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A R T I C L E I N F O A B S T R A C T

Editor: Clay Córdova This study investigates the possible existence of wormhole solutions with dark matter galactic halo 
profiles in the background of 𝑓 (𝑄, 𝑇 ) gravity. The primary focus of the current study is to find the 
significance of dark matter (DM) in the search for traversable wormhole solutions within galactic 
halos. Various dark matter profiles, such as Universal Rotation Curves (URC), Navarro-Frenk-

White (NFW) model-I, and NFW model-II, are examined within two different 𝑓 (𝑄, 𝑇 ) models. 
The DM halo density profiles generate appropriate shape functions under the linear model that 
satisfy all the essential conditions for presenting the wormhole geometries. Apart from that, we 
take into account an embedded wormhole-specific shape function to inspect DM profiles under 
the non-linear model. We noticed that the null energy conditions are violated by the obtained 
solution from each model, which confirms that the DM support wormholes to sustain in the 
galactic halo. The findings reveal that the solutions obtained for different density profiles of dark 
matter halos within generalized symmetric teleparallel gravity demonstrate viability.

1. Introduction

The search for a theory of exotic objects over Einstein’s general theory of relativity (GR) has acquired a significant amount of 
curiosity in the literature. A wormhole possesses one of the probable solutions to Einstein’s field equations. Wormholes are links that 
connect two branes, universes, or even just two locations at the manifold. One of the earliest wormhole solutions, the Einstein-Rosen 
bridge, was discovered by Einstein and Rosen [1] in 1935. Initially, the Einstein-Rosen wormhole was found to be non-traversable, 
as its throat would rapidly expand and contract, preventing anything, not even a photon, from passing through [2,3]. However, the 
issue of wormhole traversability was later addressed by Morris and Thorne [4]. The Schwarzschild wormhole [5] is the first form of 
wormhole solution present in the Schwarzschild metric defining an eternal black hole. Nevertheless, it turned out that it could have 
fallen too rapidly. In a nutshell, if there is an exotic sort of matter with negative energy density, the wormholes may be sustained.

In the last two decades, considerable research has been dedicated to exploring traversable wormhole solutions [6–13]. It is known 
that constructing wormhole solutions without exotic matter (it is responsible for violating Null Energy Conditions (NEC) and is crucial 
for constructing a traversable wormhole) poses a significant challenge. To minimize the volume of exotic types of matter, Visser 
[14,15] described a cut-and-paste method for constructing a spherically symmetric thin-shell wormhole where the exotic matter was 
located, allowing an observer to pass through unexpectedly without coming into contact with it. In [16], the authors considered 
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minimizing the violation of NEC for traversable wormholes and examined their stability. Moreover, Visser et al. [17] claimed that it 
could reduce the violation of the NEC by choosing an appropriate geometry for the wormhole. It is known that Despite constructing 
wormhole solutions with ordinary matter being complicated, this problem has been addressed for rotating cylindrical wormholes in 
the framework of GR, and wormhole solutions preserving weak energy conditions (WEC) have been extensively explored in Refs. 
[18,19]. Furthermore, it is worth noting that wormholes can also be supported by normal matter in modified theories of gravity 
[20–37].

In the late ‘90s, researchers introduced the concept of the non-metricity theory following the proposal of Symmetric Teleparallel 
Gravity [38–40]. This theory, which is free from torsion and curvature, connects gravitation to the non-metricity tensor and the 
associated nonmetricity scalar. In 2018, Jimenez et al. developed a generalization of this theory known as 𝑓 (𝑄) gravity [41]. In 𝑓 (𝑄)
gravity, the gravitational field is described solely by the non-metricity scalar 𝑄. This theory has been successful in explaining various 
perturbation and observational data, including Redshift Space Distortion, Supernovae type Ia, Cosmic Microwave Background, and 
Baryonic Acoustic Oscillations, etc., [42–45]. Notably, a study suggests that the non-metricity 𝑓 (𝑄) gravity may challenge the ΛCDM 
[46]. The application of 𝑓 (𝑄) gravity extends to the astrophysical domain as well. Researchers have explored the behavior of black 
holes within the framework of 𝑓 (𝑄) gravity [47]. Wormhole solutions [48] as well as Casimir wormholes [49] have been analyzed in 
𝑓 (𝑄) gravity. In [50], the spherically symmetric configurations in 𝑓 (𝑄) gravity have been discussed. Further interesting applications 
of 𝑓 (𝑄) gravity can be found in the literature [51–59].

In recent times, there has been growing interest in the field of 𝑓 (𝑄, 𝑇 ) theories, which explore a matter-geometry coupling 
represented by viable functions of the non-metricity scalar 𝑄 and the trace of the energy-momentum tensor 𝑇 in the Lagrangian 
[60]. While this proposed gravity theory is relatively new, it holds considerable potential in various cosmological applications. 
Several studies have already discussed the cosmological implications of 𝑓 (𝑄, 𝑇 ) gravity. The initial works [60] covered the first 
cosmological significances of this theory, while later research [61] focused on investigating the late-time accelerated expansion with 
observational constraints for the 𝑓 (𝑄, 𝑇 ) gravity model. Additionally, various other aspects such as Baryogenesis [62], Cosmological 
inflation [63], Reconstruction of the 𝑓 (𝑄, 𝑇 ) Lagrangian [64], and Cosmological perturbations [65] have been widely explored. 
However, it is worth noting that limited attention has been given to studying the astrophysical implications of this modified gravity. 
In one work by Tayde et al. [66], where they investigated static spherically symmetric wormhole solutions in 𝑓 (𝑄, 𝑇 ) gravity for 
both linear and non-linear models under different equations of state relations. Their findings revealed that exact solutions were 
attainable for the linear model, while the non-linear model posed considerable challenges in obtaining analytical solutions. Also, 
wormhole solutions in 𝑓 (𝑄, 𝑇 ) gravity using the MIT bag model has been studied [67]. Further, in [68], the thin-shell gravatar 
model in 𝑓 (𝑄, 𝑇 ) gravity is discussed. Recently, constant-roll and primordial black holes in 𝑓 (𝑄, 𝑇 ) gravity are analyzed in [69]. In 
addition, one can check more interesting articles on astrophysical works [70–72]. Despite the growing interest in 𝑓 (𝑄, 𝑇 ) gravity, it 
remains a relatively nascent theory with untapped potential. Therefore, in light of the scarcity of research on the astrophysical aspect 
of this gravity theory, we were inspired to delve into investigating wormhole solutions with dark matter in the context of 𝑓 (𝑄, 𝑇 )
gravity.

DM is a fundamental constituent of the Universe, detectable primarily through its gravitational effects rather than its luminosity. 
Approximately 97% of the Universe’s content comprises dark energy and DM, while only about 3% consists of observable matter. The 
virial theorem was initially used by Zwicky [73] to propose the existence of DM in galaxies. It is widely believed that spiral galaxies 
exhibit URC, and the presence of DM in their galactic halos can be verified by its gravitational influence on the URC [74,75]. Based 
on observations, such as the NFW density profile and the flat rotation curves of galaxies, Rahaman et al. [76] demonstrated that 
galactic halos could potentially support the existence of traversable wormholes. Consequently, the topic of galactic halo wormholes 
has been explored in various theories of gravity, including modified theories. For instance, Sharif et al. [77–79] investigated galactic 
halo wormhole solutions in different modified gravity theories. Mustafa et al. [80] focuses on investigating the physical properties 
of DM in the galactic halo regime and wormhole geometry in the modified teleparallel gravity. Further, by examining the three 
distinct DM halo profiles, namely URC, NFW, and Scalar Field Dark Matter (SFDM), the potential existence of generalized wormhole 
geometry within the galactic halo regions was investigated [81]. Another recent work focused on the evolution of topologically 
deformed wormholes in DM halos [82]. Furthermore, the formation of spherically symmetric traversable wormholes in DM halos 
with isotropic pressure was explored by Xu et al. [83]. Additionally, Kuhfittig [84] studied the phenomenon of gravitational lensing 
by galactic halo wormholes. In this study, we aim to investigate traversable wormhole solutions using DM halo profiles within the 
framework of the 𝑓 (𝑄, 𝑇 ) theory of gravity. To achieve this, we consider different DM density profile models, namely the URC 
model and the cold dark matter halo, with two different NFW models. This research aims to establish the existence of galactic halo 
traversable wormholes within the context of 𝑓 (𝑄, 𝑇 ) gravity for these considered models.

