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We investigate a scalar field dark energy model (i.e., φCDM model) with massive neutrinos, where 
the scalar field possesses an inverse power-law potential, i.e., V (φ) ∝ φ−α (α > 0). We find that the 
sum of neutrino masses �mν has significant impacts on the CMB temperature power spectrum and 
on the matter power spectrum. In addition, the parameter α also has slight impacts on the spectra. 
A joint sample, including CMB data from Planck 2013 and WMAP9, galaxy clustering data from WiggleZ 
and BOSS DR11, and JLA compilation of Type Ia supernova observations, is adopted to confine the 
parameters. Within the context of the φCDM model under consideration, the joint sample determines 
the cosmological parameters to high precision: the angular size of the sound horizon at recombination, 
the Thomson scattering optical depth due to reionization, the physical densities of baryons and cold dark 
matter, and the scalar spectral index are estimated to be θ∗ = (1.0415+0.0012

−0.0011) × 10−2, τ = 0.0914+0.0266
−0.0242, 

�bh2 = 0.0222 ± 0.0005, �ch2 = 0.1177 ± 0.0036, and ns = 0.9644+0.0118
−0.0119, respectively, at 95% confidence 

level (CL). It turns out that α < 4.995 at 95% CL for the φCDM model. And yet, the 	CDM scenario 
corresponding to α = 0 is not ruled out at 95% CL. Moreover, we get �mν < 0.262 eV at 95% CL for the 
φCDM model, while the corresponding one for the 	CDM model is �mν < 0.293 eV. The allowed scale 
of �mν in the φCDM model is a bit smaller than that in the 	CDM model. It is consistent with the 
qualitative analysis, which reveals that the increases of α and �mν both can result in the suppression of 
the matter power spectrum. As a consequence, when α is larger, in order to avoid suppressing the matter 
power spectrum too much, the value of �mν should be smaller.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Neutrino is one of the important bonds linking nuclear physics, 
particle physics, astrophysics and cosmology [1]. In the Standard 
Model (SM) of particle physics, it is anticipated that there are three 
types, or “flavors”, of neutrinos: electron neutrino (νe), muon neu-
trino (νμ) and tau neutrino (ντ ), which are also dubbed as three 
normal/active neutrinos. Besides that, neutrinos are assumed to be 
massless in the SM of particle physics [2].

It was first predicted by Bruno Pontecorvo in 1957 that if neu-
trinos are massive the neutrino flavor should be unstable, that is 
called neutrino (flavor) oscillations [3]. Briefly put, neutrino os-
cillation is a phenomenon that a neutrino produced in a definite 
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flavor is observed in a different flavor after traveling some dis-
tances. In other words, neutrinos are able to oscillate among the 
three available flavors while they propagate through space. Nowa-
days there are compelling evidences for neutrino oscillations from 
a variety of experimental data on solar, atmospheric, reactor and 
accelerator neutrinos. The discovery of neutrino oscillations im-
plies that neutrinos have small but non-zero masses, with at least 
two species being non-relativistic today. However, the present ex-
perimental results on neutrino oscillations only measure the dif-
ference of two squared masses, such as 
m2

21 = m2
2 − m2

1 and 

m2

32 = m2
3 − m2

2, but give no hint on their absolute mass scales. 
m1, m2 and m3 are the neutrino mass eigenstates. For example, 
the solar neutrino analysis supplemented by KamLAND produces 
an estimate of 
m2

21 ∼ 8 × 10−5 eV2 [4], and the measurement of 
atmospheric neutrino oscillation by Super-Kamiokande I indicates 

m2

32 ∼ 3 × 10−3 eV2 [5]. If it is the case of oscillations among 
three light neutrinos, only two of the three 
m2 are independent, 
i j
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as 
m2
21 + 
m2

32 + 
m2
13 = 0, where 
m2

13 = m2
1 − m2

3. Recent re-
views on progress in both theoretical and experimental aspects of 
neutrino oscillations can be found in [6].

A variety of cosmological tests are sensitive to the absolute 
scale of neutrino mass, such as the cosmic microwave background 
(CMB) radiation, galaxy surveys, and the Lyman-alpha forest [7]. In 
[8], the effect of massive neutrinos on the Sunyaev–Zel’dovich and 
X-ray observables of galaxy clusters are investigated with a set of 
six very large cosmological simulations (8h−3 Gpc3 comoving vol-
ume). The analysis of current cosmological observations provides 
an upper bound on the total neutrino mass 

∑
mν (summed over 

the three neutrino families) of order 1 eV or less. However, the 
limits on 

∑
mν from cosmology are rather model dependent and 

vary strongly with the data combination adopted. For example, in 
the framework of one-parameter extensions to the base 	CDM 
model the Planck 2015 results [9] give 95% upper limits on the 
sum of neutrino masses, i.e., 

