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It is well known that neutron stars can undergo a phase transition under a certain class of Scalar Tensor 
Theories of gravity (STT’s) where a new order parameter, the scalar charge, appears within the star. This 
is the well known phenomenon of spontaneous scalarization (SC) discovered by Damour and Esposito-
Farèse in 1993. Under such mechanism neutron stars can afford in principle a maximum mass larger 
than in general relativity (GR) for a given equation of state without taking into account additional 
observational constraints (e.g. binary systems). This opens the possibility that neutron stars might be 
formed with masses as large as ∼ 2M� without the need of stiff, or more exotic, equations of state for 
the nuclear matter. Thus, STT’s through SC may account for compact objects with large masses observed 
recently in the sky in the form of pulsars (PSR J0348+0432 with M = 2.01M±0.04� observed in 2013, 
PSR J1614-2230 with M = 1.97 ± 0.04M� observed in 2010 or J0740+6620 M = 2.14+0.10

−0.09 M� observed 
in 2019). However, we argue that even if that was possible such maximum mass models within STT 
cannot be formed solely from the dynamic transition of an initial “isolated” unscalarized neutron star 
whose mass cannot exceed the maximum mass in GR. This is because SC, being an energetic-preferred 
configuration, produces a final static star with a mass lower that the initial one with a fixed baryon mass. 
The mass difference between the initial and final configurations is radiated away in the form of a scalar-
field. Thus, maximum mass models of scalarized neutron stars, if present in nature, must have formed 
by a different process, perhaps of cosmological origin or by the subsequent accretion of additional scalar 
charge and mass.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Relativistic theories of gravity different from general relativ-
ity (GR) [1–5] have received a major interest in recent years for 
various reasons. For instance, several phenomena in our universe 
can be explained by the presence of some unknown form of mat-
ter and energy, dubbed dark [6]. The anisotropies of temperature 
variations in the cosmic microwave background, the flat rotation 
curves of galaxies, different clustering properties of large scale 
structures in the cosmos, and the accelerated expansion in the 
universe, are perhaps the most conspicuous phenomena that re-
quire dark components. However, the failure of a direct detection 
of some of these dark substances by several dark-matter labo-
ratories, as well as the unsuccessful efforts to accommodate the 
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cosmological constant (the simplest form of dark energy) in a con-
sistent manner within the framework of a robust quantum field 
theory (see [7] for a thorough review), have led to an alternate 
direction consisting in modifying the gravitational sector, i.e., mod-
ifying GR [8–13]. Nonetheless, the amazing success of GR at differ-
ent scales makes also difficult for alternative theories of gravity 
(ATG) to reproduce in a fully consistent fashion the standard tests 
of GR while providing the required features without dark sectors. 
Scalar tensor theories of gravity (STT) in its simplest form (see be-
low) [9,14–16] are one of the few ATG that remains as a viable 
candidate to generalize Einstein’s GR while making clear cut pre-
dictions that can be falsified by several kinds of experiments. At 
cosmological level, they can produce an EOS for the dark energy 
(in the form of a scalar-field) which can vary in cosmic time, un-
like the cosmological constant �. This variation will be tested in 
the forthcoming years by numerous projects [17–20] which will 
help to validate or rule out a simple �CDM model. Since STT 
are a generalization of the famous Brans-Dicke theory, these theo-
ries predict small variations of the effective gravitational coupling 
Geff, which can be further tested observationally. Furthermore, STT 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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predicts the existence of an additional polarization mode of gravi-
tational waves, the breathing mode, due to the presence of a scalar-
field that is non-minimally coupled (NMC) to gravity which can 
be detected or constrained in the future [21]. This type of polar-
ization mode can be revealed itself in the strong gravity regime 
even in spherical symmetry, unlike the usual tensor polarizations 
(h+, h×) that require the presence of sources with relatively large 
quadrupolar time variations. The natural place to look for that kind 
of gravitational radiation is in neutron stars, notably in pulsars. It 
is well known since the early 1990’s, from the pioneer analysis by 
Damour and Esposito-Farése (DEF) [22,23] that neutron stars can 
undergo a phase transition in the form of spontaneous scalarization
(SC) where a new order parameter, dubbed scalar charge, can ap-
pear within the star if the latter is sufficiently compact. Therefore, 
at the threshold of this transition corresponding to a critical cen-
tral energy-density (or alternatively a critical total baryon mass) 
the star transits to a configuration of lower energy (i.e. lower grav-
itational mass) while keeping the total number of baryons fixed. 
The difference of gravitational mass between the initial (unstable) 
configuration and the final static scalarized configuration is radi-
ated away in the form of scalar gravitational waves of the sort 
described above. Following the DEF discovery, subsequent anal-
yses showed that SC is robust in that it is independent of the 
equation of state (EOS) for the nuclear matter adopted to model 
a neutron star [24–27]. Finally, a notable feature of SC is that 
maximum mass models of neutron stars constructed within some 
specific classes of SST can be much larger than the corresponding 
models in GR while keeping fixed the EOS [22,24]. The recent ob-
servations of massive neutrons stars in the form of pulsars (PSR 
J0348+0432 with M = 2.01 ± 0.04M� [28], PSR J1614-2230 with 
M = 1.97 ± 0.04M� [29] or J0740+6620 M = 2.14+0.10

