultaneously have s212 and s213 at
their current central values. This means that if an experi-
ment or combination of experiments could measure the
assumed true values s212 ¼ 0.304 and s213 ¼ 0.02246 with
enough precision to reject any s212 − s213 combination
consistent with case A and/or B then that case would be
rejected regardless of other parameters. Considering that
cases A and B can always have s213 ¼ 0.02246 the issue
mostly concerns s212. However, the experiments in our
simulation are not expected to reduce the range of s212
enough to strongly constrain cases A and B, but have been
chosen for their capacity to measure the δCP phase. The
results of our simulations are presented in Fig. 4. One
obvious feature is that cases C and D have a more
constrained s223 compared to cases A and B. This is
expected from the fact that, in cases C and D, s223 depends
on the value of s213 which reduces its allowed range, while
for cases A and B s223 is free. For cases C and D, the range
of s223 is more strongly constrained by DUNE and T2HK,
while for all cases ESSnuSB reduces the δCP phase range.
Assuming that future experimental results will be close to
the current best fit point (NO: red thick ×, IO: blue-white
þ), we can see that T2HK (red regions) alone could
exclude cases C and D for both NO and IO at 5σ or more,
while DUNE (blue regions) could exclude C and D only for
the NO result, with the IO result remaining within 3 to 5σ.
Under the same assumed future results, ESSnuSB could not
exclude any case above 5σ. However, the combination of
the three experiments (black contours) has the capacity of
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excluding cases B, C, and D for both orderings to 5σ or
more. Case A has the best chances of survival, with a NO
result disfavoured only between 3 to 5σ and IO staying well
below 3σ.
Here we point out that the results from Sec. III A are

product of considering current measured oscillation param-
eters on Eqs. (6)–(9) while the results of this section
represent prospects of future experimental measurements
being compatible (or incompatible) with the constraints of
the same equations. Interestingly, we see that some features
regarding the displayed ranges of cos δCP are shared
between them. For example, in both Figs. 1 and 4 cases
A and B have broader ranges for the CP violating phase
δCP while cases C and D have somewhat narrower ranges
for the same. Another interesting point is that, if future
experiments could resolve the θ23 octant, cases A and B
would more strongly prefer opposite sign cos δCP. With
θ23 < 0.5 case A would prefer negative cos δCP while B
would mostly fall positive. In the situation where θ23 would

be resolved above 0.5 then case Awould go positive while
case B would prefer negative. This can be seen in the top
panels of Fig. 4 and would result in cos δCP distributions for
cases A and B peaking towards their corresponding
preferred values in Figs. 1 and 2.

VI. A MODEL WITH A4 MODULAR SYMMETRY

In this section we will construct a model that predicts the
neutrino masses and mixing within the measured limits,
and we will show that symmetry breaking in this model
results in a mixing pattern that is consistent with case A
studied in previous sections. In the context of modular
symmetries, other works have also obtained the TM1

mixing pattern that matches case A [61–63].
The properties of modular forms are described in detail

in Ref. [64]. To summarize the modular approach to flavor
models, consider the group ΓðNÞ defined by

ΓðNÞ ¼
��

a b

c d

�
∈ SLð2; ZÞ;

�
a b

c d

�

¼
�
1 0

0 1

�
ðmod NÞ

�
; ð22Þ

where SLð2; ZÞ is the special linear group of 2 × 2matrices
with integer elements and determinant equal to 1. The
elements of the group ΓðNÞ transform a complex variable τ,
constrained by ImðτÞ > 0, according to

γτ ¼ aτ þ b
cτ þ d

ð23Þ

we call this a linear fractional transformation. The group of
these linear fractional transformations, represented by Γ̄ðNÞ,
is related toΓðNÞ: forN ≤ 2, Γ̄ðNÞ≡ ΓðNÞ=f�1g, while for
N > 2 we have Γ̄ðNÞ≡ ΓðNÞ. For N ¼ 1 we can write
Γ̄≡ Γ̄ð1Þ. The generators of the group Γ̄ can be expressed
using the SLð2; ZÞ matrices