∑
mν < 0.23 eV for a combination of 

Planck TT + lowP + lensing + ext, and 
∑

mν < 0.59 eV for Planck 
TT, TE, EE + lowP + lensing, where “TT” denotes the combination 
of the TT likelihood at multipoles l ≥ 30 and a low-l temperature-
only likelihood, “TE” denotes the likelihood at l ≥ 30 using TE 
spectra, and “EE” denotes the likelihood at l ≥ 30 using EE spec-
tra, “lowP” denotes the low-l Planck polarization data, “lensing” is 
the Planck lensing data, and “ext” represents the external data in-
cluding the baryon acoustic oscillations (BAO), Type Ia supernovae 
(SNe Ia), and H0. In [10], the power law and exponential types of 
viable f (R) theories along with massive neutrinos are studied. It 
shows that the allowed scales of 

∑
mν in the viable f (R) models 

are greater than that in the 	CDM model. The cases of fixing the 
effective number of neutrino species as Neff = 3.046 and treating 
Neff as a free parameters are both considered in [10]. The former 
corresponds to just consider the active neutrinos without the effect 
of dark radiation. The latter corresponds to include the contribu-
tion of dark radiation (represented by 
Neff = Neff − 3.046). For 
more details on dark radiation, we refer the reader to [11]. The 
model of holographic dark energy with massive neutrinos and/or 
dark radiation is investigated in [12], but the computed results 
from this model are not compared with those from the 	CDM 
model. Actually, the 	CDM model with massive neutrinos is dis-
cussed broadly with constraints from various cosmological obser-
vations [13]. The time evolving of neutrino mass is also explored 
in the literature [14]. For further details on neutrino cosmology, 
the reader is referred to recent reviews such as [7,15].

In this paper, we will discuss the constraints on the sum of 
neutrino masses 

∑
mν in the framework of φCDM model by using 

a combination of the CMB data from Planck 2013 and WMAP9, the 
galaxy clustering data from WiggleZ and BOSS surveys, and the JLA 
compilation of SNe Ia observations. The effect of dark radiation is 
not considered in this work, i.e., Neff = 3.046. We also assume that 
one of the three active neutrinos is massive, and the other two are 
massless. The φCDM model — in which dark energy is modeled as 
a scalar field φ with a gradually decreasing (in φ) potential V (φ)

— is a simple dynamical model with a slowly decreasing (in time) 
dark energy density. This model could resolve some of the puzzles 
of the 	CDM model [16], such as the coincidence and fine-tuning 
problems. Here we focus on the scalar field with an inverse power-
law potential V (φ) ∝ φ−α , where α is a nonnegative constant [17,
18]. When α = 0 the φCDM model is reduced to the correspond-
ing 	CDM case. The φCDM model with this kind of V (φ) has been 
extensively investigated [19–21], but without considering the mas-
sive neutrinos.

The rest of the paper is organized as follows. In Sec. 2 we 
present the background and perturbation evolutions of the φCDM 
model with massive neutrinos. The impacts of 

∑
mν and α on the 

CMB temperature power spectrum and on the matter power spec-
trum are also discussed. Constraints from the cosmological data 
are derived in Sec. 3, and the results for φCDM model are com-
pared with those for the 	CDM model. We summarize our main 
conclusions in Sec. 4.

2. The φCDM model with massive neutrinos

2.1. Background evolution of the φCDM model

Quintessence as one of the popular scalar field dark energy 
models is a hypothetical form of dynamical dark energy to explain 
the late-time cosmic acceleration. Since quintessence is described 
by the scalar field φ, the corresponding dark energy model can 
also be called as φCDM model. In what follows, we will use the 
terms “quintessence” and “φCDM” essentially interchangeably. We 
consider the self-interacting scalar field φ minimally coupled to 
gravity on cosmological scales. The action of this φCDM model is 
given by

S =
∫ √−g

(
− m2

p

16π
R +Lφ +L

)
d4x, (1)

where g is the determinant of the metric gμν , R is the Ricci scalar, 
mp = 1/

√
G is the Planck mass with G being the Newtonian con-

stant of gravitation, L is the Lagrangian density for matter and 
radiation, and Lφ is the Lagrangian density for the field φ, given 
by

Lφ = m2
p

16π

[
1

2
gμν∂μφ∂νφ − V (φ)

]
, (2)

where V (φ) is the field’s potential. In this work, we take a 
flat Friedmann–Lemaître–Robertson–Walker (FLRW) metric for the 
background evolution, which is described by

ds2 = −dt2 + a2δi jdxidx j, (3)

where xi is the comoving coordinate. a(t) is the scale factor usually 
normalized to unity now a0 = a(z = 0) = 1 and related to the red-
shift z as a/a0 = 1/(1 + z). Throughout, the subscript “0” denotes 
the value of a quantity today. By the variation of the action in 
Eq. (1) with respect to φ, one can obtain the Klein–Gordon equa-
tion (equation of motion) for the scalar field

φ̈ + 3

(
ȧ

a

)
φ̇ + dV

dφ
= 0. (4)

For the φCDM model, there are many kinds of V (φ) which can 
satisfy the requirement of the late-time accelerating expansion of 
the universe [22]. In 1988, Peebles and Ratra [18] proposed a scalar 
field that is slowly rolling down with a potential V (φ) = 1

2 κm2
pφ−α

at a large φ, where κ and α are nonnegative parameters. This 
inverse power-law potential can not only lead to the late-time ac-
celeration of the universe but also partially solve the cosmological 
constant problems. The larger value of α induces the stronger time 
dependence of the scalar field energy density ρφ . When α = 0, this 
φCDM model is reduced to the 	CDM case. What is more, the pa-
rameter κ depends on α (see [19,23] for its dependence on α).