−0.09 M� [30]; 
if confirmed PSR J2215+5135 might host the largest neutron-star 
mass observed to date M = 2.27+0.17

−0.15M� [31]) put stringent con-
straints on the current EOS of nuclear matter used to model 
neutron stars in GR [32–34]. This opens the door for the large 
observed masses of neutron stars to be explained by the phe-
nomenon of SC in STT without the requirement of very stiff or 
more exotic EOS as it would be the case if one works under the 
framework of pure GR.

Nevertheless, and this is the most important contribution of 
this letter, we argue that if such massive neutron stars are ex-
plained by the SC transition, the latter must be accompanied by 
an additional process, maybe of cosmological origin or by accre-
tion, because SC, at least in its standard conception, requires that 
the initial configuration (one which coincides with a static config-
uration in GR) has a mass that cannot be larger that the maximum 
mass allowed by the unscalarized neutron star which maybe lower 
than 2M� if the EOS considered is not very stiff [32,33]. In order to 
support this conclusion, we perform a thorough numerical analy-
sis by evolving numerically the full non-linear system of equations 
in STT in the Jordan frame (as opposed to the Einstein frame which 
is the most frequently used [25,35]), including the relativistic hy-
drodynamical sector that represents the star (modeled by a perfect 
fluid), under the assumption of spherical symmetry. As initial data 
we select a large sample of possible initial configurations of un-
scalarized neutron stars in hydrostatic equilibrium. By definition, 
the initial data corresponds to an initial data in GR where the 
scalar-field is null. Near the threshold of instability towards SC the 
initial configuration is perturbed by a Gaussian scalar-field profile, 
and then a numerical evolution is performed until reaching the fi-
nal state of the system which corresponds to a static scalarized 
neutron star with gravitational mass lower than the initial one but 
with the same initial baryon mass. This analysis has several con-
sequences, both theoretical and observational. From the theoretical 
point of view it seems impossible that a dynamical process like 
the one described here may lead by its own to a scalarized static 
star with a gravitational mass larger than the initial one since by 
definition, spontaneous scalarization corresponds to a static config-
uration with energy (i.e. gravitational mass) lower than the energy 
in GR while keeping the total baryon mass fixed (see Fig. 1 in [36], 
and Fig. 6 in [24]). That is, a scalarized neutron star is the en-
ergetically preferred configuration above a critical energy-density. 
As we stressed above, scalarized configurations with gravitational 
masses larger than the maximum mass in GR were predicted in 
the past by constructing spherically symmetric configurations by 
solving directly the field equations of STT under the assumption 
of strict staticity [24,36]. Thus, the scalarized neutron star models 
with masses larger than the maximum mass in GR, with fixed EOS, 
cannot be the result from the purely dynamical transition of initial 
lower mass configurations. A fortiori such massive scalarized stars 
must be formed dynamically by a more complicated process that 
is worth exploring in the future. From the observational point of 
view, it is still unknown if (large or low mass) scalarized neutron 
stars really exist in nature. On one hand, detailed observations in 
binary pulsars put constraints on the possible values of the NMC 
between the scalar-field and the Ricci curvature. For certain class 
of STT, the weaker the NMC the lower the scalar charge, in which 
case, dynamical SC might not be a viable mechanism to explain the 
recently detected massive neutron stars without appealing to stiff 
or to more exotic EOS. On the other hand, the current observations 
of gravitational waves by the LIGO-VIRGO collaboration, notably, 
by the event GW170817 involving the collision of two neutron 
stars [37], together with the simultaneous detection of gamma-ray 
bursts [38] have allowed to rule out several ATG [39–41]. Notwith-
standing, such event did not have enough precision to constraint 
by its own the existence of an additional polarization mode, like 
the breathing scalar mode alluded above. One can avoid, in prin-
ciple, the constraints by the binary pulsars in STT by including a 
mass term for the scalar field [42] as in this case, the field be-
comes of shorter range depending on the magnitude of the mass. 
In the following sections we describe the formalism and the nu-
merical results on the dynamic transition to SC using ab initio the 
Jordan frame where the physics is better understood. We conclude 
the paper by discussing several directions of study like considering 
a mass term and speculate also about possible scenarios leading 
to the formation of massive scalarized neutron stars other that the 
dynamical transition explored here.

