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Abstract

In this work, we study the non-minimally-coupled Higgs model in the context of warm inflation scenario 
on both metric and Palatini approaches. We particularly consider a dissipation parameter of the form � =
CT T with CT being a coupling parameter and focus only on the strong regime of the interaction between 
inflaton and radiation fluid. We compute all relevant cosmological parameters and constrain the models 
using the observational Planck 2018 data. We discover that the ns and r values are consistent with the 
observational bounds. Having used the observational data, we constrain a relation between ξ and λ for the 
non-minimally-coupled warm Higgs inflation in both metric and Palatini cases. To produce ns and r in 
agreement with observation, we find that their values are two orders of magnitude higher than those of the 
usual (cold) non-minimally-coupled Higgs inflation.
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1. Introduction

Inflationary cosmology is a widely accepted framework for explaining the exponentially rapid 
expansion of the early universe. The flatness and homogeneity/unwanted relics problems can be 
solved using such paradigm which provides a mechanism to generate the inhomogeneities in 
the cosmic microwave background radiation (CMBR) [1–5]. In a standard fashion of slow-roll 
(cold) inflation, the universe experiences an exponential expansion, during which density pertur-
bations are created by quantum fluctuations of the inflation field, followed by the reheating stage. 
However, the standard inflationary model is plagued by several challenges, such as the graceful 
exit problem. To address these issues, several alternative models of inflation have been proposed, 
including warm inflation. This is a combination of the exponential accelerating expansion phase 
and the reheating. Warm inflation has at the moment become a growing area of research, with 
the potential to provide new insights into the physics of the early universe.

Warm inflation is an alternative version of standard inflation that takes into account the effects 
of dissipation and thermal fluctuations on the inflationary process. In warm inflation scenario, 
the scalar field responsible for driving inflation, is coupled to a thermal bath and transfers energy 
to radiation during inflation, thus maintaining a non-zero temperature. Warm inflation was first 
proposed by Berera and Fang [6]. Since then, numerous studies have been carried out to study 
the dynamics and predictions of warm inflation. One of the main advantages of warm inflation is 
that it provides a natural solution to the graceful exit problem, as the inflaton can gradually decay 
into the thermal bath, leading to a smooth transition from inflation to the hot big bang era.

The predictions of warm inflation have been studied both analytically and numerically. Some 
of the most notable works in this field include Berera et al. [7–12], Graham and Moss [13], 
Bastero-Gil et al. [14] and Zhang [15]. These studies have shown that warm inflation can produce 
a sufficient number of e-folds, consistent with the observed CMB temperature fluctuations, and 
that it can lead to a broad spectrum of curvature perturbations. There have also been several 
studies comparing the predictions of warm inflation with those of the standard inflationary model 
and other alternative models of inflation. For example, Kamali [16] compared warm inflation with 
the Higgs inflation model and found that warm inflation can produce a smaller tensor-to-scalar 
ratio, which is more in line with the current observations. Similarly, the authors of [17] showed 
that even when dissipative effects are still small compared to Hubble damping, the amplitude 
of scalar curvature fluctuations can be significantly enhanced, whereas tensor perturbations are 
generically unaffected due to their weak coupling to matter fields.

Warm Higgs inflation is recently investigated in several publications, by emphasizing on dif-
ferent aspects of theory. In [21], the Galileon scalar field dissipation formalism is proposed via its 
kinetic energy. The radiation fluid throughout inflation emerges and it has been shown that in this 
scenario, the universe smoothly can enter into a radiation dominated era without the reheating 
phase. Different regimes for temperature are investigated and the backreaction of radiation on the 
power spectrum is calculated. In [14], the warm Little Inflation scenario proposed as a quantum 
field theoretical realization of the warm inflation. Different potential terms are used including 
Higgs model and chaotic potential. Keeping in mind 50-60 e-folds of inflation, by introducing 
a viable thermal correction to the inflaton potential term, the primordial spectrum of different 
modes of perturbations and the tensor-to-scalar ratio calculated in light of the Planck data. The 
motivation of our study is that we provided a constraint between two parameters of the potential 
term.

