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In this paper, the charged three-dimensional Einstein’s theory coupled to a dilatonic field has been 
considered in the rainbow gravity. The dilatonic potential has been written as the linear combination 
of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, 
as the exact solution to the coupled field equations of the energy dependent space time, have been 
obtained. Two of them are correspond to the Coulomb’s electric field and the others are consequences 
of a modified Coulomb’s law. Total charge and mass as well as the entropy, temperature and electric 
potential of the new charged black holes have been calculated in the presence of rainbow functions. 
Although the thermodynamic quantities are affected by the rainbow functions, it has been found that 
the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the 
final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the 
thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the most outstanding achievements in the various the-
ories of quantum gravity theory, such as string theory [1], loop 
quantum gravity [2], noncommutative geometry [3] and Gedanken 
experiments [4], is the prediction of a minimal measurable length 
in the order of the Planck length [5]. The existence of such a 
minimal length, which restricts the maximum energy that a par-
ticle can attain to the Planck energy, is related to the modifica-
tion of linear momentum and also quantum commutation rela-
tions. Therefore, it can be captured by modification of the usual 
uncertainty principle known as the generalized uncertainty princi-
ple or by promoting the standard energy–momentum relation (i.e. 
E2 − p2 = m2) to the modified dispersion relation. In addition, it 
is well known that Einstein’s general relativity, as an effective the-
ory of gravity, is valid in the infrared limit while it fails to produce 
accurate results in ultraviolet regime. The gravity’s rainbow just 
like the Horava–Lifshitz gravity theory is motivated by modification 
of standard dispersion relation in the ultraviolet limit [6]. Such a 
modification of the geometry at high energy scale can be regarded 
as the ultraviolet completion of the general relativity. Therefore, 
gravity’s rainbow can be regarded as an attempt to construct the 
theory of quantum gravity [7].

E-mail address: m.dehghani@ilam.ac.ir.
https://doi.org/10.1016/j.physletb.2017.12.048
0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
On the other hand, the modified dispersion relation violates 
Lorentz invariants. Doubly/Deformed special relativity, as a the-
ory which predicts naturally the modified dispersion relation, is 
an extension of the special theory of relativity. It has been estab-
lished based on the nonlinear Lorentz transformations in momen-
tum space. In this theory, the Planck-scale energy beside the speed 
of light remains invariant. Also the Planck-scale corrected disper-
sion relation preserves a deformed Lorentz symmetry [8,9]. It is 
believed that the violation of Lorentz invariancy plays an essential 
rule in constructing the quantum theory of gravity. Such a Lorentz 
symmetry violation can occur in the string theory because of the 
existence of an unstable perturbative string vacuum [10].

Now, the doubly special relativity has been generalized to 
curved space times and a doubly general relativity or gravity’s rain-
bow has been arrived [11]. In this theory, the geometry of space 
time depends on the energy of the test particle. Thus, it seems 
different for the particles having different amounts of energy and 
the energy dependent metrics form a rainbow of metrics. This is 
why the double general relativity is named as gravity’s rainbow. 
The modified dispersion relation can be written in the following 
general form

E2 f 2(ε) − p2 g2(ε) = m2, (1.1)

where, ε = E/E P , E P is the Planck-scale energy, E is the energy 
of the test particle and the functions f (ε) and g(ε) are known as 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the rainbow functions, which are required to fulfill the following 
conditions

lim
ε→0

f (ε) = 1, and lim
ε→0

g(ε) = 1. (1.2)

By these requirements one is able to reproduce the standard dis-
persion relation in the infrared limit. It must be noted that the 
functional form the rainbow functions are not unique and there are 
a number of expressions for them which are correspond to differ-
ent phenomenological motivations. Some of the proposed models 
for the temporal and spatial rainbow functions can be found in 
Refs. [12–15].

Nowadays, gravity’s rainbow, in which the quantum gravita-
tional effects are taken into account, has attracted a lot of interest 
and many papers have been appeared in which the physical prop-
erties of the black holes are investigated in the presence of rain-
bow functions. Thermodynamics and phase transition of the modi-
fied Schwarzschild black holes via gravity’s rainbow are studied in 
refs. [12,16]. Thermal stability of nonlinearly charged BTZ and four-
dimensional rainbow black holes has been analyzed in refs. [7,17]. 
The effects of rainbow functions on the rotating BTZ black holes 
are the subject of ref. [18]. Thermodynamics of Gauss–Bonnet black 
holes in rainbow gravity has been discussed in refs. [19,20]. Also, 
thermodynamics and stability of the black holes have been stud-
ied in the context of massive gravity’s rainbow by Hendi et al. [21]. 
Study of the physics in the energy dependent space times has pro-
vided many interesting results such as: back hole remnant [22,
23], Nonsingular universe [24], etc. It is worth noting that there 
are several other approaches to study the quantum gravity ef-
fects on the thermodynamical properties of the black holes. Among 
them one can see the works of Pourhassan et al. [25–29] and also 
refs. [30,31].

Recently, study of the impacts of rainbow functions on the black 
hole thermodynamics and phase transitions have been extended 
to the case of three-dimensional dilatonic black holes [32], and 
four-dimensional charged dilatonic black holes [33]. In the same 
line, and motivated by the fact that modified dispersion relation is 
one of the quantum gravitational effects, we tend to investigate the 
thermodynamical properties of some new charged BTZ black holes 
in the presence of rainbow functions. Regarding to the AdS/CFT 
correspondence, it is interesting to encode the quantum gravity 
effects into the black hole solutions in the framework of the rain-
bow gravity theory. The main goal of the present work is to obtain 
the modified dilatonic charged BTZ black holes in the energy de-
pendent space times, and to investigate the impacts of rainbow 
functions on the thermodynamical properties as well as the stabil-
ity or phase transition of the charged dilatonic BTZ black holes.