S ¼
�
0 −1
1 0

�
; T ¼

�
1 1

0 1

�
; ð24Þ

which satisfy the relation S2 ¼ ðSTÞ3 ¼ 1. The quotient
Γ̄=Γ̄ðNÞ defines finite groups referred as finite modulars
groups ΓN . The generators of these groups have the addi-
tional property that TN ¼ 1. For N ∈ f2; 3; 4; 5g these
groups are isomorphic to the permutation groups S3, A4,
S4, andA5, respectively. For further details onmodular forms
and their relation to the permutation groups mentioned, the
interested reader may check Refs. [63–67].
The model that we develop here is based on modular

forms of level N ¼ 3 which have a quotient group, Γ3,
isomorphic to A4, the symmetry group of the tetrahedron.
For A4 the generators have the properties

FIG. 4. Prospects of future experiments excluding cases A, B,
C, and D in the plane sin2 θ23 − δCP. A measurement in the white
region (outside dashed black contour) indicates that the corre-
sponding case could be excluded with 5σ or more confidence by
the experiment (combined experiments). A measurement in the
light colored region (between solid and dashed black contour)
indicates an exclusion between 3σ to 5σ. If the experiment
(combined experiments) measures a true value inside the darker
region (solid black contour) then the result and the model are
compatible within 3σ. The experimental results used in the
simulation correspond to normal ordering, however, there is
no significant change for inverted ordering other than the current
best fit point, indicated as a red thick × for NO and a blue-white +
for IO.

CONFRONTING THE PREDICTION OF LEPTONIC DIRAC CP- … PHYS. REV. D 106, 095002 (2022)

095002-7



S2 ¼ ðSTÞ3 ¼ T3 ¼ 1: ð25Þ

The modular forms of level 3 were constructed on
Appendix C of Ref. [64] and correspond to

Y1ðτÞ ¼
i
2π

�
η0ðτ

3
Þ

ηðτ
3
Þ þ

η0ðτþ1
3
Þ

ηðτþ1
3
Þ þ

η0ðτþ2
3
Þ

ηðτþ2
3
Þ −

27η0ð3τÞ
ηð3τÞ

�
;

Y2ðτÞ ¼
−i
π

�
η0ðτ

3
Þ

ηðτ
3
Þ þ ω2

η0ðτþ1
3
Þ

ηðτþ1
3
Þ þ ω

η0ðτþ2
3
Þ

ηðτþ2
3
Þ
�
;

Y3ðτÞ ¼
−i
π

�
η0ðτ

3
Þ

ηðτ
3
Þ þ ω

η0ðτþ1
3
Þ

ηðτþ1
3
Þ þ ω2

η0ðτþ2
3
Þ

ηðτþ2
3
Þ
�
; ð26Þ

where η is the Dedekind eta function defined by

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1−qnÞ; q≡ expði2πτÞ; ImðτÞ> 0;

ð27Þ

and ω ¼ ð−1þ i
ffiffiffi
3

p Þ=2. The forms Yi belong to an A4

triplet ðY1; Y2; Y3Þ≡ Y.

A. Lepton masses

We will consider Majorana neutrinos that acquire small
masses via the seesaw mechanism. This model is based on
an extension by the symmetry group A4 ×Uð1ÞX with the
right-handed neutrinos in a triplet of chiral supermultiplets
Nc. The field content of the model, A4 representation,
Uð1ÞX charges, and modular weights kI are collected in
Table II. With those assignments for the fields, the super-
potential is given by

W ¼ α1ecLeY
ð6Þ
1

�
χ

Λ

�
fe
Hd þ α2μ

cLμY
ð6Þ
1

�
χ

Λ

�
fμ
Hd þ α3τ

cLτY
ð6Þ
1

�
χ

Λ

�
fτ
Hd þ β1ðNcYÞ1LeHu þ β2ðNcYÞ100LμHu

þ β3ðNcYÞ10LτHu þ γ1ðNcNcÞ1Yð4Þ
1 χ þ γ2ðNcNcÞ3Yð4Þ

3 χ þ γ3ðNcNcÞ100Yð4Þ
10 χ; ð28Þ

where αi, βi and γi are dimensionless couplings. Higher
order terms are possible but are expected to be heavily
suppressed. Imposing CP symmetry in the compactifica-
tion scale, the αi, βi, and γi are made real and are taken as
Oð1Þ coefficients [66]. The weights 4 and 6 modular forms
used above are given by