In the context of warm inflation, it was also found that recent studies in many different the-
ories were proposed. For instance, the authors of Ref. [18] conducted a possible realization of 
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warm inflation owing to a inflaton field self-interaction. Additionally, models of minimal and 
non-minimal coupling to gravity were investigated in Refs. [16,19–23]. Recently, warm scenario
of the Higgs-Starobinsky (HS) model was conducted [24]. The model includes a non-minimally 
coupled scenario with quantum-corrected self-interacting potential in the context of warm infla-
tion [25]. An investigation of warm inflationary models in the context of a general scalar-tensor 
theory of gravity has been made in Ref. [26]. Recent review on warm inflation has been recently 
discussed in Ref. [27].

The physical motivation of the present work is devoted to a comparative analysis of the dy-
namics of non-minimally coupled scalar fields in Metric and Palatini formulations. It will be 
shown that the two formalisms generally yield different answers for both metric tensor and scalar 
fields provided that non-minimal coupling of the scalar field to curvature scalar does not vanish. 
We study both formalisms to ensure the theoretical consistency of the gravitational theories. By 
investigating different formalisms, one can uncover potential limitations or inconsistencies in 
the assumptions made in each formalism, or even may lead to distinct predictions. This aids in 
refining and extending our understanding of gravity and its mathematical framework. Results 
obtained from both formalisms may enable us to identify potential observational or experimental 
tests that could distinguish between the predictions of these formalisms and is crucial for testing 
the validity of different theories.

The plan of the work is structured as follows: In Sec. 2, we review a formulation of non-
minimally-coupled Higgs inflation considering both metric and Palatini approaches. In Sec. 3, 
we provide the basic evolution equations for the inflaton and the radiation fields and define 
the slow roll parameters and conditions. We also describe the primordial power spectrum for 
warm inflation and the form of the dissipation coefficient. In Sec. 4, we present the models of 
nonminimally-coupled Higgs inflation and compute all relevant cosmological parameters. We 
then constrain our models using the observational (Planck 2018) data in Sec. 5. Finally, we sum-
marize the present work and outline the conclusion.

2. A review on metric vs. Palatini formulations of nonminimally-coupled Higgs inflation

Models in which the Higgs field is non-minimally coupled to gravity lead to successful 
inflation and produce the spectrum of primordial fluctuations in good agreement with the ob-
servational data. Here we consider the theory composed of the Standard Model Higgs doublet 
HJ with the non-minimal coupling to gravity in the Jordan (J) frame:

SJ =
∫

d4x
√−gJ

[
M2

p

2

(
1 + 2ξ

H
†
J HJ

M2
p

)
RJ + g

μν
J (DμHJ )†(DνHJ ) − λ(H

†
J HJ )2

]
,

(1)

where Mp is the Planck mass, ξ is a coupling constant, RJ is the Ricci scalar, and H is the Higgs 
field with λ being the self-coupling of the Higgs doublet. Note that the mass term of the Higgs 
doublet is neglected throughout this paper because it is irrelevant during inflation.

As was known the metric formalism is considered as a standard gravitational method, how-
ever, one can study gravity adopting the Palatini approach leading to different phenomenological 
consequences in a theory with a non-minimal coupling to gravity. The differences of them are 
explicit and easily understandable in the so-called Einstein (E) frame where the non-minimal 
coupling is removed from the theory by taking a conformal redefinition of the metric
3
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gμν → �2gJ,μν, �2 = 1 + 2ξ
H

†
J HJ

M2
p

. (2)

Using the metric redefinition, the connection is also transformed in the metric formalism since it 
is given by the Levi-Civita connection:

�ρ
μν(g) = 1

2
gρλ

(
∂μgνλ + ∂νgμλ − ∂λgμν

)
. (3)

It is noticed that the connection is left unaffected in the Palatini formalism because it is treated 
as an independent variable as well as the metric. Thus, the Ricci scalar transforms differently 
depending on the underlying gravitational formulations as [28]

√−gJ �2 RJ = √−g(R + 6κ�gμν∇μ∇ν�
−1), (4)

where κ = 1 and κ = 0 correspond to the metric and the Palatini formalism, respectively. The 
Einstein frame expression can then be obtained after the rescaling of the metric:

S =
∫

d4x
√−g

[
M2

p

2
R + 3κM2

p�gμν∇μ∇ν�
−1

+ 1

�2 gμν(DμHJ )†(DνHJ ) − λ

�4 (H
†
J HJ )2

]
. (5)

In the Einstein frame, the connection is not directly coupled to the Higgs field HJ and the gravity 
sector is just the Einstein-Hilbert form. In this case, the Euler-Lagrange constraint in the Pala-
tini formalism restricts the connection to the Levi-Civita one, and the two approaches become 
equivalent, up to the explicit difference in the κ term [28].