The Friedmann equation of the φCDM model with massive neu-
trinos can be written as

H2(z) = 8π

3m2
p
(ρb + ρc + ρφ + ργ + ρν), (5)

where ρb , ρc , ρφ , ργ and ρν denote the energy densities of 
baryons, cold dark matter (CDM), scalar field dark energy, photons 
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and neutrinos, and H(z) ≡ ȧ/a is the Hubble parameter. The en-
ergy density and pressure of the scalar field dark energy are given 
by

ρφ = m2
p

16π
(φ̇2/2 + V (φ)), (6)

and

Pφ = m2
p

16π
(φ̇2/2 − V (φ)). (7)

Then, one can work out the equation of state (EoS) of the field φ,

ωφ ≡ Pφ/ρφ = φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
, (8)

which is clearly bounded in the range −1 < ωφ < 1 and usually 
non-constant. One can see that if the scalar field φ rolls slowly 
enough such that the kinetic energy density is much less than the 
potential energy density, i.e. φ̇2 � V (φ), the pressure Pφ of the 
field will become negative with ωφ → −1.

Based on Eqs. (4) and (5), along with the initial conditions de-
scribed in Refs. [18,19], one can numerically compute the Hubble 
parameter H(z). We also introduce the dimensionless density pa-
rameter for each component as, �X = ρX/ρcr , where the index 
“X” denotes the individual components, such as radiation (“r”), 
neutrino (“ν”) and matter (“m”). The critical energy density is ex-
pressed as ρcr = 3H2m2

p/(8π). �m is the energy density of matter 
including both baryons and CDM. �ν is the total neutrino en-
ergy density which scales as ∝ a−4 at early times, and thereafter 
evolves as ∝ a−3 after the non-relativistic transition. One can see 
that the massive neutrinos behave like the radiation at early times 
and like the matter later.

2.2. Cosmological perturbation of the φCDM model

Let us consider perturbations of the flat FLRW metric in the 
Newtonian Gauge [24]. In this gauge, the linear perturbed metric 
is given by

ds2 = a2(η)
[
−(1 + 2�)dη2 + (1 + 2�)δi jdxidx j

]
, (9)

where the scalar perturbations are dominant over vector or tensor 
perturbations, and η = ∫

a−1dt is the conformal time. The New-
tonian force � gives rise to the dynamics of the perturbed fluids, 
while the curvature perturbation � measures the local energy den-
sity fluctuations. The linear perturbation theory is a good tool both 
for describing the early universe at any scales, and the recent uni-
verse on the largest scales.

It has been shown in [25] that for self-interacting scalar field 
dark energy models it is phenomenologically sufficient to regard 
the dark energy component as a perfect fluid. We treat each com-
ponent in the universe as perfect fluid, including the baryon, CDM, 
photon, neutrino and scalar field dark energy. In the perfect fluid 
approach, the perturbed Einstein equations lead to the following 
Eqs. (10)–(13) in the Fourier space:

δ′
X + 3Ha(c2

s,X − ωX )δX ,= −(1 + ωX )(θX + 3�′) (10)

θ ′
X +

[
Ha(1 − 3ωX ) + ω′

X

1 + ωX

]
θX

= k2

(
c2

s,X

1 + ωX
δX + � + σX

)
, (11)

k2� = 4πGa2ρi

[
δX + 3Ha(ωX + 1)θX/k2

]
, (12)
and

� = −�. (13)

The great advantage of linear theory is to obtain independent 
equations of evolution for each Fourier mode. All of the per-
turbed quantities (δX , θX , � , �, etc.) are functions of space x
and time t , where X denotes each perfect fluid composing the 
universe. In the linear perturbations, the anisotropic stress σX is 
negligible for the perfect fluids. Note that a prime represents a 
derivative with respect to the conformal time η. The spatial vari-
ation of density fluctuations is expressed by the density contrast 
δX ≡ δρX/ρ̄X = (ρX − ρ̄X )/ρ̄X , and ρ̄X is the background energy 
density of component X . In the approximation of negligible irrota-
tional flow, the divergence of the peculiar velocity v X , θX = ∇ · �v X
can be used to describe the fluid motion. In the Fourier space, we 
have θX ≡ i�k · �v X . While ωX ≡ P̄ X/ρ̄X is the equation of state of 
each component, and c2

s,X ≡ δP X/δρX represents the sound veloc-
ity. Eq. (10) is called as the (perturbed) continuity equation, that 
states the conservation of local density. Eq. (11) is called as the 
Euler equation, that represents the conservation of local energy mo-
mentum, and describes dynamics of perturbed fluids originated 
by the Newtonian force � . The curvature perturbation � is con-
strained to the local inhomogeneity via the Poisson equation (12). 
We can get Eq. (13) under the assumption that the perturbed fluid 
remains a perfect fluid. These equations (10)–(13) completely de-
termine the dynamical evolution of large scale structure (LSS) of 
the universe, within a given expansion history H .