Yð4Þ
1 ¼ Y2

1 þ 2Y2Y3; ð29Þ

Yð4Þ
10 ¼ Y2

3 þ 2Y1Y2; ð30Þ

Yð4Þ
3 ¼ ðY2

1 − Y2Y3; Y2
3 − Y1Y2; Y2

2 − Y1Y3Þ; ð31Þ

Yð6Þ
1 ¼ Y3

1 þ Y3
2 þ Y3

3 − 3Y1Y2Y3: ð32Þ

When the scalars, χ, Hu, and Hd, have acquired vacuum
expectation value (VEV) the fields in the superpotential of
Eq. (28) receive masses. While χ should be expected to

acquire a large VEV at a high energy scale, Hu and Hd
acquire VEVs at energies below the electroweak scale. The
charged lepton masses can be extracted from the first line of
the superpotential and correspond to the diagonal matrix

Ml ¼ Y3
1hHdið1þa3þb3 − 3abÞ

×diag

�
α1

�hχi
Λ

�
fe
;α2

�hχi
Λ

�
fμ
;α3

�hχi
Λ

�
fτ
�
; ð33Þ

where a≡ Y2=Y1 and b≡ Y3=Y1. One can choose integers
fe;μ;τ and hχi=Λ in order for ðhχi=ΛÞfe−fτ ¼ 0.0003 and
ðhχi=ΛÞfμ−fτ ¼ 0.06 to satisfy the empirical results of
charged lepton masses. From the second and third lines in
the superpotentialwe can readoff the followingmassmatrices

TABLE II. Fields of the model, their representation under the symmetries considered, and modular weights kI .

ec, μc, τc Nc Le, Lμ, Lτ Hd Hu χ

SUð2ÞL × Uð1ÞY ð1;þ1Þ (1,0) ð2;−1=2Þ ð2;−1=2Þ ð2;þ1=2Þ (1,0)

A4 1, 100, 10 3 1, 10, 100 1 1 1
Uð1ÞX − 1

2
− fe, − 1

2
− fμ, − 1

2
− fτ − 1

2
1
2

0 0 1
kI 6 2 0 0 0 0
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mD ¼ Y1hHuiβ1

0
B@

1 βb β0a

b βa β0

a β β0b

1
CA; ð34Þ

MR ¼ Y2
1hχiγ1

0
B@

1þ 4
3
γ þ abð2 − 4

3
γÞ 2γb − 2

3
γðb2 − aÞ þ γ0ðb2 þ 2aÞ

ðMRÞ1;2 4
3
γðb2 − aÞ þ γ0ðb2 þ 2aÞ 1 − 2

3
γ þ abð2þ 2

3
γÞ

ðMRÞ1;3 ðMRÞ2;3 −4γb

1
CA; ð35Þ

respectively, with β≡ β2=β1, β0 ≡ β3=β1, γ ≡ γ2=γ1, and
γ0 ≡ γ3=γ1. The matrix mD corresponds to the Dirac masses
for the neutrinos and the symmetric matrix MR is for the
Majorana masses of the right-handed neutrinos. From these
matrices we obtain the light neutrino mass matrix

Mν ¼ −mT
DM

−1
R mD: ð36Þ

Note that the light mass matrix is proportional to hHui2=hχi,
therefore, neutrino masses are expected to be small for very
large hχi.
Since the A4 flavor models of leptons give large flavor

mixing angles clearly [68,69], several A4 modular invariant
models have been proposed (see, e.g., [70–91]). It may be
useful to comment on the distinctive features of our model.
Our charged lepton mass matrix is diagonal, in contrast to
previous models, by assignment of A4 singlets for both left-
handed and right-handed leptons apart from the right-
handed neutrinos. Then, the lepton mixing angles come
from flavor structure of the neutrino mass matrices.
Therefore, our model is advantageous for discussing the
TBM and the case A in the context of A4 flavor symmetry.
It is emphasized that in our model leptonic Dirac CP
violation comes from the real part of τ since it is the only
complex valued parameter in Eqs. (34) and (35). In fact, as
we will see later, the Dirac CP violating phase δCP ≈ 3π=2
can be reproduced for ReðτÞ ≈ 0.28.