Let us next review phenomenological aspects of the metric-Higgs inflation [29] and the 
Palatini-Higgs inflation [30–33]. In this subsection, we neglect the gauge sector for simplicity. 
In the inflationary fashion, we usually consider the unitary gauge in which the Higgs doublet is 
described by a real scalar field φJ (x) as HT

J (x) = (0, φ(x)/
√

2). Therefore, the action in Eq. (5)
becomes

SE =
∫

d4x
√−g

(
M2

p

2
R −

1 + ξ
φ2

M2
p

+ 6κξ2 φ2

M2
p

2

(
1 + ξ

φ2

M2
p

)2 gμν∂μφ∂νφ − λφ4

4

(
1 + ξ

φ2

M2
p

)2

)
, (6)

where κ = 1 for the metric-Higgs and κ = 0 for the Palatini-Higgs inflation. The non-trivial 
kinetic term can be canonically normalized by introducing the field ψ defined through

dψ

dφ
=

√√√√√√√
1 + ξ

φ2

M2
p

+ 6κξ2 φ2

M2
p(

1 + ξ
φ2

M2
p

)2 . (7)

In terms of ψ , the action can be rewritten as

SE =
∫

d4x
√−g

(M2
p

2
R − 1

2
gμν∂μψ∂νψ − U(ψ(φ))

)
, (8)

with the potential in the Einstein frame
4
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U(ψ(φ)) = λφ4(ψ)

4

(
1 + ξ

φ2(ψ)

M2
p

)2 . (9)

The change of variable can be easily integrated in the Palatini case, while an asymptotic form in 
the large field limit ξφ2/M2

p � 1 is useful in the metric case as

metric φ � Mp√
ξ

exp

(√
1

6

ψ

Mp

)
, (10)

Palatini φ = Mp√
ξ

sinh

(√
ξψ

Mp

)
. (11)

The potential is reduced to

metric : U � λM4
p

4ξ2

(
1 + exp

(
−

√
2

3

ψ

Mp

))−2

, (12)

Palatini : U = λM4
p

4ξ2 tanh4
(√

ξψ

Mp

)
. (13)

The potentials in both scenarios approach asymptotically to a constant value U � λM4
p

4ξ2 at 
a large field region, which is suitable for slow-roll inflation. An observed amplitude Pζ �
2.2 × 10−9 [34] fixes the relation between ξ and λ in the metric and Palatini approaches, 
ξmet ∼ 5 × 104

√
λ, ξPal ∼ 1010λ, respectively. The CMB normalization restricts that the cou-

pling to gravity ξ should be quite large unless the quartic coupling λ is extremely small both in 
the metric and Palatini formalisms, see also models with non-minimal coupling in metric and 
Palatini formalisms [35].

3. Theory of warm inflation revisited

The warm inflation dynamics is characterized by the coupled system of the background equa-
tion of motion for the inflaton field, ψ(t), the evolution equation for the radiation energy density, 
ρr(t). Considering the Einstein frame action with the flat FLRW line element, the Friedmann 
equation for warm inflation task the form

H 2 = 1

3M2
p

(
ρψ + ρr

) = 1

3M2
p

(
1

2
ψ̇2 + U(ψ) + ρr

)
, (14)

with ψ̇ = dψ/dt and ρr being the energy density of the radiation fluid with the equation of state 
given by wr = 1/3. The Planck 2018 baseline plus BK15 constraint on r is equivalent to an upper 
bound on the Hubble parameter during inflation of H∗/Mp < 2.5 × 10−5 (95% CL) [34]. The 
equation of motion of the homogeneous inflaton field φ during warm inflation is governed as

ψ̈ + 3H ψ̇ + U ′(ψ) = −�ψ̇ , (15)

where U ′(ψ) = dU(ψ)/dψ . The above relation is equivalent to the evolution equation for the 
inflaton energy density ρφ given by

