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At mesoscopic scales, close to but somewhat larger than Planck length, one can describe the spacetime in 
terms of an effective geometry. The key feature of such an effective (quantum) geometry is the existence 
of a zero-point-length which, for example, modifies the propagator for a massive scalar field residing 
in that spacetime, in a specific manner. Such quantum gravitational effects arise, even in a globally flat 
spacetime, if one probes the spacetime at length scales close to Planck length. Principle of Equivalence 
demands that the effects of quantum spacetime observed in a freely-falling-frame (FFF) must be the 
same as those in a globally flat spacetime. But, in the FFF, gravity disappears and — along with it — the 
Newtonian gravitational constant G also disappears; therefore, operationally, the Planck length disappears 
in the FFF! So how can the quantum gravitational effects persist in the FFF, as they must? I show that 
the answer to this question is interesting and subtle. The Planck length reappears in FFF through the 
matter sector as the geometric mean L P = √

λcλg of the Compton wavelength λc = h̄/mic (where mi is 
the inertial mass) and the Schwarzschild radius λg = Gmg/c2 (where mg is the gravitational mass) when 
we invoke the Principle of Equivalence again, in the form mi = mg . So the Principle of Equivalence plays 
a crucial role in making the Planck length disappear and reappear to incorporate the effects of quantum 
spacetime in a FFF.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. QG corrections to the propagator at mesoscopic scales

Consider a non-interacting massive scalar field φ(x) propagat-
ing in a curved spacetime described by a metric gab(x) in a region 
of the spacetime manifold which we are interested in. I assume 
that the metric has no curvature singularities anywhere in the 
manifold; the length scale characterizing the curvature Lcurv, de-
fined through, say, L−2

curv ≡
√

Rabcd Rabcd is bounded from below 
because the curvature is bounded from above. The quantum dy-
namics of the scalar field in such a classical background spacetime 
is completely captured by the Feynman propagator

Gstd(x, y;m2) =
∞∫

0

ds e−m2s Kstd(x, y; s) (1)

where Kstd is the standard, zero-mass, Schwinger (heat) kernel 
given by Kstd(x, y; s) ≡ 〈x|es�g |y〉. Here �g is the Laplacian in the 
background space(time).1 The heat kernel is a purely geometric 
object, entirely determined by the background geometry; all the 
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1 I will work in a Euclidean space(time) for mathematical convenience and will 

assume that the results in spacetime arise through analytic continuation. This is not
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information about the scalar field is contained in the single pa-
rameter m. The heat kernel has the structure (in D = 4):

Kstd(x, y; s) ∝ e−σ̄ 2(x,y)/4s

s2 [1 + curvature corrections] (2)

where σ̄ 2(x, y) is the geodesic distance and the curvature cor-
rections, encoded in the Schwinger-Dewitt expansion, will involve 
powers of (s/L2

curv). The exponential e−m2s in Eq. (1) suppresses 
the contributions for s � λ2

c — where λc ≡ h̄/mc is the Compton 
wavelength associated with mass m — in the integral in Eq. (1); 
when λc � Lcurv , the curvature corrections will be small.

Such a description — based on quantum field theory in curved 
spacetime — is expected to breakdown when the quantum struc-
ture of spacetime becomes relevant. When exactly this will happen 
cannot be ascertained until we have a well established theory of 
quantum gravity (QG); the folklore belief, which I will take to be 
valid, is that these QG effects will be definitely important at Planck 
scales characterized by the Planck length, L P ≡ (Gh̄/c3)1/2. That is, 
when we probe the spacetime at length scales λ � L P the descrip-
tion of QFT in CST will definitely breakdown. I will call this regime 

essential and one could have done everything in the Lorentzian spacetime itself; it 
just makes life easier.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2020.135774
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2020.135774&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:paddy@iucaa.in
https://doi.org/10.1016/j.physletb.2020.135774
http://creativecommons.org/licenses/by/4.0/


2 T. Padmanabhan / Physics Letters B 809 (2020) 135774
microscopic and the regime of QFT in CST (with λ � L P ) macro-
scopic.

I am interested in the intermediate scales, which I will call 
mesoscopic, at which one can describe the spacetime in the usual 
continuum language but still incorporate the effects of QG by mod-
ifying the propagator Gstd to a quantum gravity corrected propaga-
tor GQG. (One could consider such a description to be operational 
at length scales λ � C L P , with C = 103, say, for definiteness. A fac-
tor of 103 could allow for the continuum description to emerge, 
but — at the same time — to be affected by the microscopic physics 
through a non-zero L P . You could choose a larger value of C if you 
so feel.) Again, one cannot calculate GQG (or C ) from first prin-
ciples, unless one has the full theory of quantum gravity. In the 
absence of such a luxury, I will use the following working hypoth-
esis to make further progress.