The paper is structured as follows: In Sec. 2, by introducing 
a static spherically symmetric and energy dependent space time, 
the explicit form of the coupled scalar, electromagnetic and grav-
itational field equations have been obtained. It has been shown 
that regarding the relation between the parameters of the theory, 
two kinds of electric fields are distinguishable, naturally. One is 
the Coulomb’s electric field and the other corresponds to a mod-
ified Coulomb law which reduces to the Coulomb’s electric field 
as an especial case. Sec. 3 is devoted to study of the thermody-
namical properties of the charged rainbow black hole solutions 
in the presence of the Coulomb’s electric field. Two new classes 
of charged dilatonic black holes, as the exact solutions to the 
Einstein–Maxwell-dilaton field equations, have been obtained in 
the rainbow gravity theory. The conserved and thermodynamical 
quantities, which are affected by rainbow functions, have been 
calculated and the validity of the first law of black hole ther-
modynamics has been proved. Also, making use of the canonical 
ensemble method, the thermal stability or phase transition of both 
of the new black hole solutions has been studied. In Sec. 4, the 
black hole solutions of the Einstein-dilaton gravity coupled to the 
modified Coulomb’s field have been investigated in the rainbow 
gravity theory. It has been shown that these field equations also 
admit two other new black hole solutions. The impacts of rainbow 
functions on the electric charge and mass as well as the tempera-
ture, entropy and electric potential of these new black holes have 
been calculated too. The validity of the thermodynamical first law 
and thermal stability of both of the new rainbow black holes have 
been analyzed. The results are summarized and discussed in Sec. 4.

2. The field equations

The action for three dimensional dilatonic black holes in the 
presence of Maxwell’s electrodynamics can be written in the fol-
lowing general form [32,34–36]

I = − 1

16π

∫ √−gd3x
[
R− V (φ) − 2(∇φ)2 −Fe−2αφ

]
. (2.1)

Here, R is the Ricci scalar. φ is a scalar field and V (φ) is a self 
interacting function. The parameter α is the scalar-electromagnetic 
coupling constant and F = F μν Fμν being the Maxwell invariant, 
Fμν = ∂μ Aν − ∂ν Aμ and Aμ is the electromagnetic potential. By 
varying the action (2.1) with respect to the gravitational, electro-
magnetic and scalar fields, we get the related field equations as 
follows

Rμν = V (φ)gμν + 2∇μφ∇νφ − (
F gμν − 2Fμα F α

ν

)
e−2αφ,

(2.2)

∇μ

[
e−2αφ F μν

]
= 0, (2.3)

4�φ = dV (φ)

dφ
− 2αFe−2αφ, φ = φ(r). (2.4)

We consider the following three dimensional energy dependent 
spherically symmetric geometry [32,33] as the solution to the grav-
itational field equations (2.2)

ds2 = − U (r)

f 2(ε)
dt2 + 1

g2(ε)

[
dr2

U (r)
+ r2 R2(r)dθ2

]
. (2.5)

Assuming as a function of r, the only non-vanishing component of 
the electromagnetic field is Ftr = −E(r) = h′(r), and we have

F = −2 f 2(ε)g2(ε)E2(r) = −2 f 2(ε)g2(ε)(h′(r))2. (2.6)

In overall the paper, prime means derivative with respect to the 
argument.

By combining Eqs. (2.2) and (2.5), we arrived at the following 
independent differential equations

e00 ≡ U ′′(r) +
(

1

r
+ R ′(r)

R(r)

)
U ′(r) + 2V (φ)

g2(ε)
= 0, (2.7)

e11 ≡ e00 + 2U (r)

(
R ′′(r)
R(r)

+ 2R ′(r)
rR(r)

+ 2φ′ 2(r)

)
= 0, (2.8)

e22 ≡
(

1

r
+ R ′(r)

R(r)

)
U ′(r) +

(
R ′′(r)
R(r)

+ 2R ′(r)
rR(r)

)
U (r) + V (φ)

g2(ε)

+ 2 f 2(ε)F 2
tre−2αφ = 0. (2.9)

Noting Eqs. (2.7) and (2.8) we obtain

R ′′(r) + 2 R ′(r) + 2φ′ 2(r) = 0. (2.10)

R(r) r R(r)
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The differential equation (2.10) can be written in the following 
form

2

r

d

dr
ln R(r) + d2

dr2
ln R(r) +

(
d

dr
ln R(r)

)2

+ 2φ′ 2(r) = 0. (2.11)

From Eq. (2.11), one can argue that R(r) must be an exponential 
function of φ(r). Therefore, we can write R(r) = e2βφ , in Eq. (2.10), 
and show that φ = φ(r) satisfies the following differential equation

βφ′′(r) + (1 + 2β2)φ′ 2(r) + 2β

r
φ′(r) = 0. (2.12)

It is easy to write the solution of (2.12) in terms of a positive con-
stant b as

φ(r) = γ ln

(
b

r

)
, with γ = β

1 + 2β2
. (2.13)

Such a solution has been used previously by Hendi et al. [32,34]
and Dehghani [35,36].

3. Black hole solutions with β = α

Making use of these solutions together with Eqs. (2.3) and (2.5), 
we have{

h(r) = −q ln
( r

�

)
,

Ftr = − q
r ,

(3.1)

where, q is an integration constant related to the total electric 
charge on black hole.

