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We report new results from high precision analysis of an important BSM gauge theory with twelve 
massless fermion flavors in the fundamental representation of the SU(3) color gauge group. The range 
of the renormalized gauge coupling is extended from our earlier work [1] to probe the existence of an 
infrared fixed point (IRFP) in the β-function reported at two different locations, originally in [2] and at 
a new location in [3]. We find no evidence for the IRFP of the β-function in the extended range of the 
renormalized gauge coupling, in disagreement with [2,3]. New arguments to guard the existence of the 
IRFP remain unconvincing [4], including recent claims of an IRFP with ten massless fermion flavors [5,6]
which we also rule out. Predictions of the recently completed 5-loop QCD β-function for general flavor 
number are discussed in this context.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. History of the IRFP with 12 massless fermions

A conformal infrared fixed point (IRFP) of the β-function was 
reported earlier with critical gauge coupling g2∗ ≈ 6.2 and inter-
preted as conformal behavior of the much studied BSM gauge the-
ory with twelve massless fermions in the fundamental representa-
tion of the SU(3) color gauge group [2]. This result was claimed to 
confirm the original finding of the IRFP in [7,8]. In disagreement 
with [2,7,8], the IRFP was refuted in [1]. Recently, responding to 
the negative findings in [1], the authors of [2] moved the IRFP to a 
revised new location g2∗ ≈ 7 in [3].

The relocation of the IRFP followed the announcement of a new 
IRFP with ten massless fermion flavors in the fundamental repre-
sentation of the SU(3) color gauge group [5,6]. The claim in [5,
6] would imply that the theory with twelve flavors must also be 
conformal and the lower edge of the conformal window (CW) of 
multi-flavor BSM theories with fermions in the fundamental rep-
resentation would be located below ten flavors. No trace of the 
reported IRFP with ten flavors was found from high precision sim-
ulations in large volumes [9]. Some related predictions of the re-
cently completed 5-loop QCD β-function for general flavor number 
will be also discussed in this context.
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Results are reported for the β-function from the analysis of 
high precision simulations in large volumes for n f = 12 flavors in 
two different renormalization schemes and two different imple-
mentations of the gauge field gradient flow on the lattice, provid-
ing convincing evidence for the non-existence of the IRFP in [3]. 
A preview from our forthcoming new publication on the n f =
10 β-function [9] is also added showing evidence for the non-
existence of the IRFP published in this theory [5,6]. We should also 
mention an earlier high quality effort to investigate the n f = 12
model using twisted gauge field boundary conditions in the renor-
malization scheme [10] with references to earlier studies in the 
same scheme.

2. Scale-dependent β-function on the lattice

The gradient flow based diffusion of the gauge fields on lat-
tice configurations from Hybrid Monte Carlo (HMC) simulations 
became the method of choice for studying renormalization effects 
with great accuracy [11–15]. In particular, we introduced earlier 
the gradient flow based scale-dependent renormalized gauge cou-
pling g2(L) where the scale is set by the linear size L of the 
finite volume [16]. This implementation is based on the gauge in-
variant trace of the non-Abelian quadratic field strength, E(t) =
− 1

2 TrFμν Fμν(t), renormalized as a composite operator at gradient 
flow time t on the gauge configurations and measured from the 
discretized lattice implementation, as in [12].
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Following [16], we define the one-parameter family of renor-
malized non-perturbative gauge couplings where the volume-
dependent gradient flow time t(L) is set by a fixed value of 
c = √

8t/L from the one-parameter family of renormalization 
schemes. The renormalized gauge coupling g2(L) is directly de-
termined from E(t) = − 1

2 TrFμν Fμν(t) on the gradient flow of the 
gauge field at a fixed value of c which defines the renormaliza-
tion scheme. The renormalization schemes c = 0.20 and c = 0.25
used in our work are identical to what was used in [2,3] includ-
ing periodic boundary conditions on gauge fields and anti-periodic 
boundary conditions on fermion fields in all four directions of the 
lattice.

A general method for the scale-dependent renormalized gauge 
coupling g2(L) was introduced earlier to probe the step β-function, 
defined as (g2(sL) − g2(L))/ log(s2) for some preset finite scale 
change s in the linear physical size L of the four-dimensional vol-
ume in the continuum limit of lattice discretization [17]. In our 
adaptation of the step β-function staggered lattice fermions are 
used with stout smearing in the fermion Dirac operator. The imple-
mentation of the HMC evolution code is described in [1] together 
with further details on the lattice step function and its continuum 
limit. Identical procedures are followed here.

