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We study a scalar particle of mas m1 decaying into two particles of mass m2 during the radiation and
matter dominated epochs of a standard cosmological model. An adiabatic approximation is introduced
that is valid for degrees of freedom (d.o.f.) with typical wavelengths much smaller than the particle horizon
(∝ Hubble radius) at a given time. We implement a nonperturbative method that includes the cosmological
expansion and obtain a cosmological Fermi’s Golden Rule that enables one to compute the decay law of the
parent particle with mass m1, along with the build up of the population of daughter particles with mass m2.

The survival probability of the decaying particle is PðtÞ ¼ e−Γ̃kðtÞt with Γ̃kðtÞ being an effective momentum
and time dependent decay rate. It features a transition timescale tnr between the relativistic and
nonrelativistic regimes and for k ≠ 0 is always smaller than the analogous rate in Minkowski spacetime,
as a consequence of (local) time dilation and the cosmological redshift. For t ≪ tnr the decay law is a

“stretched exponential” PðtÞ ¼ e−ðt=t�Þ3=2 , whereas for the nonrelativistic stage with t ≫ tnr, we find
PðtÞ ¼ e−Γ0tðt=tnrÞΓ0tnr=2, with Γ0 the Minkowski space time decay width at rest. The Hubble timescale
∝ 1=HðtÞ introduces an energy uncertainty ΔE ∼HðtÞ which relaxes the constraints of kinematic
thresholds. This opens new decay channels into heavier particles for 2πEkðtÞHðtÞ ≫ 4m2

2 −m2
1, with

EkðtÞ the (local) comoving energy of the decaying particle. As the expansion proceeds this channel closes
and the usual two particle threshold restricts the decay kinematics.

DOI: 10.1103/PhysRevD.98.083503

I. INTRODUCTION

Particle decay is an ubiquitous process that has profound
implications in cosmology, for baryogenesis [1,2], lepto-
genesis [3,4], CP violating decays [5], big bang nucleo-
synthesis (BBN) [6–14], and dark matter (DM) where large
scale structure and supernova Ia luminosity distances con-
strain the lifetimes of potential, long-lived candidates [6,15–
19].Most analyses of particle decay in cosmology use decay
rates obtained from S-matrix theory in Minkowski space-
time. In this formulation, the decay rate is obtained from the
total transition probability from a state prepared in the
infinite past (in) to final states in the infinite future (out).
Dividing this probability by the total time elapsed enables
one to extract a transition probability per unit time. Energy

conservation emerging in the infinite time limit yields
kinematic constraints (thresholds) for decay processes.
The decay rate so defined, and calculated, is an input

in analyses of cosmological processes. In an expanding
cosmology with a time-dependent gravitational back-
ground, there is no global time-like Killing vector; there-
fore, particle energy is not manifestly conserved, even in
spatially flat Friedmann-Robertson-Walker (FRW) cosmol-
ogies, which do supply spatial momentum conservation.
Early studies of quantum field theory in curved space-time
revealed a wealth of unexpected novel phenomena, such as
particle production from cosmological expansion [20–29]
and the possibility of processes that are forbidden in
Minkowski space time as a consequence of energy/momen-
tum conservation. Pioneering investigations of interacting
quantum fields in expanding cosmologies generalized the
S-matrix formulation for in-out states in Minkowski space-
times for model expansion histories. Self-interacting quan-
tized fields were studied with a focus on renormalization
aspects and contributions from pair production to the
energy momentum tensor [23,24]. The decay of a massive
particle into two massless particles conformally coupled to
gravity was studied in Ref. [30] within the context of in-out
S-matrix for simple cosmological space times. Particle
decay in inflationary cosmology (near de Sitter space-time)
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was studied in Refs. [31,32], revealing surprising phenom-
ena, such as a quantum of a massive field decaying into two
(or more) quanta of the same field. The lack of a global,
time-like Killing vector, and the concomitant absence of
energy conservation, enables such remarkable processes that
are forbidden in Minkowski spacetime. More recently, the
methods introduced in Ref. [30] were adapted to study the
decay of a massive particle into two conformally massless
particles in radiation and “stiff” matter dominated cosmol-
ogy, focusing on extracting a decay rate for zero momentum
[33]. The results of Ref. [33] approach those of Minkowski
spacetime asymptotically in the long-time limit.
Motivation, goals and summary of results. The impor-

tance and wide range of phenomenological consequences
of particle decay in cosmology motivate us to study this
process within the realm of the standard post inflationary
cosmology, during the radiation and matter dominated eras.
Our goal is to obtain and implement a quantum field theory
framework that includes consistently the cosmological
expansion and that can be applied to the various inter-
actions and fields of the standard model and beyond.
Brief summary of results: We combine a physically

motivated adiabatic expansion with a nonperturbative
method that is the quantum field theoretical version of
the Wigner-Weisskopf theory of atomic line-widths [34]
ubiquitous in quantum optics [35]. This method is manifestly
unitary, and has been implemented in both Minkowski
spacetime and inflationary cosmology [36,37], and provides
a systematic framework to obtain the decay law of the parent
along with the production probability of the daughter
particles. One of our main results, to leading order in this
adiabatic expansion, is a cosmological Fermi’s Golden Rule
wherein the particle horizon (proportional to the Hubble
time) determines an uncertainty in the (local) comoving
energy. We find that the parent survival probability may be
written in terms of an effective time-dependent decay rate
which includes the effects of (local) time dilation and
cosmological redshift, resulting in a delayed decay. This
effective rate depends crucially on a transition time, tnr,
between the relativistic and nonrelativistic regimes of the
parent particle, and is always smaller than that in Minkowski
spacetime, becoming equal only in the limit of a parent
particle always at rest in the comoving frame. An unexpected
consequence of the cosmological expansion is that the
uncertainty implied by the particle horizon opens new decay
channels to particles heavier than the parent. As the
expansion proceeds this channel closes and the usual
kinematic thresholds constrain the phase space for the decay
process. While in this study we focus on the radiation
dominated (RD) era, our results can be simply extended to
the subsequent matter dominated (MD) and dark energy
dominated eras. In Appendix A we implement the Wigner-
Weisskopf method in Minkowski spacetime to provide a
basis of comparison which will enable us to highlight the
major differences with the cosmological setting.

II. THE STANDARD POST-INFLATIONARY
COSMOLOGY

We focus on the decay of particles in the post-
inflationary universe, described by a spatially flat (FRW)
cosmology with the metric in comoving coordinates
given by

gμν ¼ diagð1;−a2;−a2;−a2Þ: ð2:1Þ

The standard cosmology post-inflation is described by
three distinct stages: radiation (RD), matter (MD), and
dark energy (DE) domination; we model the latter by a
cosmological constant. Friedmann’s equation is

�
_a
a

�
2

¼ H2ðtÞ ¼ H2
0

�
ΩM

a3ðtÞ þ
ΩR

a4ðtÞ þ ΩΛ

�
; ð2:2Þ

where the scale factor is normalized to a0 ¼ aðt0Þ ¼ 1
today. We take as representative the following values of the
parameters [38–40]:

H0 ¼ 1.5 × 10−42 GeV; ΩM ¼ 0.308;

ΩR ¼ 5 × 10−5; ΩΛ ¼ 0.692: ð2:3Þ

It is convenient to pass from “comoving time,” t, to
conformal time η with dη ¼ dt=aðtÞ, in terms of which
the metric becomes (a≡ aðηÞ)

gμν ¼ diagða2;−a2;−a2;−a2Þ: ð2:4Þ

With ( 0 ≡ d
dη) we find

a0ðηÞ ¼ H0

ffiffiffiffiffiffiffi
ΩM

p
½rþ aþ sa4�1=2; ð2:5Þ

with

r ¼ ΩR

ΩM
≃ 1.66 × 10−4; s ¼ ΩΛ

ΩM
≃ 2.25: ð2:6Þ

Hence the different stages of cosmological evolution,
namely radiation domination (RD), matter domination
(MD), and dark energy domination (DE), are characterized
by

a ≪ r ⇒ RD; r ≪ a ≲ 0.76 ⇒ MD;

a > 0.76 ⇒ DE: ð2:7Þ

In the standard cosmological picture and the majority of
the most well-studied variants, most of the interesting
particle physics processes occur during the RD era and
so we focus most of our attention on this epoch; however,
we also contemplate the possibility of long-lived dark
matter particles that would decay on timescales of the order
of 1=H0. The RD and MD epochs cover approximately half
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of the age of the Universe and during these stages the
evolution of the scale factor can be written as

aðηÞ¼HRηþ
H2

M

4
η2; HR¼H0

ffiffiffiffiffiffi
ΩR

p
; ; HM¼H0

ffiffiffiffiffiffiffi
ΩM

p
;

ð2:8Þ

which facilitates the explicit analytical study of the decay
laws. In turn, the conformal time at a given scale factor a is
given by

ηðaÞ ¼ 2
ffiffiffi
r

p
HM

� ffiffiffiffiffiffiffiffiffiffiffi
1þ a

r

r
− 1

�
: ð2:9Þ

During the (RD) stage the relation between conformal and
comoving time is given by

η ¼
�
2t
HR

�1
2

⇒ aðtÞ ¼ ½2tHR�12; ð2:10Þ

a result that will prove useful in the study of the decay law
during this stage.

III. THE MODEL

We consider two interacting scalar fields ϕ1;ϕ2 in the
FRW cosmology determined by the metric (2.1), with
action given by

A ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

2
gμν∂μϕ1∂νϕ1 −

1

2
½m2

1 þ ξ1R�ϕ2
1

þ 1

2
gμν∂μϕ2∂νϕ2 −

1

2
½m2

2 þ ξ2R�ϕ2
2 − λϕ1∶ϕ2

2∶
�

ð3:1Þ

where

R ¼ 6

�
ä
a
þ
�
_a
a

�
2
�

ð3:2Þ

is the Ricci scalar, and ξ1;2 are couplings to gravity, with
ξ ¼ 0; 1=6 corresponding to minimal or conformal cou-
pling, respectively. We identify ϕ1 as the field associated
with the decaying (“parent”) particle, and ϕ2 as that of the
decay product (“daughter”) particles.
Expressing the action of Eq. (3.1) in terms of comoving

spatial coordinates and the conformal time, while rescaling
the fields as

ϕ1;2ðx⃗; tÞ ¼
χ1;2ðx⃗; ηÞ
aðηÞ ; aðηÞ ¼ aðtðηÞÞ; ð3:3Þ

yields

A ¼
Z

d3xdη

�X
j¼1;2

�
1

2

�
dχj
dη

�
2

−
1

2
ð∇χjÞ2 −

1

2
χ2jM

2
jðηÞ

�

− λaðηÞχ1∶χ22∶
�

ð3:4Þ

neglecting surface terms as usual, where

M2
jðηÞ ¼ m2

ja
2ðηÞ − a00

a
ð1 − 6ξjÞ; j ¼ 1; 2: ð3:5Þ

For the standard cosmology, using (2.5)

a00

a
¼ H2

M

2aðηÞ ½1þ 4sa3ðηÞ�: ð3:6Þ

A. Quantization

We begin with the quantization of free fields [23,25–28]
(λ ¼ 0) as a prelude to the interacting theory. The
Heisenberg equations of motion for the conformally
rescaled fields in conformal time are

d2

dη2
χjðx⃗;ηÞ−∇2χjðx⃗;ηÞþM2

jðηÞχjðx⃗;ηÞ¼ 0; j¼ 1;2:

ð3:7Þ

It is convenient to consider the spatial Fourier transform in
a comoving volume V, namely,

χðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

χ k⃗ðηÞe−ik⃗·x⃗; ð3:8Þ

leading to

d2

dη2
χk⃗ðηÞ þ

�
ω2
kðηÞ −

a00

a
ð1 − 6ξjÞ

�
χk⃗ðk⃗; ηÞ ¼ 0;

ω2
kðηÞ ¼ k2 þm2

ja
2ðηÞ; ð3:9Þ

for either field, respectively.
Although solutions of (3.9) can be found for separate

stages or model expansion histories[33], solving for the
exact mode functions for the standard cosmology with the
different stages, even when neglecting the term with a00=a,
is not feasible. Instead we focus on obtaining approximate
solutions in an adiabatic expansion [23,25–28,41,42] that
relies on a separation of timescales between those of the
particle physics process and that of the cosmological
expansion. As an example, let us consider a physically
motivated setting wherein the decaying particle has been
produced (“born”) early during the radiation dominated
stage by the decay of heavier particle states at the grand
unification (GUT) scale ≃1015 GeV. Assuming that the
mass of the (DM) particle is much smaller than this scale,
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the production process will endow the (DM) particle with
a physical momentum kpðηÞ ¼ k=aðηÞ ≃ 1015 GeV with k
being the comoving momentum. If the environmental
temperature of the plasma is T ≃ TGUT ≃ 1015 GeV and
neglecting the processes that reheat the photon bath by
entropy injection from massive d.o.f., then TGUT ≃
TCMB=aðηiÞ implying that the scale factor at the GUT
scale aðηiÞ ≃ 10−28. In turn this estimate implies that the
comoving wave vector k with which the (DM) is produced
is k ≃ 10−13 GeV.
The result (3.6) suggests that when considering initial

conditions at the GUT scale (or below) corresponding to
aðηiÞ ≥ 10−28 the term a00=a in (3.9) can be neglected for
ωkðηiÞ ≫ 10−30 GeV for scalar fields minimally coupled to

gravity (or for any jξjj ≃Oð1Þ), since ω2
kðηiÞ ≫ H2

m
2aðηiÞ. This

condition is most certainly realized for particles produced
from processes at the GUT scale, since as argued above
such processes would yield comoving wave vectors
k ≃ 10−13 GeV, hence ωkðηiÞ ≥ 10−13 GeV for (DM) par-
ticles (or daughters) with masses below the GUT scale.
Therefore under these conditions we can safely ignore
the term with a00=a in (3.9). Below (see Eq. (3.26)
and following comments) we show explicitly that this term
is of second order in the adiabatic expansion and can be
ignored to leading order. The mode equations (3.9) now
become

d2

dη2
χ k⃗ðηÞ þ ω2

kðηÞχ k⃗ðηÞ ¼ 0: ð3:10Þ

Field quantization is achieved by writing

χk⃗ ¼ ak⃗gkðηÞ þ a†
−k⃗
g�kðηÞ; ð3:11Þ

where the mode functions gkðηÞ obey the equation of
motion

d2

dη2
gkðηÞ þ ω2

kðηÞgkðηÞ ¼ 0; ð3:12Þ

with the Wronskian condition

g0kðηÞg�kðηÞ − g�0k ðηÞgkðηÞ ¼ −i ð3:13Þ

so that the annihilation ak⃗ and creation a
†
k⃗
operators are time

independent and obey the canonical commutation rela-
tions ½ak⃗; a†k⃗0 � ¼ δk⃗;k⃗0 .