The structure of this paper is outlined as follows: In Section 2, we provide an introduction to the fundamental formalism of 
𝑓 (𝑄, 𝑇 ) gravity, considering the necessary traversability conditions and subsequently deriving the corresponding field equations. 
Section 3 offers a concise overview of the linear form of 𝑓 (𝑄, 𝑇 ) as applied to DM halo profiles. In Section 4, we extend our review to 
encompass the non-linear form of 𝑓 (𝑄, 𝑇 ) concerning DM halo profiles. Finally, in the concluding section, we summarize and discuss 
the results obtained throughout this study.

2. Traversability conditions of wormhole and field equations in 𝒇 (𝑸, 𝑻 ) gravity

We begin by considering a spherically symmetric and static space-time described by the following metric:
2

𝑑𝑠2 = 𝑒𝜈(𝑟)𝑑𝑡2 − 𝑒𝜆(𝑟)𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 sin2 𝜃𝑑Φ2. (1)
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Here, the metric components, 𝜈(𝑟) = 2𝜙(𝑟) and 𝑒𝜆(𝑟) =
(

𝑟−𝑏(𝑟)
𝑟

)−1
, are functions that depend only on the radial coordinate. The 

shape of the wormholes is determined by the shape function 𝑏(𝑟). The function 𝜙(𝑟) represents the redshift function associated 
with gravitational redshift. The flaring-out condition must be satisfied by the shape function 𝑏(𝑟) for a wormhole to be traversable, 
expressed as (𝑏 − 𝑏′𝑟)∕𝑏2 > 0 [4]. At the wormhole throat, denoted by 𝑟0, the condition 𝑏(𝑟0) = 𝑟0 is imposed, and 𝑏′(𝑟0) < 1 (𝑏′(𝑟)
denotes the derivative of 𝑏(𝑟) with respect to 𝑟). Moreover, the asymptotic flatness condition, which states that 𝑏(𝑟)

𝑟
→ 0 as 𝑟 →∞, is 

also required. Additionally, to avoid an event horizon, the function 𝜙(𝑟) must remain finite everywhere. In the context of Einstein’s 
General Relativity, satisfying these criteria may indicate the existence of exotic matter at the wormhole throat.

Now, let us briefly overview some general aspects of 𝑓 (𝑄, 𝑇 ) gravity. In this context, we consider the action of symmetric 
teleparallel gravity, as proposed in the study [60]

 = ∫
1

16𝜋
𝑓 (𝑄,𝑇 )

√
−𝑔 𝑑4𝑥+ ∫ 𝑚

√
−𝑔 𝑑4𝑥 . (2)

The function involving the non-metricity scalar 𝑄 and the trace of the energy-momentum tensor 𝑇 is denoted as 𝑓 (𝑄, 𝑇 ). Here, 𝑔
represents the determinant of the metric tensor 𝑔𝜇𝜈 , and 𝑚 corresponds to the matter Lagrangian density.

The non-metricity tensor is defined by the following equation [41]:

𝑄𝜆𝜇𝜈 =▽𝜆𝑔𝜇𝜈 . (3)

Also, the superpotential or non-metricity conjugate can be defined as

𝑃 𝛼
𝜇𝜈

= 1
4

[
−𝑄𝛼

𝜇𝜈 + 2𝑄(𝜇
𝛼

𝜈) +𝑄𝛼𝑔𝜇𝜈 − �̃�𝛼𝑔𝜇𝜈 − 𝛿𝛼(𝜇𝑄𝜈)

]
. (4)

And two traces of the non-metricity tensor are given by

𝑄𝛼 =𝑄𝛼
𝜇

𝜇, �̃�𝛼 =𝑄𝜇
𝛼𝜇. (5)

The non-metricity scalar is represented as [41]

𝑄 = −𝑔𝜇𝜈
(
𝐿𝛽

𝛼𝜇
𝐿𝛼

𝜈𝛽
−𝐿

𝛽

𝛼𝛽
𝐿𝛼

𝜇𝜈

)
, (6)

= −𝑄𝛼𝜇𝜈 𝑃
𝛼𝜇𝜈, (7)

where 𝐿𝛽
𝜇𝜈 represents the disformation defined by

𝐿𝛽
𝜇𝜈

= 1
2
𝑄𝛽

𝜇𝜈
−𝑄

𝛽

(𝜇 𝜈). (8)

Now, the gravitational equations of motion can be obtained by varying the action with respect to the metric tensor 𝑔𝜇𝜈 and are 
represented as

−2√
−𝑔

▽𝛼

(√
−𝑔 𝑓𝑄 𝑃 𝛼

𝜇𝜈

)
− 1

2
𝑔𝜇𝜈𝑓 + 𝑓𝑇

(
𝑇𝜇𝜈 +Θ𝜇𝜈

)
− 𝑓𝑄

(
𝑃𝜇𝛼𝛽 𝑄𝜈

𝛼𝛽 − 2𝑄𝛼𝛽
𝜇 𝑃𝛼𝛽𝜈

)
= 8𝜋𝑇𝜇𝜈, (9)

where 𝑓𝑄 = 𝜕𝑓

𝜕𝑄
and 𝑓𝑇 = 𝜕𝑓

𝜕𝑇
.

The energy-momentum tensor for the fluid depiction of space-time can be described as

𝑇𝜇𝜈 = − 2√
−𝑔

𝛿
(√

−𝑔𝑚

)
𝛿𝑔𝜇𝜈

, (10)

and

Θ𝜇𝜈 = 𝑔𝛼𝛽
𝛿𝑇𝛼𝛽

𝛿𝑔𝜇𝜈
. (11)

In this study, we conduct an analysis of wormhole solutions while considering an anisotropic energy-momentum tensor. The formu-

lation of this tensor, as presented in [4,85], is represented by Eq. (12) as follows:

𝑇 𝜈
𝜇
=
(
𝜌+ 𝑝𝑡

)
𝑢𝜇 𝑢𝜈 − 𝑝𝑡 𝛿

𝜈
𝜇
+
(
𝑝𝑟 − 𝑝𝑡

)
𝑣𝜇 𝑣𝜈. (12)

Here, the variables involved are defined as follows: 𝜌 represents the energy density, 𝑢𝜇 and 𝑣𝜇 are the four-velocity vector and unitary 
space-like vectors, respectively. Both vectors satisfy the conditions 𝑢𝜇𝑢𝜈 = −𝑣𝜇𝑣

𝜈 = 1. Additionally, 𝑝𝑟 and 𝑝𝑡 denote the radial and 
tangential pressures, respectively, and both are functions of the radial coordinate 𝑟. The trace of the energy-momentum tensor is 
given by 𝑇 = 𝜌 − 𝑝𝑟 − 2𝑝𝑡.
In this article, we employ the matter Lagrangian 𝑚 = −𝑃 [86], which leads to the following form for Eq. (11):
3

Θ𝜇𝜈 = −𝑔𝜇𝜈 𝑃 − 2𝑇𝜇𝜈. (13)
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Here, 𝑃 represents the total pressure and can be expressed as 𝑃 = 𝑝𝑟+2𝑝𝑡
3 . The non-metricity scalar 𝑄 for the metric (1) is provided 

by [66] and is given by:

𝑄 = − 𝑏

𝑟2

[
𝑟𝑏′ − 𝑏

𝑟(𝑟− 𝑏)
+ 2𝜙′

]
. (14)

The corresponding field equations for 𝑓 (𝑄, 𝑇 ) gravity, in the context of this study, are presented as follows [66]:

8𝜋𝜌 = (𝑟− 𝑏)
2𝑟3

[
𝑓𝑄

(
𝑏
(
2𝑟𝜙′ + 2

)
𝑟− 𝑏

+
(2𝑟− 𝑏)