It is possible to capture the most important effects of quan-
tum gravity by introducing a zero-point-length to the spacetime. 
This is based on the idea [1–4] that the dominant effect of quan-
tum gravity at mesoscopic scales can be captured by assuming 
that the (squared) path length σ 2(x2, x1) has to be replaced by 
σ 2(x2, x1) → σ 2(x2, x1) + L2 where L2 is of the order of Planck 
area L2

P ≡ (Gh̄/c3). This idea is decades old and has been explored 
extensively in the past and current literature (see e.g., [1–3]; for 
more recent explorations, see [4]). I will just accept it as a work-
ing hypothesis and proceed further. (A set of brief comments about 
this approach is given in the Appendix, for the sake of those who 
are unfamiliar with previous literature.)

More precisely stated, this postulate is equivalent to modifying 
Gstd to the form

G Q G(x, y;m2) =
∞∫

0

ds e−m2s−L2/4s Kstd(s; x, y) (3)

Recall that the leading order behaviour of the heat kernel is Kstd ∼
s−2 exp[−σ 2(x, y)/4s] where σ 2 is the geodesic distance between 
the two events; so the modification in Eq. (3) amounts to the re-
placement σ 2 → σ 2 + L2 to the leading order.

It is possible to provide a nice geometric interpretation for this 
replacement of Gstd by G Q G . Recall that the standard propagator 
Gstd has world-line path integral representation involving the sum 
over amplitudes exp(−mσ):

Gstd(x1, x2;m2) =
∑

paths σ

exp −mσ(x1, x2)

=
∞∫

0

ds e−m2s Kstd(s; x, y) (4)

where σ(x1, x2) is the length of the path connecting the two 
events x1, x2 and the sum is over all paths connecting these two 
events. This path integral can be defined in the lattice and com-
puted — with suitable measure — in the limit of zero lattice 
spacing [2,5] to give the standard result, indicated by the second 
equality. In a similar manner, one can obtain the modified propa-
gator GQG from a world line path integral representation [2]:

G Q G(x, y;m2) =
∑
σ

exp

[
−m

(
σ + L2

σ

)]

=
∞∫

0

ds e−m2s−L2/4s Kstd(s; x, y) (5)

where L is a length scale of the order of Planck length. The ampli-
tude of the path integral for GQG has the nice additional symmetry 
(‘duality’) of being invariant under σ → L2/σ . The path integral 
sum can again be computed by lattice regularization techniques 
[2] and will lead to the second equality.

In this approach the physics of the scalar field at mesoscopic 
scales is captured by a purely geometrical modification of the path 
integral amplitude by the replacement

σ → σ + L2

σ
(6)

I stress that this modification is universal and geometrical, inde-
pendent of the parameters of the matter sector, viz., the mass m, 
which appears only as an overall multiplicative factor. So one could 
think of this modification as a relic of quantum structure of space-
time present at the mesoscopic scales.

2. Planck length is lost in a freely falling frame due to Principle 
of Equivalence

The modification of Gstd to G Q G , given in Eq. (5) is valid in any 
curved spacetime. Therefore, as a special case, it should be also 
valid in a spacetime which is (globally) flat at macroscopic scales. 
If we probe such a spacetime at mesoscopic scales, the propagator 
Gstd is corrected to the form in G Q G . This leads to some remark-
able insights which I will now describe.

Consider a region of spacetime in which the curvature length 
scale Lcurv is much larger2 than Planck length: Lcurv � L P . Con-
centrate on the modes of a quantum field which probe the several 
orders of magnitude between L P and Lcurv. Let us start with modes 
which are far away from either extremities: L P � λ � Lcurv, and 
study them in the freely falling frame (FFF) around an event P in 
this spacetime region. The classical effects due to spacetime cur-
vature will now be absent to order O(λ2/L2

curv). The Principle of 
Equivalence, which allows the choice of FFF around any even P , 
has eliminated classical gravity. Let us now start decreasing λ. Since 
we are in FFF, no classical gravitational effects due to curvature 
can arise and the approximation of a flat spacetime becomes more 
and more accurate as λ becomes progressively smaller compared to 
Lcurv.

But when we start approaching Planck length (i.e., when λ ≈
C L P where C , say, is about 103) quantum gravitational effects 
should start appearing. We will expect these effects to be de-
scribed in the FFF by the same propagator G Q G with a zero-point-
length L = O(Gh̄/c3)1/2. This is, in fact, a direct consequence of 
Principle of Equivalence. One formulation of Principle of Equiva-
lence will be to postulate that laws of classical special relativity 
will remain valid in a FFF around any event P . But a classical, glob-
ally flat, spacetime will harbor quantum gravitational fluctuations, 
just as a classical electromagnetic vacuum will harbor quantum 
electrodynamical fluctuations. The Principle of Equivalence tells us 
that the quantum gravitational effects in FFF should be identical 
to the quantum gravitational effects in a (globally) flat spacetime. 
The effect of background curvature can be ignored to the order 
O(L2

P /L2
curv).