Writing the solution of this equation in the WKB form
[23,25–28]

gkðηÞ ¼
e
−i
R

η

ηi
Wkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðηÞ
p ; ð3:14Þ

and inserting this ansatz into (3.10) it follows that WkðηÞ
must be a solution of the equation [25]

W2
kðηÞ ¼ ω2

kðηÞ −
1

2

�
W00

kðηÞ
WkðηÞ

−
3

2

�
W0

kðηÞ
WkðηÞ

�
2
�
: ð3:15Þ

This equation can be solved in an adiabatic expansion

W2
kðηÞ ¼ ω2

kðηÞ
�
1 −

1

2

ω00
kðηÞ

ω3
kðηÞ

þ 3

4
ðω

0
kðηÞ

ω2
kðηÞ

Þ2 þ � � �
�
: ð3:16Þ

We refer to terms that feature n-derivatives of ωkðηÞ as
of nth adiabatic order. The nature and reliability of the
adiabatic expansion is revealed by considering the term of
first adiabatic order for generic mass m:

ω0
kðηÞ

ω2
kðηÞ

¼ m2aðηÞa0ðηÞ
½k2 þm2a2ðηÞ�3=2 ; ð3:17Þ

this is most easily recognized in comoving time t, intro-
ducing the local energy EkðtÞ and Lorentz factor γkðtÞ
measured by a comoving observer in terms of the physical
momentum kpðtÞ ¼ k=aðtÞ

EkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2pðtÞ þm2

q
ð3:18Þ

γkðtÞ ¼
EkðtÞ
m

; ð3:19Þ

and the Hubble expansion rate HðtÞ ¼ _aðtÞ
aðtÞ ¼ a0=a2. In

terms of these variables, the first order adiabatic ratio
(3.17) becomes

ω0
kðηÞ

ω2
kðηÞ

¼ HðtÞ
γ2kðtÞEkðtÞ

: ð3:20Þ

In similar fashion the higher order terms in the adiabatic
expansion can be constructed as well:

ω00
kðηÞ

ω3
kðηÞ

¼ m2ðða0ðηÞÞ2 þ aðηÞa00ðηÞÞ
ω4
kðηÞ

−
m4a2ðηÞða0ðηÞÞ2

ω6
kðηÞ

¼ 1

γ2kðtÞ
�

RðtÞ
6E2

kðtÞ
þH2ðtÞ

E2
kðtÞ

�
−

H2ðtÞ
γ4kðtÞE2

kðtÞ
; ð3:21Þ

where RðtÞ is the Ricci scalar (3.2). Consequently, (3.16)
takes the form:

W2
kðtÞ ¼ a2ðtÞE2

kðtÞ
�
1 −

1

2γ2kðtÞ
�

RðtÞ
6E2

kðtÞ
þH2ðtÞ

E2
kðtÞ

�

þ 5

4

H2ðtÞ
γ4kðtÞE2

kðtÞ
þ � � �

�
: ð3:22Þ
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Consider that the decaying (parent) particle is produced
during the radiation dominated stage at the GUT scale
with T ≃ 1015 GeV, with m ≪ T and kp ≃ T correspond-
ing to EkðtÞ ≃ T and γk ≫ 1 (ultrarelativistic). With the
number of ultrarelativistic d.o.f. geff ≃ 100 the expansion
rate is

HðtÞ ≃ 1.66
ffiffiffiffiffiffiffi
geff

p T2ðtÞ
MPl

≃ 10−2TðtÞ; ð3:23Þ

and it follows that

ω0
kðηÞ

ω2
kðηÞ

≪ 1: ð3:24Þ

This analysis clarifies the separation of scales: the Hubble
expansion rate HðtÞ ≪ EkðtÞ, namely there are many
oscillations of the field during a Hubble time and the ratio
is further suppressed by large local Lorentz factors. This
ratio becomes smaller as the scale factor grows and the
Hubble rate slows, thereby improving the reliability of
the adiabatic expansion. For example, today Hðt0Þ ≃H0≃
10−42 GeV, which is much smaller than the typical
particle physics scales even for very light axionlike
(DM) candidates.
Therefore we adopt the ratio

HðtÞ
EkðtÞ

≪ 1; ð3:25Þ

as the small, dimensionless adiabatic expansion parameter.
The physical interpretation of this (small) ratio is clear:
typical particle physics d.o.f. feature wavelengths that are
much smaller than the particle horizon proportional to the
Hubble radius at any given time (see discussion section
below for caveats).
Consequently, when considering the term a00=a in the

equation of motion (3.9), we find that

a00

aω2
k

¼ 2

�
_H

2E2
k

þH2

E2
k

�
¼ α

H2

E2
k

;

α ≃ 0 ðRDÞ; α ≃
1

2
ðMDÞ: ð3:26Þ

Therefore the ratio a00=ω2
ka is of second adiabatic order and

can be safely neglected to the leading adiabatic order which
we will pursue in this study, justifying the simplification of
the mode equations to (3.10).
In this article we consider the zeroth-adiabatic order with

the mode functions given by

gkðηÞ ¼
e
−i
R

η

ηi
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p ð3:27Þ

postponing to future study higher adiabatic corrections (see
discussion section below). The phase of the mode function
has an immediate interpretation in terms of comoving time
and the local comoving energy (3.18), namely

e
−i
R

η

ηi
ωkðη0Þdη0 ¼ e

−i
R

t

ti
Ekðt0Þdt0 ; ð3:28Þ

which is a natural and straighforward generalization of the
phase of positive frequency particle states in Minkowski
space-time.

IV. PARTICLE INTERPRETATION:
ADIABATIC HAMILTONIAN

Unlike in Minkowski space-time where the full Lorentz
group unambiguously leads to a description of particle
states associated with Fock states that transform irreducibly
and are characterized by mass and spin, the definition of
particle states in an expanding cosmology without a global
time-like Killing vector is more subtle [20,23,25–28].
Our goal is to study particle decay implementing the

adiabatic approximation described above, focusing on the
leading, zeroth order contribution with the mode functions
(3.27). Field quantization in terms of these modes entail
that the creation and annihilation operators of the adiabatic
particle states depend on time so that the quantum field
obeys the (free field) Heisenberg equations of motion.
Passing to the interaction picture to obtain the transition
amplitudes and probabilities, we would need the explicit
time dependence of the creation and annihilation operators.
In this section we show explicitly that to leading adiabatic
order the operators that create and annihilate the adiabatic
states are time independent. This is an important simpli-
fication that allows the calculation of matrix elements in a
straightforward manner.
In order to establish a clear identification of the zeroth

order adiabatic modes with particles we analyze the free-
field Hamiltonian, which in terms of the conformally
rescaled field operators is given by

HðηÞ ¼ 1

2

Z
d3xfπ2 þ ð∇χÞ2 þM2ðηÞχ2g: ð4:1Þ

Writing the field operators in terms of their Fourier
expansions, we have

χðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k

½akgkðηÞeik⃗·x⃗ þ a†kg
�
kðηÞe−ik⃗·x⃗�; ð4:2Þ

πðx⃗; ηÞ ¼ χ0ðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k

½akg0kðηÞeik⃗·x⃗ þ a†kg
�0
k ðηÞe−ik⃗·x⃗�:

ð4:3Þ

Integrating over d3x, gathering terms and neglecting the
term a00=a in (3.9) as discussed above, we find
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HðηÞ ¼ 1

2

X
k

fa†kakðjg0kj2 þ ω2
kðηÞjgkj2Þ

þ aka−kððg0kÞ2 þ ω2
kðηÞðgkÞ2Þ þ H:c:g ð4:4Þ

≡ 1

2

X
k

fΩkðηÞa†kak þ ΔkðηÞaka−k þ H:c:g: ð4:5Þ

We can now expand these coefficients ΩkðηÞ and ΔkðηÞ in
terms of the functions WkðηÞ by using the explicit form of
the mode functions

gkðηÞ ¼
e−i

R
η Wkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WkðηÞ

p ;

g0kðηÞ ¼ −iWkðηÞgkðηÞ
�
1 − i

W0
kðηÞ

2W2
kðηÞ

�
ð4:6Þ

and using the relation (3.15) the frequencies ΩkðηÞ;ΔkðηÞ
can be written as

ΩkðηÞ ¼ jgkj2
�
2W2

k þ
W00

k

2Wk
−
W0

k
2

2W2
k

�
;

ΔkðηÞ ¼ ðgkÞ2
�
W00

k

2Wk
−
W0

k
2

2W2
k

− iW0
k

�
: ð4:7Þ

It is convenient to introduce

αkðηÞ≡ W00
k

2Wk
−
W0

k
2

2W2
k

; ð4:8Þ

which allows us to rewrite the Hamiltonian as

HðηÞ ¼ 1

2

X
k

	
a†k a−k




×

� jgkj2ðαk þ 2W2
kÞ ðg�kÞ2ðαk þ iW0

kÞ
ðgkÞ2ðαk − iW0

kÞ jgkj2ðαk þ 2W2
kÞ

��
ak

a†−k

�

ð4:9Þ

This Hamiltonian can be diagonalized by a time-dependent
Bogoliubov transformation. We do this in two steps. First
we write

ãkðηÞ ¼ ake
−i
R

η Wkðη0Þdη0e−iθkðηÞ=2; ð4:10Þ

and choose θkðηÞ to absorb the phase of Δk, i.e.,
tan θkðηÞ ¼ W0

kðηÞ=αkðηÞ. Then

HðηÞ ¼ 1

2

X
k

	
ã†k ã−k


� ΩkðηÞ jΔkjðηÞ
jΔkjðηÞ ΩkðηÞ

��
ãk

ã†−k

�
;

ð4:11Þ

where

ΩkðηÞ ¼
1

2Wk
ðαkðηÞ þ 2W2

kðηÞÞ;

jΔkj ¼
1

2Wk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2kðηÞ þ ðW0

kðηÞÞ2
q

: ð4:12Þ

We introduce the Bogoliubov transformation to a new set of
creation and annihilation operators b̂†

k⃗
, b̂k⃗ as

ã†
k⃗
¼ ukðηÞb̂†k⃗ þ vkðηÞb̂−k⃗;

ãk⃗ ¼ ukðηÞb̂k⃗ þ vkðηÞb̂†−k⃗; ð4:13Þ

noting that uk, vk are real functions of η and jk⃗j only. For
the b̂k⃗, b̂

†
k⃗
to obey the canonical commutation relations, it

follows that u2k − v2k ¼ 1. Then the Hamiltonian can be
written

HðηÞ ¼ 1

2

X
k

�
b̂†
k⃗

b̂−k⃗

��
uk vk
vk uk

�� Ωk jΔkj
jΔkj Ωk

��
uk vk
vk uk

�� b̂k⃗

b̂†
−k⃗

�
ð4:14Þ

¼ 1

2

X
k

�
b̂†
k⃗

b̂−k⃗

�� ðu2k þ v2kÞΩk þ 2ukvkjΔkj ðu2k þ v2kÞjΔkj þ 2ukvkΩk

ðu2k þ v2kÞjΔkj þ 2ukvkΩk ðu2k þ v2kÞΩk þ 2ukvkjΔkj

�� b̂k⃗

b̂†
−k⃗

�
; ð4:15Þ

and the uk and vk chosen to make off-diagonal terms vanish. Then writing uk ¼ coshϕk and vk ¼ sinhϕk, we find

tanh 2ϕk ¼ −
jΔkj
Ωk

: ð4:16Þ
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In the second step we absorb the fast phases into the
redefinition

b̂k⃗ ¼ e−i
R

η Wkðη0Þdη0bk⃗; b̂†
k⃗
¼ ei

R
η Wkðη0Þdη0b†

k⃗
; ð4:17Þ

in terms of which the Hamiltonian can be written as

HðηÞ ¼
X
k

ωkðηÞ
�
b†
k⃗
ðηÞk⃗bk⃗ðηÞ þ

1

2

�
: ð4:18Þ

This is a remarkable result: the new operators b†
k⃗
; bk⃗ define

a Fock Hilbert space of adiabatic eigenstates, the exact
frequencies of which are the zeroth order adiabatic
frequencies ωkðηÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p
. We emphasize that

b†
k⃗
ðηÞ; bk⃗ðηÞ depend explicitly on time because the

Bogoliubov coefficients ukðηÞ; vkðηÞ depend on time, while
the original operators ak⃗; a