2. Scalar tensor theories and spontaneous scalarization

We consider the action for STT in the Jordan frame given by

S[gab, φ] =
∫ [

f (φ)

2
R − 1

2
(∇φ)2 − V (φ)

]√−g d4x

+ Smatt , (1)

where Smatt represents the action for the matter part that in the 
present case corresponds to a perfect fluid, f (φ) is a NMC function 
f (φ) = 1

κ (1 + κξφ2), with κ = 8πG0, G0 is Newton’s gravitational 
constant, ξ a positive dimensionless constant, and V (φ) is a scalar 
potential. Variation of the action (1) with respect to the metric and 
with respect to the scalar field provides, respectively, the following 
two field equations: Rab − 1

2 gab R = κTab and gab∇a∇bφ + 1
2 f ′R =

V ′ , where a prime indicates derivatives with respect to the scalar 
field. The effective energy-momentum tensor (EMT) is given by 
the contribution of three parts: Tab :=

(
T f

ab + T φ

ab + T fluid
ab

)
/(κ f ), 

where

T f
ab := ∇a

(
f ′∇bφ

) − gab∇c
(

f ′∇cφ
)

, (2)

T φ

ab := (∇aφ)(∇bφ) − gab

[
1
(∇φ)2 + V (φ)

]
, (3)
2
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T fluid
ab := (μ + p/c2)uaub + pgab , (4)

μ stands for the total mass density of matter in the rest frame of 
the fluid, and p is the pressure as measured in the same frame. 
The diffeomorphism invariance of STT leads to the conservation 
of the EMT of matter alone: ∇a T ab

fluid = 0, which in turn provides 
the hydrodynamic equations for the fluid. For simplicity we take 
V (φ) ≡ 0 (i.e., a massless and non-self interacting scalar field) like 
in the original SC scenario [22,24]. Notwithstanding, the massive 
case has been analyzed recently in static situations as a mech-
anism to avoid the constraints imposed by pulsars [42]. In the 
future we plan to study the dynamical transition to SC by taking 
into account a mass term as well. This paper focuses on solv-
ing the field equations of STT under the assumption of spherical 
symmetry. The details concerning the system of equations under 
this symmetry will be reported elsewhere. The interested reader is 
urged to consult [43] in order to have a glimpse of this system, 
but suffice is to say that in this analysis we use radial coordi-
nates of area-type as opposed to isotropic. In [43] we considered a 
complex-valued boson field (i.e. a boson star) as matter instead of 
a perfect fluid. As we mentioned before, the dynamical transition 
to SC has been analyzed by several authors in the past, but in the 
Einstein frame [25,35] where the field is coupled minimally to the 
curvature but non-minimally to the matter sector.