ρ̇ψ + 3H(ρψ + pψ) = −�(ρψ + pψ) , (16)
5
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with pressure pψ = ψ̇2/2 − U(ψ), and ρψ + pψ = ψ̇2. Here the RHS of Eq. (16) acts as the 
source term. In case of radiation, we have

ρ̇r + 4Hρr = �ψ̇2 . (17)

A condition for warm inflation requires ρ1/4
r > H in which the dissipation potentially affects 

both the background inflaton dynamics, and the primordial spectrum of the field fluctuations. 
Following Refs. [15,42], we consider the general form of the dissipative coefficient, given by

� = Cm

T m

ψm−1 , (18)

where m is an integer and Cm is associated to the dissipative microscopic dynamics which is 
a measure of inflaton dissipation into radiation. Different choices of m yield different physical 
descriptions, e.g., Refs. [15,42,43]. For m = 1, the authors of Refs. [10,19,36] have discussed the 
high temperature regime. For m = 3, a supersymmetric scenario has been implemented [10,42,
44]. A minimal warm inflation was also proposed [45–47]. Particularly, it was found that thermal 
effects suppress the tensor-to-scalar ratio r significantly, and predict unique non-gaussianities. 
Apart from the Hubble term, the present of the extra friction term, �, is relevant in the warm 
scenario. In slow-roll regime, the equations of motion are governed by

3H(1 + Q)ψ̇ � −Uψ , (19)

4ρr � 3Qψ̇2 , (20)

where the dissipative ratio Q is defined as Q = �/(3H) and Q is not necessarily constant. Since 
the coefficient � depends on φ and T , the dissipative ratio Q may increase or decrease during 
inflation. The flatness of the potential U(ψ) in warm inflation is measured in terms of the slow 
roll parameters which are defined in Ref. [37] given by

ε = M2
p

2

(
U ′

U

)2

, η = M2
p

U ′′

U
, β = M2

p

(
U ′ �′

U �

)
. (21)

Since a β term depends on � and hence disappears in standard cold inflation. In warm inflationary 
model, the slow roll parameters are defined as follows:

εH = ε

1 + Q
, ηH = η

1 + Q
. (22)

Inflationary phase of the universe in warm inflation takes place when the slow-roll parameters 
satisfy the following conditions [7,37,38]:

ε 
 1 + Q, η 
 1 + Q, β 
 1 + Q, (23)

where the condition on β ensures that the variation of � with respect to φ is slow enough. 
Compared to the cold scenario, the power spectrum of warm inflation gets modified and it is 
given in Refs. [7,12–14,37,39–41] and it takes the form:

PR(k) =
(

H 2
k

2πφ̇k

)2 (
1 + 2nk +

(
Tk

Hk

)
2
√

3π Qk√
3 + 4π Qk

)
G(Qk) , (24)

where the subscript “k” signifies the time when the mode of cosmological perturbations with 
wavenumber “k” leaves the horizon during inflation and n = 1/

(
expH/T − 1

)
is the Bose-

Einstein distribution function. Additionally, the function G(Qk) encodes the coupling between 
6
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the inflaton and the radiation in the heat bath leading to a growing mode in the fluctuations of the 
inflaton field. It is originally proposed in Ref. [13] and its consequent implications can be found 
in Refs. [12,43].

This growth factor G(Qk) is dependent on the form of � and is obtained numerically. As 
given in Refs. [14,20], we see that for � ∝ T :

G(Qk)linear = 1 + 0.0185Q2.315
k + 0.335Q1.364

k . (25)

In this work, we consider a linear form of G(Qk) with Q � 1. Clearly, for small Q, i.e., Q 
 1, 
the growth factor does not enhance the power spectrum. It is called the weak dissipation regime. 
However, for large Q, i.e., Q � 1, the growth factor significantly enhances the power spectrum. 
The latter is called the strong dissipation regime. The primordial tensor fluctuations of the metric 
give rise to a tensor power spectrum. It is the same form as that of cold inflation given in Ref. [17]
as

PT (k) = 16

π

( Hk

Mp

)2
. (26)

The ratio of the tensor to the scalar power spectrum is expressed in terms of a parameter r as

r = PT (k)

PR(k)
. (27)

As of the primordial power spectrum for all the models written in terms of Q, λ, and C1, we 
can demonstrate how the power spectrum does depend on the scale. The spectral index of the 
primordial power spectrum is defined as

ns − 1 = d lnPR(k)

d ln(k/kp)
= d lnPR(k)

dQ

dQ

dN

dN

dx

∣∣∣∣∣
k=kp

, (28)

where x = ln(x/xp) and kp corresponds to the pivot scale. From a definition of N , it is rather 
straightforward to show that [23]

dN

dx
= − 1

1 − εH

. (29)

Now we compute r and ns using Eq. (27) and Eq. (28) for a linear form of the growing mode 
function G(Q) given in Eq. (25). Note that r and ns are approximately given in Refs. [12,14,20].