(
𝑟𝑏′ − 𝑏

)
(𝑟− 𝑏)2

)
−

2𝑟3𝑓𝑇 (𝑃 + 𝜌)
(𝑟− 𝑏)

+
2𝑏𝑟𝑓QQ𝑄

′

𝑟− 𝑏
+ 𝑓𝑟3

𝑟− 𝑏

]
, (15)

8𝜋𝑝𝑟 = −(𝑟− 𝑏)
2𝑟3

[
𝑓𝑄

(
𝑏

𝑟− 𝑏

(
𝑟𝑏′ − 𝑏

𝑟− 𝑏
+ 2𝑟𝜙′ + 2

)
− 4𝑟𝜙′

)
−

2𝑟3𝑓𝑇

(
𝑃 − 𝑝𝑟

)
(𝑟− 𝑏)

+
2𝑏𝑟𝑓QQ𝑄

′

𝑟− 𝑏
+ 𝑓𝑟3

𝑟− 𝑏

]
, (16)

8𝜋𝑝𝑡 = −(𝑟− 𝑏)
4𝑟2

⎡⎢⎢⎢⎣𝑓𝑄

⎛⎜⎜⎜⎝
(

2𝑟
𝑟−𝑏

+ 2𝑟𝜙′
)(

𝑟𝑏′ − 𝑏
)

𝑟(𝑟− 𝑏)
+ 4(2𝑏− 𝑟)𝜙′

𝑟− 𝑏
− 4𝑟𝜙′′ − 4𝑟

(
𝜙′)2⎞⎟⎟⎟⎠− 4𝑟𝑓QQ𝑄

′𝜙′ −
4𝑟2𝑓𝑇

(
𝑃 − 𝑝𝑡

)
(𝑟− 𝑏)

+ 2𝑓𝑟2

𝑟− 𝑏

⎤⎥⎥⎥⎦ .
(17)

Using these specific field equations, it becomes possible to explore different wormhole solutions within the framework of 𝑓 (𝑄, 𝑇 )
gravity models. This allows for the investigation of a wide range of wormhole configurations and properties within the context of 
𝑓 (𝑄, 𝑇 ) gravity.

Now, let us take a moment to address the classical energy conditions derived from the Raychaudhuri equations. These conditions 
serve as a means to explore the physically plausible configurations of matter. Following is an expression for each of the four energy 
conditions: null energy condition (NEC), weak energy condition (WEC), dominant energy condition (DEC), and strong energy condi-

tion (SEC).

∙ Weak energy condition (WEC): 𝜌 ≥ 0, 𝜌 + 𝑝𝑟 ≥ 0, and 𝜌 + 𝑝𝑡 ≥ 0.

∙ Null energy condition (NEC): 𝜌 + 𝑝𝑟 ≥ 0, and 𝜌 + 𝑝𝑡 ≥ 0.

∙ Dominant energy condition (DEC): 𝜌 ≥ 0, 𝜌 + 𝑝𝑟 ≥ 0, 𝜌 + 𝑝𝑡 ≥ 0, 𝜌 − 𝑝𝑟 ≥ 0, and 𝜌 − 𝑝𝑡 ≥ 0.

∙ Strong energy condition (SEC): 𝜌 + 𝑝𝑟 ≥ 0, 𝜌 + 𝑝𝑡 ≥ 0, and 𝜌 + 𝑝𝑟 + 2𝑝𝑡 ≥ 0.

To summarize, energy conditions serve as significant constraints on the behavior of matter within the Universe, playing a pivotal 
role in the investigation of wormholes.

3. Wormhole solutions with 𝒇 (𝑸, 𝑻 ) = 𝜶𝑸 + 𝜷 𝑻

In this section, we will examine a specific and notable 𝑓 (𝑄, 𝑇 ) model characterized by the equation:

𝑓 (𝑄,𝑇 ) = 𝛼𝑄+ 𝛽 𝑇 . (18)

Here, 𝛼 and 𝛽 represent dimensionless model parameters. This model was introduced by Xu et al. [60] and naturally describes 
an exponentially expanding Universe. Loo et al. [87] employed the same model to investigate Bianchi type-I cosmology using 
observational datasets such as the Hubble parameter and Type Ia supernovae. Using the above linear functional form of 𝑓 (𝑄, 𝑇 ) i.e. 
Eq. (18) with constant redshift function, the field equations (15)-(17) can be reduced as

𝜌 = 𝛼𝑏′(12𝜋 − 𝛽)
3(𝛽 + 8𝜋)(4𝜋 − 𝛽)𝑟2

, (19)

𝑝𝑟 = −
𝛼
(
2𝛽𝑟𝑏′ + 12𝜋𝑏− 3𝛽𝑏

)
3(𝛽 + 8𝜋)(4𝜋 − 𝛽)𝑟3

, (20)

𝑝𝑡 = −
𝛼
(
(𝛽 + 12𝜋)𝑟𝑏′ + 3𝑏(𝛽 − 4𝜋)

)
6(4𝜋 − 𝛽)(𝛽 + 8𝜋)𝑟3

. (21)

Now, we will study wormhole solutions under two DM halo profiles in the following subsections.

3.1. URC model

In this subsection, we will consider the URC model’s energy density profile, which can be expressed using the following equation 
[88]

𝜌 =
𝜌𝑠𝑟

3
𝑠

(𝑟+ 𝑟𝑠)
(
𝑟2 + 𝑟2

𝑠

) , (22)

where 𝑟𝑠 and 𝜌𝑠 denote the characteristic radius and central density of URC dark matter halo, respectively. Now, by comparing the 
4

Eqs. (19) and (22), the differential equation under URC model is given by
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𝛼(12𝜋 − 𝛽)𝑏′

3(4𝜋 − 𝛽)(𝛽 + 8𝜋)𝑟2
=

𝜌𝑠𝑟
3
𝑠

(𝑟+ 𝑟𝑠)
(
𝑟2 + 𝑟2

𝑠

) . (23)

On integrating the above eq. (23) for the shape function 𝑏(𝑟), we get

𝑏(𝑟) =
−1

48𝜋𝛼 − 4𝛼𝛽

(
−log

(
𝑟2 + 𝑟𝑠

2)− 2 log(𝑟+ 𝑟𝑠) + 2 tan−1
(

𝑟

𝑟𝑠

))
+ 𝑐1, (24)

where 𝑐1 represents the integrating constant and 1 = 3(4𝜋 − 𝛽)(𝛽 + 8𝜋)𝜌𝑠𝑟𝑠3. Now, we impose the throat condition 𝑏(𝑟0) = 𝑟0 to the 
above equation and obtain 𝑐1 as

𝑐1 =
1

48𝜋𝛼 − 4𝛼𝛽

(
−log

(
𝑟0

2 + 𝑟𝑠
2)− 2 log(𝑟0 + 𝑟𝑠) + 2 tan−1

(
𝑟0
𝑟𝑠

))
+ 𝑟0, (25)

where 𝑟0 is the throat radius. Substituting the value of 𝑐1 in Eq. (24), we get,

𝑏(𝑟) = 𝑟0 +
1

48𝜋𝛼 − 4𝛼𝛽

(
−log

(
𝑟0

2 + 𝑟𝑠
2)− 2 log(𝑟0 + 𝑟𝑠) + 2 tan−1

(
𝑟0
𝑟𝑠

)
+ log

(
𝑟2 + 𝑟𝑠

2)+ 2 log(𝑟+ 𝑟𝑠) − 2 tan−1
(

𝑟

𝑟𝑠

))
.

(26)

The first plot of Fig. 1 illustrates the graphical representation of the shape function along with all the essential properties required 
for the URC model. A detailed discussion about the behavior of the shape functions has been discussed in subsection-3.3.