3. Stellar models

We consider a neutron-star model that initially is in hydrostatic 
equilibrium. The conservation of the EMT leads to an equation 
which is formally identical to the Tolman-Oppenheimer-Volkoff 
(TOV) equation, except that the metric components take a different 
form due to the contribution of the scalar-field. For simplicity and 
in order to avoid interpolation of data of realistic EOS, we model 
the internal structure by a simple polytropic EOS parametrized by 
the baryon density nb:

p

c2
= κ̄mbn0

(
nb

n0

)γ

, (5)

μ = mbnb + p/c2

γ − 1
, (6)

where mb = 1.66 × 10−24 g and n0 = 0.1 fm−3. The values of the 
parameters γ and κ̄ are adjusted to fit a stiff and a soft EOS. In 
particular, we use γ = (2.34, 2.46), and κ̄ = (0.0195, 0.0093) like 
in Ref. [36].

Given this explicit EOS, we solved the TOV equation and con-
structed an initial static configuration where the star is not yet 
scalarized, and thus, the scalar field is absent. Thus, initially all 
the equations reduce to the field equations in GR. However, as 
the scalar-field evolves, automatically the field equations of STT 
are taken fully into account. In order to trigger easily the dynam-
ical transition to SC the initial static configuration must be near 
the threshold of instability towards SC and then add a small Gaus-
sian perturbation to the scalar field. If we departed from a static 
configuration not very near that threshold, while keeping the per-
turbation small, the latter is simply radiated away and the star is 
not scalarized. Under those initial conditions the star evolves to-
wards the scalarized state, and the scalar field grows at the center 
of the star until the star stabilizes again into a different “hydrostat-
ic” equilibrium configuration with a lower central energy density. 
Part of the total energy is radiated away in the form of scalar grav-
itational waves, and during this process the star develops a new 
global quantity, dubbed the scalar charge ω, defined asymptotically 
in terms of a surface integral as follows:
Fig. 1. Neutron star mass (in solar mass units) as a function of the central value of 
the (mass) density for a few sequences of equilibrium models in GR and for a STT 
with ξ = 15, 25, 30. The maximum mass in GR, separates the stable and unstable 
configurations towards black hole formation. The units used are in terms of the 
nuclear density μnuc = 1.66 × 1017 kg/m3. For small values of μ the curves overlap. 
The * indicates the configuration associated with Figs. 2 and 3.

ω := − lim
r→∞

1

4π
√

G0

∫
S

sa∇a φ ds . (7)

The factor 1/4π
√

G0 as well as the minus sign are a matter of 
convention, and ω has mass units. Since at the end of the tran-
sition the scalar field behaves asymptotically as φ ∼ √

G0ω/r, we 
can simply extract ω from this expression in the asymptotic re-
gion.

We choose ξ ≥ 15 in order to enhance the appearing of SC [44]. 
However, according to [23,45] the curvature parameter β0 = −2ξ

associated with STT is such that −5 � β0 in order to satisfy the 
constraints imposed by several pulsars. This constraint translates 
into ξ � 2.5. Intriguingly, for sufficiently high ξ the star properties 
become universal (cf. Fig. 1). For values 0 < ξ � 15 with the poly-
tropic EOS described before, SC is basically unobserved. That is, the 
resulting star configurations are practically the same as in GR.

4. Maximal masses

The mass of a neutron star is computed using the definition of 
the Misner-Sharp mass function, MM S = rout

2

(
1 − 1

grr

)
where rout

is the radial coordinate at the outer boundary of the numerical 
domain. This mass is basically the ADM mass MADM minus the 
energy radiated away in the form of scalar gravitational waves. At 
the end of the evolution MM S < MADM, but initially, Mt=0

M S = MADM. 
We checked that during the evolution the total baryon mass Mbar
remains the same, corroborating that the preferred static config-
uration with fixed Mbar is the one with lower gravitational mass 
M

t=t f
M S < Mt=0

M S , here t f stands for the end of the transition to SC.
Representative sequences of equilibrium models of neutron 