2.3. Matter power spectrum and CMB power spectrum in the φCDM 
model

In the framework of φCDM model, we qualitatively investigate 
the impacts of parameters α and �mν on the matter power spec-
trum and on the CMB power spectrum. The analyses are performed 
with the CAMB Boltzmann code [26].

Neutrinos rarely interact with matter after thermal decoupling, 
so they are treated as free streaming particles. Massive neutrinos 
are the only particles that present the transition from radiation to 
matter. Before the non-relativistic transition the neutrinos behave 
like radiation. Thus, when the neutrino mass �mν increases, the 
time of radiation/matter equality is postponed gradually, and aeq
increases. The value of �mν can affect the matter power spectrum 
and the CMB power spectrum mainly resulting from a change in 
the time of equality, that provides a potential way to constrain it 
through CMB and LSS observations [7,12,27]. In Fig. 1, we show 
the impacts of neutrino mass �mν on the matter power spectrum 
P (k) and the CMB temperature anisotropy spectrum CTT

l . The up-
per panels show the cases for φCDM model with varying values of 
�mν , where α is fixed as α = 1, and other parameters are fixed 
based on the recent Planck results [9]. For comparison, we also 
display the cases for 	CDM model in the lower panels. For both 
φCDM and 	CDM models, the matter power spectrum is gradually 
suppressed with the increase of �mν , however, the effect is more 
significant on small scales than that on large scales. One possi-
ble reason is that the neutrino perturbations do not contribute to 
gravitational clustering on scales smaller than the free-streaming 
scale, while on the very large scales neutrino perturbations are 
never affected by free streaming, and they become indistinguish-
able from CDM perturbations in the non-relativistic regime [7]. 
The CMB temperature anisotropy spectrum CTT

l is insensitive to the 
variation of �mν in both 	CDM and φCDM models.

The parameter α indicates the dynamics of dark energy, and 
then it can affect the expansion history of the universe and the 
redshift of matter/dark energy equality. When α increases, the ex-
pansion of the universe occurs more rapidly, and the epoch of dark 
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Fig. 1. Impacts of the sum of neutrino masses �mν on the matter power spectrum P (k) and on the CMB temperature power spectrum CTT
l in the φCDM (upper panels) and 

	CDM (lower panels) models. �mν is varied, and other parameters are kept fixed.
energy domination begins earlier [19]. For these reasons, the vari-
ation of α can have signatures in the CMB map and the matter 
clustering. The impacts of α on P (k) and CTT

l are presented in 
Fig. 2. We choose α = 0, 1, and 10 as examples, where α = 0 cor-
responds to the 	CDM scenario. The values of other parameters 
are kept fixed. We find that P (k) is slightly suppressed with the 
increase of α, and the effect is a bit significant on large scales 
than that on small scales. The CMB temperature anisotropy spec-
trum CTT

l is a little sensitive to the variation of α on the low-l tail, 
which may arise from the late Integrated Sachs–Wolfe (ISW) effect. 
Anyhow, CMB and LSS observations are efficient to distinguish be-
tween 	CDM and φCDM models.
3. Observational constraints

The observational data sets used to constrain the cosmological 
parameters are described as follows, including the galaxy cluster-
ing, CMB and SNe Ia measurements.

3.1. Cosmological data sets

3.1.1. Galaxy clustering measurements
Galaxy clustering distilled from the galaxy redshift survey is 

powerful as cosmological probe [28], that can allow us to measure 
the cosmic expansion history through the measurement of BAO, 
and the growth history of cosmic large scale structure through 
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Fig. 2. Impacts of the parameter α on the matter power spectrum P (k) and on the CMB temperature power spectrum CTT
l in the framework of φCDM model. α is varied, 

and other parameters are kept fixed.
measurements of redshift-space distortions. The length scale of 
BAO, the comoving sound horizon at the baryon drag epoch rs(zd), 
can be applied as a cosmological ruler and accurately calibrated by 
observations of the CMB radiation. The position of the BAO peak in 
the angle-averaged galaxy clustering pattern is usually quantified 
in term of the volume averaged distance [29]

D V =
[
(1 + z)2 D2

Acz/H(z)
]1/3

. (14)

It is common to report the BAO distance measurements as com-
binations of the angular diameter distance, D A(z), and the Hubble 
parameter, H(z), such as

A(z) ≡ H0

√
�0

m D V (z)

cz
, (15)

or

dz ≡ D V (z)/rs(zd). (16)