3. High precision twelve-flavor analysis in large volumes

In the continuum limit, the monotonic function g2(L) implies 
in any of the volume-dependent schemes that a selected value of 
the renormalized gauge coupling sets the physical size L measured 
in some particular dimensionful physical unit. Fixed physical size L
on the lattice is equivalent to holding g2(L) fixed at some selected 
value as the lattice spacing a is varied and the fixed physical length 
L is held constant by the variation of the dimensionless linear 
scale L/a as the bare lattice coupling is tuned without changing 
the selected fixed value of the renormalized gauge coupling. The 
continuum limit of the β-function at fixed g2(L) is obtained by 
a2/L2 → 0 extrapolation of the residual cut-off dependence de-
tected as powers of a2/L2 in the step β-function at finite bare 
gauge couplings g2

0 while the renormalized gauge coupling is held 
fixed.

In the convention we use, asymptotic freedom in the UV regime 
corresponds to a positive step β-function given by the perturba-
tive loop expansion for small values of the renormalized coupling. 
In the infinitesimal derivative limit s →1 the step β-function turns 
into the conventional one. Even at a step size as large as s = 2
the step β-function approximately tracks the conventional contin-
uum β-function and we use step s = 2 throughout the analysis. 
If the conventional β-function of the theory possesses a confor-
mal fixed point, the step β-function will have a zero at the critical 
gauge coupling g2∗ , independent of the scale L. Since the renormal-
ized gauge coupling g2(L) is a monotonic function of L, the IRFP 
coupling g2∗ is reached in the L → ∞ limit.

3.1. SSC gradient flow with c = 0.20 renormalization scheme

Precision tuning of the bare gauge coupling 6/g2
0 was used ex-

clusively for each step calculation in [1] using the c = 0.20 renor-
malization scheme with s = 2 step size. The gauge field gradient 
flow was driven by the same tree-level improved Symanzik gauge 
action which generated the gauge configurations. The lattice imple-
mentation of the gauge field operator E(t) = − 1

2 TrFμν Fμν(t) used 
the clover construction which is known to reduce cut-off effects 
in the gradient flow [12]. SSC designates the setup with Symanzik 
gauge action driving both the gauge field gradient flow and the 
Table 1
With previously tuned bare gauge couplings g2

0 , the final 26 precision tuned runs 
are tabulated with 13 tuned runs and 13 paired s = 2 steps. The D, E, F run sets 
target g2 approximately at 6.6, 6.8, 7.0 respectively.

L/a Target D Target E Target F

6/g2
0 g2 6/g2

0 g2 6/g2
0 g2

16 2.9380 6.5972(30) 2.7838 6.9855(31)

32 2.9380 6.4817(136) 2.7838 6.8237(142)

18 2.9233 6.5977(34) 2.8420 6.7956(35) 2.7592 6.9834(19)

36 2.9233 6.5261(166) 2.8420 6.7023(99) 2.7592 6.8461(79)

20 2.9094 6.5993(53) 2.8232 6.7975(52) 2.7298 6.9870(65)

40 2.9094 6.5656(67) 2.8232 6.7423(71) 2.7298 6.8989(75)

24 2.8932 6.6006(75) 2.8006 6.7910(79) 2.7000 6.9831(71)

48 2.8932 6.6229(125) 2.8006 6.8083(94) 2.7000 6.9764(85)

28 2.8817 6.6012(41) 2.6884 6.9820(49)

56 2.8817 6.6898(155) 2.6884 7.0133(111)

HMC evolution code, together with the clover operator implemen-
tation of E(t). In the SSS framework we would replace the clover 
construction by the Symanzik gauge action where similar good 
performance is expected, like in the SSC framework. This would re-
quire a new precision tuned run set which is not within the scope 
of our project.

Earlier, the three target groups A, B, C of the precision tuned 
run sets tested the IRFP with negative conclusions [1], in dis-
agreement with what was reported in [2]. In this new work we 
target the step β-function in an extended range of the renormal-
ized gauge coupling to cover the interval where the relocated IRFP 
was recently reported [3].

In section 3.2 we added to the SSC analysis the WSC setup 
with large cutoff effects where the Symanzik action is replaced 
by the simple Wilson plaquette action to drive the gradient flow 
on the gauge configurations. The main purpose of the added WSC 
scheme was to better understand the results in [2,3] where only 
the Wilson plaquette action was used to drive the gradient flow. 
Importantly, we also test in the new work the influence of a4/L4

cutoff effects in extrapolations of the β-function to the contin-
uum limit and extend the analysis to the c = 0.25 renormalization 
scheme in section 3.3. We will demonstrate in this work that the 
WSC analysis with large cutoff effects requires very large volumes 
and significant a4/L4 corrections for continuum extrapolation. Oth-
erwise, for our data, the WSC analysis would be inconsistent with 
the SSC analysis leading to wrong WSC results when using only 
small volumes with linear extrapolation in a2/L2. This raises con-
cerns about the results in [2,3] based exclusively on the Wilson 
flow in small volumes with linear a2/L2 extrapolation. We do not 
understand how the Wilson flow, with or without shift in the flow, 
can compensate for that.