Now, Eq. (2.9) can be rewritten as

U ′(r) − 2αγ

r
U (r) + r

1 − 2αγ

[
V (φ)

g2(ε)
+ 2 f 2(ε)F 2

tre−2αφ

]
= 0.

(3.2)

For solving this equation for the metric function U (r), we need 
to calculate the scalar functional V (φ(r)) as a function of radial 
coordinate. To do so, we proceed to solve the scalar field equation 
(2.4). It can be written as

dV (φ)

dφ
− 4αV (φ) − 4α f 2(ε)g2(ε)F 2

tre−2αφ = 0. (3.3)

Now, the first order differential (3.3) can be solved as

V (φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
C1 ± 4q2 f 2(ε)g2(ε)

b2 φ
)

e±4φ, for α = ±1,[
C1 + 2α2q2 f 2(ε)g2(ε)

b2(1−α2)
e

2
α (1−α2)φ

]
e4αφ,

for α �= ±1,

(3.4)

where C1 is an integration constant related to the cosmologi-
cal constant �. Noting the fact that in the absence of the dila-
ton field (i.e. φ = 0), the action (2.1) reduces to the action of 
Einstein-�-Maxwell gravity, the integration constant C1 can be de-
termined by imposing the condition V (φ = 0) = 2�.

It leads to C1 = 2� and the solutions (3.4) can be written as 
the following generalized Liouville potentials

V (φ) =
⎧⎨
⎩

(
2� ± 4q2 f 2(ε)g2(ε)

b2 φ
)

e±4φ, for α = ±1,

2�0e4α0φ + 2�e4αφ, for α �= ±1,
(3.5)

with

α0 = 1 + α2

, and �0 = α2q2 f 2(ε)g2(ε)

2 2
. (3.6)
2α b (1 − α )
Now, making use of Eqs. (3.1), (3.2) and (3.5), we obtain the 
metric function U (r) as

U (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−m r2/3 − 6
g2(ε)

( r
b

)2/3
[
�b2 + q2 f 2(ε)g2(ε)

×
(

1 + 1
3 ln b2

r�

)]
ln

( r
�

)
, for α = ±1,

−m r2αγ + (1+2α2)2

g2(ε)(α2−1)

[
�r2

(
b
r

)4αγ

+ 2q2 f 2(ε)g2(ε)

1+2α2

(
b
r

)−2αγ
ln

( r
�

)]
, for α �= ±1.

(3.7)

In the absence of the coupling constant α (i.e. α = 0), by taking 
the infrared limit of the theory, we have

U (r) = −m − �r2 − 2q2 ln (r/�) , (3.8)

which is nothing but the metric function of the charged BTZ black 
holes. Note that m is an integration constant related to the black 
hole mass. All the field equations are satisfied by the solutions 
given in this section. The plots of metric functions (3.7) for dif-
ferent values of f (ε) and g(ε) have been shown in Figs. 1 and 2.

It is clear that the new rainbow black hole solutions, we ob-
tained here, can show two horizon, extreme and naked singularity 
black holes. In order to investigate the space time curvature singu-
larities, we need to study the behavior of Ricci and Kretschmann 
scalars. It is a matter of calculation to show that

lim
r−→∞R = 0, and lim

r−→0+ R = ∞, (3.9)

lim
r−→∞RμνρλRμνρλ = 0, and lim

r−→0+ RμνρλRμνρλ = ∞.

(3.10)

Therefore, Ricci and Kretschmann scalars are finite for finite values 
of the redial component r. There is an essential (not coordinate) 
singularity located at r = 0. Also, the asymptotic behavior of the 
solutions are neither flat nor A(dS).

In the following section we explore the thermodynamics of the 
new charged BTZ black hole solutions presented in Eq. (3.7).

3.1. First law of black hole thermodynamics

In this subsection, we would like to check the validity of 
the first law of black hole thermodynamics for the new three-
dimensional rainbow black holes introduced here. The conserved 
charge of the black hole can be obtained by calculating the total 
electric flux measured by an observer located at infinity with re-
spect to the horizon (i.e. r → ∞) [37,38], that is

Q = 1

4π

∫ √−ge−2αφ F trd�. (3.11)

Making use of Eqs. (3.1) and (3.11) after some simple calculations 
we arrived at

Q = q f (ε)

2
. (3.12)

The other conserved quantity to be calculated is the black hole 
mass. As mentioned before, it can be obtained in terms of the mass 
parameter m. The Abbott–Deser total mass of the new black holes 
introduced here can be obtained as [34,39–41]

M =
⎧⎨
⎩

b2/3

24 f (ε)
m, for α = ±1,

1−2αγ b2αγ m, for α �= ±1,
(3.13)
8 f (ε)
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Fig. 1. U (r) versus r for α = ±1, � = −1, Q = 1, M = 0.2 and b = 2, Eq. (3.7). Left: g(ε) = 0.8 and f (ε) = 0.6, 0.9, 1.15, 1.4 for Black, blue, red, and brown curves, 
respectively. Right: f (ε) = 1.2 and g(ε) = 0.75, 0.78, 0.81, 0.84 for Black, blue, red, and brown curves, respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 2. U (r) versus r for α �= ±1, � = −1, Q = 1, M = 0.25, α = 0.15 and b = 2, Eq. (3.7). Left: g(ε) = 0.6 and f (ε) = 1.25, 1.525, 1.75, 1.95 for Black, blue, red, and 
brown curves, respectively. Right: f (ε) = 1.28 and g(ε) = 0.6, 0.635, 0.67, 0.7 for Black, blue, red, and brown curves, respectively. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
which is compatible with the mass of charged BTZ black hole when 
ε → 0 and the dilatonic potential disappears.