†
k⃗
are time independent in the

Heisenberg picture. This is also clear by inverting the
relations (4.13), and using (4.10) the redefinition (4.17)
along with u2k − v2k ¼ 1, we find

b†
k⃗
ðηÞ ¼ ukðηÞe−iθkðηÞ=2a†k⃗ þ vkðηÞeiθkðηÞ=2e−2i

R
η Wkðη0Þdη0a−k⃗

ð4:19Þ

bk⃗ðηÞ ¼ ukðηÞeiθkðηÞ=2ak⃗ þ vkðηÞe−iθkðηÞ=2e2i
R

η Wkðη0Þdη0a†
−k⃗
:

ð4:20Þ

Using (3.15) and the adiabatic expansion (3.16) it is
straightforward to find that

ukðηÞ ¼ 1þOððω0
kðηÞÞ2;ω00

kðηÞÞ;
vkðηÞ ≃Oððω0

kðηÞÞ2;ω00
kðηÞÞ: ð4:21Þ

Hence, to zeroth order in the adiabatic expansion bk⃗ ¼ ak⃗
and the annihilation and creation operators of adiabatic
particle states are independent of time. Time dependence
of the operators bk⃗; b

†
k⃗
emerges at second order in the

adiabatic expansion.
Therefore, the study in this section justifies our identi-

fication of particle states to leading (zeroth) order in the
adiabatic expansion, namely the time independent oper-
ators a†, a create and annihilate zeroth order adiabatic
particle states of time dependent frequency ωkðηÞ. This is
important because below we cast the interaction picture in
terms of these operators and the mode functions gkðηÞ. The
analysis above explicitly shows the consistency of this
approach to leading order in the adiabatic approximation.
In higher order the time evolution of the operators b; b†

entail particle production [20,23,25–28,41,42], an impor-
tant aspect that will be relegated to future study (see

discussion section below). In the analysis that follows
wewill consider the leading (zeroth) order adiabatic modes.

V. THE INTERACTION PICTURE
IN COSMOLOGY

The creation and annihilation operators ak⃗; a
†
k⃗
for each

respective field define Fock states, with a vacuum state j0i
defined by ak⃗j0i ¼ 0. Since to leading order in the adiabatic
approximation a; a† coincide with b; b† associated with
single particle adiabatic states, it follows that a†

k⃗
j0i are

identified (to this order) with the single particle states
associated with the mode functions(3.27).
In the Schrödinger picture, quantum states obey

i
d
dη

jΨðηÞi ¼ HðηÞjΨðηÞi; ð5:1Þ

where in general the Hamiltonian carries explicit η
dependence. The solution of (5.1) is given in terms of
the unitary time evolution operator Uðη; η0Þ, namely
jΨðηÞi ¼ Uðη; η0ÞjΨðη0Þi, Uðη; η0Þ obeys

i
d
dη

Uðη; η0Þ ¼ HðηÞUðη; η0Þ; Uðη0; η0Þ ¼ 1: ð5:2Þ

Consider a Hamiltonian that can be written as
HðηÞ ¼ H0ðηÞ þHiðηÞ, where H0ðηÞ is the free theory
Hamiltonian and HiðηÞ the interaction Hamiltonian. In the
absence of interactions with Hi ¼ 0, the time evolution
operator of the free theory U0ðη; η0Þ obeys

i
d
dη

U0ðη; η0Þ ¼ H0ðηÞU0ðη; η0Þ;

−i
d
dη

U−1
0 ðη; η0Þ ¼ U−1

0 ðη; η0ÞH0ðηÞ;

Uðη0; η0Þ ¼ 1: ð5:3Þ

It is convenient to pass to the interaction picture, where
the operators evolve with the free field Hamiltonian and the
states carry the time dependence from the interaction,
namely

jΨðηÞiI ¼ U−1
0 ðη; η0ÞjΨðηÞi; ð5:4Þ

and their time evolution is given by

jΨðηÞiI ¼ UIðη; η0ÞjΨðη0ÞiI;
UIðη; η0Þ ¼ U−1

0 ðη; η0ÞUðη; η0Þ: ð5:5Þ

The unitary time evolution operator in the interaction
picture UIðη; η0Þ obeys
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i
d
dη

UIðη; η0Þ ¼ HIðηÞUIðη; η0Þ

HIðηÞ ¼ U−1
0 ðη; η0ÞHiðηÞU0ðη; η0Þ;

UIðη0; η0Þ ¼ 1: ð5:6Þ

For the conformal action (3.4) it follows that

HIðηÞ ¼ λaðηÞ
Z

d3xχ1ðx⃗; ηÞ∶χ22ðx⃗; ηÞ∶; ð5:7Þ

where the fields are given by the free field expansion (3.11)
with the mode functions solutions of (3.12), (3.13) and time
independent creation and annihilation operators for the
respective fields. The perturbative solution of Eq. (5.6) is

UIðη; η0Þ ¼ 1 − i
Z

η

η0

HIðη1Þdη1

þ ð−iÞ2
Z

η

η0

Z
η1

η0

HIðη1ÞHIðη2Þdη1dη2 þ � � �

ð5:8Þ

A. Amplitudes and probabilities
in perturbation theory

Before we consider the nonperturbative Wigner-
Weisskopf method, we study the transition amplitudes
and probabilities in perturbation theory as this will yield
a clear interpretation of the results.
Let us consider the amplitude for the decay process

χ1 → 2χ2 given by

A1→22ðη; ηiÞ ¼ h1ð2Þp⃗ ; 1ð2Þq⃗ jUIðη; ηiÞj1ð1Þk⃗
i; ð5:9Þ

where j1ðaÞp⃗ i; a ¼ 1, 2 are the single particle states asso-
ciated with the respective fields. With the expansion (5.8)
we find to lowest order in perturbation theory,

A1→22ðη; ηiÞ ¼ −iλ
Z

η

ηi

dη0aðη0Þ

×
Z

d3xh1ð2Þp⃗ ; 1ð2Þq⃗ jχ1ðx⃗; η0Þχ22ðx⃗; η0Þj1ð1Þk⃗
i

¼ −2i
λ

V1=2

Z
η

ηi

dη0aðη0Þgð1Þk ðη0Þðgð2Þp ðη0ÞÞ�

× ðgð2Þq ðη0ÞÞ�δk⃗;p⃗þq⃗: ð5:10Þ

The total transition probability is given by

P1→22ðη; ηiÞ ¼
1

2!

X
p⃗

X
q⃗

jA1→22ðη; ηiÞj2; ð5:11Þ

and taking the continuum limit yields

P1→22ðη; ηiÞ ¼
Z

η

ηi

dη2

Z
η

ηi

dη1Σkðη2; η1Þ; ð5:12Þ

where

Σkðη; η0Þ ¼ 2λ2aðηÞaðη0Þðgð1Þk ðηÞÞ�gð1Þk ðη0Þ

×
Z

d3p
ð2πÞ3 g

ð2Þ
p ðηÞgð2Þq ðηÞðgð2Þk ðη0ÞÞ�ðgð2Þq ðη0ÞÞ�;

q ¼ jk⃗ − p⃗j: ð5:13Þ

Noting the property

ðΣkðη; η0ÞÞ� ¼ Σkðη0; ηÞ; ð5:14Þ

and introducing the identity Θðη2 − η1Þ þ Θðη1 − η2Þ ¼ 1,
relabelling terms and using the property (5.14), we find

P1→22ðη; ηiÞ ¼ 2

Z
η

ηi

dη2

Z
η2

ηi

dη1Re½Σkðη2; η1Þ�: ð5:15Þ

We define the transition rate

ΓðηÞ≡ d
dη

P1→22ðη; ηiÞ ¼ 2

Z
η

ηi

dη1Re½Σkðη; η1Þ�: ð5:16Þ

We emphasize to the reader that in typical S-matrix
calculations in Minkowski spacetime, the presence of a
time-like Killing vector (and the implementation of the
infinite time limit) lead to a time independent transition
rate and subsequently a standard exponential decay law. In
FRW spacetime, this approach is in general invalid. Rather,
the transition rate introduced above will define the decay
law obtained within the nonperturbative Wigner-Weisskopf
framework described below.

VI. WIGNER–WEISSKOPF THEORY
IN COSMOLOGY

The quantum field theoretical Wigner-Weisskopf method
has been introduced in Refs. [36,37], where the reader is
referred to for more details. As discussed in these refer-
ences, this method is manifestly unitary and leads to a
nonperturbative systematic description of transition ampli-
tudes and probabilities directly in real time. Here we
describe the main aspects of its implementation within
the cosmological setting. Consider an interaction picture
state jΨðηÞiI ¼

P
nCnðηÞjni, expanded in the Hilbert space

of the free theory; these are the Fock states associated with
the annihilation and creation operators ak⃗; a

†
k⃗
of the free

field expansion (4.2) for each field. Inserting into (5.6)
yields an exact set of coupled equations for the coefficients
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i
d
dη

CnðηÞ ¼
X
m

CmðηÞhnjHIðηÞjmi: ð6:1Þ

In principle this is an infinite hierarchy of integro-
differential equations for the coefficients CnðηÞ; progress
can be made, however, by considering states connected by
the interaction Hamiltonian to a given order in the inter-
action. Consider that initially the state is jAi so that
CAðηiÞ ¼ 1;CκðηiÞ ¼ 0 for jκi ≠ jAi, and consider a first
order transition process jAi → jκi to intermediate multi-
particle states jκi with transition matrix elements
hκjHIðηÞjAi. Obviously the state jκi will be connected to
other multiparticle states jκ0i different from jAi via HIðηÞ.
Hence for example up to second order in the interaction, the
state jAi → jκi → jκ0i. Restricting the hierarchy to first
order transitions from the initial state jAi ↔ jκi results in a
coupled set of equations

i
d
dη

CAðηÞ ¼
X
κ

CκðηÞhAjHIðηÞjκi ð6:2Þ

i
d
dη

CκðηÞ¼CAðηÞhκjHIðηÞjAi; CAðηiÞ¼1; CκðηiÞ¼0:

ð6:3Þ
These processes are depicted in Fig. 1.
Equation (6.3) with CκðηiÞ ¼ 0 is formally solved by

CκðηÞ ¼ −i
Z

η

ηi

hκjHIðη0ÞjAiCAðη0Þdη0; ð6:4Þ

and inserting this solution into Eq. (6.2) we find

d
dη

CAðηÞ ¼ −
Z

η

ηi

dη0ΣAðη; η0ÞCAðη0Þ; ð6:5Þ

where we have introduced the self-energy

ΣAðη; η0Þ ¼
X
κ

hAjHIðηÞjκihκjHIðη0ÞjAi: ð6:6Þ

This integro-differential equation with memory yields a
nonperturbative solution for the time evolution of the
amplitudes and probabilities. In Minkowski space-time
and in frequency space, this is recognized as a Dyson
resummation of self-energy diagrams, which upon Fourier
transforming back to real time, yields the usual exponential

decay law [36,37]. Introducing the solution for CAðηÞ back
into (6.3) yields the build-up of the population of “daugh-
ter” particles.
Equation (6.5) is in general very difficult to solve, but

progress can be made under the weak coupling assumption
by invoking the Markovian approximation. A systematic
implementation of this approximation begins by introducing

EAðη; η0Þ≡
Z

η0

ηi

ΣAðη; η00Þdη00; ð6:7Þ

such that

d
dη0

EAðη; η0Þ ¼ ΣAðη; η0Þ; ð6:8Þ

with the condition

EAðη; ηiÞ ¼ 0: ð6:9Þ

Then (6.5) can be written as

d
dη

CAðηÞ ¼ −
Z

η

ηi

dη0
d
dη0

EAðη; η0ÞCAðη0Þ ð6:10Þ

which can be integrated by parts to yield

d
dη

CAðηÞ ¼ −EAðη; ηÞCAðηÞ þ
Z

η

ηi

dη0EAðη; η0Þ
d
dη0

CAðη0Þ:

ð6:11Þ

Since EA ∝ OðH2
I Þ the first term on the right hand side is

of order H2
I , whereas the second is OðH4

I Þ because
dCAðηÞ=dη ∝ OðH2

I Þ. Therefore to leading order in the
interaction, the evolution equation for the amplitude
becomes

d
dη

CAðηÞ ¼ −EAðη; ηÞCAðηÞ; ð6:12Þ

with solution

CAðηÞ ¼ exp

�
−
Z

η

ηi

EAðη0; η0Þdη0
�
CAðηiÞ: ð6:13Þ

This expression clearly highlights the nonperturbative
nature of the Wigner-Weisskopf approximation. The imagi-
nary part of the self-energy ΣA yields a renormalization of
the frequencies which we will not pursue here [36,37],
whereas the real part gives the decay rate, with

jCAðηÞj2 ¼ e
−
R

η

ηi
ΓAðη0Þdη0 jCAðηiÞj2;

ΓAðηÞ ¼ 2

Z
η

ηi

dη1Re½ΣAðη; η1Þ�: ð6:14Þ
FIG. 1. Transitions jAi ↔ jκi in first order in HI .

PARTICLE DECAY IN POST INFLATIONARY COSMOLOGY PHYS. REV. D 98, 083503 (2018)

083503-9



Finally, the amplitude for the decay product state jκi is
obtained by inserting the amplitude (6.13) into (6.4), and
the population of the daughter particles is jCκðηÞj2.
In our study the state jAi is a single particle state of

momentum k⃗ of the decaying parent particle.