Now, substituting the shape function (26) in the Eqs. (20) and (21), we could obtain the radial and tangential pressures given by

𝑝𝑟 =
𝛼

2

(
−3(4𝜋 − 𝛽)𝜌𝑠𝑟𝑠31 −

8𝛽𝜌𝑠𝑟3𝑟𝑠3

(𝑟+ 𝑟𝑠)
(
𝑟2 + 𝑟𝑠

2
) +

4𝑟0𝛼(𝛽 − 12𝜋)
𝛽 + 8𝜋

)
, (27)

𝑝𝑡 =
𝛼

22

(
3(4𝜋 − 𝛽)𝜌𝑠𝑟𝑠31 + 4𝑟0𝛼

(
20𝜋

𝛽 + 8𝜋
− 1

)
−

4(𝛽 + 12𝜋)𝜌𝑠𝑟3𝑟𝑠3

(𝑟+ 𝑟𝑠)
(
𝑟2 + 𝑟𝑠

2
) ) , (28)

where 1 = − log
(
𝑟20 + 𝑟2

𝑠

)
− 2 log(𝑟0 + 𝑟𝑠) + 2 tan−1

(
𝑟0
𝑟𝑠

)
+ log

(
𝑟2 + 𝑟𝑠

2)+ 2 log(𝑟 + 𝑟𝑠) − 2 tan−1
(

𝑟

𝑟𝑠

)
and 2 = 2𝑟3(48𝜋𝛼 − 4𝛼𝛽).

Also, the NEC for radial and tangential pressures at the throat 𝑟 = 𝑟0 can be read as

𝜌+ 𝑝𝑟
||||𝑟=𝑟0

= −
3(𝛽 − 4𝜋)𝜌𝑠𝑟𝑠3

(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)
(
𝑟0

2 + 𝑟𝑠
2
) − 𝛼

𝑟0
2(𝛽 + 8𝜋)

, (29)

𝜌+ 𝑝𝑡
||||𝑟=𝑟0

=
3(4𝜋 − 𝛽)𝜌𝑠𝑟𝑠3

2(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)
(
𝑟0

2 + 𝑟𝑠
2
) + 𝛼

2 𝑟02(𝛽 + 8𝜋)
. (30)

It is evident that RHS of Eq. (29) is a negative quantity which confirms the violation of NEC. The plots for radial and tangential NEC 
are shown in Figs. 3 and 4.

3.2. The cold dark matter (CDM) halo with NFW model-I and NFW model-II

The potential density presented by Hernquist [89] was aimed at exploring the theoretical and observational aspects of elliptical 
galaxies. Subsequently, Navarro and his team [90] analyzed the equilibrium density profiles of DM halos in universes with hierarchi-

cal clustering using high-resolution N-body simulations. They found that the shape of these profiles remains consistent regardless of 
the halo mass, the spectral shape of the initial density fluctuations, or the values of the cosmological parameters. Two distinct CDM 
halo models for X-ray cluster halos and elliptical galaxies [89,90] are defined in 3.2.1 and 3.2.2.

3.2.1. NFW model-I

First, we consider the energy density distribution for the NFW model-I, which can be defined as [90]

𝜌 =
𝜌𝑠𝑟𝑠

𝑟

(
𝑟

𝑟𝑠
+ 1

)2 , (31)

where 𝑟𝑠 and 𝜌𝑠 denote the characteristic radius and central density of the Universe, respectively. Now, by comparing the Eqs. (19)

and (31), the differential equation under NFW model-I is given by

𝛼(12𝜋 − 𝛽)𝑏′

3(4𝜋 − 𝛽)(𝛽 + 8𝜋)𝑟2
=

𝜌𝑠𝑟𝑠

𝑟

(
𝑟

𝑟𝑠
+ 1

)2 . (32)

Integrating the preceding equation Eq. (32) for the shape function 𝑏(𝑟) yields

1
(
(𝑟+ 𝑟𝑠) log(𝑟+ 𝑟𝑠) + 𝑟𝑠

)

5

𝑏(𝑟) =
𝛼(12𝜋 − 𝛽)(𝑟+ 𝑟𝑠)

+ 𝑐2, (33)
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where 𝑐2 is the integration constant. We next apply the throat condition to the aforementioned equation to get 𝑐2 as

𝑐2 = 𝑟0 −
1

(
(𝑟0 + 𝑟𝑠) log(𝑟0 + 𝑟𝑠) + 𝑟𝑠

)
𝛼(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)

, (34)

where 𝑟0 is the throat radius. Thus, Eq. (33) can be modified by replacing the value of 𝑐2, we get,

𝑏(𝑟) = 𝑟0 +
1

(
(𝑟+ 𝑟𝑠) log(𝑟+ 𝑟𝑠) + 𝑟𝑠

)
𝛼(12𝜋 − 𝛽)(𝑟+ 𝑟𝑠)

−
1

(
(𝑟0 + 𝑟𝑠) log(𝑟0 + 𝑟𝑠) + 𝑟𝑠

)
𝛼(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)

. (35)

The behavior of the shape function is depicted graphically in the second plot of Fig. 1, along with all the essential properties needed 
for the NFW model-I.

The radial and tangential pressures are given by

𝑝𝑟 = −
2𝛽𝜌𝑠𝑟𝑠3

(12𝜋 − 𝛽)𝑟(𝑟+ 𝑟𝑠)2
−

𝑟0𝛼

𝑟3(𝛽 + 8𝜋)
−3 , (36)

𝑝𝑡 = −
(𝛽 + 12𝜋)𝜌𝑠𝑟𝑠3

2(12𝜋 − 𝛽)𝑟(𝑟+ 𝑟𝑠)2
+

𝑟0𝛼

2𝑟3(𝛽 + 8𝜋)
+

3
2

, (37)

where 3 =
3(4𝜋−𝛽)𝜌𝑠𝑟𝑠3(log(𝑟+𝑟𝑠)−log(𝑟0+𝑟𝑠))

𝑟3(12𝜋−𝛽) + 3(4𝜋−𝛽)𝜌𝑠𝑟𝑠4(𝑟0−𝑟)
𝑟3(12𝜋−𝛽)(𝑟0+𝑟𝑠)(𝑟+𝑟𝑠)

.

At wormhole throat, the radial and tangential NEC can be read as

𝜌+ 𝑝𝑟
||||𝑟=𝑟0

= − 𝛼

𝑟0
2(𝛽 + 8𝜋)

−
2𝛽𝜌𝑠𝑟𝑠3

𝑟0(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)2
, (38)

𝜌+ 𝑝𝑡
||||𝑟=𝑟0

= 𝛼

2𝑟02(𝛽 + 8𝜋)
−

(𝛽 + 12𝜋)𝜌𝑠𝑟𝑠3

2𝑟0(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)2
. (39)

It is confirmed from the above expressions that the Eq. (38) is negative, whereas the Eq. (39) is a positive quantity. Therefore, 
mathematically, we can conclude that NEC is disrespected in the neighborhood of the throat. Moreover, we have presented the 
graphical view in Figs. 3 and 4.

3.2.2. (NFW) model-II

Again, the other NFW model’s energy density profile can be expressed using the following equation

𝜌 =
𝜌𝑠𝑟𝑠

𝑟

(
𝑟

𝑟𝑠
+ 1

)3 . (40)

Now, by comparing the Eqs. (19) and (40), the differential equation under NFW model-II is given by

𝛼(12𝜋 − 𝛽)𝑏′

3(4𝜋 − 𝛽)(𝛽 + 8𝜋)𝑟2
=

𝜌𝑠𝑟𝑠

𝑟

(
𝑟

𝑟𝑠
+ 1

)3 . (41)

By integrating the above differential Eq. (41) for the shape function 𝑏(𝑟), we get

𝑏(𝑟) = −
1𝑟𝑠(2𝑟+ 𝑟𝑠)

2𝛼(12𝜋 − 𝛽)(𝑟+ 𝑟𝑠)2
+ 𝑐3 , (42)

where 𝑐3 represents the constant of integration. Now we use the throat condition to the above equation and obtain 𝑐3 as

𝑐3 = 𝑟0 +
1𝑟𝑠(2𝑟0 + 𝑟𝑠)

2𝛼(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)2
, (43)

where 𝑟0 is the throat radius. Substituting the value of 𝑐3 in Eq. (42), we get,

𝑏(𝑟) = 𝑟0 +
1𝑟𝑠(2𝑟0 + 𝑟𝑠)

2𝛼(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)2
−

1𝑟𝑠(2𝑟+ 𝑟𝑠)
2𝛼(12𝜋 − 𝛽)(𝑟+ 𝑟𝑠)2

. (44)

The above shape function satisfies the asymptotic flatness condition with some appropriate fixed parameters. Also, we checked one 
of the essential properties of shape function, i.e., flare-out condition. We obtained the specific range of model parameter 𝛽, where 
flare-out is satisfied under asymptotic background. In the third plot of Fig. 1, we have presented the behaviors of the shape function 
and their detailed discussions are written in section-3.3.