The redshifts of galaxies include indistinguishable contributions 
from both the Hubble recession and the peculiar velocity of the 
galaxies themselves, so that there are errors in the distances we 
assign to galaxies. The differences between the redshift-inferred 
distances and true distances are known as redshift-space distor-
tions (RSD) [30]. In another word, the RSD are introduced in 
the observed clustering pattern by galaxy peculiar motions. As 
a consequence, the correlation function and the power spectrum 
measured in the redshift space are different from those in the 
real space, which have to be corrected to be expressed in real 
space. Because the effects of RSD couple the density and velocity 
fields, the RSD signals within the correlation function are difficult 
to model. On different scales, peculiar motions produce different 
types of distortions to the power spectrum. On small scales, i.e., 
in the cluster cores, the peculiar velocities of galaxies are almost 
randomly oriented, that cause the structures to appear elongated 
along the line of sight (LOS) when viewed in redshift space (i.e., 
the so called “finger of God” effect) [31], leading to a damping 
of the clustering. On large scales, because of gravitational growth, 
the galaxies tend to fall towards high-density regions, and flow 
away from low-density regions, such that the galaxy clustering in 
redshift space is enhanced in the LOS direction compared to the 
transverse direction [32]. The RSD effect on large scales can be de-
scribed by linear theory [32,33], while the “finger of God” effect is 
a non-linear phenomenon. On large scales where the gravitational 
growth is linear, measuring the relative clustering in both LOS 
and transverse directions leads to measurements of the parameter 
combination f (zeff)σ8(zeff), where zeff is the effective redshift. f is 
the growth rate of cosmic structure, which is associated with the 
evolution of matter density perturbations δm via the relation f ≡
d ln δm/d ln a. In the linear regime, the linear growth rate can be 
expressed as f = d ln D(z)/d ln a, where D(z) = δm(z)/δm(z = 0) is 
the linear growth factor normalized such that D(z = 0) = 1. σ8(z)
is the root–mean–square amplitude of the matter fluctuations in 
spheres of 8h−1 Mpc, and σ8(z = 0)/σ8(z) = D(z = 0)/D(z). Thus, 
one can figure out

f (z)σ8(z) = σ 0
8

dD(z)

d ln a
, (17)

where σ 0
8 = σ8(z = 0). In linear theory, the galaxy bias b and the 

growth rate f are degenerate with σ8, so the RSD measurements 
are better presented in terms of b(z)σ8(z) and f (z)σ8(z), rather 
than f (z). Currently, the bias-independent parameter combination 
f (z)σ8(z) measured by RSD are widely used [20,34,35].

The Alcock–Paczynski (AP) test [36] is proved to be a significant 
link between BAO and RSD. AP test states that if an astrophysi-
cal structure is spherically symmetric or isotropic, then it should 
possess equal comoving transverse and radial sizes. An AP mea-
surement is carried out by comparing the observed transverse and 
radial dimensions of objects. While the AP test is equally valid for 
an isotropic process such as the two-point statistics of galaxy clus-
tering. The apparent anisotropy of the two-dimensional correlation 
function of galaxies mainly arises from the geometry and expan-
sion of the universe which should be correctly embodied in the 
fiducial cosmological model, and the RSD effect which is supposed 
to be marginalized by using appropriate RSD model (see [30] for 
a recent review of RSD models). According to the requirement of 
AP test, the signature of BAO should have identical comoving sizes 
(i.e., rs) in transverse and radial dimensions. The observed trans-
verse dimension is the angular projection 
θ = rs/[(1 + z)D A(z)]. 
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The radial one is the redshift projection 
z = rs H(z)/c. The rela-
tive radial/transverse distortion depends on the value of

F (z) ≡ 
z/
θ

= (1 + z)D A(z)H(z)/c, (18)

where F (z) is dubbed as the AP distortion parameter.
By combining the BAO peak, AP test and RSD effect, one can 

report the galaxy clustering effectively as joint measurements 
of (A, F , f σ8) or (dz, F , f σ8). These joint measurements are ex-
tremely good at helping to constrain basic cosmological parameters 
and distinguish between the dark energy models. By using large-
scale structure measurements from the WiggleZ Dark Energy Sur-
vey [37], Blake et al. (2012) [38] have performed joint constraints 
of (A, F , f σ8) in three overlapping redshift slices with effective 
redshifts zeff = (0.44, 0.6, 0.73). Utilizing these data, it is straight-
forward to put constraints on the model parameters by calculating 
the corresponding χ2

WiggleZ, given by

χ2
WiggleZ = ( �Xobs − �Xth)C−1( �Xobs − �Xth)T . (19)