B. Perturbative modifications to TBM mixing

As mentioned in Sec. II, in the cases where the
perturbation to TBM mixing is due to the breaking of
residual symmetries in the neutrinos sector, such as the

model presented here, we can expect perturbations of the
form of cases A or B.
Considering the constraint imposed on s212, mentioned

before the start of Sec. III A, case B is unable to reproduce
the current best fit value for s212. This leaves case A as the
most appropriate candidate for realistic phenomenological
studies. Here we will attempt to show that the A4 model
presented above can predict oscillation parameters that are
consistent with case A and are in complete agreement with
the current best fit limits summarized in Table I.
As a first step, we find a few parameter choices that give

predictions with good agreement with current experimental
values and are consistent with case A, characterized by
Eq. (6). We provide a few benchmark points in Table III
labeled as Aj as well as their predictions in Table IVİn all
the benchmark points, the overall factor of Mν is taken as
hHui2β21=hχiγ1 ¼ 5.4572 × 10−12 GeV. The next step is
finding a neighboring point that reproduces TBM with
good accuracy. Such a point should be considered only
illustrative, since TBM is in disagreement with current
bounds, namely, with the measured range for s213. The TBM
point for our A4 model is given in Table III with the label
TBM. Then, we can compare these two types of points to
assess how much each parameter changes between TBM
and the perturbed case A.
First, recall that due to s213 ¼ 0 in the TBM mixing there

is no CP violating phase. In our A4 model, the source of CP
violation in the matrices of Eqs. (34) and (35) is the
complex values of the ratios of modular forms, a and b.
Therefore, in the TBM mixing we can expect the τ
parameter to be completely imaginary making a and b
real. In fact, we find that we can repeat the TBM mixing

TABLE III. Benchmark points for the model presented in Sec. VI that predict a pattern consistent with case A and
a neighboring point that predicts TBM mixing. A0 is the best fit point in the model consistent with case A.

τ β β0 γ γ0

A0 0.28303þ i0.98882 −1.6850 2.1293 0.27850 0.23788
A1 0.27859þ i0.98630 −1.7191 2.2104 0.26016 0.25510
A2 0.28491þ i0.99292 −1.6562 2.0412 0.30203 0.22781
A3 0.28747þ i0.99414 −1.6288 1.9900 0.31567 0.21780
TBM i −2.0 2.0 Free 1.0
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pattern for the fixed point τ ¼ i, where the Z2 ¼ fS; Ig
subgroup of A4 is preserved [63].

1 It is also well known that
the TBM mixing implies a symmetry between νμ and ντ,
therefore, we should expect this symmetry to appear in the
matrix of Eq. (34). When comparing the points in Table III
we see that β0 and ImðτÞ change the least, with ImðτÞ
matching at least two significant digits when going from Aj
to TBM benchmark points. The parameters γ0 and ReðτÞ
change the most, with γ0 ≈ 1 for the TBM pattern which is 4
to 5 times the value in Aj. Considering that the complex τ
parameters is the source of CP violation, it is under-
standable that it changes notably from the TBM case where
CP violation is absent due to s213 ¼ 0. We find that for the
TBM benchmark point jβj ¼ jβ0j, while in all the Aj points
these two parameters only remain close in size. Close
inspection of Eq. (34) reveals that β and β0 are couplings
related to μ and τ families and we can interpret their
closesness in absolute value as related to the μ − τ
symmetry. More details about the τ ¼ i limit and the
TBM benchmark point are given in the Appendix.
The total number of free parameters in our scan is six: the

real and imaginary part of τ, β, β0, γ, and γ0. We also have an
overall factor that we can use to adjust the mass scale of the
neutrinos. This overall factor facilitates predicting a neu-
trino mass sum that is well bellow the current cosmological
upper bound of 0.12 eV [92]. Using these parameters we
can make predictions for the 3 mixing angles and the CP-
violating phase of the PMNS mixing matrix, the two
neutrino squared mass differences and the mass of the
lightest neutrino. The predictions for the Aj benchmark
points of Table III are shown in Table IV. We choose points
that predict s213, s

2
23, Δm2

21, and Δm2
31 within 1σ of the

values in Table I. The predictions for the masses of the
neutrinos are consistent with squared mass differences for
the normal ordering. The values of s212 and cos δCP follow
the expressions of Eq. (6). Note that the values for cos δCP
in Table IV can be compared with the left panel of Fig. 1
and are found in the interval with the highest probability
density.