A. Disconnected vacuum diagrams

Before we set out to obtain the self-energy and decay
law for a single particle state of the field χ1 into two
particles of the field χ2 we must clarify the nature of the
vacuum diagrams. Consider the initial single particle state

jAi ¼ j1ð1Þ
k⃗
i and the set of intermediate states connected

to this state by the interaction Hamiltonian to first order.
There are two different contributions: (a): the decay process

j1ð1Þ
k⃗
i → j1ð2Þp⃗ ; 1

ð2Þ
k⃗−p⃗

i in which the initial state is annihilated

and the two particle state produced, and (b): a four particle
state in which the initial state evolves unperturbed and a

three particle state j1ð2Þp⃗ ; 1
ð2Þ
q⃗ ; 1

ð1Þ
−p⃗−q⃗i is created out of the

vacuum by the perturbation. These contributions are
depicted in Fig. 2.
These processes yield two different contributions toP
κh1ð1Þk⃗

jHIðηÞjκihκjHIðη0Þj1ð1Þk⃗
i, depicted in Fig. 3.

The second disconnected diagram (b) corresponds to the
“dressing” of the vacuum. This is clearly understood by
considering the initial state to be the noninteracting vacuum
state j0i; it is straightforward to repeat the analysis above
to obtain the closed set of leading order equations that
describe the build-up of the full interacting vacuum state.
One finds that diagram (b) without the noninteracting
single particle state precisely describes the “dressing” of
the vacuum state. Clearly, similar disconnected diagrams
enter the evolution of any initial state. In the case under
consideration, namely the decay of single particle states,
the disconnected diagram (b) does not contribute to the
decay but to the definition of a single particle state
obtained out of the full vacuum state. In S-matrix theory
these disconnected diagrams are cancelled by dividing all

transition matrix elements by h0jSj0i. Within the Wigner-
Weisskopf framework, wewrite the amplitude for the single

particle state jAi ¼ j1ð1Þ
k⃗
i as

CAðηÞ ¼ C̃AðηÞC̃0ðηÞ ð6:15Þ

where C̃0ðηÞ is the amplitude for the interacting vacuum
state obeying

d
dη

C̃0ðηÞ ¼ −E0ðη; ηÞC̃0ðηÞ; ð6:16Þ

where

E0ðη; η0Þ≡
Z

η0

ηi

ΣðbÞ
A ðη; η00Þdη00; ð6:17Þ

and ΣðbÞ
A ðη; η00Þ is the vacuum self-energy diagram (b) in

Fig. 3. With the total self energy given by the sum of the
decay (a) and vacuum (b) diagrams as in Fig. 3, it follows
that the amplitude C̃AðηÞ obeys

d
dη

C̃AðηÞ ¼ −EðaÞ
A ðη; ηÞC̃AðηÞ; ð6:18Þ

where EðaÞ
A is determined only by the connected (decay)

self-energy diagram (a). This is precisely the same as
dividing by the vacuum matrix element in S-matrix theory
where similar diagrams arise in Minkowski space time
with a similar interpretation [36,37]. This is tantamount to
redefining the single particle states as built from the full
vacuum state. Therefore we neglect diagram (b). We
emphasize that this is in contrast with the method proposed
in Ref. [33] wherein following Ref. [30] the disconnected
diagram (b) is kept in the calculation of the decay process.
Now we are able to calculate the general form of the

decay law by considering the decay process χ1 → 2χ2 in
the interacting theory with HIðηÞ given by (5.7) to leading
order in λ and keeping only the connected diagrams.

FIG. 2. Decay and vacuum diagrams for jAi ¼ j1ð1Þk i to first
order in HI . Solid lines single particle states of the field χ1,
dashed lines are single particle states of the field χ2.

FIG. 3. Contributions to the self-energy for decay (a) and
vacuum diagram (b) for jAi ¼ j1ð1Þk i to first order in HI with the
same notation as in Fig. 2.
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The initial state corresponds to single particle state of the

χ1 field jAi ¼ j1ð1Þk i, and the decay process corresponds to a
transition to the state jκi ¼ j1ð2Þp⃗ ; 1

ð2Þ
q⃗ i. Then

h1ð2Þp⃗ ; 1
ð2Þ
q⃗ jHIðη0Þj1ð1Þk i

¼ 2λaðη0Þ
V1=2 gð1Þk ðη0Þgð2Þ�p ðη0Þgð2Þ�q ðη0Þδk⃗;p⃗þq⃗;

h1ð1Þk jHIðηÞj1ð2Þp⃗ ; 1
ð2Þ
q⃗ i

¼ 2λaðηÞ
V1=2 gð1Þ�k ðηÞgð2Þp ðηÞgð2Þq ðηÞδk⃗;p⃗þq⃗: ð6:19Þ

Taking the continuum limit, summing over intermediate
states, and accounting for the Bose symmetry factor in the
final states yields

Σkðη;η0Þ¼
1

2!

X
p⃗;q⃗

h1ð1Þk jHIðηÞj1ð2Þp⃗ ;1
ð2Þ
q⃗ ih1ð2Þp⃗ ;1

ð2Þ
q⃗ jHIðη0Þj1ð1Þk i

¼4λ2

2!
aðηÞaðη0Þgð1Þk ðη0Þðgð1Þk ðηÞÞ�

×
Z

d3p
ð2πÞ3g

ð2Þ
p ðηÞgð2Þjk⃗−p⃗jðηÞðg

ð2Þ
p ðη0ÞÞ�ðgð2Þjk⃗−p⃗jðη0ÞÞ�:

ð6:20Þ

This is precisely the self-energy (5.13) obtained in the
perturbative description of the transition probability and
amplitude, Eq. (5.12), which enters in the evolution
equation (6.5) for the single (parent) particle. Following
the steps of the Markovian approximation leading up to the
final result (6.14), we find

jCAðηÞj2 ¼ jCAðηiÞj2 exp
�
−
Z

η

ηi

Γkðη0Þdη0
�
;

Γkðη0Þ ¼ 2

Z
η0

ηi

dη00ReΣkðη0; η00Þ: ð6:21Þ

This expression for the probability makes manifest the
nonperturbative nature of the Wigner-Weisskopf method.

VII. DECAY LAW IN LEADING
ADIABATIC ORDER

In this article we study the decay law in the theory
described above to leading adiabatic order, namely zeroth
order. The study of higher adiabatic order effects, primarily
associated with the production of particles by the cosmo-
logical expansion, is relegated to a future article (see
discussion section below).
In the leading (zeroth) order adiabatic approximation the

mode functions are given by

gkðηÞ ¼
e
−i
R

η

ηi
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p ; ωkðη0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðη0Þ

q
;

ð7:1Þ

and Σk takes the following form

Σkðη;η0Þ¼
2λ2aðηÞaðη0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωð1Þ

k ðηÞ2ωð1Þ
k ðη0Þ

q
Z

d3p
ð2πÞ3

×
e
i
R

η

η0 ½ω
ð1Þ
k ðη00Þ−ωð2Þ

p ðη00Þ−ωð2Þ
q ðη00Þ�dη00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωð2Þ
p ðηÞ2ωð2Þ

p ðη0Þ2ωð2Þ
q ðηÞ2ωð2Þ

q ðη0Þ
q ; ð7:2Þ

where q ¼ jk⃗ − p⃗j. Obviously even to this order both the
time and momentum integrals are daunting. However,
progress is made by first considering the case of a massive
parent particle decaying into two massless daughter par-
ticles. This study will reveal a path forward to the more
general case of all massive particles.

A. Massive parent, massless daughters
in RD cosmology

Setting m2 ¼ 0, the self energy becomes

Σkðη;η0Þ¼
2λ2aðηÞaðη0Þei

R
η

η0 ωkðη00Þdη00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωð1Þ

k ðηÞ2ωð1Þ
k ðη0Þ

q
Z

d3p
ð2πÞ3

e−iðpþqÞðη−η0Þ

2p2q
;

q¼jk⃗− p⃗j: ð7:3Þ

The momentum integral in (7.3) is carried out exactly by
introducing a convergence factor after which it becomes

I ¼ 1

16π2

Z
∞

0

p2dp
p

Z
1

−1

dðcosðθÞÞ
q

e−iðpþqÞðs−iϵÞ;

ϵ → 0þ; s≡ η − η0 ð7:4Þ

Changing integration variables from dðcosðθÞÞ to
q ¼ jk⃗ − p⃗j this integral becomes

I ¼ 1

16π2k

Z
∞

0

dpe−ipðs−iϵÞ
Z jkþpj

jk−pj
dqe−iqðs−iϵÞ

¼ −ie−ikðη−η0Þ

16π2ðη − η0 − iϵÞ ; ϵ → 0þ; ð7:5Þ

yielding
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Σkðη; η0Þ ¼
λ2aðηÞaðη0Þei

R
η

η0 ωkðη00Þdη00e−ikðη−η0Þ

16π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð1Þ
k ðηÞωð1Þ

k ðη0Þ
q

×

�
−iP

�
1

η − η0

�
þ πδðη − η0Þ

�
; ð7:6Þ

where the Sokhotski-Plemelj theorem has been used in the
last line. This expression is similar to that obtained in
Appendix A in Minkowski space-time, where the scale
factor is set to one and the frequencies are time independent
[see Eq. (A3)]. The explicit time dependence obtained in
Minkowski space-time in Appendix A cannot be gleaned in
the usual calculations of decay rates via S-matrix theory
where the initial and final times are taken to ∓ ∞,
respectively.
The decay width ΓkðηÞ is obtained from Eq. (6.21), and

is given by

ΓkðηÞ ¼
λ2a2ðηÞ
8πωð1Þ

k ðηÞ
1

2
½1þ SðηÞ�; ð7:7Þ

where a factor of 1
2
originates from the integration of the

delta function in η (the “prompt” term), and

SðηÞ ¼ 2

π

Z
η

0

P½η; η0� sin½Aðη; η
0Þ�

η − η0
dη0; ð7:8Þ

where we set ηi ¼ 0 and introduce

P½η; η0� ¼ aðη0Þ
aðηÞ

�
ωð1Þ
k ðηÞ

ωð1Þ
k ðη0Þ

�
1=2

; ð7:9Þ

Aðη; η0Þ ¼
Z

η

η0
ωkðη00Þdη00 − kðη − η0Þ: ð7:10Þ

The expression for S can be simplified substantially,
revealing a hierarchy of timescales associated with the
adiabatic expansion in radiation domination, during which

aðηÞ ¼ HRη; HR ¼ H0

ffiffiffiffiffiffi
ΩR

p
: ð7:11Þ

First we address the integral

Jk½η; η0� ¼
Z

η

η0
ωð1Þ
k ðη00Þdη00 ¼

Z
η

η0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1a
2ðη00Þ

q
dη00:

ð7:12Þ

To begin with we introduce the dimensionless variable (in
what follows we suppress the η dependence of z to simplify
notation)

z ¼ ωkðηÞη ¼ EkðtÞaðηÞη ¼
EkðtÞ
HðtÞ ≫ 1 ð7:13Þ

where EkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2pðtÞ þm2

q
is the physical energy mea-

sured locally by a comoving observer with kpðtÞ ¼ k=aðηÞ
the physical momentum, and HðtÞ¼a0ðηÞ=a2ðηÞ¼
1=ðηaðηÞÞ during radiation domination, while HðtÞ ¼
2=ðηaðηÞÞ during matter domination. The dimensionless
ratio (7.13) is the inverse of the adiabatic ratio HðtÞ=EkðtÞ
(we have suppressed the momentum and η dependence
in z to simplify notation). The inequality in (7.13) is a
consequence of the adiabatic approximation wherein the
physical wavelengths are much smaller than the Hubble
radius (∝ the particle horizon). Next, we write η00 ¼
η½1 − ðη − η00Þ=η� and introduce

ωð1Þ
k ðηÞðη − η00Þ ¼ x; ωð1Þ

k ðηÞðη − η0Þ ¼ τ; ð7:14Þ

in terms of which

aðη00Þ ¼ aðηÞ
�
1 −

x
z

�
; aðη0Þ ¼ aðηÞ

�
1 −

τ

z

�
: ð7:15Þ

This relation allows us to write

ðωð1Þ
k ðη00ÞÞ2 ¼ ðωð1Þ

k ðηÞÞ2 þm2
1a

2ðηÞ
��

1 −
x
z

�
2

− 1

�

¼ ðωð1Þ
k ðηÞÞ2R2½x�; ð7:16Þ

where we introduced

R½x; η� ¼
�
1 −

2x
γ2kðηÞz

�
1 −

x
2z

��
1=2

; ð7:17Þ

with the local Lorentz factor given by

1

γkðηÞ
¼ m1aðηÞ

ωð1Þ
k ðηÞ

¼ m1

Eð1Þ
k ðtÞ

: ð7:18Þ

During (RD) the Lorentz factor can be written as

γkðηÞ ¼
��

anr
aðηÞ

�
2

þ 1

�
1=2

¼
��

ηnr
η

�
2

þ 1

�
1=2

;

ηnr ¼
k

m1HR
≡ anr

HR
; ð7:19Þ

the conformal time ηnr determines the timescale at which
the parent particle transitions from relativistic η ≪ ηnr to
nonrelativistic η ≫ ηnr. In the following analysis we sup-
press the η-dependence of γk, z for simplicity.
We emphasize that the relations (7.15), (7.16) are exact

in a radiation dominated cosmology. Changing integration
variables from η00 to x given by (7.14) and using the above
variables we find that the integral (7.12) simplifies to the
following expression
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Jk½η;η0�≡Jk½τ;η�¼
Z