The observational data vector is

�Xobs = [A1, A2, A3, F1, F2, F3, f σ8,1, f σ8,2, f σ8,3], (20)

i.e., �Xobs = [0.474, 0.442, 0.424, 0.482, 0.650, 0.865, 0.413,0.390,

0.437] by using the maximum likelihood estimations of (A, F , f σ8)

listed in Table 1 of [38]. The vector of theoretical values is

�Xth = [A(z1), A(z2), A(z3), F (z1), F (z2), F (z3),

f σ8(z1), f σ8(z2), f σ8(z3)], (21)

where [z1, z2, z3] = [0.44, 0.6, 0.73], and the corresponding theo-
retical values of (A, F , f σ8) can be obtained with Eqs. (15), (18)
and (17), respectively. C is a 9 × 9 covariance matrix between pa-
rameters and redshift slices, and the value of 103C is listed in 
Table 2 of [38], that is achieved by generating 400 lognormal real-
izations for each WiggleZ survey region and redshift slice with the 
methods described in [34]. In the analysis of [38], the fitting for-
mulae provided by Jennings et al. (2011) [39] have been taken as 
the fiducial RSD model. The effect of different choices of the RSD 
model is also considered in Section 3.4 of [38]. It turns out that the 
systematic error induced from modeling RSD is much lower than 
the statistical error in the measurement.

Joint measurements of (dz, F , f σ8) at an effective redshift of 
zeff = 0.57 are provided in Samushia et al. (2014) [40] by utilizing 
the observed anisotropic clustering of galaxies in the Baryon Oscil-
lation Spectroscopic Survey (BOSS) Data Release 11 (DR11) CMASS 
sample [41]. We employ this data set in our analysis with the chi-
squared statistic

χ2
BOSS = (�Yobs − �Y th)Cov−1(�Yobs − �Y th)T . (22)

The observational data vector is �Yobs = [dz, F , f σ8], i.e., �Yobs =
[13.85, 0.6725, 0.4412] by using the mean values presented in 
Eq. (30) of [40]. The vector of theoretical values is �Y th = [dz(zeff),

F (zeff), f σ8(zeff)], where the corresponding theoretical values of 
(dz, F , f σ8) can be obtained with Eqs. (16), (18) and (17), re-
spectively. The covariance matrix Cov of measurements is listed 
in Eq. (31) of [40]. A suite of 600 PTHalo simulations are used 
to estimate the covariance matrix (see [42] for details of mock 
generation). In the analysis of [40], the “streaming model”-based 
approach developed in [43] has been adopted to model the RSD 
signal, that has been demonstrated to fit the monopole and 
quadrupole of the galaxy correlation function with better than per-
cent level precision to scales above 25h−1 Mpc, for galaxies with 
bias of b  2.
The galaxy clustering (GC) measurements from WiggleZ and 
BOSS DR11 are both employed in this study. Thus, the correspond-
ing chi-squared statistic is expressed as

χ2
GC = χ2

WiggleZ + χ2
BOSS, (23)

where χ2
WiggleZ and χ2

BOSS are given by Eqs. (19) and (22), respec-
tively.

3.1.2. CMB power spectrum measurements
The CMB radiation deemed as the afterglow of the big bang can 

supply us with some information of the very early universe. The 
observations of CMB provide another independent test for the exis-
tence of dark energy. The recent precise measurements of the CMB 
radiation from Planck and Wilkinson Microwave Anisotropy Probe 
(WMAP) projects can efficiently improve the accuracy of constrain-
ing the cosmological parameters. Currently, the Planck 2015 results 
have come out [9], but the Planck 2015 likelihoods are not yet 
available. Given this, we use the low multipoles (2 ≤ l ≤ 49) and 
high multipoles (50 ≤ l ≤ 2479) temperature power spectrum like-
lihoods from Planck 2013 [44], together with the low multipoles 
(l ≤ 23) polarization power spectrum likelihoods from nine-year 
WMAP (WMAP9) [45]. To employ the previously mentioned CMB 
power spectrum data in the analysis, we compute the χ2

CMB statis-
tic

χ2
CMB =

∑
ll′

(Cobs
l − C th

l )M−1
ll′ (Cobs

l′ − C th
l′ ), (24)

where Cobs
l is the observational value of the related power spec-

trum, C th
l is the corresponding theoretical value in the framework 

of the cosmological model under consideration, and M is the co-
variance matrix for the best-fit data spectrum.

3.1.3. Magnitude-redshift measurements of Type Ia supernovae
The first direct evidence for the cosmic acceleration came from 

SNe Ia observations, which provide the measurement of the cos-
mic expansion history through the measured luminosity distance 
as a function of redshift, dL(z) = (1 + z)r(z). In the spatially flat 
universe, the comoving distance r(z) from the observer to redshift 
z is given by

r(z;p) = c

H0

z∫
0

dz′

E(z′;p)
, (25)

wherein p denotes the parameter space of the considered cosmo-
logical model, and E = H/H0 is the dimensionless Hubble param-
eter.