One can obtain the Hawking temperature associated with the 
black hole horizon in terms of the surface gravity κ . That is

T = κ

2π
= g(ε)

f (ε)

U ′(r+)

4π

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3(r+b2)−1/3

2π f (ε)g(ε)

[(
b
�

)2 − q2 f 2(ε)g2(ε)
(

1 + 2
3 ln

(
b

r+

))]
,

for α = ±1,

2α2+1
2π f (ε)g(ε)

[
b
�2

(
b

r+

) 2α2−1
2α2+1 + q2 f 2(ε)g2(ε)

b(α2−1)

(
b

r+

) 1
2α2+1

]
,

for α �= ±1,

(3.14)

in which, the mass parameter m has been eliminated by use of the 
relation U (r+) = 0.

In the case α = 0 and ε → 0 the black hole temperature coin-
cides with that of charged BTZ black holes. It must be noted that 
extreme black holes occur if q and r+ be chosen such that T = 0. 
With this issue in mind, making use of Eq. (3.14) we have

r1 ext =

⎧⎪⎪⎨
⎪⎪⎩

b exp

[
3
2

(
1 −

(
b

�qf (ε)g(ε)

)2
)]

, for α = ±1,

b
[

b2(1−α2)

q2�2 f 2(ε)g2(ε)

] 2α2+1
2(α2−1) , for α �= ±1.

(3.15)

In order to investigate the effects of rainbow functions on the hori-
zon temperature the plots of black hole temperature versus hori-
zon radius have been shown in Figs. 3 and 4. The physical black 
holes with positive temperature are those for which r+ > r1 ext

and un-physical black holes, having negative temperature, occur 
if r+ < r1 ext . An important point is that for the black holes cor-
respond to α �= ±1, it is possible to fix the parameter such that 
r1 ext does not exist. In this cases, which is not shown in the plots, 
the black hole temperature is positive valued and extreme or un-
physical black holes do not appear.

Next, we calculate the entropy of the black holes. It can be ob-
tained from Hawking–Bekenstein entropy-area law, that is

S = A

4
=

⎧⎪⎨
⎪⎩

πr+
2 g(ε)

(
b

r+

)2/3
, for α = ±1,

πr+
2 g(ε)

(
b

r+

)2αγ
, for α �= ±1.

(3.16)

Also, the black hole’s electric potential on the horizon, measured 
by an observer at the reference point, can be obtained in terms of 
the null generator of the horizon χμ = C∂μ , as

� = Aμχμ|reference − Aμχμ|r=r+ . (3.17)

Noting Eq. (3.1) we have

� = Cq ln
( r+

�

)
, (3.18)

where C is a constant coefficient [42–44].
We are now in the position to check the validity of the first law 

of black hole thermodynamics for both of the new rainbow black 
hole solutions obtained in this section. To do so, making use of 
Eqs. (3.7), (3.12), (3.13) and (3.16), we can obtain the black hole 
mass as the function of extensive parameters S and Q that is



M. Dehghani / Physics Letters B 777 (2018) 351–360 355
Fig. 3. 0.1T and (∂2 M/∂ S2)Q versus r+ for α = ±1, � = 1, Q = 1 and b = 2, Eqs. (3.14) and (3.24). Left: g(ε) = 0.75, (0.1T , f (ε) = 1.1, 1.4 for black and blue curves, 
respectively) and ((∂2 M/∂ S2)Q , f (ε) = 1.1, 1.4 for red and brown curves, respectively). Right: f (ε) = 1.1, (0.1T , g(ε) = 0.7, 0.8 for black and blue curves, respectively) and 
((∂2 M/∂ S2)Q , g(ε) = 0.7, 0.8 for red and brown curves, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 4. 0.1T and (∂2 M/∂ S2)Q versus r+ for α �= ±1, � = 1, Q = 0.5 α = 0.9 and b = 2, Eqs. (3.14) and (3.24). Left: g(ε) = 0.58, (0.1T , f (ε) = 0.85, 1.1 for black and blue 
curves, respectively) and ((∂2 M/∂ S2)Q , f (ε) = 0.85, 1.1 for red and brown curves, respectively). Right: f (ε) = 0.85, (0.1T , g(ε) = 0.58, 0.6 for black and blue curves, 
respectively) and ((∂2 M/∂ S2)Q , g(ε) = 0.58, 0.6 for red and brown curves, respectively). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
M(S, Q ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4 f (ε)g2(ε)

[
b2

�2 − 4Q 2 g2(ε)
(

1 + 1
3 ln b2

�r+ (S)

)]
× ln r+(S)

�
, for α = ±1,

2α2+1
8 f (ε)g2(ε)(α2−1)

[
�b2+(S)

(
b

r+ (S)

)2(3αγ −1)

+ 8Q 2 g2(ε)

2α2+1
ln

(
r+(S)

�

)]
, for α �= ±1.