For this case, the NEC for radial and tangential pressures can be read as

𝜌+ 𝑝𝑟 = −
2𝑟0𝛼 + 1 (

3(4𝜋 − 𝛽)𝜌𝑠𝑟𝑠4
(
𝑟𝑠

2 (𝑟02 + 𝑟2
)
+ 2𝑟0𝑟2(2𝑟0 − 𝑟) + 𝑟𝑟𝑠(3𝑟0 − 𝑟)(𝑟0 + 𝑟)

))
, (45)
6

2𝑟3(𝛽 + 8𝜋) 4
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Fig. 1. Profile shows the conditions of shape function with respect to 𝑟. We consider 𝛼 = 1.2, 𝛽 = 5, 𝜌0 = 0.1, 𝑟𝑠 = 1and 𝑟0 = 1.

Fig. 2. Profile shows the behavior of energy density 𝜌 with respect to 𝑟. We consider 𝜌0 = 0.1, and 𝑟𝑠 = 1.

Fig. 3. Profile shows the behavior of NEC for radial pressure 𝜌+ 𝑝𝑟 with respect to 𝑟 for different values of 𝛽 . We consider 𝛼 = 1.2, 𝜌0 = 0.1, 𝑟𝑠 = 1, and 𝑟0 = 1.

Fig. 4. Profile shows the behavior of NEC for tangential pressure 𝜌+ 𝑝𝑡 with respect to 𝑟 for different values of 𝛽 . We consider 𝛼 = 1.2, 𝜌0 = 0.1, 𝑟𝑠 = 1, and 𝑟0 = 1.

𝜌+ 𝑝𝑡 =
2𝑟0𝛼

4𝑟3(𝛽 + 8𝜋)
− 1

24

(
3(4𝜋 − 𝛽)𝜌𝑠𝑟𝑠4

(
𝑟0

2𝑟𝑠(3𝑟+ 𝑟𝑠) − 2𝑟0𝑟2(𝑟+ 3𝑟𝑠) − 𝑟2𝑟𝑠(𝑟+ 3𝑟𝑠)
))

, (46)

where 4 = 2𝑟3(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)2(𝑟 + 𝑟𝑠)3.

Now, at the throat 𝑟 = 𝑟0, the above expressions for NEC will reduce to

𝜌+ 𝑝𝑟
||||𝑟=𝑟0

=
3(4𝜋 − 𝛽)𝜌𝑠𝑟𝑠4

𝑟0(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)3
− 𝛼

𝑟0
2(𝛽 + 8𝜋)

, (47)

𝜌+ 𝑝𝑡
||||𝑟=𝑟0

= 𝛼

2𝑟02(𝛽 + 8𝜋)
+

3(4𝜋 − 𝛽)𝜌𝑠𝑟𝑠4

2𝑟0(12𝜋 − 𝛽)(𝑟0 + 𝑟𝑠)3
. (48)

The graphical evolution of NEC for this NFW model-II profile is depicted in Figs. 3 and 4. Moreover, the remaining energy conditions 
7

are also discussed in Section-3.3.
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Fig. 5. Profile shows the behavior of DEC for radial pressure 𝜌− 𝑝𝑟 with respect to 𝑟 for different values of 𝛽 . We consider 𝛼 = 1.2, 𝜌0 = 0.1, 𝑟𝑠 = 1, and 𝑟0 = 1.

Fig. 6. Profile shows the behavior of DEC for tangential pressure 𝜌− 𝑝𝑡 with respect to 𝑟 for different values of 𝛽 . We consider 𝛼 = 1.2, 𝜌0 = 0.1, 𝑟𝑠 = 1, and 𝑟0 = 1.

Fig. 7. Profile shows the behavior of SEC 𝜌+ 𝑝𝑟 + 2𝑝𝑡 with respect to 𝑟 for different values of 𝛽 . We consider 𝛼 = 1.2, 𝜌0 = 0.1, 𝑟𝑠 = 1, and 𝑟0 = 1.

3.3. Discussions

In this particular subsection, we will discuss the behavior of obtained shape functions as well as energy conditions for both URC 
and NFW models. Let us first discuss the obtained shape functions, which can be found in Eqs. (26), (35), and (44) for URC, NFW 
model-I and NFW model-II, respectively. From the expressions of the shape function, it is clear that 𝛼 ≠ 0 and 𝛽 ≠ 12𝜋. Also, we 
fixed some free parameters such as 𝛼 = 1.2, 𝜌0 = 0.1, 𝑟𝑠 = 1 and 𝑟0 = 1 depending on the study of shape functions. We checked the 
flare-out condition at the wormhole throat and noticed that at 𝑟 = 𝑟0, the flare-out condition 𝑏′(𝑟0) < 1 is satisfied. In that case, the 
model parameter 𝛽 should be less than 37.6991, i.e., 𝛽 < 37.6991 for each case. Considering the range of 𝛽 into account, we have 
studied the asymptotic flatness conditions for both URC and NFW models. It indicates that as the radial distance increases, the ratio 
𝑏(𝑟)
𝑟

approaches zero, ensuring the satisfaction of the asymptotic behavior of the shape function. The graphical representation of all 
the necessary properties of the shape functions for each model has been shown in Fig. 1.

Later, we discussed energy conditions for both URC and NFW models with the appropriate choices of free parameters. We have 
depicted the plot for energy density versus radial coordinate 𝑟 in Fig. 2, which shows positively decreasing behavior in the entire 
space-time. Also, in Figs. 3, we have shown the behavior of 𝜌 + 𝑝𝑟, indicates the violation of radial NEC. In this case, the range 
of 𝛽 should be −25.1327 < 𝛽 < 19.2283 (URC model), −25.1327 < 𝛽 < 19.2283 (NFW model-I) and −25.1327 < 𝛽 < 26.6957 (NFW 
model-II). Moreover, within this particular range, we checked the behavior of 𝜌 + 𝑝𝑡 and found that tangential NEC is satisfied (see 
Fig. 4.) Further, we have investigated the DEC and SEC for different values of 𝛽 in Figs. 5, 6 and 7, respectively. One can check that 
DEC is satisfied, whereas SEC is violated in the vicinity of the throat. Furthermore, one can see Table 1 for the overview of the energy 
conditions at the throat.

4. Wormhole solutions with 𝒇 (𝑸, 𝑻 ) = 𝜶𝟏 + 𝜷𝟏 𝐥𝐨𝐠(𝑸) + 𝜸𝑻

In this section, we shall consider a specific and interesting 𝑓 (𝑄, 𝑇 ) model, which is the extension of 𝑓 (𝑄) model [58] given by
8

𝑓 (𝑄,𝑇 ) = 𝛼1 + 𝛽1 log(𝑄) + 𝛾𝑇 , (49)
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Table 1

Description of linear model.