Here, we use the “joint light-curve analysis” (JLA) compilation 
of SNe Ia [46], which is a joint analysis of SNe Ia observations in-
cluding several low-redshift samples (z < 0.1), all three seasons 
from the SDSS-II (0.05 < z < 0.4), three years from SNLS (0.2 <
z < 1), and 14 very high redshift (0.7 < z < 1.4) from the Hubble 
Space Telescope (HST) observations. It totals 740 spectroscopically 
confirmed SNe Ia with high quality light curves. In Ref. [46], SALT2 
light-curve model [47,48] have been used to fit the supernova light 
curves of the JLA sample. From the observational point of view, the 
distance modulus of a SN Ia can be yielded from its light curve 
with an empirical linear relation:

μobs
B = m�

B − (MB − α × X1 + β × C) (26)

The light-curve parameters (m�
B , X1, C) result from the fit of the 

SALT2 light-curve model to the photometric data, where m�
B cor-

responds to the observed peak magnitude in rest-frame B band, 
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Table 1
Fitting results from the joint sample. We present the best-fit values (i.e., the parameters that maximize the overall likelihood), and the mean values with 95% confidence 
limits for the parameters of interest. Where �mν is in unit of eV, and H0 is in unit of km/s/Mpc. The top block contains parameters with uniform priors that are varied in 
the MCMC chains. The lower block defines various derived parameters.

Parameters 	CDM model φCDM model

Best-fit values 95% limits Best-fit values 95% limits

�bh2 0.0221 0.0221 ± 0.0005 0.0222 0.0222 ± 0.0005
�ch2 0.1197 0.1180+0.0036

−0.0037 0.1176 0.1177 ± 0.0036
100θMC 1.0412 1.0414 ± 0.0011 1.0414 1.0415+0.0012

−0.0011

τ 0.0921 0.0904+0.0263
−0.0255 0.0846 0.0914+0.0266

−0.0242

ln(1010 As) 3.0939 3.0854+0.0513
−0.0467 3.0758 3.0869+0.0516

−0.0475

ns 0.9601 0.9636+0.0113
−0.0112 0.9607 0.9644+0.0118

−0.0119

�mν 0.043 < 0.293 0.038 < 0.262
α . . . . . . 2.482 < 4.995

�m 0.312 0.311+0.023
−0.022 0.310 0.313+0.023

−0.021

σ8 0.834 0.806+0.044
−0.049 0.806 0.805+0.043

−0.046

H0 67.51 67.47+1.76
−1.79 67.33 67.11+1.79

−1.81
X1 describes the time stretching of the light-curve, and C de-
scribes the supernova color at maximum brightness. α, β and 
MB are nuisance parameters in the distance estimate, which are 
estimated simultaneously with the cosmological parameters and 
then marginalized over when obtaining the parameters of inter-
est, wherein MB is the absolute B-band magnitude. The theoretical 
(predicted) distance modulus is

μth(z;p,μ0) = 5 log10[D L(z;p)] + μ0, (27)

where μ0 = 42.38 − 5 log10 h, which is also treated as a nuisance 
parameter, and the Hubble-free luminosity distance is given by

D L(z;p) ≡ H0

c
dL(z) = (1 + z)

z∫
0

dz′

E(z′;p)
. (28)

The best-fit cosmological parameters from SNe Ia data are deter-
mined by minimizing

χ2
SNe =

740∑
i, j=1

[
μobs,i

B (α,β, MB) − μth,i(zi;p,μ0)
]

× Cov−1
i j

[
μ

obs, j
B (α,β, MB) − μth, j(z j;p,μ0)

]
, (29)

where Cov is the covariance matrix of data vector �μobs
B . The val-

ues of the covariance matrix Cov and the SALT2 fit parameters 
(m�

B , X1, C) are available from Ref. [46].

3.2. Results and analysis

In our analysis, the likelihood is assumed to be Gaussian, thus 
we have the total likelihood

L ∝ e−χ2
tot/2, (30)

where χ2
tot is constructed as

χ2
tot = χ2

GC + χ2
CMB + χ2

SNe, (31)

wherein χ2
GC, χ2

CMB and χ2
SNe are given by Eqs. (23), (24) and (29), 

respectively, and denote the contributions from galaxy clustering, 
CMB and SNe Ia data sets described above.

We derive the posterior probability distributions of parameters 
with Markov Chain Monte Carlo (MCMC) exploration using the 
February 2015 version of CosmoMC [49]. The parameter space of 
the 	CDM model is
P	CDM ≡ {�bh2,�ch2,100θMC, τ , ln(1010 As),ns,�mν}, (32)

where �bh2 and �ch2, respectively, stand for the baryon and CDM 
densities today, θMC is an approximation to θ∗ = rs(z∗)/D A(z∗) (i.e., 
the angular size of the sound horizon at the time of decoupling) 
that is used in CosmoMC and is based on fitting formulae given 
in [50], τ refers to the Thomson scattering optical depth due to 
reionization, ns and As are the power-law index and amplitude of 
the power-law scalar primordial power spectrum of curvature per-
turbations, and �mν is the sum of neutrino masses. The parameter 
space of the φCDM model is

PφCDM ≡ {�bh2,�ch2,100θMC, τ , ln(1010 As),ns,�mν,α}, (33)

which has one more parameter than that of 	CDM model, where 
α determines the steepness of the scalar field potential in the 
framework of φCDM model.