(3.19)

Note that, if we set α = 0 and take the infrared limit of the 
theory, the mass of the black hole reduces to

m = 8M = r2+
�2

− 2q2 ln
( r+

�

)
, (3.20)

which is compatible with that of charged BTZ black holes. Now, we 
obtain the intensive parameters T and �, conjugate to the black 
hole entropy and charge, respectively. It is a matter of calculation 
to show that(

∂M

∂ S

)
Q

= T and

(
∂M

∂ Q

)
S
= �, (3.21)

provided that C be equal to (α2 − 1)−1 in Eq. (3.18) for the cases 
α �= ±1. Also, Eq. (3.21) is valid for the case α = ±1 if we set 
C = −1 and the horizon radius be restricted through the relation 
b2 = �r+ [36,42–44]. Therefore, we proved that the first law of 
black hole thermodynamics is valid for both classes of the new 
EMd black holes in the following form

dM(S, Q ) = T dS + �dQ . (3.22)

3.2. Heat capacity and stability analysis

In this stage, we would like to study the local stability or phase 
transition of the new black hole solutions in the canonical ensem-
ble method. It is well-known that a black hole, as a thermodynam-
ical system, is locally stable if its heat capacity is positive. A non-
stable black hole undergoes phase transition to be stabilized. The 
points of phase transition are where the black hole heat capac-
ity vanishes or diverges. The vanishing points or the real roots of 
the black hole heat capacity are known as the points of type one 
phase transition. The divergent points or the real roots of the de-
nominator of the black hole heat capacity are the points at which 
type two phase transitions take place. The black hole heat capacity, 
calculated in the fixed black hole’s charge, is defined as

C Q = T
∂ S

∂T
= T

(
∂2M

∂ S2

)−1

. (3.23)

The last step in Eq. (3.23) comes from the fact that T = ∂M/∂ S . 
Therefore, the positivity of heat capacity C Q = T (∂ S/∂T )Q =
T / 

(
∂2M/∂ S2

)
Q or equivalently the positivity of (∂ S/∂T )Q or (

∂2M/∂ S2
)

Q with T > 0 are sufficient to ensure the local stabil-
ity of the black hole [34–38].

In order to perform a black hole stability analysis we need to 
have the explicit form of the black hole heat capacity. The numer-
ator of the black hole heat capacity is given in Eq. (3.14). Now, we 
calculate the denominator of the black hole heat capacity. It can 
be written as

(
∂2M

∂ S2

)
Q

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2q2 f (ε)g2(ε)

π2b2

(
b

r+

)2/3
[

2
3 ln b

r+ + 3

−
(

b
q� f (ε)g(ε)

)2
]

, for α = ±1,

1+2α2

π2�2 f (ε)

[
(1 − 2α2)

(
b

r+

) 2α2

1+2α2

− q2 f 2(ε)g2(ε)�2

b2(α2−1)

(
b

r+

) 2
1+2α2

]
,

for α �= ±1.

(3.24)
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It is understood from Eq. (3.23) that if

r+ ≡ r0 =

⎧⎪⎪⎨
⎪⎪⎩

b exp

[
3
2

(
3 −

(
b

q� f (ε)g(ε)

)2
)]

, for α = ±1,

b
[

b2(1−α2)(2α2−1)

q2�2 f 2(ε)g2(ε)

] 1+2α2

2(α2−1) , for α �= ±1.

(3.25)

According to Eqs. (3.15) and (3.25), r1ext and r0 are always exist for 
the case α = ±1 and r0 > r1ext . Therefore, the points of type one 
and type two phase transitions are located at r+ = r1ext and r+ =
r0, respectively. Also, this class of new black holes are locally stable 
if their horizon radius is in the range r1ext < r+ < r0. The plots 
Fig. 3 show the impacts of rainbow functions on the numerator 
and denominator of the black hole heat capacity.

For the black holes with α �= ±1 it is possible to fix the pa-
rameters such that both rext and r0 exist, simultaneously. If it is 
the case, type one and type two phase transitions take place at 
r+ = rext and r+ = r0, respectively. This class of black holes with 
the horizon radius in the range r1ext < r+ < r0 are locally stable 
(Fig. 4). In addition, there are two following possibilities which are 
not shown in the figures. One is correspond to the case r0 exists 
but r1ext does not. In this case, the black hole temperature is pos-
itive valued and no type one phase transition can occur. There is 
type two phase transition located at r+ = r0 and black holes with 
the horizon radius greater than r0 are locally stable. The other cor-
responds to the case r1ext exists but r0 does not. The denominator 
of the black hole heat capacity is positive valued and no type two 
phase transition takes place. The black holes with r+ = r1ext un-
dergo type one phase transition to be stabilized. Also, the black 
holes with the horizon radius in the range r+ > r1ext are locally 
stable.

4. Black hole solutions with β �= α

In order to obtain the black hole solutions correspond to the 
case β �= α, we start with the electromagnetic field equation (2.3). 
Regarding Eqs. (2.5) and (2.13), it can be solved, we have{

h(r) = − q
A r−A, and A = 2γ (α − β),

Ftr = q r−(1+A),
(4.1)

where, q is an integration constant related to the total electric 
charge on black hole. In order to the potential function Aμ =
h(r)δ0

μ be physically reasonable (i.e. zero at infinity), the statement 
A = 2γ (α −β) must be positive. Thus we suppose that α > β with 
both α and β positive. The electric field (4.1) can be regarded as a 
modified Coulomb’s electric field.

Now, Eq. (2.9) can be rewritten as

U ′(r) − 2βγ

r
U (r) + r

(1 − 2βγ )g2(ε)

×
[

V (φ) + 2 f 2(ε)g2(ε)F 2
tre−2αφ

]
= 0, (4.2)

and the scalar field equation (2.4) takes the following form

dV (φ)

dφ
− 4βV (φ) − 4(2β − α) f 2(ε)g2(ε)F 2

tre−2αφ = 0. (4.3)

Noting Eq. (4.1), the first order differential (4.3) can be solved as

V (φ) = 2�e4βφ + 2�0e4β0φ, (4.4)
where

�0 = q2(ϒ − 1)

b2(A+1)
f 2(ε)g2(ε) and ϒ = (1 + αβ − 2β2)−1

and β0 = 1 + αβ

2β
. (4.5)

It is notable that the solution given by Eq. (4.4) can be considered 
as the generalized form of the Liouville scalar potential. Also, it 
must be noted that in the absence of dilatonic field φ, we have 
V (φ = 0) = 2� = −2�−2 and the action (2.1) reduces to that of 
Einstein-�-Maxwell theory.