Energy conditions URC profile NFW profile-1 NFW profile-2

𝜌 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑

𝜌+ 𝑝𝑟 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

𝜌+ 𝑝𝑡 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑

𝜌− 𝑝𝑟 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑

𝜌− 𝑝𝑡 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑

𝜌+ 𝑝𝑟 + 2𝑝𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

where 𝛼1, 𝛽1, and 𝛾 are model parameters. Using the above non-linear functional form (49), the field equations are obtained as

𝜌 = 1
2

[
−10𝛽𝛾𝑏′𝜙′ (𝑏′ + 2𝑟𝜙′) 𝑟5 + 5𝛽𝛾𝑏

(
𝜙′ (𝑏′ 2 + 2

(
6𝑟𝜙′ + 7

)
𝑏′ + 4𝑟𝜙′ (𝑟𝜙′ + 4

)
− 2𝑟𝑏′′

)
+ 2𝑟𝑏′𝜙′′) 𝑟4

+ 𝑏2
(
6𝛽(16𝜋 − 3𝛾)𝜙′′𝑟2 + 4

(
𝜙′ (3𝑟𝜙′ (𝛾𝛼 + 8𝜋𝛼 − 8𝜋𝛽 − 21𝛽𝛾 + 𝛽(𝛾 + 8𝜋) log

(3
)
− 5𝑟𝛽𝛾𝜙′)− 𝛽(11𝛾 + 48𝜋)

)
+ 𝛽

(
5𝑟𝜙′𝛾 − 𝛾 + 12𝜋

)
𝑏′′
)
𝑟+ 𝑏′ 2

(
24𝜋(𝛼 + 𝛽) + (3𝛼 − 7𝛽)𝛾 + 3𝛽(𝛾 + 8𝜋) log

(3
)
+ 5𝑟𝛽𝛾𝜙′)+ 2𝑏′ (8𝛽(𝛾 − 12𝜋)

+ 𝑟
(
𝜙′ (6𝛾𝛼 + 48𝜋𝛼 − 48𝜋𝛽 − 61𝛽𝛾 + 6𝛽(𝛾 + 8𝜋) log

(3
)
− 30𝑟𝛽𝛾𝜙′)− 10𝑟𝛽𝛾𝜙′′))) 𝑟2

+ 𝑏3
(
60𝑟3𝛽𝛾𝜙′ 3 − 24𝑟2

(
𝛾𝛼 + 8𝜋𝛼 − 8𝜋𝛽 − 11𝛽𝛾 + 𝛽(𝛾 + 8𝜋) log

(3
))

𝜙′ 2

− 𝑟
(
96𝜋(𝛼 − 5𝛽) + (12𝛼 − 85𝛽)𝛾 + 12𝛽(𝛾 + 8𝜋) log

(3
)
+ 10𝑟𝛽𝛾𝑏′′

)
𝜙′) − 4𝛽(12𝜋 − 𝛾)

(
𝑟𝑏′′ − 4

)
+ 12𝑟2𝛽(3𝛾 − 16𝜋)

− 16𝜋)𝜙′′ − 2𝑏′
(
24𝜋(𝛼 − 3𝛽) + (3𝛼 + 𝛽)𝛾 + 3𝛽(𝛾 log

(3
)
+ 𝑟

(
2𝜙′ (3𝛾𝛼 + 24𝜋𝛼 − 24𝜋𝛽 − 13𝛽𝛾

+ 3 𝛽(𝛾 + 8𝜋) log
(3

)
− 5𝑟𝛽𝛾𝜙′)− 5𝑟𝛽𝛾𝜙′′))) 𝑟+ 𝑏4

(
3
(
8𝜋(𝛼 − 7𝛽) + (𝛼 + 3𝛽)𝛾 + 𝛽(𝛾 + 8𝜋) log

(3
))

+ 𝑟
(
𝜙′ (96𝜋(𝛼 − 3𝛽) + (12𝛼 − 41𝛽)𝛾 + 12𝛽(𝛾 + 8𝜋) log

(3
)
+ 4𝑟𝜙′ (3𝛾𝛼 + 24𝜋𝛼 − 24𝜋𝛽 − 23𝛽𝛾

+ 3𝛽(𝛾 +8𝜋) log
(3

)
− 5𝑟𝛽𝛾𝜙′))+ 6𝑟𝛽(16𝜋 − 3𝛾)𝜙′′))] , (50)

𝑝𝑟 =
−1
2

[
−10𝛽𝛾𝑏′𝜙′ (𝑏′ + 2𝑟𝜙′) 𝑟5 + 𝛽𝑏

(
2𝜙′ (2𝜙′ (8(𝛾 + 6𝜋) + 5𝑟𝛾𝜙′)− 5𝛾𝑏′′

)
𝑟2

+2𝑏′
(
𝜙′ (30𝑟𝜙′𝛾 + 11𝛾 + 96𝜋

)
+ 5𝑟𝛾𝜙′′) 𝑟+ 𝑏′ 2

(
5𝑟𝜙′𝛾 − 12𝛾 + 48𝜋

))
𝑟3

+ 𝑏2
(
6𝛽(16𝜋 − 3𝛾)𝜙′′𝑟2 + 4

(
𝜙′ (𝛽(𝛾 − 96𝜋) + 3𝑟𝜙′ (8𝜋(𝛼 − 7𝛽) + (𝛼 − 9𝛽)𝛾 + 𝛽(𝛾 + 8𝜋) log

(3
)
− 5𝑟𝛽𝛾𝜙′))

+𝛽
(
5𝑟𝜙′𝛾 − 𝛾 + 12𝜋

)
𝑏′′
)
𝑟+ 𝑏′ 2

(
3𝛾𝛼 + 24𝜋𝛼 − 24𝜋𝛽 + 5𝛽𝛾 + 3𝛽(𝛾 + 8𝜋) log

(3
)
+ 5𝑟𝛽𝛾𝜙′)

+2𝑏′
(
4𝛽(5𝛾 − 36𝜋) + 𝑟

(
𝜙′ (48𝜋(𝛼 − 5𝛽) + (6𝛼 − 13𝛽)𝛾 + 6𝛽(𝛾 + 8𝜋) log

(3
)
− 30𝑟𝛽𝛾𝜙′)− 10𝑟𝛽𝛾𝜙′′))) 𝑟2

− 𝑏3
(
−60𝑟3𝛽𝛾𝜙′ 3 + 24𝑟2

(
8𝜋(𝛼 − 4𝛽) + (𝛼 − 5𝛽)𝛾 + 𝛽(𝛾 + 8𝜋) log

(3
))

𝜙′ 2 + 𝑟 (96𝜋(𝛼 − 9𝛽) + (12𝛼 + 11𝛽)𝛾

+12𝛽(𝛾 + 8𝜋) log
(3

)
+ 10𝑟𝛽𝛾𝑏′′

)
𝜙′ + 4𝛽

(
7𝛾 + 𝑟

(
(12𝜋 − 𝛾)𝑏′′ + 3𝑟(16𝜋 − 3𝛾)𝜙′′)− 60𝜋

)
+ 2𝑏′

(
24𝜋(𝛼 − 5𝛽) + (3𝛼 + 13𝛽)𝛾 + 3𝛽(𝛾 + 8𝜋) log

(3
)
+ 𝑟

(
2𝜙′ (3𝛾𝛼 + 24𝜋𝛼 − 72𝜋𝛽 − 𝛽𝛾 + 3𝛽(𝛾 + 8𝜋) log

(3
)

−5𝑟𝛽𝛾𝜙′)− 5𝑟𝛽𝛾𝜙′′))) 𝑟+ 𝑏4
(
3
(
8𝜋(𝛼 − 9𝛽) + (𝛼 + 7𝛽)𝛾 + 𝛽(𝛾 + 8𝜋) log

(3
))

+ 𝑟
(
𝜙′ (96𝜋(𝛼 − 5𝛽) + (12𝛼 + 7𝛽)𝛾 + 12𝛽(𝛾 + 8𝜋) log

(3
)
+ 4𝑟𝜙′ (3𝛾𝛼 + 24𝜋𝛼 − 72𝜋𝛽 − 11𝛽𝛾

+3𝛽(𝛾 + 8𝜋) log
(3

)
− 5𝑟𝛽𝛾𝜙′))+ 6𝑟𝛽(16𝜋 − 3𝛾)𝜙′′))] , (51)