The one-dimensional (1D) probability distributions and two-
dimensional (2D) contours for the cosmological parameters of in-
terest are shown in Fig. 3 for 	CDM model and in Fig. 4 for φCDM 
model. It shows that constraints from the joint sample are quite re-
strictive, though there are degeneracies between some parameters, 
such as the degeneracies in the �m − H0 and σ8 − �mν planes. In 
addition, the differences between the marginalized likelihoods and 
the mean likelihoods are modest in 1D and 2D plots. It implies 
that the distributions of the parameters are almost Gaussian. We 
also present best-fit values and mean values with 95% confidence 
limits for the parameters of interest in Table 1 both for 	CDM and 
φCDM models. We find α < 4.995 at 95% CL for the φCDM model, 
while the 	CDM scenario corresponding to α = 0 is not ruled out 
at this confidence level. The constraints on �bh2, �ch2, 100θMC , τ , 
ln(1010 As), ns , �m , σ8 and H0 are consistent at 95% CL for these 
two models.

Here, we pay attention to the constraints on �mν . Note that 
�mν is in unit of eV. The best-fit vale is �mν = 0.038(0.043)

with �mν < 0.262(0.293) at 95% CL in the framework of φCDM 
(	CDM) model. The allowed neutrino mass scale in the φCDM 
model is a bit smaller than that in the 	CDM model. As it is 
shown in Figs. 1 and 2, the increases of α and �mν both can result 
in the suppression of the matter power spectrum. Therefore, when 
α is larger, in order to avoid suppressing the matter power spec-
trum too much, the value of �mν should be smaller. Consequently, 
the case with α > 0, i.e., φCDM model, has smaller �mν ; corre-
spondingly, the case with α = 0, i.e., 	CDM scenario, has larger 
�mν . Additionally, in Ref. [10], they obtained �mν < 0.200 eV at 
95% CL in the 	CDM model, that is consistent with our result. 
With the results presented in Table II of [10], one can see that our 



Y. Chen, L. Xu / Physics Letters B 752 (2016) 66–75 73
Fig. 3. The 1D and 2D probability distributions of parameters of interest in the 	CDM model constrained with the joint sample. In the 1D plots, the solid lines denote the 
marginalized likelihoods and the dotted lines correspond to the mean likelihoods. In the 2D plots, the contours refer to the marginalized likelihoods while the colors refer 
to the mean likelihoods. The contours correspond to 68%, 95% and 99% confidence levels. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 4. The 1D marginalized distribution and 2D contours of parameters of interest in the φCDM model constrained from the joint sample. The implications of line styles and 
colors are the same as those in Fig. 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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constraints on �bh2, �ch2, τ and ns are also consistent with theirs 
at 95% CL for the 	CDM model.

4. Conclusion

We have concentrated on a quintessence model (or called as 
φCDM model) of dark energy with massive neutrinos. In the φCDM 
model under consideration, the scalar field φ is taken as a can-
didate of dark energy to drive the late-time acceleration of the 
universe with an inverse power-law potential V (φ) ∝ φ−α (α > 0). 
The larger value of α corresponds to the stronger time dependence 
of the scalar field energy density. When α = 0, it is reduced to 
the corresponding 	CDM scenario. The linear perturbation theory 
is employed in the framework of this model. Through qualitative 
analyses, we find that the increases of the sum of neutrino masses 
�mν and the parameter α both can gradually suppress the mat-
ter power spectrum P (k). It implies that when the value of α is 
bigger, in order to avoid suppressing the matter power spectrum 
too much, �mν should be smaller. It is in accordance with the 
results from the observational constraints. The variations of these 
two parameters also can have signatures in the CMB temperature 
anisotropy spectrum CTT

l . In order to make a comparison, the im-
pacts of �mν on P (k) and CTT

l in the context of 	CDM model have 
also been presented.

A combination of the CMB data from Planck 2013 and WMAP9, 
the galaxy clustering data from WiggleZ and BOSS DR11, and the 
JLA compilation of the SNe Ia observations is used to constrain the 
parameters. The results indicate that constraints on the cosmologi-
cal parameters from this joint sample are quite restrictive. It turns 
out that �mν < 0.262 eV (95% CL) in the framework of φCDM 
model and �mν < 0.293 eV (95% CL) in the 	CDM model. The 
allowed neutrino mass scale in the φCDM model is a little shrunk 
comparing to that in the 	CDM model. In Ref. [10], it is concluded 
that the allowed neutrino mass scales in the viable f (R) models 
are bigger than that in the 	CDM model. Given this, we can in-
fer that the allowed scale of �mν in our φCDM model must be 
smaller than those in the viable f (R) models. In addition, we get 
α < 4.995 at 95% CL for the φCDM model, meanwhile, the 	CDM 
scenario corresponding to α = 0 is not ruled out. Consequently, the 
observational data that we have employed here still cannot dis-
tinguish whether dark energy is a time-independent cosmological 
constant or a time-varying dynamical component.
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