In Table 1 results are shown for gauge ensembles from the 
three new target groups D, E, F of precision tuned run sets us-
ing identical c = 0.2 renormalization scheme with s = 2 steps, as 
before. The 26 runs were grouped into pairs for each step where 
the lower L/a value was precisely tuned to the target value of 
the renormalized gauge coupling. The higher L/a at the doubled 
physical size determined the step β-function at finite lattice spac-
ing. Precision tuning for g2

0 of the 13 steps of the three targets 
eliminated the systematic uncertainty in the step β-function from 
model-dependent interpolation in the bare gauge coupling. Fig. 1
shows the remarkable accuracy of tuning for the three targets on 
the per mille accuracy level, with similar accuracy level of the 
renormalized g2 entries in Table 1.

The statistical analysis of the renormalized gauge coupling and 
step β-function of the precision tuned runs followed [18] and used 
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Fig. 1. The statistical significance of precision tuning to three targeted gauge cou-
plings D, E, F is shown by fitting a constant to each g2 at the lower L/a values of 
each step.

similar software. For each run, extended in length between 5,000 
and 20,000 time units of molecular dynamics time, autocorrelation 
times were measured in two independent ways, using estimates 
from the autocorrelation function and from the Jackknife blocking 
procedure. Errors on the renormalized couplings were consistent 
from the two procedures and the one from autocorrelation func-
tions is listed in Table 1. Each run went through thermalization 
segments which were not included in the analysis. For detection 
of residual thermalization effects the replica method of [18] was 
used in the analysis. All 26 runs passed Q value tests when mean 
values and statistical errors of the replica segments were compared 
for thermal and other variations.

The leading cutoff effects in the step function at finite bare cou-
pling g2

0 appear at a2/L2 order with a4/L4 and higher order correc-
tions. In our earlier work [1] the linear dependence on a2/L2 was 
detected and fitted without including higher order corrections in 
reaching the continuum limit of the β-function. The high precision 
of the data allows for testing the a4/L4 correction term leading to 
small increases of the continuum β-function within one standard 
deviation in the SSC setup. This is illustrated in Fig. 2 for targets D 
and F.

In addition to targeted precision tuning all the runs from the 
6 targets A-F can be combined with additional trial runs from the 
tuning procedure into a new extended analysis which can project 
renormalized gauge couplings and step functions at any location 
in the bracketed range by using simple polynomial interpolation. 
Two samples of all the high quality polynomial interpolations are 
shown in Fig. 3. This procedure allowed us to include the WSC 
analysis and the c = 0.25 renormalization scheme in the new 
work.

The results shown in Fig. 3 are quite remarkable. The largest 
28 → 56 step probes the smallest value of a2/L2 with a positive 
step β-function over the whole bracketed g2 range, incompatible 
with a zero in the β-function as first evidence against the exis-
tence of the IRFP.

The main results of the SSC analysis of the c = 0.20 renormal-
ization scheme with step size s = 2 are shown in Fig. 4. The top 
panel of the figure is the outcome of the analysis from the com-
bined use of the precision tuned 6 target runs and auxiliary runs 
using simple polynomial interpolation for 11 predictions which 
include the 6 locations of precision tuning for consistency and en-
Fig. 2. The consistency of extrapolations to the continuum β-function is illustrated 
comparing linear 3-point fits and quadratic 5-point fits in the a2/L2 variable for 
target D (top) and target F (bottom).

hanced accuracy. The lower panel in Fig. 4 compares results from 
precision tuning with the combined method showing remarkable 
consistency. Both the upper and lower panels display the 4-loop 
and recent 5-loop results of the continuum β-function in the g2

MS
scheme [19–23]. Extrapolation of the steps from finite bare cou-
plings g2

0 to the continuum β-function includes the a4/L4 cutoff 
effects with typical fits shown in Fig. 2.