4. Models of nonminimally-coupled warm inflation considered

4.1. Metric formalism

The energy density during inflation is predominated by the potential of the inflaton field. 
Therefore, we can write

H 2 = λM2
p

12ξ2

⎛
⎝e

−
√

2
3 ψ

Mp + 1

⎞
⎠

2 . (30)

Using this we can express Eq. (14) for this model as
7
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ψ̇ ≈ − U ′(ψ)

3(Q + 1)H
= −

√
2Mpe

√
2
3 ψ

Mp

√
λM2

p

ξ2

3(Q + 1)

⎛
⎝e

√
2
3 ψ

Mp + 1

⎞
⎠

2 . (31)

Using Eq. (30) and Eq. (31), we come up with the following expression:

H 2

2πψ̇
= −

(Q + 1)e

√
2
3 ψ

Mp

√
λM2

p

ξ2

8
√

2πMp

. (32)

On substituting Q = �/3H = CT T/3H in the energy density of radiation given in Eq. (20), we 
obtain the temperature of the thermal bath as

T = 1

61/4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λQM4
pe

2
√

2
3 ψ

Mp

Crξ2(Q + 1)2

⎛
⎝e

√
2
3 ψ

Mp + 1

⎞
⎠

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1/4

. (33)

Dividing the above relation with H , we find

T

H
= 23/4 31/4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λM2
p

ξ2

⎛
⎝e

−
√

2
3 ψ

Mp + 1

⎞
⎠

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1/2 ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λQM4
pe

2
√

2
3 ψ

Mp

Crξ2(Q + 1)2

⎛
⎝e

√
2
3 ψ

Mp + 1

⎞
⎠

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1/4

. (34)

The dissipation parameter is defined as Q = �/3H = CT T/3H . In this model of warm inflation, 
we have 3H considered � = CT T . On substituting this form of � we get T = 3HQ/CT . We 
equate this with Eq. (33) to obtain

e

√
2
3 ψ

Mp ≈
2
√

2
3C2

t ξ

3
√

Cr

√
λQ5/2

→ ψ =
√

3

2
Mp log

⎛
⎜⎝ 2

√
2
3C2

T ξ

3
√

Cr

√
λQ5/2

⎞
⎟⎠ . (35)

On substituting Eq. (35) in Eqs. (33) and (32), we can express PR(k) in terms of variables ξ, λ, Q
and CT . Also, from its definition in Eq. (22), the slow roll parameters can be written

εH = 4e
− 2

√
2
3 ψ

Mp

3(Q + 1)

⎛
⎝e

−
√

2
3 ψ

Mp + 1

⎞
⎠

2 = 9λQ5Cr

2ξ2(Q + 1)C4
t

(
3
√

3
2

√
λQ5/2

√
Cr

2ξC2
T

+ 1

)2 , (36)
8
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ηH =
4ξ2

⎛
⎝e

−
√

2
3 ψ

Mp + 1

⎞
⎠

2

λ(Q + 1)M2
p

(
λM2

pe
− 2

√
2
3 ψ

Mp

ξ2

⎛
⎝e

−
√

2
3 ψ

Mp + 1

⎞
⎠

4 − λM2
pe

−
√

2
3 ψ

Mp

3ξ2

⎛
⎝e

−
√

2
3 ψ

Mp + 1

⎞
⎠

3

)

=
16

(
9CrλQ5 − √

6
√

CrC
2
T

√
λξQ5/2

)
(Q + 1)

(
3
√

6
√

Cr

√
λQ5/2 + 4C2

T ξ
)2 . (37)

Using Eq. (30), the tensor power spectrum for this model is evaluated and we can use Eq. (35)
and express PT (k) in terms of model parameters