By substituting Ftr(r) and V (r) from Eqs. (4.1) and (4.4) into 
Eq. (4.2), we arrived at the metric function U (r) as

U (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−m r2/3 − 6b2

g2(ε)

( r
b

)2/3
[
� ln

( r
�

)
− 3q2 f 2(ε)g2(ε)

2b2(α−1)2 (br)
2
3 (1−α)

]
,

for β = 1, α > 1

−m r2βγ − (1+2β2)2

g2(ε)

[
�r2

1−β2

(
b
r

)4βγ

+ q2 f 2(ε)g2(ε)ϒb−2A

β(β−α)

(
b
r

)2γ (α−2β)
]

,

for β �= 1, α > β.

(4.6)

The plots of metric functions U (r), presented in Eq. (4.6), for 
β = 1 and β �= 1 cases have been shown in Figs. 5 and 6, respec-
tively. They show the effects of rainbow functions on the metric 
function U (r) for the cases β = 1 and β �= 1. From the curves of 
Figs. 5 and 6, it is obvious that the metric function U (r) can pro-
duce two horizon, extreme and naked singularity black holes for 
both of β = 1 and β �= 1 cases.

Investigation of the curvature singularities through the Ricci 
and Kretschmann scalars show that their asymptotic behaviors ful-
fill the Eqs. (3.9) and (3.10). It means that there is an essential 
singularity located at r = 0 and the asymptotic behavior of the 
black holes correspond to the case β �= α are also non-flat non-
AdS.

4.1. First law of black hole thermodynamics

Here, we tend to check the validity of the first law of black 
hole thermodynamics for the new dilatonic black holes correspond 
to the case β �= α. Making use of Eq. (3.11), the conserved charge 
of the black hole can be obtained as

Q = qf (ε)

2
b−A . (4.7)

The black hole mass as the other conserved quantity to be cal-
culated in terms of the mass parameter m. It is a matter of calcula-
tion to show that the Abbott–Deser total mass of the new rainbow 
charged dilatonic BTZ black holes introduced here can be obtained 
as

M =
⎧⎨
⎩

mb2/3

24 f (ε)
, for β = 1,

mb2βγ

8 f (ε)(1+2β2)
, for β �= 1,

(4.8)

which is compatible with the mass of charged BTZ black hole in 
the absence of rainbow functions [35].

Also, the Hawking temperature associated with the black hole 
horizon r = r+ , can be calculated in terms of the surface gravity κ . 
It is easy to show that
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Fig. 5. U (r) versus r for β = 1, � = −1, Q = 1, M = 2.5, α = 2.2 and b = 3, Eq. (4.6). Left: g(ε) = 0.7 and f (ε) = 1.1, 1.15, 1.19, 1.23, Right: f (ε) = 1.1 and g(ε) =
0.7, 0.745, 0.798, 0.87, for Black, blue, red, and brown curves, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 6. U (r) versus r for β = 0.5, � = −1, Q = 1, M = 2, α = 2 and b = 2, Eq. (4.6). Left: g(ε) = 0.8 and f (ε) = 0.5, 0.635, 0.78, 0.9, Right: f (ε) = 1 and g(ε) =
0.45, 0.512, 0.58, 0.65, for Black, blue, red, and brown curves, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
T = κ

2π
= g(ε)

f (ε)

U ′(r+)

4π

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 3b�
2π f (ε)g(ε)

( b
r+ )

1/3
[

1 + q2 f 2(ε)g2(ε)b
(1−4α)/3

b�(α−1)

(
b

r+

) 2
3 (α−1)

]
,

for β = 1,

− (1+2β2)�r+
2π f (ε)g(ε)

[(
b

r+

)4βγ + q2 f 2(ε)g2(ε)ϒ

�r2+b2A

(
b

r+

)2γ (α−2β)
]

,

for β �= 1.

(4.9)

Extreme black holes may occur if the real roots of T = 0 exist. The 
horizon radius of the extreme black holes can be obtained as

r2 ext =

⎧⎪⎪⎨
⎪⎪⎩

(
q2 f 2(ε)g2(ε)�2

α−1

) 3
2(α−1)

b
α+2
1−α , for β = 1, α > 1,

b
(

q2 f 2(ε)g2(ε)�2ϒ

b2(1+A)

)ϒ
2 (1+2β2)

, for β �= 1.

(4.10)

In order to the effects of rainbow functions on the horizon temper-
ature of the black holes be studied more closely, we have plotted 
them in Figs. 7 and 8 for β = 1 and β �= 1 cases, respectively. The 
plots show that, for the proper choice of the parameters, physical 
and un-physical black holes occur for r+ > r2 ext and r+ < r2 ext , 
respectively. A notable point is that in the case β = 1, r+ = r2 ext

exists always, while in the case β �= 1 it is possible to fix the pa-
rameters such that r+ = r2 ext does not exist. If it is the case, the 
black hole temperature is positive valued and no extreme or un-
physical black hole can occur.

The Hawking–Bekenstein entropy of the black holes takes the 
following form
S = A

4
=

⎧⎨
⎩

πb
2g(ε)

( r+
b

)1/3
, for β = 1,

πb
2g(ε)

( r+
b

)1−2βγ
, for β �= 1.