τ

0

�
1−

2x
γ2kz

�
1−

x
2z

��
1=2

dx; ð7:20Þ

obtaining

Jk½τ; η� ¼ τ þ δkðτ; ηÞ; ð7:21Þ

where δkðτÞ is of adiabatic order ≥ 1 and given by

δkðτ; ηÞ ¼
z
2

��
1 −

2τ

z

�
−
�
1 −

τ

z

�
R½τ; η�

�

−
z
2γk

ðγ2k − 1Þ ln
�
γkR½τ; η� þ ð1 − τ

zÞ
1þ γk

�
; ð7:22Þ

where we recall that both z and γk depend explicitly on η.
Inserting these results into (7.8), (7.9), (7.10), and using the
new variables z, τ given by Eqs. (7.13) and (7.14) we find

SðηÞ ¼
Z

z

0

P½τ; η� sin½Aðτ; ηÞ�
τ

dτ; ð7:23Þ

where

P½τ; η� ¼ ½1 − τ
z�ffiffiffiffiffiffiffiffiffiffiffiffiffi

R½τ; η�p ; ð7:24Þ

and

A½τ; η� ¼ τ

�
1 −

�
1 −

1

γ2k

�
1=2

�
þ δkðτ; ηÞ; ð7:25Þ

where the term in the bracket follows from k=ωð1Þ
k ðηÞ ¼

ð1 − 1=γ2kÞ1=2. The expression (7.23) is amenable to
straightforward numerical analysis. However, before we
pursue such study, it is important to recognize several
features that will yield to a simplification in the general case
of massive daughters. The various factors above display a
hierarchy of (dimensionless) timescales widely separated
by 1=z ≪ 1 in the adiabatic approximation: the “fast” scale
τ, the “slow” scale τ=z etc. It is straightforward to find that

δkðτ; ηÞ ¼ −
τ2

2γ2kz
þ � � � ; ð7:26Þ

confirming that δk is of first and higher adiabatic order. This
has a simple, yet illuminating interpretation in terms of an
adiabatic expansion of the integral (7.12). If the frequencies

ωð1Þ
k were independent of time, this integral would simply

be Jkðη; η0Þ ¼ ωð1Þ
k ðη − η0Þ≡ τ. Therefore an expansion of

Jk½η; η0� around η0 ¼ η would necessarily entail derivatives

of ωð1Þ
k , namely terms of higher adiabatic order. Consider

such an expansion:

Jk½η; η0� ¼ 0þ d
dη0

Jk½η; η0�
���
η0¼η

ðη − η0Þ

þ 1

2

d2

dη02
Jk½η; η0�

���
η0¼η

ðη − η0Þ2 þ � � �

¼ ωð1Þ
k ðηÞðη − η0Þ − 1

2
ω0ð1Þ
k ðηÞðη − η0Þ2 þ � � �

ð7:27Þ

In terms of τ ¼ ωð1Þ
k ðηÞðη − η0Þ, this expansion becomes

Jk½η; η0� ¼ τ −
τ2

2γ2kz
þ � � � ð7:28Þ

where we used (3.20) and (7.13). The second term is
precisely the leading contribution to δk (7.26). This analysis
makes explicit that an expansion of the integral (7.12) in
powers of η − η0 is precisely an adiabatic expansion in
terms of derivatives of the frequencies. Since the nth power
of η − η0 in such expansion is multiplied by the n − 1
derivative of the frequencies, and when ðη − η0Þ is replaced
by τ=ωð1Þ

k ðηÞ the n − 1 derivative of the frequencies is

divided by ðωð1Þ
k ðηÞÞn yielding a dimensionless ratio of

adiabatic order n − 1.
Let us now consider the full integral expression for SðηÞ

given by (7.23) with the corresponding expressions for P½τ�
and δkðτÞ. For z ≫ 1 the terms of the form τ=z; τ2=z2 will
be negligible in most of the integration region but for the
region of τ ≈ z where these terms become of Oð1Þ.
However, because of the factor τ in the denominator of
the integrand in (7.23), a consequence of the momentum
integration, this region is suppressed by a factor 1=z ≪ 1
yielding effectively a contribution of first (and higher)
adiabatic order. Therefore the contribution from adiabatic
corrections, proportional to powers of τ=z are, in fact,
subleading. This argument suggests that the zeroth order
adiabatic approximation to SðηÞ, namely

S0ðηÞ ¼
2

π

Z
z

0

sin½A0ðτ; ηÞ�
τ

dτ;

A0½τ; η� ¼ τ

�
1 −

�
1 −

1

γ2k

�
1=2

�
; ð7:29Þ

should be a very good approximation to the full function
SðηÞ for z ≫ 1 with closed form expression

S0ðηÞ ¼
2

π
Si½A0ðzðηÞ; ηÞ�: ð7:30Þ

where Si½x� is the sine-integral function with asymptotic
behavior Si½x� → π=2 − cosðxÞ=xþ � � � as x → ∞. This
function rises and begins to oscillate around its asymptotic
value at x ≃ π. This behavior implies that the rise-time of
Si½A0ðz; ηÞ� to its asymptotic value in the ultrarelativistic
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case γk ≫ 1 increases ∝ γ2k. In fact one finds that the full
function SðηÞ and its first order adiabatic approximation
S0ðηÞ vanish as γk → ∞. Namely, the contribution from S0

(and similarly from S) is negligible while the particle is
ultrarelativistic. This expectation is verified numerically.
Figures 4 and 5 display SðzÞ and SðzÞ − S0ðzÞ vs z for the

nonrelativistic limit γk ¼ 1 and for the relativistic regime
γk ¼ 10. In both cases these figures confirm that the zeroth
adiabatic approximation S0ðzÞ is excellent for z ≫ 1. They
also confirm the slow rise of this contribution in the
ultrarelativistic case, note the scale on the horizontal axis
for the case γk ¼ 10 compared to that for γk ¼ 1. For
γk > 1 we have displayed the results for a fixed value of γk
to illustrate the main behavior for the nonrelativistic and
relativistic limits and highlight that the relativistic case
features a larger rise-time. Obviously a detailed numerical
study including the η dependence of γk will depend on the
particular values of k;m1.
Replacing the function SðηÞ by the zeroth order approxi-

mation S0ðηÞ is also consistent with our main approxima-
tion of keeping only the zeroth order adiabatic contribution

in the mode functions. Therefore consistently with the
zeroth adiabatic order, we find that the decay rate for the
case of a massive parent decaying into two massless
daughters is given by

ΓkðηÞ ¼
λ2a2ðηÞ
8πωð1Þ

k ðηÞ
1

2

�
1þ 2

π
Si½A0ðzðηÞ; ηÞ�

�
;

A0ðzðηÞ; ηÞ ¼ zðηÞ
�
1 −

�
1 −

1

γ2kðηÞ
�

1=2
�
: ð7:31Þ

We emphasize that although in several derivations
leading up to the results (7.23), (7.24), (7.25) we have
used the scale factor during the RD dominated era, e.g., in
Eqs. (7.15) and (7.16), only the explicit dependence of
δkðτ; ηÞ and the prefactor P½τ; η� on τ, η depend on this
choice. However, as shown above the leading adiabatic
order corresponds to taking δk ¼ 0 and P½τ; η� ¼ 1, namely
δk and the τ, η dependent terms in P½τ; η� yield contribu-
tions of higher adiabatic order. Therefore, the leading

FIG. 4. S½z� and S½z� − S0½z� vs z for γk ¼ 1.

FIG. 5. SðzÞ and SðzÞ − S0ðzÞ vs z for γk ¼ 10.
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(zeroth) adiabatic order given by (7.31) is valid either for
the (RD) or (MD) dominated eras.
Remarkably, this result is similar to that in Minkowski

space time obtained in Appendix Awith the only difference
being the scale factor and explicit time dependence of the
frequency.
The decay law of the probability, given by (6.21)

requires the integral of the rate (7.31). It is now convenient
to pass to comoving time in terms of which we find (again
setting ηi ¼ 0)

Z
η

0

ΓkðηÞdη≡ Γ0

Z
t

0

F ðt0Þ
γkðt0Þ

dt0; ð7:32Þ

where

Γ0 ¼
λ2

8πm1

; F ðt0Þ ¼ 1

2

�
1þ 2

π
Si½A0ðt0Þ�

�
; ð7:33Þ

where Γ0 is the decay rate of a particle at rest in Minkowski
space-time and γkðtÞ the time dilation factor, which
depends explicitly on time as a consequence of the
cosmological redshift of the physical momentum.
Up to the factor F ðt0Þ, the decay rate in comoving time

has a simple interpretation:

ΓkðtÞ ≃
Γ0

γkðtÞ
; ð7:34Þ

namely a decay width at rest divided by the time dilation
factor. During (RD) it follows that

γkðtÞ ¼
�
1þ tnr

t

�
1=2

; tnr ¼
k2

2m2
1HR

; ð7:35Þ

where tnrðkÞ is the transition timescale between the ultra-
relativistic (t ≪ tnr) and nonrelativistic (t ≫ tnr) regimes,
assuming that the transition occurs during the (RD) era,
which is a suitable assumption for masses larger than a
few eV.
In the (RD) era we find (using (7.13), (7.18), (7.19),

and (7.31)

zðtÞ ¼
�

k2

m1HR

��
t
tnr

�
1þ t

tnr

��
1=2

; ð7:36Þ

A0ðtÞ ¼
�

k2

m1HR

� ffiffiffiffiffi
t
tnr

r ��
1þ t

tnr

�
1=2

− 1

�
: ð7:37Þ

In Minkowski space time, the calculation of the decay
rate in S-matrix theory takes the initial and final states at
t ¼∓ ∞ respectively, in which case the Si function attains
its asymptotic value and F ¼ 1. The derivation of the
decay rate in Minkowski space-time but in real time
implementing the Wigner-Weisskopf method is described

in detail in Appendix A and offers a direct comparison
between the flat and curved space time results.
In general the integral in (7.32) must be obtained

numerically. However, in order to understand the main
differences resulting from the cosmological expansion we
first focus on the nonrelativistic and the ultrarelativistic
limits respectively.

1. Nonrelativistic limit

In this limit we set k ¼ 0 with γkðtÞ ¼ 1 and for
simplicity we take the Si function to have reached its
asymptotic value, therefore replacing F ðt0Þ ≃ 1 inside the
integrand yielding1

Z
η

0

Γk¼0ðη0Þdη0 ¼
λ2

8πm1

t: ð7:38Þ

This is precisely the decay law in Minkowski space time
and coincides with the results obtained in Ref. [33].
However this is the case only if the parent particle is
“born” at rest in the comoving frame, otherwise the time
dilation factor modifies (substantially, see below) the decay
rate and law.

2. Ultrarelativistic limit

In this limit we set m1 ¼ 0 corresponding to γk → ∞ in
the argument of the Si function, in which case its
contribution vanishes identically, yielding F ðt0Þ ¼ 1=2 and

Z
η

0

ΓkðηÞdη≡ λ2

16π

Z
t

0

1

kpðt0Þ
dt0; ð7:39Þ

with physical wave vector kpðtÞ ¼ k=aðηðtÞÞ. During (RD)
this result yields the following decay law of the probability

����Cð1Þ
k⃗
ðtÞ

����2 ¼ e−ðt=t�Þ3=2 ; t� ¼
�
λ2ð2HRÞ1=2

24πk

�
−2=3

: ð7:40Þ

This decay law is a stretched exponential, it is a distinct
consequence of time dilation combined with the cosmo-
logical redshift of the physical momentum.
Although obtaining the decay law throughout the full

range of time entails an intense numerical effort and
depends in detail on the various parameters k, m1, HR
etc. We can obtain an approximate but more clear under-
standing of the transition between the ultrarelativistic and
nonrelativistic regimes by focusing solely on the time
integral of the inverse Lorentz factor, because the contri-
bution from F is bound 1=2 ≤ F ≤ 1. Therefore, setting
F ¼ 1 and during (RD) we find

1Keeping the function F in the integrand yields a subdominant
constant term in the long time limit. A similar term is found in
Ref. [33].
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Z
t

0

Γkðt0Þdt0 ¼ Γ0tnrGkðtÞ

GkðtÞ ¼
�
t
tnr

�
1þ t

tnr

��
1=2

− ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t

tnr

r
þ

ffiffiffiffiffi
t
tnr

r �
:

ð7:41Þ

For the ultrarelativistic regime t ≪ tnr we find the result
(7.40) up to a factor 1=2 because we have set F ¼ 1,
whereas in the nonrelativistic regime, for t ≫ tnr, we obtain
the transition probability

���Cð1Þ
k⃗
ðtÞ

���2 ¼ e−Γ0t

�
t
tnr

�
Γ0tnr=2

; ð7:42Þ

again, the extra power of time is a consequence of the
cosmological redshift in the time dilation factor. For k ¼ 0,
namely tnr ¼ 0, we obtain the nonrelativistic result (7.38).
The function GkðtÞ interpolates between the ultrarela-

tivistic case ∝ t3=2 for t ≪ tnr and the nonrelativistic case
∝ t for t ≫ tnr and encodes the time dependence of the time
dilation factor through the cosmological redshift.
In Minkowski space time the result of the integral in

(7.41) is simply Γ0t which is conveniently written as
Γ0tnrðt=tnrÞ. Because Gk is a function of t=tnr, a measure
of the delay in the cosmological decay compared to that of
Minkowski space time is given by the ratio GkðxÞ=x with
x≡ t=tnr. This ratio is displayed in Fig. 6, it vanishes as
x → 0 as x1=2 and GkðxÞ=x → 1 as x → ∞, in particular
Gkð1Þ ¼

ffiffiffi
2

p
− ln½1þ ffiffiffi

2
p � ¼ 0.533.