In the 4-loop approximation the n f = 12 theory has an 
IRFP which disappears in the 5-loop approximation. The 5-loop 
β-function predicts the lower edge of the conformal window be-
tween n f = 12 and n f = 13. It will require further investigation to 
understand the potential significance of the apparent consistency 
between the 5-loop β-function and our simulation results in differ-
ent renormalization schemes. The authors of [2–4] prefer to show 
only the 4-loop β-function which exhibits a zero at the g2 location 
close to where the original IRFP was published in [2] before be-
ing relocated to g2 ≈ 7 in the c = 0.20 renormalization scheme [3,
4]. The 4-loop zero in the β-function is inconsistent with the new 
5-loop results. Independently, and non-perturbatively, the reported 
IRFP is ruled out in our new analysis of the extended data set with 
more than 5 − σ statistical significance as illustrated in Fig. 4.
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Fig. 3. Polynomial interpolation is shown for 12 targeted gauge couplings (red 
points) using 9 inputs (blue points) from 6 runs of precision tuning and from ad-
ditional auxiliary runs used in the tuning procedure. The largest 28 → 56 step is 
shown with the magenta line marking the fit of the L = 28 data (top) overlayed on 
the L = 56 plot (bottom). The step β-function is positive throughout the targeted 
range. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

3.2. WSC gradient flow with c = 0.20 renormalization scheme

The WSC setup in our analysis designates the replacement of 
the tree-level improved Symanzik action by the simple Wilson 
plaquette action to drive the gradient flow on the gauge configu-
rations which were generated by the Symanzik action in the HMC 
evolution code. The a4/L4 cutoff contamination plays a critically 
important role in establishing consistency between the WSC setup 
and the much less cutoff contaminated SSC setup in reaching the 
correct continuum β-function. Since only the Wilson plaquette ac-
tion was used for the gradient flow in [2,3], the WSC analysis is 
useful for completeness and consistency checks. Fig. 5 shows the 
consistency of the two gradient flows converging to the same con-
tinuum β-function in the c = 0.20 renormalization scheme with 
step size s = 2. The analysis of extrapolations to the continuum 
β-function included both the a2/L2 term and the a4/L4 term in the 
fitting procedure. It is quite remarkable that consistency is clearly 
established although the cutoff effects in the WSC gradient flow 
Fig. 4. In the top panel results are shown using simple polynomial interpolation for 
6 combined precision tuned target runs and several additional auxiliary runs. Fits 
in extrapolation of the steps include the a4/L4 cutoff effects as shown in Fig. 5. 
The IRFP with red bar for statistical error and grey bar for systematic estimate is 
from [3]. The lower panel, with slightly shifted data in cyan and magenta colors for 
visibility, compares results from precision tuning and the combined method with 
an extrapolated point predicted slightly outside the bracketed interpolation range. 
Linear 3-point fits in a2/L2 were used for precision tuned targets A and B (4-point 
fits before in [1]). Both plots display the 4-loop and recent 5-loop results in the g2

MS
scheme as referenced in the main text. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

are almost an order of magnitude larger than in the SSC gradient 
flow.

The origin of the large WSC cutoff effects: The lattice implementation 
of composite operators gets renormalized along the gradient flow 
as a function of flow time t . Fig. 6 shows the renormalization of 
the clover lattice implementation of the composite operator E(t) =
− 1

2 TrFμν Fμν(t) along the gradient flow, proportional to g2(t) we 
target.

The renormalization of the operator E(t) goes through transient 
effects at short flow times before the cutoff effects get sufficiently 
renormalized. These transient effects are almost an order of mag-
nitude larger along the Wilson flow for the same clover lattice 
implementation as used in the Symanzik flow. In our WSC ap-
proach, much larger stepped volumes would be needed to match 
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Fig. 5. The fitting procedure is shown for SSC and WSC analyses where Symanzik 
action and Wilson action are driving the gauge field gradient flow respectively. The 
analysis of the extrapolation to the continuum β-function includes in both cases the 
a2/L2 and the a4/L4 terms in the fitting procedure.

Fig. 6. For renormalization schemes c = 0.20/0.25/0.30, the locations of the paired 
points of the step β-functions are shown separately for Wilson and Symanzik ac-
tion driving the gradient flow. Grey color shades the flow of the smaller L of the 
pair with blue data points, green and cyan colors shade the larger L with red data 
points. The top panel is the 24 → 48 step, the lower panel shows the 28 → 56 step. 
The target F set of Table 1 was used at all 3 values of c for SSC and WSC. (For in-
terpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

the smaller cutoff effects in extrapolation of the SSC approach to 
the continuum β-function. This is clearly demonstrated in Fig. 5
and in Fig. 6. We do not see how the stronger cutoff dependence 
of the Wilson flow allows one to ignore the a4/L4 effects of small 
lattices when gauge and fermion actions different from ours are 
used in generating configurations in the simulations, like in [4–6].