It is important to mention that, while the TBM bench-
mark point of Table III corresponds to Mν diagonalizable
by Eq. (1), the benchmark points Aj do not automatically
result in Mν being diagonalized by matrices of the form
UTBM

0 U23ðθ;ϕÞ. However, what one would observe
instead, is that the absolute value of the elements in the
first column of the PMNS matrix between the TBM and Aj
benchmark points would not change. In general, the
diagonalization of Mν employs a matrix whose elements
can be parametrized as Vjk expðiðωj þ ψkÞÞ with j, k ¼ 1,
2, 3. The expressions from Sec. III were obtained by
comparing these elements against the elements of the
standard PDG parametrization of the leptonig mixing
matrix [18]. For case A, after extracting the expðiðωj þ
ψkÞÞ part, we are left with V ¼ UTBM

0 U23ðθ;ϕÞ, i.e., a
matrix that keeps the first column of UTBM

0 unchanged.
To conclude this section with a comment, while the A4

model presented above permits mixing patterns far more
complicated, the study of this section illustrates how case A
may arise in a realistic model. Moreover, the relation that
exists between case A and TBM mixing is made explicit in
the comparison between model parameter values. This
analysis is independent of the model and could be a starting
point for a detailed study of the effects of breaking the
residual symmetries that led toTBMmixing in the first place.

VII. CONCLUSION

In this work we revisit the perturbed mixing patterns that
were considered in Ref. [18] for the popular BM and TBM
mixings. Using current best fit values and 3σ ranges for the
oscillation parameters we found that the considered per-
turbations to BM mixing, labeled E and F, cannot predict
physical values for cos δCP with s212 and s213 inside their 3σ
ranges, while the four cases that consider perturbations of
TBM mixing survived. We extended on previous efforts to
predict the leptonic CP-violating Dirac phase by calculat-
ing distributions for its allowed values in light of the
relations between oscillations parameters. For cases A, B
and C we found that the preferred δCP phase is located
around 270° while for case B the most favoured values
spanned a range roughly from 200° to 320°. These values
consider that, according to Ref. [49], the observed preferred
range for δCP is between 144° and 350°. Interestingly,

TABLE IV. Predictions for the oscillation parameters using the corresponding point from Table III. The values of
s213, s

2
23,Δm2

21, andΔm2
31 are inside their 1σ ranges as given in Table I,

P
mν is below the cosmological upper bound

of 0.12 eV. The values of s212 and cos δCP follow Eq. (6).

s212 s213 s223 cos δCP Δm2
21 [eV2] Δm2

31 [eV2] mν1 [eV]
P

mν [eV]

A0 0.3180 0.02249 0.4482 −0.2258 7.423 2.510 0.009017 0.07239
A1 0.3183 0.02210 0.4370 −0.2780 7.282 2.499 0.009432 0.07303
A2 0.3184 0.02191 0.4629 −0.1637 7.418 2.502 0.008453 0.07125
A3 0.3180 0.02242 0.4674 −0.1419 7.241 2.519 0.008203 0.07088