This analysis suggests that the effect of the cosmological
expansion can be formally included by defining a time
dependent effective decay rate,

Γ̃kðtÞ ¼ Γ0ðGkðxÞ=xÞ; x ¼ t=tnr; ð7:43Þ

and tnr depends on k [see (7.41)], so that the decay law for
the survival probability of the parent particle becomes

PðtÞ ¼ e−Γ̃kðtÞt: ð7:44Þ

This effective decay rate is always smaller than the
Minkowski rate for k ≠ 0 as a consequence of time dilation
and its time dependence through the cosmological redshift,
coinciding with the Minkowski rate at rest only for k ¼ 0,
namely particles born and decaying at rest in the comov-
ing frame.
Finally, the effect of the function F must be studied

numerically for a given set of parameters k;m1. However,
we can obtain an estimate during the (RD) era from
the expression (7.37) for the argument of the Si-function.
Writing

�
k2

m1HR

�
≡ β ≃ 1016

�ðk=10−13 GeVÞ2
ðm1=100 GeVÞ

�
; ð7:45Þ

it follows that A0ðtÞ ≪ 1 for t=tnr ≪ 1=β2=3 and A0ðtÞ > 1

for t=tnr > 1=β2=3. Because Si½x� ∝ x as x → 0 and
approaches π=2 for x ≃ π the large prefactor in (7.45)
for typical values of k,m1 entails that the transition between
these regimes is fairly sharp, therefore we can approximate
the function F ðt0Þ as

F ðt0Þ ≈ 1

2
Θðβ−2=3 − t0=tnrÞ þ Θðt0=tnr − β−2=3Þ: ð7:46Þ

B. Massive parent and daughters

We now consider the self-energy (7.2) for the case of
massive daughters. Unlike the case of massless daughters,
in this case neither the time nor the momentum integrals
can be done analytically. However, the study of massless
daughters revealed that the adiabatic approximation in the
time integrals is excellent when the adiabatic conditions
HðtÞ=EkðtÞ ≪ 1 are fulfilled for all species. The analysis of
the previous section has shown that inside the time integrals
we can replace aðη0Þ → aðηÞ;ωkðη0Þ → ωkðηÞ since the
difference is at least first order (and higher) in the adiabatic
approximation [see the results for the factor PðτÞ in
Eq. (7.23)]. Furthermore, carrying an adiabatic expansion
of the time integrals of the frequencies is tantamount to
expanding these in powers of η − η0, with the first term,
proportional to η − η0 yielding the zeroth adiabatic order
and the higher powers of η − η0 being of higher adiabatic

order. Replacing η − η0 ¼ τ=ωð1Þ
k ðηÞ associates the higher

powers of τ with higher orders in the adiabatic expansion as
discussed above. However, this argument by itself does not
guarantee the reliability of the adiabatic expansion because
for τ ≃ z ¼ Ek=H each term in this expansion becomes of
the same order. What guarantees the reliability of the
adiabatic expansion is the momentum integral that sup-
presses the large η − η0 regions. This is manifest in the 1=τ
suppression of the integrand in the case of massless
daughters [see Eq. (7.23)]. This can be understood fromFIG. 6. The ratio GkðxÞ=x for x ¼ t=tnr.
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a simple observation. Consider the momentum integral in
the full expression (7.2), setting η ¼ η0 in the exponent
yields a linearly divergent momentum integral. This is the
origin of the singularity as η → η0 in (7.5). The contribu-
tions from regions with large η − η0 oscillate very fast and
are suppressed. Therefore the momentum integral is domi-
nated by the region of small η − η0. In Appendix B we
provide an analysis of the first adiabatic correction and
confirm both analytically and numerically that it is indeed
suppressed by the momentum integration also in the case of
massive daughters.
Therefore we consider the leading adiabatic order that

yields

ΓkðηÞ ¼
2λ2a2ðηÞ
ωð1Þ
k ðηÞ

Z
d3p
ð2πÞ3

1

2ωð2Þ
p ðηÞ2ωð2Þ

q ðηÞ

×
sin½ðωð1Þ

k ðηÞ − ωð2Þ
p ðηÞ − ωð2Þ

q ðηÞÞη�
ðωð1Þ

k ðηÞ − ωð2Þ
p ðηÞ − ωð2Þ

q ðηÞÞ
;

q ¼ jk⃗ − p⃗j: ð7:47Þ

It is convenient to recast this expression in terms of the
physical (comoving) energy and momenta: ωkðηÞ ¼
aðηÞEkðtÞ absorbing the three powers of aðηÞ in the denom-
inator in the momentum integral in (7.47) into the measure
d3p → d3pph where pphðηÞ≡ p=aðηÞ is the physical
momentum, keeping the same notation for the integration
variables (dropping the subscript “ph” from the momenta) to
simplify notation, we obtain

ΓkðηÞ ¼
2λ2aðηÞ
Eð1Þ
k ðηÞ

Z
d3p
ð2πÞ3

1

2Eð2Þ
p ðηÞ2Eð2Þ

q ðηÞ

×
sin½ðEð1Þ

k ðηÞ − Eð2Þ
p ðηÞ − Eð2Þ

q ðηÞÞT̃�
ðEð1Þ

k ðηÞ − Eð2Þ
p ðηÞ − Eð2Þ

q ðηÞÞ
;

q ¼ jk⃗ − p⃗j: ð7:48Þ

The variable

T̃ ¼ aðηÞη≡ 1

H̃
¼

� 1
H ðRDÞ
2
H ðMDÞ ; ð7:49Þ

corresponds to the physical particle horizon, proportional to
the Hubble time. Obviously the momentum integrals cannot
be done in closed form, however (7.48) becomes more
familiar with a dispersive representation, namely

ΓkðηÞ ¼
Z

∞

−∞
dk0ρðk0; kÞ

sin½ðk0 − Eð1Þ
k ðηÞÞT̃�

πðk0 − Eð1Þ
k ðηÞÞ

; ð7:50Þ

with the spectral density

ρðk0; k;ηÞ ¼
λ2aðηÞ
Eð1Þ
k ðηÞ

Z
d3p
ð2πÞ3

ð2πÞδ½k0 −Eð2Þ
p ðηÞ−Eð2Þ

q ðηÞ�
2Eð2Þ

p ðηÞ2Eð2Þ
q ðηÞ

;

ð7:51Þ

we refer to (7.50) the cosmological Fermi’s Golden Rule. In
the formal limit T̃ → ∞

sin½ðk0 − Eð1Þ
k ðηÞÞT̃�

πðk0 − Eð1Þ
k ðηÞÞ

→ δðk0 − Eð1Þ
k ðηÞÞ: ð7:52Þ

The density of states (7.51) is the familiar two body
decay phase space in Minkowski space-time for a particle
of energy k0 into two particles of equal mass. It is given by
(see Appendix A),

ρðk0; k; ηÞ ¼
λ2aðηÞ

8πEð1Þ
k ðηÞ

�
1 −

4m2
2

k20 − k2

�
1=2

× Θðk20 − k2 − 4m2
2ÞΘðk0Þ; ð7:53Þ

where k≡ kphðηÞ is the physical momentum, and the theta
function describes the reaction threshold.
Before we proceed to the study of ΓkðηÞ for m2 ≠ 0,

we establish a direct connection with the results of the
previous section for m2 ¼ 0, where the momentum inte-
gration was carried out first. Setting m2 ¼ 0 in (7.53),
inserting it into the dispersive integral (7.50) and changing

variables ðk0 − Eð1Þ
k ðηÞÞT̃ → x we find

ΓkðηÞ ¼
λ2aðηÞ

8πEð1Þ
k ðηÞ

Z
∞

−ðEð1Þ
k ðηÞ−kÞT̃

sinðxÞ
πx

dx

¼ λ2aðηÞ
8πEð1Þ

k ðηÞ
1

2

�
1þ 2

π
Si½ðEð1Þ

k ðηÞ − kÞT̃�
�
; ð7:54Þ

which is precisely the result (7.31) displaying the “prompt”
(1) and “raising” (Si) terms inside the bracket.
Restoring m2 ≠ 0, and taking formally the infinite time

limit (7.52), the rate (7.50) becomes

ΓðηÞ ¼ λ2aðηÞ
8πEð1Þ

k ðηÞ

�
1 −

4m2
2

m2
1

�
1=2

Θðm2
1 − 4m2

2Þ; ð7:55Þ

revealing the usual two particle threshold m1 ≥ 2m2.

1. Threshold relaxation

However, before taking the infinite time limit we
recognize important physical consequences of the rate
(7.50). The Hubble time T̃ introduces an uncertainty in
energy ΔE ≃ 1=T̃ ≡ H̃ which allows physical processes
that violate local energy conservation on the scale of
this uncertainty. In particular, this uncertainty allows a
particle of mass m1 to decay into heavier particles, as a
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consequence of the relaxation of the threshold condition
via the uncertainty. This remarkable feature can be under-
stood as follows. The sine function in (7.50) features a

maximum at k0 ¼ Eð1Þ
k ðηÞ with half-width (in the variable

k0) ≈πH̃, narrowing as T̃ increases. The spectral density
ρðk0; k; ηÞ has support above the threshold at
k�0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4m2

2

p
, it is convenient to write this threshold

as k�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEð1Þ

k ðηÞÞ2 þ ð4m2
2 −m2

1Þ
q

. For 4m2
2 −m2

1 < 0 the

position of the peak of the sine function, at k0 ¼ Eð1Þ
k ðηÞ

lies above the threshold, but for 4m2
2 −m2

1 > 0 it lies below
it. In this latter case, if the condition

ðEð1Þ
k ðηÞ þ πH̃Þ2 ≫ ðEð1Þ

k ðηÞÞ2 þ ð4m2
2 −m2

1Þ ð7:56Þ

is fulfilled, the “wings” of the sine function beyond the
peak feature a large overlap with the region of support of
the spectral density. This is displayed in Figs. 7 and 8. This
phenomenon entails the opening of unexpected new chan-
nels for a particle to decay into two heavier particles as a
consequence of the energy uncertainty determined by the
Hubble time.

In the adiabatic approximation with Eð1Þ
k ðηÞ ≫ H̃ the

overlap condition (7.56) reads

2πEð1Þ
k ðηÞH̃ðηÞ ≫ 4m2

2 −m2
1; ð7:57Þ

which shows that this condition becomes more easily
fulfilled for a relativistic parent. This is clearly displayed
in Fig. 8.
To gain better understanding of this condition, let us

consider the specific case of an ultrarelativistic parent with
mass m1 ≃ 100 GeV with a GUT-scale comoving energy
Ek ≃ 1015 GeV decaying into two daughters with mass
m2 ≃ 1 TeV for illustration. We can then replace Ek ≃
k=aðηÞwith k ≃ 10−13 GeV being the comovingmomentum

that yields a physical momentum kph ≃ 1015 GeV (with
aðηiÞ ≃ 10−28), furthermore with H̃ ≃HR=a2ðηÞ and HR ¼
H0

ffiffiffiffiffiffi
ΩR

p
≃ 10−44 GeV one finds that the condition (7.57)

implies that this decay channel will remain open within the
window of scale factors

10−28 ≤ aðηÞ ≪ 10−21; ð7:58Þ

corresponding to the temperature range 108 GeV < TðtÞ ≤
1015 GeV during the (RD) dominated era. In this temper-
ature regime, the heavier daughter particles in this example
are also typically ultrarelativistic.
Under these circumstances the results from Eqs. (7.39)

and (7.40) are valid during the time interval in which this
decay channel remains open, determined by the inequality
(7.58). Eventually, however as the expansion proceeds
both the local energy and expansion rate diminish and this

FIG. 7. The functions ρðk0; kÞ (dashed line) and Sðk0Þ ¼ sin½ðk0 − EÞT�=½ðk0 − EÞT� in units of m1. Left panel: E ¼ 2, 4m2
2 ¼ 4,

T ¼ 10 corresponding to E below threshold. Right panel: E ¼ 1, 4m2
2 ¼ 0.2, T ¼ 10 corresponding to E above threshold.

FIG. 8. The functions ρðk0; kÞ (dashed line) and Sðk0Þ ¼
sin½ðk0 − EÞT�=½ðk0 − EÞT� in units of m1 for E ¼ 15,
4m2

2 ¼ 10, T ¼ 10 corresponding to an ultrarelativistic parent
with E below threshold.
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channel closes. The detailed dynamics of this phenomenon
must be studied numerically for a given range of
parameters.
The integration of the convolution of the spectral density

with the sine function and the further integration to obtain
the decay law is extremely challenging and time consuming
because of the wide separation of scales and the rapid
oscillations. In a more realistic model with specific param-
eters such endeavor would be necessary for a detailed
assessment of the contribution from the new open channels.
Here we provide a “proof of principle” by displaying in
Fig. 9 the result of the integral (see (7.50) and (7.51)

RðEÞ¼
Z

∞

k�
0

dk0

�
k20−E2− ð4m2

2−m2
1Þ

k20−E2þm2
1

�
1=2 sin½ðk0−EÞT�

ðk0−EÞ ;

k�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þð4m2

2−m2
1Þ

q
ð7:59Þ

for 4m2
2 > m2

1 so that E is below threshold.
The range of E, T are chosen to comply with the validity

of the adiabatic condition ET ≫ 1. This figure shows that
the uncertainty “opens” the threshold to decaying into
heavier particles, the example in the figure corresponds to
m2 ¼ 2m1. We have numerically confirmed that as T
increases RðEÞ diminishes as a consequence of a smaller
overlap. As the scale factor increases these new decay
channels close, allowing only the two body decay for
m1 > 2m2 and the decay rate is given by the long time
limit (7.55)

ΓðηÞ ¼ Γ0

aðηÞ
γkðηÞ

;

Γ0 ¼
λ2

8πm1

�
1 −

4m2
2

m2
1

�
1=2

Θðm2
1 − 4m2

2Þ; ð7:60Þ

where Γ0 is the usual decay rate at rest in Minkowski space
time. Following the analysis of the previous section, one

now finds a decay law similar to that in Eq. (7.41) but with
Γ0 now given by (7.60).