3.3. The c = 0.25 renormalization scheme

We also analyzed our data set in the c = 0.25 renormaliza-
tion scheme which is further away from the c = 0 infinite vol-
ume scheme and less sensitive to cutoff effects. A subset of the 
full c = 0.25 analysis is shown in Fig. 7. We combine again all 
the runs from precision tuning of the 6 targets A-F with addi-
tional trial runs from the tuning procedure into a new extended 
analysis with SSC and WSC gradient flow and the c = 0.25 renor-
malization scheme at step size s = 2. In this new analysis we can 
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Fig. 7. The fitting procedure is shown in the c = 0.25 renormalization scheme for 
SSC and WSC analyses where Symanzik action and Wilson action are driving the 
gauge field gradient flow respectively. The analysis of the extrapolation to the con-
tinuum β-function includes a2/L2 and a4/L4 terms in the WSC fitting procedure.

Fig. 8. Results are shown for SSC c = 0.25 with step size s = 2 using simple polyno-
mial interpolation for 6 combined precision tuned target runs and several additional 
auxiliary runs. Linear fits are used in the SSC analysis of the steps and the WSC 
analysis for cross checks includes a4/L4 cutoff effects as shown in Fig. 7. The loca-
tion of the IRFP in the c = 0.25 scheme of [3] is somewhat shifted to the right from 
the location of the IRFP in the c = 0.20 scheme as displayed in this figure and in 
Fig. 4. The 4-loop and recent 5-loop results in the g2

MS
scheme of the β-function 

are referenced in the main text.

predict again renormalized gauge couplings and step functions at 
any location in the bracketed range by using simple polynomial 
interpolation. Although the cutoff effect of the renormalization is 
much bigger when the Wilson action is driving the gradient flow, 
the two consistently converge to the same continuum β-function. 
The β-function in Fig. 8 is consistent with the c = 0.20 renormal-
ization scheme and without any trace of the IRFP reported in [2,3]
for the c = 0.25 renormalization scheme.

4. Ten-flavor preview with conclusions

We explored SSC and WSC gradient flows in the c = 0.20 and 
c = 0.25 renormalization schemes for the determination of the 
continuum β-function with twelve flavors of massless fermions. 
Consistent results from our high precision simulations in large vol-
umes do not show any infrared fixed point reported at several 
locations in [2–4]. This disagreement requires resolution and clo-
sure. Arguments were presented in [4] that the different results 
should not be viewed as disagreements in the simulations and in 
their analysis but as evidence for the violation of universality in 
the staggered formulation. Supporting this argument, three exam-
ples were invoked in [4]:

(a) showing conformal fixed point structures in 3D statistical 
models with several fixed points,

(b) disagreement between sextet β-functions using Wilson fermi-
ons [24] and rooted staggered fermions [25],

(c) new results finding an IRFP with ten flavors of massless do-
main wall fermions implies conformal behavior for twelve fla-
vors as well.

We note our disagreements in response:

(a) Since staggered fermions at n f = 12 are built on a UV fixed 
point at zero gauge coupling, relevant or marginal operators, 
like in the examples of the 3D statistical models in [4], can-
not be added to the staggered lattice fermion action which 
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Fig. 9. The IRFP as marked in the plot is taken from [5,6], in complete disagreement 
with our analysis.

has correct locality and universality properties. The explicit 
construction is well-known in the literature. Besides, the con-
troversy between [2–4] and our work exists for the staggered 
formulation itself.

(b) The theoretical framework for the rooting procedure, without 
universality violation when the sextet gauge coupling is tar-
geted in fixed physical volume, was explained in [25]. It has 
not been challenged since in any follow up to the original crit-
icism [24].

(c) We recently completed the comprehensive analysis of the the-
ory with ten massless fermion flavors in the fundamental rep-
resentation of the SU(3) color gauge group. An important re-
sult is shown in Fig. 9 for the preview of the β-function with 
SSC analysis of the gradient flow in the c = 0.25 renormal-
ization scheme using step size s = 2 [9]. Every detail of the 
ten-flavor analysis followed closely the procedure we imple-
mented and used here for the analysis of the twelve-flavor 
model. Since rooting was used for ten flavors with staggered 
fermions, we tested the validity of the theoretical argument 
presented in [25]. The Dirac spectrum was closely analyzed in 
the runs and the expected behavior of the quartet structure 
was confirmed.

In conclusion, we find unacceptable the resolution of the prob-
lem as conjectured in [4].
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