(4.11)

Noting Eqs. (3.17) and (4.1), one can show that the black hole’s 
electric potential � can be written as

� =
⎧⎨
⎩

3Cq
2(α−1)

r
− 2

3 (α−1)

+ , for β = 1,

Cq
A r−A+ , for β �= 1.

(4.12)

In order to investigate the consistency of these quantities with 
the thermodynamical first law, we can write the relation corre-
sponding Smarr-type mass formula as

M(S, Q ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4 f (ε)g2(ε)

[
b2

�2 ln
(

�
r+(S)

)

+ 6Q 2 g2(ε)

(α−1)2

(
b

r+(S)

) 2
3 (α−1)

]
,

for β = 1,

− 1+2β2

8 f (ε)g2(ε)

[
�b2

1−β2

(
b

r+ (S)

)2(3βγ −1)

+ 4ϒQ 2 g2(ε)
β(β−α)

(
b

r+(S)

)A
]

, for β �= 1,

(4.13)

from which one can calculate the intensive parameters T and �, 
conjugate to the black hole entropy and charge, respectively. It can 
be shown that(

∂M

∂ S

)
Q

= T , and

(
∂M

∂ Q

)
S
= �, (4.14)

provided that C be chosen as C = ϒ [42–44].
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Fig. 7. 0.25T and (∂2 M/∂ S2)Q versus r+ for β = 1, � = 1, Q = 1, α = 3 and b = 2, Eqs. (4.9) and (4.15). Left: g(ε) = 0.8, (0.25T , f (ε) = 1.1, 1.4 for black and blue curves, 
respectively) and ((∂2 M/∂ S2)Q , f (ε) = 1.1, 1.4 for red and brown curves, respectively). Right: f (ε) = 1.1, (0.25T , g(ε) = 0.8, 0.95 for black and blue curves, respectively) 
and ((∂2 M/∂ S2)Q , g(ε) = 0.8, 0.95 for red and brown curves, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 8. T and 5(∂2 M/∂ S2)Q versus r+ for β �= 1, � = 1, Q = 1, α = 3, β = 1.5 and b = 3, Eqs. (4.9) and (4.15). Left: g(ε) = 0.9, (T , f (ε) = 1.1, 1.4 for black and blue curves, 
respectively) and (5(∂2 M/∂ S2)Q , f (ε) = 1.1, 1.4 for red and brown curves, respectively). Right: f (ε) = 1.2, (T , g(ε) = 0.9, 0.95 for black and blue curves, respectively) and 
(5(∂2 M/∂ S2)Q , g(ε) = 0.9, 0.95 for red and brown curves, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
It shows that the first law of black hole thermodynamics, in 
the following form of Eq. (3.22), is valid for both classes of the 
new charged dilatonic BTZ black holes in rainbow gravity.

4.2. Heat capacity and stability analysis

Here, regarding the issues mentioned in subsection 3.2, we per-
form a black hole stability or phase transition analysis for both of 
the new rainbow charged dilatonic BTZ black holes, we just ob-
tained. Using Eq. (4.13), we have obtained the denominator of the 
black hole heat capacity as

(
∂2M

∂ S2

)
Q

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
π2 f (ε)

(
b

r+

)2/3
[
� + q2 f 2(ε)g2(ε)

(
2α−1
α−1

)

× b− 2
3 (2α+1)

(
b

r+

) 2
3 (α−1)

]
,

for β = 1,

1+2β2

π2 f (ε)

[
�(2β2 − 1)

(
b

r+

)2βγ

+ q2 f 2(ε)g2(ε)(1+αβϒ)

b2(1+A)

(
b

r+

) 2γ
β

(1+αβ−β2)
]

,

for β �= 1.

(4.15)

In order to study of the divergent points of the black hole heat 
capacity, as the points of the type two phase transition, we need to 
have the real roots of 

(
∂2M/∂ S2

)
Q = 0. As a matter of calculation, 

they can be obtained in the following form
r+ ≡ r1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
q2 f 2(ε)g2(ε)�2

(
2α−1
α−1

) ] 3
2(α−1)

b
α+2
1−α ,

for β = 1, α > 1,

b
[

q2 f 2(ε)g2(ε)�2(1+αβϒ)

(2β2−1)b2(1+A)

]ϒ
2 (1+2β2)

for β �= 1.

(4.16)

Now, it must be noted that r2 ext and r1 always exist and r1 > r2 ext
for the case β = 1. Therefore, this class of new rainbow black holes 
undergo type one and type two phase transitions at r+ = r2 ext and 
r+ = r1, respectively. They are locally stable if their horizon ra-
diuses are in the range r2 ext < r+ < r1. The plots of numerator and 
denominator of the heat capacity versus r+ are shown in Fig. 7, for 
different values of rainbow functions and β = 1.

Also, Fig. 8 shows the plots of numerator and denominator of 
the black hole heat capacity versus r+ for different values of rain-
bow functions and β �= 1. It shows that it is possible to fix the 
parameters such that both r2 ext and r1 exist. In this case r2 ext
and r1 are the points of type one and type two phase transi-
tions, respectively. The black holes with the horizon radiuses in 
the range r2 ext < r+ < r1 are locally stable. Furthermore, for espe-
cial choice of the parameters, two following nontrivial cases can 
achieved which are not shown in the figures.

Case I: r1 exists but r2 ext does not. In this case, as mentioned 
in the previous subsection, T is positive valued and extreme or 
un-physical black holes do not occur. The black hole heat capacity 
does not vanish and no type one phase transition takes place. Also, 
the black hole heat capacity diverges at r+ = r1 which is the loca-
tion of type two phase transition and black holes with r+ > r1 are 
locally stable.