stars are plotted in Fig. 1 which shows different mass profiles as a 
function of μ0, the density at the center of the star. The location 
of the maximum mass indicates the critical point separating the 
stable and the unstable branches towards gravitational collapse. In 
GR, static configurations located at the left of that point are sta-
ble, while those on the right are unstable. However, in the current 
analysis there also exists a point of instability (i.e. a critical den-
sity) towards SC. This critical density is marked with a green box 
in Fig. 1. The configurations between that density and the den-
sity leading to the maximum mass model, scalarize spontaneously 
and end up in one of the configurations associated with the col-
ored lines below the black one. Fig. 2 shows some examples of the 
metric component grr(r) (upper panel) and the lapse function α(r)
(lower panel) prior scalarization (dashed lines) and after scalar-
ization (solid lines) when ξ = 25. Fig. 3 (lower panel) depicts the 
corresponding densities prior (dashed line) and after scalarization 
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Fig. 2. Lapse function α(t, r) (lower panel) and grr(t, r) (upper panel) initially 
(dashed line) where φ(0, r) ≡ 0 and at the end of the transition to spontaneous 
scalarization (solid line) where φ(t f , r) �= 0. Remarkably, the scalarized star is less 
compact than the initial configuration as one can appreciate from the value of the 
lapse at r = 0, which is larger after the scalarization finishes. This is also reflected 
in the height of the peak in grr . The black dot indicates the values at the surface of 
the star (i.e. where the pressure and density vanish). The radial coordinate is given 
in units of rs = G0 M�/c2.

Fig. 3. Upper panel: Scalar field at the end of the scalarization process (solid line). 
Initially the scalar field is absent (dashed line). Lower panel: fluid’s mass density 
in units of c6/(M2�G3

0) ∼ 3.66×103μnuc. After the scalarization process the central 
density (solid line) becomes lower than its corresponding initial value associated 
with an initial unscalarized star (dashed line).

(solid line). The solid lines of Figs. 2 and 3 correspond to a con-
figuration associated to the point (marked with a *) in Fig. 1. The 
upper panel of Fig. 3 shows the scalar field profile after the star 
becomes scalarized. Before the spontaneous scalarization initiates 
the scalar field is null. Fig. 4 depicts the product P := −grr × gtt , 
where gtt = −α2, as a function of the area coordinate r. As we 
stressed, prior scalarization the scalar field is absent, thus, out-
side the star there is strict vacuum and the solution there is given 
by the Schwarzschild solution for which the product P ≡ 1 (solid 
line). However, at the end of scalarization the scalar field is present 
outside the star, and the solution is not longer the Schwarzschild 
solution. This is reflected by the fact that the product P is not 
unity (dashed line), but only approaches that value asymptotically 
as the scalar field vanishes.
Fig. 4. Product grr × α2, initially (dashed line) and at the end of the scalariza-
tion process (solid line). Unlike the initial (GR) configuration where this product 
is unity outside the star due to the absence of the scalar field (dashed line), for the 
scalarized solution (solid line) this product is not unity outside the star, illustrat-
ing that the spacetime is not given by the Schwarzschild solution there due to the 
contribution of the scalar field (the Birkhoff theorem does not apply in this case). 
Notwithstanding, in the asymptotic region the product does tend to unity.

5. Dynamical evolution

We performed non-linear numerical evolutions in spherical 
symmetry of the STT-perfect-fluid system using as initial data a 
static TOV configuration with the OllinSphere code, a numerical rel-
ativity finite-difference code for spherical symmetry.

The code implements a variant of the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) evolution equations for the geome-
try [46,47], which includes the contribution of the NMC scalar 
field, and for the fluid the Valencia formulation for relativistic 
hydrodynamics is implemented [48]. Explicit details about our nu-
merical implementation have been reported for instance in [43,49]. 
We also note that the convergence properties, gauge choices, and 
boundary conditions of our numerical code have been extensively 
tested before in various physical systems [50,51].

Under the assumption of spherical symmetry we adopt a con-
formal decomposition for the 3-metric as follows,

ds2
3 = ψ4

[
a(t, r)dr2 + r2b(t, r)d�2

]
, (8)

where d�2 = sin2 θdϕ2 + dθ2 is the solid angle element. We adopt 
a BSSN formulation of the STT field equations as written in the 
form of Einstein’s equations (under spherical symmetry) with an 
effective EMT given by Tab as described below Eq. (1), which is 
composed by the three contributions Eqs. (2)–(4). Thus, the follow-
ing quantities are evolved in time from the initial data: the metric 
functions a(t, r) and b(t, r), the conformal factor ψ , the trace of the 
extrinsic curvature K , the traceless part of the conformal extrinsic 
curvature and the radial component of the conformal connection 
functions. However, during the evolution ψ and b remain constant 
to their initial values ψ = 1 and b = 1.