𝑝𝑡 =
1
2

[
2𝛽(24𝜋 − 𝛾)𝑏′𝜙′ (𝑏′ + 2𝑟𝜙′) 𝑟5 − 𝛽𝑏

(
2𝜙′ (2𝜙′ (2(𝛾 + 36𝜋) + 𝑟(24𝜋 − 𝛾)𝜙′)+ (𝛾 − 24𝜋)𝑏′′

)
𝑟2

+2𝑏′
(
𝜙′ (5(𝛾 + 24𝜋) + 6𝑟(24𝜋 − 𝛾)𝜙′)+ 𝑟(24𝜋 − 𝛾)𝜙′′) 𝑟+ 𝑏′ 2

(
6(𝛾 − 4𝜋) + 𝑟(24𝜋 − 𝛾)𝜙′)) 𝑟3

+ 𝑏2
(
6𝛽(8𝜋 − 3𝛾)𝜙′′𝑟2 + 4

(
𝜙′ (𝛽(11𝛾 + 48𝜋) + 3𝑟𝜙′ (−𝛾𝛼 − 8𝜋𝛼 + 80𝜋𝛽 + 3𝛽𝛾 − 𝛽(𝛾 + 8𝜋) log

(3
)
+ 𝑟𝛽(24𝜋 − 𝛾)𝜙′))

+𝛽
(
𝑟(𝛾 − 24𝜋)𝜙′ − 2𝛾

)
𝑏′′
)
𝑟+ 𝑏′ 2

(
−3𝛾𝛼 − 24𝜋𝛼 + 𝛽𝛾 − 3𝛽(𝛾 + 8𝜋) log

(3
)
+ 𝑟𝛽(𝛾 − 24𝜋)𝜙′)

+ 2𝑏′
(
22𝛾𝛽 − 24𝜋𝛽 + 𝑟

(
𝜙′ (−6𝛾𝛼 − 48𝜋𝛼 + 216𝜋𝛽 + 19𝛽𝛾 − 6𝛽(𝛾 + 8𝜋) log

(3
)
+ 6𝑟𝛽(24𝜋 − 𝛾)𝜙′)

+2𝑟𝛽(24𝜋 − 𝛾)𝜙′′))) 𝑟2 + 𝑏3
(
−38𝛾𝛽 + 24𝜋𝛽 + 𝑟

(
12𝑟2𝛽(𝛾 − 24𝜋)𝜙′ 3

+ 24𝑟
(
𝛾𝛼 + 8𝜋𝛼 − 44𝜋𝛽 − 2𝛽𝛾 + 𝛽(𝛾 + 8𝜋) log

(3
))

𝜙′ 2 +
(
12𝛾𝛼 + 96𝜋𝛼 − 408𝜋𝛽 − 103𝛽𝛾 + 12𝛽(𝛾 + 8𝜋) log

(3
)

+2𝑟𝛽(24𝜋 − 𝛾)𝑏′′
)
𝜙′ + 8𝛽𝛾𝑏′′ + 12𝑟𝛽(3𝛾 − 8𝜋)𝜙′′)+ 2𝑏′

(
3𝛾𝛼 + 24𝜋𝛼 − 17𝛽𝛾 + 3𝛽(𝛾 + 8𝜋) log

(3
)

+ 𝑟
(
2𝜙′ (3𝛾𝛼 + 24𝜋𝛼 − 48𝜋𝛽 − 7𝛽𝛾 + 3𝛽(𝛾 + 8𝜋) log

(3
)
+ 𝑟𝛽(𝛾 − 24𝜋)𝜙′)+ 𝑟𝛽(𝛾 − 24𝜋)𝜙′′))) 𝑟( ( ( )) ( ( ( )
9

− 𝑏4 3 𝛾𝛼 + 8𝜋𝛼 − 11𝛽𝛾 + 𝛽(𝛾 + 8𝜋) log 3 + 𝑟 𝜙′ 12𝛾𝛼 + 96𝜋𝛼 − 216𝜋𝛽 − 59𝛽𝛾 + 12𝛽(𝛾 + 8𝜋) log 3
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Fig. 8. Profile shows the behavior of energy density 𝜌 with respect to 𝑟 for different values of 𝛾 . We consider 𝑟0 = 1, 𝛿 = 0.0001, 𝜒 = 0.002, 𝛼1 = 1.2, and𝛽1 = 0.1.

+4𝑟𝜙′ (3𝛾𝛼 + 24𝜋𝛼 − 96𝜋𝛽 − 5𝛽𝛾 + 3𝛽(𝛾 + 8𝜋) log
(3

)
+ 𝑟𝛽(𝛾 − 24𝜋)𝜙′))+ 6𝑟𝛽(3𝛾 − 8𝜋)𝜙′′))] , (52)

where 2 = 12(4𝜋 − 𝛾)(𝛾 + 8𝜋)𝑏2
(
𝑏− 𝑟𝑏′ + 2𝑟(𝑏− 𝑟)𝜙′)2 and 3 =

𝑏
(
𝑏−𝑟𝑏′+2𝑟(𝑏−𝑟)𝜙′)

𝑟3(𝑟−𝑏) .

In the current investigation, we will use the Karmarkar condition [91] with embedded class-1 space-time to find wormhole 
solutions. One of the most important aspects of the current analysis is this condition. The embedded class-1 solution of Riemannian 
space is necessary for the basic formulation of the Karmarkar condition. Eisenhart provided an essential and appropriate requirement 
for the embedded class-1 solution [92], which depends on the Riemann curvature tensor, 𝑚𝑛𝑝𝑞 , and on a symmetric tensor of the 
second order, 𝑏𝑚𝑛, through

• the Gauss equation:

𝑚𝑛𝑝𝑞 = 2 𝜖 𝑏𝑚 [𝑝𝑏𝑞]𝑛 , (53)

• the Codazzi equation:

𝑏𝑚[𝑛;𝑝] − Γ𝑞

[𝑛𝑝] 𝑏𝑚𝑞 + Γ𝑞
𝑚 [𝑛 𝑏𝑝]𝑞 = 0. (54)

Here, we consider the case where 𝜖 = ±1, and square brackets denote antisymmetrization. The coefficients of the second differential 
form are represented by 𝑏𝑚𝑛. By utilizing Eqs. (53) and (54) and applying the prescribed mathematical procedure, we can calculate 
the Karmarkar condition as follows:

23231414 =12241334 +12123434, (55)

with Pandey and Sharma condition [93], i.e., 2323 ≠1414 ≠ 0.

Through the substitution of the suitable Riemannian tensor components into equation (55), the ensuing result yields the following 
differential equation:

𝜈′(𝑟)𝜆′(𝑟)
1 − 𝑒𝜆(𝑟)

−
{
𝜈′(𝑟)𝜆′(𝑟) + 𝜈′(𝑟)2 − 2

[
𝜈′′(𝑟) + 𝜈′(𝑟)2

]}
= 0, 𝑒𝜆(𝑟) ≠ 1. (56)

Due to the embedded class-I solution, we assume the following redshift function [94,95]

𝜈(𝑟) = 2𝜙(𝑟) = −
2𝜒
𝑟

, 𝜒 > 0. (57)

The above redshift function satisfies the flatness condition, i.e., 𝜈(𝑟) → 0 when 𝑟 →∞.

On solving Eq. (56), we obtain

𝑒𝜆(𝑟) = 1 +𝐴𝑒𝜈(𝑟)𝜈′ 2(𝑟), (58)

where 𝐴 is the constant of integration. Now, following the procedure written in [96], produces the below embedded shape function

𝑏(𝑟) = 𝑟− 𝛿𝑟5

𝑟40(𝑟0 − 𝛿)𝑒
−2𝜒

(
1
𝑟
− 1

𝑟0

)
+ 𝛿𝑟4

+ 𝛿, 0 < 𝛿 < 𝑟0. (59)

Now inserting the above shape function (59) with redshift function (57) into Eqs. (50)-(52) and presented the graphs for energy 
conditions in Figs. 8-13.