Case I I: r2 ext exists but r1 does not. In this case the denomi-
nator of the black hole heat capacity is positive everywhere and 
no type two phase transition occurs. The point r+ = r2 ext , at 
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which the black hole heat capacity vanishes, is a point of type one 
phase transition. The black hole heat capacity is positive valued for 
r+ > r2 ext and black holes with the horizon radiuses in this range 
are locally stable.

5. Conclusion

In this paper, we investigated the charged dilatonic BTZ black 
hole solutions in the rainbow gravity theory. Starting from the suit-
able three-dimensional action, we obtained the explicit form of the 
field equations in an energy dependent static spherically symmet-
ric geometry. We found that two kinds of electric fields can be 
achieved if the parameters of the theory are considered properly 
(i.e. β �= α and β = α). One is the well known Coulomb’s electric 
field and the other one can be interpreted as the modification to 
the usual electric field which reduces to the Coulomb’s field as an 
especial case. We proceed to obtain the black hole solutions with 
β = α and β �= α cases, separately. We found that there are two 
new classes of rainbow black hole solutions correspond to the case 
β = α (Eq. (3.7)) and two other new classes of black hole solutions 
in the presence of modified Coulomb field (Eq. (4.7)). All the new 
black hole solutions can produce two horizon extreme and naked 
singularity black holes (Figs. 1, 2 and 5, 6). Also, there is an essen-
tial singularity located at r = 0 and the asymptotic behavior of the
black holes are non flat and non AdS.

Next, by utilizing the Gauss’s law of electricity and Abbott–
Deser mass proposal, we obtained the black hole mass and electric 
charge for either of the four new classes of the rainbow black hole 
solutions. Also, we have calculated the entropy and temperature of 
the new black hole solutions based on the entropy-area law and 
concept of the surface gravity. For both classes of rainbow black 
holes correspond to β = α extreme black holes occur at r+ = r1 ext . 
The physical and un-physical black holes occur for r+ > r1 ext and 
r+ < r1 ext , respectively. In the case β = α �= ±1 there is an espe-
cial case for which the temperature is positive valued and extreme 
ore un-physical black holes do not occur. For the black hole so-
lutions with β = α it is possible for the temperature to vanish at 
r+ = r2 ext and produce the extreme black holes. If it is the case, 
physical and un-physical black holes can occur for r+ > r2 ext and 
r+ < r2 ext , respectively. An especial case to be mentioned is related 
to the case β �= ±1 for which r2 ext does not exist, the black hole 
temperature is positive valued and extreme or un-physical black 
holes can not occur. Through a smarr-type mass formula, which 
states the black hole mass as the function of the extensive param-
eters Q and S , we proved that thermodynamical fist law is valid 
for either of the new black hole solutions in the form of Eq. (3.22).

In addition, making use of the canonical ensemble method, we 
performed a thermal stability analysis for the new rainbow black 
hole solutions by considering the β = α and β �= α cases, sepa-
rately. For the black holes with β = α = ±1, r1 ext and r0 are exist 
always and r0 > r1 ext . As the result there is a type one phase tran-
sition located at r+ = r1 ext where the black hole heat capacity 
vanishes. The point r+ = r0 is the point at which the black hole 
heat capacity diverges and they undergo type two phase transition 
to be stabilized. This class of rainbow black hole solutions are lo-
cally stable if their horizon radius is in the range r1 ext < r+ < r0
(Fig. 3). For the new rainbow black hole solutions correspond to 
β = α �= ±1 three following possibilities are of interest:

(i) Both r1 ext and r0 are exist. In this case r+ = r1 ext and 
r+ = r0 are the points of type one and type two phase transitions, 
respectively. This class of new rainbow black holes are stable if 
their horizon radiuses are in the range r1 ext < r+ < r0 (Fig. 4).

(ii) r1 ext exists but r0 does not exist. In this case the denomina-
tor of the black hole heat capacity is positive valued and there is 
no type two phase transition. They undergo type one phase tran-
sition at the point r+ = r1 ext where the black hole heat capacity 
vanishes. The new charged rainbow black holes are locally stable if 
their horizon radiuses are in the range r+ > r1 ext . This case is not 
shown in the figures.

(iii) r0 exists but r1 ext does not exist. The black hole tempera-
ture is positive valued. Thus, the black hole heat capacity does not 
vanishes and no type one phase transition takes place. There is a 
type two phase transition located at r+ = r0 where the black hole 
heat capacity diverges. The black holes with the horizon radiuses 
greater than r0 are locally stable. This case also is not shown in 
the figures.

The other two new classes of rainbow black holes which are 
correspond to the case β �= α undergo type one phase transition 
at the point r+ = r2 ext and the point of type two phase transi-
tion is located at r+ = r1. The black holes are in a thermally stable 
phase if their horizon radius is in the range r2 ext < r+ < r1 (Figs. 7
and 8). In addition, it must be noted that for these classes of black 
hole solutions with β �= 1 two following possibilities are consider-
able which are not shown in the figures. (I) For a suitably fixed 
parameters it is possible to r2 ext exists but r1 does not. If it is 
the case, the denominator of the black hole heat capacity is posi-
tive everywhere and no type two phase transition takes place. The 
black hole heat capacity vanishes at r+ = r2 ext and it is the point 
of type one phase transition. This class of new rainbow black holes 
are stable for r+ > r2 ext . (I I) The other case, which can achieved 
as an especial case, is that r2 ext does not exist and black hole tem-
perature is positive everywhere. The point r+ = r1, as the real root 
of the denominator of the black hole heat capacity, exists and it is 
a point of type two phase transition. The physical black holes with 
the horizon radius greater than r+ = r1 are locally stable.
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