1Note that at τ ¼ i, Yð6Þ
1 vanishes and, then, charged leptons

would be massless. In the Appendix we show more details about
the τ ¼ i and the TBM mixing limits.
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planned experiments will have the power to constrain these
simple perturbations, particularly cases B, C and D, which
have themost constraining conditions. In the case ofB, s212 >
1=3 is in tension with the currently measured value, and if
future experiments keep this tendencywewill see the tension
increased. For cases C and D, due to each case predicting s223
in different octants, one of them will be excluded when the
octant problem is resolved.Nonetheless, both cases,C andD,
predict s223 quite close to 1=2, and if s223 stays in close
proximity to its current central value both cases could
eventually be ruled out. The simulations performed and
described in Sec. V show that DUNE, T2HK, and ESSnuSB
experiments have the combined capacity to rule out cases B,
C, and D by more than 5σ, while case A could be left
disfavored by more than 3σ, when the future best fit value is
assumed close to the current one. Interestingly, we can see
hints from the probability intervals calculated in Sec. III A in
the experimental expectations, most notably concerning the
ranges for δCP.We finalize by showing the emergence of case
A from anA4 modular symmetry flavormodel. Thismodel is
capable of predicting currently measured oscillation param-
eters within their acceptable ranges. Moreover, we showed
that the model can predict TBM mixing and compare with
points consistent with case A to illustrate the degree of
perturbation required in the parameters. The results of this
study can be applied to any model that results in a mixing
pattern consistent with the list in Eq. (2). Furthermore, any of
the steps performed in this study could be applied to different
neutrinomasses andmixingmodels for which one can obtain
relations like those in Eqs. (6)–(9), and may help reveal
details brought about by the existence of such constraints.
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APPENDIX: THE A4 MODULAR SYMMETRY
MODEL IN THE τ = i LIMIT

The A4 model of Sec. VI can repeat the TBM mixing
pattern in the limit τ ¼ i. There are several problems with

this limit, most importantly, the Yð6Þ
1 modular form is zero

resulting in massless charged leptons due to Eq. (33).
However, here we want to take τ ¼ i as an illustrative point
on how this A4 model goes from TBM mixing to the more
experimentally conforming case A. In the limit τ ¼ i, the
terms of the symmetric neutrino mass matrix take the form

½Mνðτ ¼ iÞ�ð1;1Þ ¼ ξð−4γ þ 3γ0 þ 3Þ; ðA1Þ

½Mνðτ ¼ iÞ�ð1;2Þ ¼ ξβð2γ − 3γ0Þ; ðA2Þ

½Mνðτ ¼ iÞ�ð1;3Þ ¼ ξβ0ð2γ − 3Þ; ðA3Þ

½Mνðτ ¼ iÞ�ð2;2Þ ¼ ξβ2ð−4γ − 3Þ; ðA4Þ

½Mνðτ ¼ iÞ�ð2;3Þ ¼ ξββ0ð2γ þ 3γ0 þ 3Þ; ðA5Þ

½Mνðτ ¼ iÞ�ð3;3Þ ¼ ξβ02ð−4γ − 3γ0Þ; ðA6Þ

where ξ ¼ hHui2β21=½hχiγ1ð4γ2 − 3γ02 − 3γ0 − 3Þ�. The first
detail to note here is that if γ0 ¼ 1 and jβj ¼ jβ0j thenwe have
jðMνÞð1;2Þj¼jðMνÞð1;3Þj and jðMνÞð2;2Þj¼jðMνÞð3;3Þj.With
this choices we have fixed s213 ¼ 0 and s223 ¼ 0.5. The
remaining oscillation angle, θ12, is now given by s212 ¼
2=ðjβj2 þ 2Þ, which gives 1=3 if jβj ¼ 2. In fact, the choice
of parameter values of the TBM benchmark point given in
Table III repeats Eq. (1) exactly.
Regarding neutrino masses, just by taking the limit τ ¼ i,

one of the neutrinos becomes massless, demonstrated by
the vanishing determinant of Mνðτ ¼ iÞ. Moreover, taking
the parameters as indicated in the previous paragraph, one
can obtain the neutrino mass eigenstates with masses

mν2 ¼ −
hHui2β21
hχiγ1

6

2γ þ 3
; ðA7Þ

mν3 ¼ −
hHui2β21
hχiγ1

12

2γ − 3
: ðA8Þ

For the TBM benchmark point given in Table III, we
skipped testing for mass differences and cosmological
bound since it is only an illustrative point for where
TBM mixing is found. However, the perturbations dis-
cussed in Sec. VI, as illustrated by the benchmark points of
Table III, can predict oscillation parameters and lepton
masses that are consistent with current experimental con-
straints and the conditions of case A, as can be verified with
the numbers of Table IV.
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