PT (k) = 16

π

( H

Mp

)2 = 4λ

3πξ2

⎛
⎝e

−
√

2
3 ψ

Mp + 1

⎞
⎠

2 = 4λ

3πξ2

(
3
√

3
2

√
λQ5/2

√
Cr

2ξC2
T

+ 1

)2 . (38)

In this subsection, we will evaluate how the dissipation parameter, Q, evolves with the number 
of efolds, N . We differentiate Eq. (35) w.r.t N and then again write dψ/dN = −ψ̇/H . By using 
Eqs. (30), (31) and (35), we obtain

dQ

dN
= −2

√
6
√

λQ5/2√Cr

5ξC2
T

, (39)

where we have assumed a large field approximation ξφ2/M2
p � 1 or ψ � √

3/2Mp .
We show the behavior of the evolution of ψ (in units of Mp) and the temperature T during 

warm inflation of the metric case in Fig. 1. The dissipation parameter, Q, depending on both ψ
and T , is not a constant but rather evolves during inflation. This behavior can also be seen in 
Fig. 1. Additionally, as shown in Fig. 1, we find that the energy density of radiation does not 
change appreciably when the modes of cosmological interest cross the horizon.

4.2. Palatini formalism

We follow the proceeding subsection. Since the energy density during inflation is predomi-
nated by the potential of the inflaton field, for the Palatini case, this allows us to write

H 2 =
λM2

p tanh4
(√

ξψ
Mp

)
12ξ2 . (40)

Using the above relation, we can express Eq. (14) for this model as

ψ̇ ≈ − U ′(ψ)

3(Q + 1)H

= −
λM3

p tanh3
(√

ξψ
Mp

)
sech2

(√
ξψ

Mp

)
2
√

3ξ3/2(Q + 1)

⎛
⎜⎝ C4

T λξM2
p(

3
√

Cr

√
λQ5/2 + 4C2 ξ3/2

)2

⎞
⎟⎠

−1/2

. (41)
T
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Fig. 1. The behavior of the homogeneous inflaton field ψ (in units of Mp ), the dissipation parameter Q, the energy 
density in radiation, and temperature T of the Universe is shown as a function of the number of efolds N with the 
dissipation coefficient � = CT T in the metric case. To generate this plot, we take ξ = 106.1√

λ, Cr = 70, CT = 0.045.

Using Eq. (40) and Eq. (42), we come up with the following expression:

H 2

2πψ̇
= −

(Q + 1) sinh
(√

ξφ
Mp

)
cosh

(√
ξφ

Mp

)
12

√
3πMp

√
ξ

⎛
⎜⎜⎜⎝

C4
T M2

pξ

CrQ5

(
4C2

T ξ3/2

3
√

Cr

√
λQ5/2 + 1

)2

⎞
⎟⎟⎟⎠

1/2

. (42)

On substituting Q = �/3H = CT T/3H in the energy density of radiation given in Eq. (20), we 
obtain the temperature of the thermal bath as

T =
(

λM4
pQ tanh2

(√
ξφ

Mp

)
sech4

(√
ξφ

Mp

)
Crξ(Q + 1)2

)1/4

. (43)

We divide the above relation with H to obtain

T

H
= 9

4

√√√√ C4
T M2

pξ

CrQ5
(

4C2
T

ξ3/2

3
√

Cr
√

λQ5/2 +1
)2

×
(λ2M4

pQ6 tanh6
(√

ξφ
Mp

)
sech4

(√
ξφ

Mp

)(
4C2

T ξ3/2

3
√

Cr

√
λQ5/2 + 1

)2

4 4 2

)1/4

. (44)

CT ξ (Q + 1)

10
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Fig. 2. The behavior of the homogeneous inflaton field ψ (in units of Mp ), the dissipation parameter Q, the energy 
density in radiation, and temperature T of the Universe is shown as a function of the number of efolds N with the 
dissipation coefficient � = CT T in the Palatini case. To generate this plot, we take ξ = 1012.8λ, Cr = 70, CT = 0.045.