2. Daughters pair probability

With the solution for the amplitude of the single particle
state, we can now address the amplitude for the decay

products from the result (6.4) with jκi ¼ j1ð2Þp⃗ ; 1ð2Þq⃗ i and

jAi ¼ j1ð1Þ
k⃗
i. The decay product is a correlated pair of

daughter particles. The corresponding matrix element is
given by (6.19) in terms of the zeroth order adiabatic mode
functions (7.1). Writing the solution for the decaying
amplitude

Cð1Þ
k⃗
ðηÞ ¼ e

−
R

η

ηi
Eð1Þk ðη00Þdη00 ð7:61Þ

where Re½Eð1Þ
k ðηÞ� ¼ ΓkðηÞ=2, and neglecting the contribu-

tion from the imaginary part which amounts to a renorm-
alization of the frequencies [36,37], we find (using (6.4))

Cð2Þ
p⃗;q⃗ðηÞ ¼ −i

2λ

V1=2

Z
η

ηi

e
i
R

η0
ηi
½ωð2Þ

p⃗
ðη00Þþωð2Þ

q⃗
ðη00Þ−ωð1Þ

k⃗
ðη00Þ�dη00

½2ωð2Þ
p⃗ ðη0Þ2ωð2Þ

q⃗ ðη0Þ2ωð1Þ
k⃗
ðη0Þ�1=2

× e
−
R

η0
ηi

Γkðη00Þ=2dη00dη0;

q⃗ ¼ k⃗ − p⃗: ð7:62Þ

The time integral is extremely challenging and can only be
studied numerically. We can make progress by implement-
ing the same approximations discussed above. Since Γk
depends on the slowly varying frequency, it itself varies
slowly, therefore we will consider an interval in η so that the
decay rate remains nearly constant, replacing the exponen-
tials by their lowest order expansion in η0 − ηi. During this
interval we find the following approximate form of the
daughter pair probability,

jCp⃗;k⃗ðηÞj2 ≈
λ2

2ωð1Þ
k ðηÞωð2Þ

p ðηÞωð2Þ
q ðηÞV

×
j1 − e−ΓkðηÞη=2e−iðω

ð1Þ
k ðηÞ−ωð2Þ

p ðηÞ−ωð2Þ
q ðηÞÞηj2

ðωð1Þ
k ðηÞ − ωð2Þ

p ðηÞ − ωð2Þ
q ðηÞÞ2 þ Γ2

kðηÞ
4

;

q⃗ ¼ k⃗ − p⃗; ð7:63Þ

where we set ηi ¼ 0. This expression is only valid in
restricted time interval, its main merit is that it agrees with
the result in Minkowski space time (see Appendix A) and
describes the early build up of the daughters population
from the decay of the parent particle. The occupation
number of daughter particles is obtained by calculating the
expectation value of the number operators a†q⃗aq⃗; a

†
p⃗ap⃗ in

the time evolved state, it is straightforward to find

FIG. 9. The integral R(E) vs E, form2=m1 ¼ 2; T̃ ¼ 10 in units
of m1.
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ha†q⃗aq⃗i ¼ ha†p⃗ap⃗i ¼ jCp⃗;k⃗ðηÞj2; ð7:64Þ

the fact that these occupation numbers are the same is a
consequence of the pair correlation.
A more detailed assessment of the population build up

and asymptotic behavior requires a full numerical study for
a range of parameters.

VIII. DISCUSSION

There are several aspects and results of this study that
merit further discussion.

A. Spontaneous vs stimulated decay

We have focused on the dynamics of decay from an
initial state assuming that there is no established population
of daughter particles in the plasma that describes an (RD)
cosmology. If there is such population there is a contribu-
tion from stimulated decay in the form of extra factors
1þ n for each bosonic final state where n is the occupation
of the particular state. These extra factors enhance the
decay. On the other hand, if the particles in the final state
are fermions (a case not considered in this study), the final
state factors are 1 − n for each fermionic daughter species
and the decay rate would decrease as a consequence of
Pauli blocking. The effect of an established population
of daughter particles on the decay rate clearly merits
further study.

B. Medium corrections

In this study we focus on the corrections to the decay law
arising solely from the cosmological expansion as a prelude
to a more complete treatment of kinetic processes in the
early Universe. In this preliminary study we have not
included the effect of medium corrections to the interaction
vertices or masses. Finite temperature effects, and in
particular in the early radiation dominated stage, modify
the effective couplings and masses, e.g., a Yukawa coupling
to fermions or a bosonic quartic self interaction would yield
finite temperature corrections to the masses ∝ T2. These
modifications may yield important corrections to the
spectral densities and may also modify threshold kinemat-
ics. However, the dynamical effects such as threshold
relaxation, consequences of uncertainty and delayed decay
(relaxation) as a consequence of cosmological redshift of
time dilation are robust phenomena that do not depend on
these aspects. Our formulation applies to the time evolution
of (pure) states. In order to study the time evolution of
distribution functions it must be extrapolated to the time
evolution of a density matrix, from which one can extract
the quantum kinetic equations including the effects of
cosmological expansion described here. This program
merits a deeper study beyond the scope of this article.
We are currently pursuing several of these aspects.

C. Cosmological particle production

Our study has focused on the zeroth adiabatic order as a
prelude to a more comprehensive program. We have argued
that at the level of the Hamiltonian, the creation and
annihilation operators introduced in the quantization pro-
cedure create and destroy particles as identified at leading
adiabatic order and diagonalize the Hamiltonian at leading
(zero) order. Beyond the leading order, there emerge
contributions that describe the creation (and annihilation)
of pairs via the cosmological expansion. We have argued
that these processes are of higher order in the adiabatic
expansion, therefore can be consistently neglected to
leading order. For weak coupling, including these higher
order processes of cosmological particle production (and
annihilation) in the calculation of the decay rate (and decay
law) will result in higher order corrections to the rate of the
form λ2 × ðhigher order adiabaticÞ. However, once these
processes are included at tree level, namely at the level of
free field particle production, they may actually compete
with the decay process. It is possible that for weak
coupling, cosmological particle production (and annihila-
tion) competes on similar timescales with decay, thereby
perhaps “replenishing” the population of the decaying
particle. The study of these competing effects requires
the equivalent of a quantum kinetic description including
the gain from particle production and the loss from decay
(and absorption of particles into the vacuum). Such study
will be the focus of a future report.

D. Validity of the adiabatic approximation

The adiabatic approximation relies on the ratio
HðtÞ=EkðtÞ ≪ 1 (3.25). In a radiation dominated cosmology
the Hubble radius (H−1ðtÞ) grows as a2ðtÞ and during matter
domination it grows as a3=2ðtÞ whereas physical wave-
lengths grow as aðtÞ, with aðtÞ the scale factor. During these
cosmological eras, physical wavelengths become deeper
inside the Hubble radius and the ratioHðtÞ=EkðtÞ diminishes
fast. Therefore if the condition HðtÞ=EkðtÞ ≪ 1 is satisfied
at the very early stages during radiation domination, its
validity improves as the cosmological expansion proceeds.

E. Modifications to BBN

The results obtained in the previous sections show
potentially important modifications to the decay law during
the (RD) cosmological era. An important question is
whether these corrections affect standard BBN. To answer
this question we focus on neutron decay, which is an
important ingredient in the primordial abundance of
Helium and heavier elements. The neutron is “born” after
the QCD confining phase transition at TQCD ≃ 150 MeV at
a time tQCD ≃ 10−5s hence neutrons are “born” nonrelativ-
istically. With a mass MN ≃ 1 GeV and a typical physical
energy ≃TQCD the transition time tnr ≃ 10−6s ≃ tQCD. The
neutron’s lifetime ≃900s implies that Γ0tnr=2 ≃ 10−9 and
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the modifications from the decay law determined by the
extra factor in (7.42) are clearly irrelevant. Therefore it is
not expected that the modifications of the decay law found
in the previous sections would affect the dynamics of BBN
and the primordial abundance of light elements. There is,
however, the possibility that other d.o.f., such as, sterile
neutrinos for example, whose decay may inject energy into
the plasma with potential implications for BBN. Such a
possibility has been raised in Refs. [7–14] with regard to
the abundance of 7Li. The decay law of these other species
of particles (such as sterile neutrinos beyond the standard
model) could be modified and their efficiency for energy
injection and potential impact on BBN may be affected by
these modifications. Such possibility remains to be studied.

F. Wave packets

We have studied the decay dynamics from an initial state
corresponding to a single particle state with a given
comoving wave vector. However, it is possible that the
decaying parent particle is not created (“born”) as a single
particle eigenstate of momentum, but in a wave packet
superposition. Taking into account this possibility is
straightforward within the Wigner-Weisskopf method,
and it has been considered in Minkowski space time in
Ref. [36]. Consider an initial wave packet as a linear
superposition of single particle states of the parent field,

namely j1ð1Þi ¼ P
k⃗ C

ð1Þ
k⃗
ðηiÞj1ð1Þk⃗

i, where Cð1Þ
k⃗
ðηiÞ are the

Fourier coefficients of a wave packet localized in space
(e.g., a Gaussian wave packet). Implementing the Wigner-
Weisskopf method, the time evolution of this state leads to
the solution (6.13) for the coefficients with CAðηiÞ ¼
Cð1Þ
k⃗
ðηiÞ, and by Fourier transform one obtains the full

space-time evolution of the wave packet [36]. Such an
extension presents no conceptual difficulty, however, the
major technical complication would be to extract the decay
law: as pointed out in the previous section, the main
difference with the result in Minkowski space time is that
the time dilation factors depend explicitly on time through
the cosmological redshift. In a wave packet description,
each different wave vector component features a different
time dilation factor with a differential red-shift between the
various components. This will modify the evolution
dynamics in several important ways: there is spreading
associated with dispersion, the different time dilation
factors for each wave vector imply a superposition of
different decay timescales, and finally, each different time
dilation factor features a different time dependence through
the cosmological redshift. All these aspects amount to
important technical complexities that merit further study.

G. Caveats

The main approximation invoked in this study, the
adiabatic approximation, relies on the physical wavelength
of the particle to be deep inside the physical particle

horizon at any given time, namely, much smaller than
the Hubble radius. If the decaying parent particle is
produced (“born”) satisfying this condition, this approxi-
mation becomes more reliable with cosmological expan-
sion as the Hubble radius grows faster than a physical
wavelength during an (RD) or (MD) cosmology. However,
it is possible that such particle has been produced during
the inflationary, near de Sitter stage, in which case the
Hubble radius remains nearly constant and the physical
wavelength is stretched beyond it. In this situation, the
adiabatic approximation as implemented in this study
breaks down. While the physical wavelength remains
outside the particle horizon, the evolution must be obtained
by solving the equations of motion for the mode function.
During the post inflationary evolution well after the
physical wavelength of the parent particle reenters the
Hubble radius the adiabatic approximation becomes reli-
able. However, it is possible that while the physical
wavelength is outside the particle horizon during (RD)
(or (MD)) the parent particle has decayed substantially with
the ensuing growth of the daughter population. The
framework developed in this study would need to be
modified to include this possibility, again a task beyond
the scope and goals of this article.