The matter fields include the contribution of both the fluid 
and the scalar field. The dynamical equations for the fluid are the 
relativistic Euler equation for the velocity field and for the total en-
ergy density measured by Eulerian observers, both resulting from 
∇a T ab

fluid = 0. These equations can be written in conservative form
following the Valencia formulation [48], which are complemented 
by the equation for the conservation of the baryon density (i.e. rest 
mass density). For the scalar field φ we transform the second or-
der “Klein Gordon” equation included below Eq. (1) into a system 
of two first-order evolution equations [52]. At each time step we 
compute the matter sources for the effective Einstein equations. 
In addition to the BSSN spacetime variables and matter content, 
there are two more variables left undetermined, the lapse function 
α, and the shift vector βr . For our simulations we choose for sim-
plicity a vanishing shift throughout the evolution, while the lapse 
function is evolved from the initial data using the standard 1+log 
slicing condition: ∂tα = −2αK . We perform a free evolution, and so 
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Fig. 5. Time evolution of the central value of the scalar field (upper panel) and 
central value of the total energy density of the fluid (lower panel). The system 
scalarizes and then oscillates around an equilibrium state.

we monitor at each time step the Hamiltonian and the momen-
tum constraints to check the accuracy of the numerical solution, 
without solving the constraints at every time step, but only ini-
tially. A detailed description of the specific equations in spherical 
symmetry and their numerical implementation will be provided 
in a forthcoming investigation where a thorough study about this 
subject matter will be reported, which include the collapse of a 
neutron star into a black hole and the radiation in the form of 
scalar gravitational waves associated with the NMC field φ [53].

Fig. 5 depicts the evolution of the central value of the density 
of the star (lower panel) and the central value of the scalar field 
(upper panel) during the scalarzation process. Notice that as the 
scalarization ends, both values provide the central values of the 
scalarized profiles of Fig. 3. Several physical quantities evolve dur-
ing the scalarization process but for brevity we report only these 
two. In a more detailed report we plan to provide a more complete 
set of plots showing the evolution of other interesting variables.

6. Discussion and outlook

The phenomenon of spontaneous scalarization in STT allows to 
describe neutron stars with maximum masses that are larger than 
those in GR [22,24]. Beyond some critical baryon mass configura-
tions with a non vanishing scalar field are energetically more fa-
vorable than the corresponding configurations at the same baryon 
mass with zero scalar field. However, scalarized neutron stars 
with masses larger than the maximum mass models in absence 
of the scalar field (i.e. those in GR) cannot be produced dynam-
ically while keeping the baryonic mass of the star fixed since a 
dynamical scalarization process produces configurations with en-
ergy (i.e. gravitational mass) lower than the non scalarized counter 
part. Thus, the stationary scalarized neutron stars with masses 
larger than the maximum mass models in GR described in the 
past (for a given equation of state) [22,24], if existing in nature, 
must have formed following a dynamical process different from 
the pure spontaneous scalarization as described in this letter. Such 
process may include a cosmological origin or accretion of a sur-
rounding scalar field. No doubt that the formation of scalarized 
neutron stars with masses larger than the maximum mass models 
of GR deserves further investigation as such supermassive scalar-
ized neutron stars may explain the existence of the recently ob-
served supermassive pulsars with masses larger that 2M� without 
necessarily appealing to exotic or very stiff equations of state for 
the nuclear matter at high densities. While understanding this is-
sue is a matter of principle, from the observational point of view 
it may well happen that such supermassive scalarized stars are al-
ready ruled out by observations in binary systems for requiring a 
large value for the NMC constant ξ . Such constraints emerge, how-
ever, when the scalar field is massless, and thus of large range, 
so the inclusion of a mass term for φ may help to avoid those 
constraints [42] while possibly leading to supermassive scalarized 
neutron stars with soft equations of state. This kind of EOS is pre-
sumably ruled out within the framework of GR for not reproducing 
the recently observed large masses in pulsars [32–34].
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