The dissipation parameter is defined as Q = �/3H . In this model of warm inflation, we have 
considered � = CT T . On substituting this form of � we get T = 3HQ/CT . We equate this with 
Eq. (43) to obtain

ψ

Mp

= 1√
ξ

sinh−1
(

2CT ξ3/4

√
3 4
√

Cr
4
√

λQ3/4
√

Q + 1

)
. (45)

On substituting Eq. (45) in Eqs. (43) and (42), we can express PR(k) in terms of variables 
ξ, λ, Q and CT . Also, from its definition in Eq. (22), the slow roll parameters can be written

εH =
8ξcsch2

(√
ξψ

Mp

)
sech2

(√
ξφ

Mp

)
Q + 1

= 6
√

Cr

√
λQ3/2

C2
T

√
ξ

(
4C2

T ξ3/2

3
√

Cr

√
λQ3/2(Q+1)

+ 1

) , (46)

ηH =
4ξ2 coth4

(√
ξφ

Mp

)
λM2

p(Q + 1)

×
(

3λM2
p tanh2

(√
ξφ

Mp

)
sech4

(√
ξφ

Mp

)
ξ

−
2λM2

p tanh4
(√

ξφ
Mp

)
sech2

(√
ξφ

Mp

)
ξ

)

11
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=
9CrQ

5
(

4C2
T ξ3/2

3
√

Cr

√
λQ5/2 + 1

)2

4C4
T M2

pξ(Q + 1)

(
4C2

T

√
λM2

p

√
ξ

√
CrQ5/2

(
4C2

T ξ3/2

3
√

Cr

√
λQ5/2 + 1

)3

− 32C4
T M2

pξ2

9CrQ5

(
4C2

T ξ3/2

3
√

Cr

√
λQ5/2 + 1

)3

)
. (47)

Using Eq. (30), the tensor power spectrum for this model is evaluated and we can use Eq. (45)
and express PT (k) in terms of model parameters

PT (k) = 16

π

( H

Mp

)2 =
13824 3

√
2
5 32/3C4

T ξ

(√
Cr

√
λn

C2
T

√
ξ

)10/3

125πCr

⎛
⎜⎝ 72 3√3

(
2
5

)2/3
C2

t ξ3/2

( √
Cr

√
λn

C2
T

√
ξ

)5/3

5
√

Cr

√
λ

+ 1

⎞
⎟⎠

2 . (48)

In this subsection, we will evaluate how the dissipation parameter, Q, evolves with the number 
of efolds, N . We differentiate Eq. (45) w.r.t N and then again write dψ/dN = −ψ̇/H . By using 
Eqs. (40), (41) and (45), we obtain

dQ

dN
= −12

√
Cr

√
λQ5/2

5C2
T

√
ξ

, (49)

where we have assumed a large field approximation ξφ2/M2
p � 1 or equivalently ψ �√

3/2Mp .
The behavior of the evolution of ψ (in units of Mp) and the temperature T during warm infla-

tion of the Palatini case is displayed in Fig. 2. Similarly, the dissipation parameter, Q, depending 
on both ψ and T , is also not a constant but rather evolves during inflation. This behavior can also 
be seen in Fig. 2. We also find that the energy density of radiation does not change appreciably 
when the modes of cosmological interest cross the horizon shown in Fig. 2.

5. Confrontation with the Planck 2018 data

We constrain our results using the amplitude of the primordial power spectrum. Consider 
Eq. (24) we find that our predictions can produce the preferred values of PR ∼ As = 2.2 × 10−9

shown in Fig. 3. We notice for the metric case that in order to produce a corrected value of PR, 
when we decrease values of CT , the magnitudes of ψ get increased. However, in the Palatini 
case, when we decrease values of CT , a number of efolds get decreased.

We compute the inflationary observables and then compare with the Plank 2018 data. We 
plot the derived ns and r for our models along with the observational constraints from Planck 
2018 data displayed in Fig. 4. Left panel, we used ξ = 106.1

√
λ, Cr = 70 and N = 50, 60

for CT ∈ [0.001, 0.06]. Our results obtained in the metric case show that, for N = 50, CT ∈
[0.0161, 0.0276], while for N = 60, CT ∈ [0.008, 0.0206] is required in order to have the de-
rived ns consistent with the Planck 2018 observations at 1σ CL. Additionally, we can obtain 
ns = 0.9649 using CT = 0.0214 and CT = 0.0139 for N = 50 and N = 60, respectively.
12
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Fig. 3. We constrain our models with the amplitude of the primordial power spectrum. Left panel, we showed the metric 
case with ξ ∼ 1.26 × 106√

λ and CT = 0.015, 0.045 with N = 50, 60. The parameters used provide the preferred 
amplitude of the primordial power spectrum of As ∼ 2.2 × 10−9. Right panel: we displayed the Palatini case with 
ξ ∼ 6.31 × 1012λ and CT = 0.015, 0.025. The parameters used also provide the preferred amplitude of the primordial 
power spectrum. A dotted horizon line denotes As = 2.2 × 10−9.