IX. CONCLUSIONS AND FURTHER QUESTIONS

Motivated by the phenomenological importance of
particle decay in cosmology for physics within and beyond
the standard model, in this article we initiate a program to
provide a systematic framework to obtain the decay law in
the standard post inflationary cosmology. Most of the
treatments of phenomenological consequences of particle
decay in cosmology describe these processes in terms of a
decay rate obtained via usual S-matrix theory in Minkowski
space time. Instead, recognizing that rapid cosmological
expansion may modify this approach with potentially
important phenomenological consequences, we study par-
ticle decay by combining a physically motivated adiabatic
expansion and a nonperturbative quantum field theory
method which is an extension of the ubiquitous Wigner-
Weisskopf theory of atomic line widths in quantum optics
[35]. The adiabatic expansion relies on a wide separation of
scales: the typical wavelength of a particle is much smaller
than the particle horizon (proportional to the Hubble radius)
at any given time. Hence we introduce the adiabatic ratio
HðtÞ=EkðtÞ where HðtÞ is the Hubble rate and EkðtÞ the
(local) energy measured by a comoving observer. The
validity of the adiabatic approximation relies on
HðtÞ=EkðtÞ ≪ 1 and is fulfilled undermost general circum-
stances of particle physics processes in cosmology.
The Wigner-Weisskopf framework allows to obtain the

survival probability and decay law of a parent particle along
with the probability of population build-up for the daughter
particles (decay products). We implement this framework
within a model quantum field theory to study the generic
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aspects of particle decay in an expanding cosmology, and
compare the results of the cosmological setting with that of
Minkowski space time.
One of our main results is a cosmological Fermi’s

Golden Rule which features an energy uncertainty deter-
mined by the particle horizon (∝ 1=HðtÞ) and yields the
time dependent decay rate. In this study we obtain two
main results: (i) During the (RD) stage, the survival
probability of the decaying (single particle) state may be
written in terms of an effective time dependent rate Γ̃kðtÞ
as PðtÞ ¼ e−Γ̃kðtÞt. The effective rate is characterized
by a timescale tnr (7.41) at which the particle transitions
from the relativistic regime (t ≪ tnr) when PðtÞ ¼ e−ðt=t�Þ3=2

to the nonrelativistic regime (t ≫ tnr) when PðtÞ ¼
e−Γ0tð t

tnr
ÞΓ0tnr=2 where Γ0 is the Minkowski space-time decay

width at rest. Generically the decay is slower in an
expanding cosmology than in Minkowski space time.
Only for a particle that has been produced (“born”) at rest
in the comoving frame is the decay law asymptotically the
same as in Minkowski space-time. Physically the reason for
the delayed decay is that for nonvanishing momentum the
decay rate features the (local) time dilation factor, and in an
expanding cosmology the (local) Lorentz factor depends on
time through the cosmological redshift. Therefore lighter
particles that are produced with a large Lorentz factor decay
with an effective longer lifetime. (ii) The second, unex-
pected result of our study is a relaxation of thresholds as a
consequence of the energy uncertainty determined by the
particle horizon. A distinct consequence of this uncertainty
is the opening of new decay channels to decay products that
are heavier than the parent particle. Under the validity of
the adiabatic approximation, this possibility is available
when 2πEkðtÞHðtÞ ≫ 4m2

2 −m2
1 where m1, m2 are the

masses of the parent, daughter particles respectively. As the
expansion proceeds this channel closes and the usual
kinematic threshold constrains the phase space available
for decay. Both these results may have important phenom-
enological consequences in baryogenesis, leptogenesis, and
dark matter abundance and constraints which remain to be
studied further.
Further questions.—We have focused our study on a

simple quantum field theory model that is not directly
related to the standard model of particle physics or beyond.
Yet, the results have a compelling and simple physical
interpretation that is likely to transcend the particular
model. However, the analysis of this study must be applied
to other fields in particular fermionic d.o.f. and vector
bosons. Both present new and different technical chal-
lenges primarily from their couplings to gravity which will
determine not only the scale factor dependence of vertices
but also the nature of the mode functions (spinors in
particular). As mentioned above, cosmological particle
production is not included to leading order in the adiabatic
approximation but must be consistently included beyond

leading order. The results of this study point to interesting
avenues to pursue further: in particular the relaxation of
kinematic thresholds from the cosmological uncertainty
opens the possibility for unexpected phenomena and
possible modifications to processes, such as inverse decays,
the dynamics of thermalization and detailed balance. These
are all issues that merit a deeper study, and we expect to
report on some of them currently in progress.
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APPENDIX A: PARTICLE DECAY IN
MINKOWSKI SPACETIME

In order to understand more clearly the decay law in
cosmology, it proves convenient to study the decay of a
massive particle into two particles in Minkowski space time
implementing the Wigner-Weisskopf method.

1. Integrating in momentum first:
Massless daughters

This is achieved from the expression (7.3) by simply
taking

η→ t; aðηÞ→ 1; gð1Þk ðηÞ→ e−iEktffiffiffiffiffiffiffiffi
2Ek

p ; gð2Þk ðηÞ→ e−iktffiffiffiffiffi
2k

p ;

ðA1Þ

with Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, leading to

Σkðt − t0Þ ¼ λ2

Ek

Z
d3p
ð2πÞ3

eiðEk−p−qÞðt−t0Þ

2p2q
; q ¼ jk⃗ − p⃗j:

ðA2Þ

The integral over p can be done by writing d3p ¼
p2dpdðcosðθÞÞ and changing variables from cosðθÞ to q ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2 − 2kp cosðθÞ

p
with dðcosðθÞÞ=q ¼ −dq=kp, and

introducing a convergence factor t − t0 → ðt − t0 − iϵÞ with
ϵ → 0þ. We find

Σkðt− t0Þ¼ −iλ2

16π2Ek

eiðEk−kÞðt−t0Þ

ðt− t0− iϵÞ

¼ λ2

16π2Ek
eiðEk−kÞðt−t0Þ

�
−iP

�
1

t− t0

�
þπδðt− t0Þ

�
;

ðA3Þ

and
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ReΣkðt− t0Þ ¼ λ2

16π2Ek

�
πδðt− t0Þ þ sin½ðEk − kÞðt− t0Þ�

ðt− t0Þ
�
:

ðA4Þ

This expression yields a time dependent decay rate ΓðtÞ
given by

ΓðtÞ ¼ 2

Z
t

0

ReΣkðt− t0Þdt0 ¼ λ2

8πEk

1

2

�
1þ 2

π
Si½ðEk − kÞt�

�
;

ðA5Þ

where Si½x� is the sine-integral function with asymptotic
limit Si½x� → π=2 for x → ∞. The timescale to reach the
asymptotic behavior

tasy ∝
1

Ek − k
; ðA6Þ

therefore the approach to asymptotia and to the full width
takes a much longer time for an ultrarelativistic particle
with tasy ∝ 2k=m2, whereas it is much shorter in the
nonrelativistic case tasy ∝ 1=m. In S-matrix theory in
Minkowski space time one takes t → ∞, and obviously
in this limit the Si− function reaches its asymptotic value,
therefore the time dependence of the rate cannot be
gleaned.

2. Integrating in time first: Massive particles and
Fermi’s Golden Rule

Let us consider now the full dispersion relations for the
daughter particles, calling Ek that of the parent decaying
particle and ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

p
that of the daughter. From

(6.7) and (6.21), we need

Ek½t;t�¼
Z

t

0

Σkðt− t0Þdt0; ΓkðtÞ¼2ReEk½t;t�: ðA7Þ

We find

ΓkðtÞ ¼
2λ2

Ek

Z
d3p
ð2πÞ3

sin½ðEk − ωp − ωqÞt�
2ωp2ωq½ðEk − ωp − ωqÞ�

;

q ¼ jk⃗ − p⃗j; ðA8Þ

the asymptotic long time limit

sin½ðEk − ωp − ωqÞt�
½ðEk − ωp − ωqÞ�

t → ∞����!πδðEk − ωp − ωqÞ; ðA9Þ

yields

ΓkðtÞ !
t→∞

λ2

Ek

Z
d3p

ð2πÞ32ωp2ωq
ð2πÞδðEk − ωp − ωqÞ;

ðA10Þ

this is simply Fermi’s Golden Rule which yields the
standard result for the decay rate

Γk ¼
λ2

8πEk

�
1 −

4m2
2

E2
k − k2

�
1=2

ΘðE2
k − k2 − 4m2

2Þ: ðA11Þ

Although E2
k − k2 ¼ m2

1 we have left the result in the form
shown to make use of it in the cosmological case and to
highlight the threshold.
Before taking the limit t → ∞ the real time rate (A8) can

be conveniently written in a dispersive form, namely

ΓkðtÞ ¼
Z

∞

−∞
ρðk0; kÞ

sin½ðk0 − EkÞt�
½πðk0 − EkÞ�

dk0 ðA12Þ

with the spectral density

ρðk0; kÞ ¼
λ2

Ek

Z
d3p
ð2πÞ3

ð2πÞδðk0 − ωp − ωqÞ
2ωp2ωq

;

q ¼ jk⃗ − p⃗j; ðA13Þ

which, following the steps leading up to (A11) is given by

ρðk0; kÞ ¼
λ2

8πEk

�
1 −

4m2
2

k20 − k2

�
1=2

Θðk20 − k2 − 4m2
2ÞΘðk0Þ:

ðA14Þ

The case of massless daughter’s particles m2 ¼ 0 is
particularly simple, yielding

ΓkðtÞ ¼
λ2

8π2Ek

Z
∞

−ðEk−kÞt

sinðxÞ
x

dx

¼ λ2

8πEk

1

2

�
1þ 2

π
Si½ðEk − kÞt�

�
: ðA15Þ

This expression of course agrees with Eq. (A5) and clarifies
the emergence of a prompt term given by δðt − t0Þ in (A3)
and the “rising” term, namely the Si function that reaches
its asymptotic value π=2 over a timescale ≈1=ðEk − kÞ, by
integrating in time first.
Using the result (6.4) adapted to Minkowski space time,

with the state jκi ¼ j1ð2Þp⃗ ; 1ð2Þq⃗ i the amplitude for daughter
particles becomes

Cp⃗;k⃗ðtÞ ¼ −ih1ð2Þp⃗ 1
ð2Þ
q⃗ jHIj1ð2Þk⃗

i
Z

t

0

e−iðEk−ωp−ωqÞt0e−Γkt0=2dt0

ðA16Þ
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with the probability given by

jCp⃗;k⃗ðtÞj2 ¼
λ2

2ωð1Þ
k ωð2Þ

p ωð2Þ
q V

j1 − e−Γkt=2e−iðEk−ωp−ωqÞtj2
½ðEk − ωp − ωqÞ2 þ Γ2

k
4
�

;

q⃗ ¼ k⃗ − p⃗: ðA17Þ

APPENDIX B: FIRST ORDER ADIABATIC
CORRECTION FOR MASSIVE DAUGHTERS

There are two contributions of first adiabatic order in the
time integrals up to η of Eq. (7.2): (1) keeping the quadratic
term ðη − η0Þ2 multiplied by derivatives of the frequencies
in the exponential [see Eq. (7.27)]. With the substitution

τ ¼ ωð1Þ
k ðηÞðη − η0Þ this term is proportional to τ2, and

(2) in the first order expansion of the scale factor and the
frequencies obtained from the expression (7.24), this
term is proportional to τ. Both terms are of first adiabatic
order, hence are multiplied by HðtÞ=EkðtÞ≡ 1=z where
we have taken the frequency of the parent particle as
reference frequency. The contributions to the integral (here
we set ηi ¼ 0)

Z
η

0

Σkðη; η0Þdη0

are of the form

1

z

Z
z

0

ðaτ þ ibτ2Þe
i

�
1−

ω
ð2Þ
p ðηÞ

ω
ð1Þ
k

ðηÞ
−
ω
ð2Þ
q ðηÞ

ω
ð1Þ
k

ðηÞ

�
τ

dτ

where a, b are z-independent coefficients but depend on the
momenta. Introducing the dispersive form of the momen-
tum integrals as in Eq. (7.50) and introducing

ϵ ¼ k0 − Eð1Þ
k

Eð1Þ
k

; ðB1Þ

we find the following contributions to the corrections to
ReΣk:

Re
Z

z

0

τeiϵτdτ ¼ f1ðϵ; zÞ ¼
d
dϵ

�ð1 − cosðϵzÞ
ϵ

�
ðB2Þ

Re
Z

z

0

iτ2eiϵτdτ ¼ f2ðϵ; zÞ ¼
d2

dϵ2

�ð1 − cosðϵzÞ
ϵ

�
: ðB3Þ

Changing integration variables from k0 to ϵ in the dis-
persive form and writing the spectral density ρðk0; kÞ≡
ρðϵÞ to simplify notation the corrections to the rate ΓkðηÞ
to first adiabatic order are determined by the following
integrals

I1;2ðzÞ ¼
1

z

Z
∞

−∞
ρðϵÞf1;2ðϵ; zÞdϵ; ðB4Þ

for comparison, in terms of the same variables, the zeroth
order adiabatic term is given by

I0ðzÞ ¼
Z

∞

−∞
ρðϵÞ sinðϵzÞ

ϵ
dϵ: ðB5Þ

The function f0ðϵ; zÞ ¼ sinðϵzÞ=z is the usual function
of Fermi’s Golden Rule: for large z it is sharply localized
near ϵ ≃ 0 with total area ¼ π, it becomes a delta function
in the large z limit, probing the region ϵ ≃ 0 of the spectral
density. The function f1ðϵ; zÞ is even in ϵ and for large z is
also localized near ϵ ≃ 0 but in this limit it becomes the
difference of delta functions multiplied by z plus subdomi-
nant terms. Because this function is a total derivative
the total integral area is independent of z and vanishes
in the integration domain −∞ < ϵ < ∞. If m1 is above the
threshold the total integral does not vanish but becomes
independent of z and small as z → ∞, thus we expect I1ðzÞ
to fall off rapidly with z. Finally, the function f2ðϵ; zÞ is odd
in ϵ and for large z is also localized near ϵ ≃ 0 but vanishing
at ϵ ¼ 0 and rapidly varying in this region, averaging out
the integral over the spectral density. Thus we also expect
that I2ðzÞ falls off with z with nearly zero average because
of being odd in ϵ. Figures 10 and 11 display I0, I1, I2 for a
representative set of parameters. The main features are
confirmed by a comprehensive numerical study for a wide
range of parameters for m1 > 2m2 (above threshold). If m1

is below the two particle threshold, the spectral density
vanishes in the region of support of the functions f1, f2
thereby yielding rapidly vanishing integrals for large z. We
have confirmed numerically that both I1, I2 vanish very
rapidly as a function of z in this case, remaining perturba-
tively small when compared to I0. Therefore this study
confirms that the first order adiabatic corrections are indeed
subleading as compared to the leading (zeroth) order
contribution for large z ¼ EkðtÞ=HðtÞ.

FIG. 10. The integral I0ðzÞ vs z, for m2=m1 ¼ 0.25, k ¼ 0.
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