We present the plotted graphs illustrating the energy conditions in Figs. 8-13. Fig. 8 represents the graph depicting the relationship 
between energy density and radial coordinate 𝑟, demonstrating a positively increasing behavior throughout space-time, dependent 
on the model parameter 𝛾 . This behavior suggests that as 𝛾 increases, the energy density also increases, indicating a potentially 
significant role of 𝛾 in the energy distribution. Fig. 9 displays the negative behavior of the radial NEC for various values of 𝛾 , 
resulting in a violation of the NEC. Furthermore, Fig. 10 illustrates the positive behavior of tangential NEC for the 𝑓 (𝑄, 𝑇 ) profile, 
10

while the remaining profiles exhibit a negative behavior for different values of 𝛾 . This observation suggests that the 𝑓 (𝑄, 𝑇 ) profile 
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Fig. 9. Profile shows the behavior of NEC for radial pressure 𝜌 + 𝑝𝑟 with respect to 𝑟 for different values of 𝛾 . We consider 𝑟0 = 1, 𝛿 = 0.0001, 𝜒 = 0.002, 𝛼1 = 1.2, 𝛽1 =
0.1, 𝜌0 = 0.1, and 𝑟𝑠 = 1.

Fig. 10. Profile shows the behavior of NEC for tangential pressure 𝜌 + 𝑝𝑡 with respect to 𝑟 for different values of 𝛾 . We consider 𝑟0 = 1, 𝛿 = 0.0001, 𝜒 = 0.002, 𝛼1 =
1.2, 𝛽1 = 0.1, 𝜌0 = 0.1, and 𝑟𝑠 = 1.

Fig. 11. Profile shows the behavior of DEC for radial pressure 𝜌 −𝑝𝑟 with respect to 𝑟 for different values of 𝛾 . We consider 𝑟0 = 1, 𝛿 = 0.0001, 𝜒 = 0.002, 𝛼1 = 1.2, 𝛽1 =
0.1, 𝜌0 = 0.1, and 𝑟𝑠 = 1.

Fig. 12. Profile shows the behavior of DEC for tangential pressure 𝜌 − 𝑝𝑡 with respect to 𝑟 for different values of 𝛾 . We consider 𝑟0 = 1, 𝛿 = 0.0001, 𝜒 = 0.002, 𝛼1 =
1.2, 𝛽1 = 0.1, 𝜌0 = 0.1, and 𝑟𝑠 = 1.

Fig. 13. Profile shows the behavior of SEC 𝜌 + 𝑝𝑟 + 2𝑝𝑡 with respect to 𝑟 for different values of 𝛾 . We consider 𝑟0 = 1, 𝛿 = 0.0001, 𝜒 = 0.002, 𝛼1 = 1.2, 𝛽1 = 0.1, 𝜌0 =
11

0.1, and 𝑟𝑠 = 1.
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Table 2

Description of non-linear model.

Energy conditions 𝑓 (𝑄,𝑇 ) profile URC profile NFW profile-1 NFW profile-2

𝜌 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑

𝜌+ 𝑝𝑟 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

𝜌+ 𝑝𝑡 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

𝜌− 𝑝𝑟 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑

𝜌− 𝑝𝑡 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑

𝜌+ 𝑝𝑟 + 2𝑝𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

possesses unique characteristics that allow for a positive contribution to the sum of energy density and tangential pressure. On 
the other hand, the negative behavior exhibited by the other profiles implies a dominance of negative pressure or energy density. 
Consequently, the NEC is violated for all profiles, indicating that exotic matter may sustain wormhole solutions in the context of non-

metricity-based gravity, similar to GR. Additionally, we observe that the radial and tangential pressure satisfy the DEC for different 
𝛾 values, as shown in Figs. 11 and 12 respectively. Moreover, Fig. 13 demonstrates the violation of the SEC for various 𝛾 values. For 
more detailed information and quantitative analysis, one can refer to Table 2.

5. Final remarks

Over the past few decades, the scientific investigations of wormhole geometry triggered much excitement among researchers. As 
a consequence, the URC and NFW DM density profiles supported the possibility of wormholes in the galactic halo region. In this 
paper, we have investigated the wormhole geometry affected by DM galactic halo profiles, namely URC and cold DM halo with NFW 
model-I and NFW model-II, under the background of non-metricity based modified 𝑓 (𝑄, 𝑇 ) gravity. It is known that it would be 
difficult to obtain the exact solutions with the arbitrary 𝑓 (𝑄, 𝑇 ) function; hence to overcome this issue, we have considered two 
specific models, such as linear 𝑓 (𝑄, 𝑇 ) = 𝛼𝑄 + 𝛽𝑇 and non-linear 𝑓 (𝑄, 𝑇 ) = 𝛼1 + 𝛽1 log(𝑄) + 𝛾𝑇 models (where 𝛼, 𝛽, 𝛼1, 𝛽1, and 𝛾
are model parameters). The key findings of the current investigation are exclusively addressed below:

First, we discussed the linear 𝑓 (𝑄, 𝑇 ) = 𝛼𝑄 + 𝛽𝑇 model under the DM halo profiles. For this model, we have obtained the shape 
functions by comparing the energy density of DM halo profiles with the energy density of 𝑓 (𝑄, 𝑇 ) gravity. We have investigated 
essential properties such as the flare-out condition of the obtained shape functions under asymptotic background. It is important to 
note here that the parameters of the involved model play a crucial influence in analyzing the shape of the wormholes. We noticed 
that the flare-out condition is satisfied near the throat; however, for very values of model parameter 𝛽, this condition may violate at 
the throat. Moreover, we checked the NEC under DM galactic halo models in the vicinity of the throat. It was observed that NEC is 
violated at the throat within the specific range of 𝛽, should be −25.1327 < 𝛽 < 19.2283 (URC model), −25.1327 < 𝛽 < 19.2283 (NFW 
model-I), and −25.1327 < 𝛽 < 26.6957 (NFW model-II) corresponding to fixed values of parameters 𝛼 = 1.2, 𝜌0 = 0.1, 𝑟𝑠 = 1 and 𝑟0 = 1. 
Interestingly, we noticed that the contribution of the violation of NEC becomes higher if we increase the value of the model parameter 
𝛽 within the mentioned range. Further, we noticed that DEC is satisfied, whereas SEC is disrespected at the throat of the wormhole. 
Moreover, we have discussed the energy conditions in detail in section-3.3 as well as summarized in Table 1.

In the last part of this paper, we have investigated the wormhole solutions for the non-linear 𝑓 (𝑄, 𝑇 ) = 𝛼1 + 𝛽1 log(𝑄) + 𝛾𝑇 under 
the DM halo profiles. We have obtained wormhole solutions using the Karmarkar condition with embedded class-1 space-time. For 
the embedded shape function, we have studied the energy conditions under the effect of URC and NFW dark matter galactic halo 
profiles. It was observed that NEC for radial pressure is violated whereas, for tangential pressure, it is satisfied under 𝑓 (𝑄, 𝑇 ) profile 
while NEC for both pressures is violated under remaining DM halo profiles (see Figs. 9 and 10). Also, the remaining energy conditions 
have been observed, such as DEC being satisfied for both pressures and SEC being violated under all the profiles near the throat. 
By constraining the model’s parameter values and ranges, it is possible to demonstrate the violation of energy conditions, which 
supports the existence of exotic types of matter. Such a substance could make it possible for wormholes to travel through embedded 
space-time in the background. Moreover, the energy conditions for all the DM halo profiles and the 𝑓 (𝑄, 𝑇 ) profile are summarized 
in Table 2. Thus, embedded wormhole solutions are physically acceptable within the DM galactic halo profiles.

Recently, Rahaman et al. [97] studied wormhole solutions supported by dark matter and global monopole charge with semiclas-

sical effects in the context of general relativity. They claimed that for fixed values of semiclassical effects, the monopole charge could 
be responsible for the violation of NEC. In [98], the authors investigated wormhole geometry with global monopole charge under 
some halo DM profiles. They argued that the monopole charge could minimize the violation of NEC. In this article, we have pre-

sented wormhole solutions without monopole charge under DM halo profiles in the background of generalized symmetric teleparallel 
gravity. Here, we can see the crucial effect of model parameters on wormhole solutions, which are mentioned above in the presented 
solutions. Further, it would be interesting to study wormhole solutions with global monopole charge under galactic halo profiles 
in teleparallel as well as symmetric teleparallel theories of gravity so that one could see the effect of monopole charge in modified 
theories of gravity.
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