Fig. 4. We compare the theoretical predictions of (r, ns) in the strong limit Q � 1 for the metric (left panel) and 
Palatini (right panel) approaches. We consider a linear form of the growing mode function G(QN ). For the plots, we 
have used Cr = 70, ξ = 1.26 × 106√

λ for the metric case, and Cr = 70, ξ = 6.31 × 1012λ for the Palatini case. We 
consider theoretical predictions of (r, ns) for different values of CT with Planck’18 results for TT, TE, EE, +lowE+lens-
ing+BK15+BAO.

Likewise, for the right panel, we used ξ = 1012.8λ, Cr = 70 and N = 50, 60 for CT ∈
[0.001, 0.06]. Our results obtained in the metric case show that, for N = 50, CT ∈ [0.010, 0.022], 
while for N = 60, CT ∈ [0.00053, 0.0141] is required in order to have the derived ns consistent 
with the Planck 2018 observations at 1σ CL. Additionally, we can obtain ns = 0.9649 using 
CT = 0.0156 and CT = 0.007 for N = 50 and N = 60, respectively.

6. Conclusion

In this work, we studied the non-minimally-coupled Higgs model in the context of warm infla-
tion scenario using both metric and Palatini approaches. We particularly considered a dissipation 
parameter of the form � = CT T with CT being a coupling parameter and focused only on the 
strong regime of the interaction between inflaton and radiation fluid. We compute all relevant 
cosmological parameters and constrained the models using the observational Planck 2018 data. 
We discovered that the ns and r values are consistent with the observational bounds. Having used 
the observational data, we obtained a relation between ξ and λ for the non-minimally-coupled 
13
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warm Higgs inflation in both metric and Palatini cases. Our constraints on the parameters are 
compatible with Planck data. Furthermore in comparison to other literature on the topic, we pro-
posed that the computed (r, ns) parameters values are two orders of magnitude higher than those 
of the usual (cold) non-minimally-coupled Higgs inflation.

Having compared between two approaches, the energy density and the temperature of the 
thermal bath in the metric case, see Fig. 1, are many orders of magnitude larger than those found 
in the Palatini case, see Fig. 2. To produce ns and r in agreement with observation, we found that 
their values are two orders of magnitude higher than those of the usual (cold) non-minimally-
coupled Higgs inflation [30,31]. However, we noticed that the ratio of ξ2/λ of the metric case 
in this work are four orders of magnitude higher than that of model present in Ref. [16]. This 
may can quantify the amount of primordial gravitational waves produced during the inflationary 
epoch between cold and warm Higgs inflation. Since the value of r depends on the specific 
inflationary model, different models predict different amounts of gravitational waves generated 
during inflation. A lower value of r implies weaker gravitational waves, while a higher value 
indicates stronger gravitational waves.

It is worth mentioning that in standard inflationary models, the inflaton field is minimally cou-
pled to gravity, meaning its dynamics are governed solely by the Einstein equations. However, 
in warm inflation, a non-minimal coupling term of the form ξH 2R is introduced, where ξ is the 
coupling constant, H is the inflaton field, and R is the scalar curvature. In the context of warm in-
flation, where there is dissipative particle production and energy transfer between the inflaton and 
other fields, the non-minimal coupling can influence the dissipation mechanism. The coupling 
term introduces additional interactions between the inflaton and the thermal bath of particles, 
affecting the dissipation coefficient and the energy transfer rate. In summary, the effects of the 
non-minimal coupling on the dissipative term in warm inflation can influence the energy trans-
fer, particle production, backreaction effects, and stability of the inflationary dynamics. These 
effects play a significant role in determining the observational predictions and the viability of 
warm inflation models. We will leave these interesting issues for our future investigation.
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