But this leads to an (apparent) paradox: Recall that we are still 
in FFF in which there is no gravity! The spacetime is described by 
the metric gab = δab and the Newtonian gravitational constant has 
disappeared. (For example, consider the Schwarzschild spacetime 
metric which, in standard coordinates, contains G; if you write the 
same metric in a FFF around any event, G will disappear at the 
lowest order.) This, in turn, means that the Planck length has no 

2 Of course, if you want to study situations in which Lcurv ≈ L P , you need the 
full machinery of quantum gravity; but when Lcurv � L P we can still meaningfully 
talk about quantum gravitational effects adding corrections to standard QFT in the 
mesoscopic regime with λ close — but not too close — to L P .
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operational significance in the FFF; the effective Planck length van-
ishes since G = 0 in the FFF. (No gravity in the FFF - Einstein’s 
“most fortunate thought in my life”!).

So how can one introduce the correct G Q G in the FFF, which is 
needed for consistency? This will be possible, only if there is an 
alternative route to G Q G from the matter sector (since there is no 
gravity in the FFF) and indeed there is. Let me now describe how 
this comes about.

3. Planck length found from matter sector, again through 
Principle of Equivalence

The action for a relativistic particle of inertial mass mi gives 
the factor exp(−A/h̄) with A/h̄ = −micσ/h̄ = −σ/λc where σ
is the length of the path and λc = h̄/mic is the Compton wave-
length of the particle. The Compton wavelength λc = h̄/(mic) is 
defined in terms of the inertial mass of the particle. The part of the 
path integral amplitude exp[−(σ /λc)] comes from combining spe-
cial relativity with quantum theory and does not depend on the 
existence of gravity. The path integral amplitude is exponentially 
suppressed for paths longer than the Compton radius λc ≡ h̄/mic.

The description of scalar field as a test field, in terms of the 
propagator Gstd defined in a fixed background spacetime, will 
cease to be valid when the self-gravity of the field is important. 
When the self-gravity of the matter field is introduced into the 
picture, another length scale, viz. the gravitational Schwarzschild 
radius λg ≡ Gmg/c2 where mg is the gravitational mass of the par-
ticle, comes into play. The self-gravity of a particle of mass mg will 
strongly curve the spacetime at length scales comparable to λg . At 
length scales comparable to λg , we can no longer think of a ‘free 
field’ even in flat spacetime.

So the propagator, and the world line path integral in Eq. (4)
which defines it, need to be modified for path lengths σ � λg . 
In fact, it makes absolutely no sense to sum over paths with σ � λg

in the path integral. Just as paths with σ � λc are suppressed ex-
ponentially by the factor exp[−(σ /λc)], we should suppress the 
paths with σ � λg by another dimensionless factor F [(λg/σ )]
which depends on the dimensionless ratio (λg/σ ) and rapidly de-
creases for σ � λg . This will modify the amplitude for a path of 
length σ from exp[−(σ /λc)] to F [(λg/σ )] exp[−(σ /λc)]. Writing, 
F ≡ exp− f for algebraic convenience, the modified propagator is 
now given by the path integral sum:

G(x, y) ≡
∑

paths σ

exp

[
− σ

λc
− f [(λg/σ )]

]

=
∑

paths σ

exp−mi

[
σ + 1

mi
f [(λg/σ )]

]
(7)

The crucial point is that, the self-gravity of the matter field is not 
eliminated in the FFF so that one can meaningfully talk about λg

in the FFF.
We now have two completely independent ways of defining the 

propagator at mesoscopic scales.
(i) First, from the introduction of a zero-point-length in the 

spacetime, we argued that the propagator should be modified from 
Gstd in Eq. (4) to G Q G in Eq. (5). This is equivalent to modifying 
the world line path integral amplitude by the duality relation in 
Eq. (6). This is purely geometrical. In this approach we introduced 
the Planck length by hand, through the postulate of zero-point-
length.

(ii) Second, in the FFF (in which there is no operational defi-
nition of Planck length), we started from matter sector and — by 
incorporating the self gravity of a particle of mass m into the path 
integral— we have arrived at the modification of the propagator in 
Eq. (7). We have not introduced the notion of Planck length and 
have only used the two length scales (λc, λg) associated with the 
mass of the particle we are studying.

Consistency demands that these two propagators should be identi-
cal, which puts a nontrivial constraint on expression in Eq. (7). 
This constraint, in fact, allows us to fix the form of the function 
F = exp− f as follows. Since the result in Eq. (5) has a purely geo-
metrical origin, the Eq. (7) can reproduce Eq. (5) only if the factor 
in the square bracket multiplying mi in Eq. (7) is just a function 
of σ . That is, this factor cannot depend on the parameters of the 
scalar field like mi, mg . This, in turn, is possible only if (i) the Prin-
ciple of Equivalence holds, allowing us to set mi = mg and (ii) the 
function is given by f [(λg/σ )] ∝ (λg/σ ). The proportionality con-
stant will be of order unity; this is because the paths with lengths 
σ < λg are now suppressed exponentially by the factor F = exp− f
and we expect this suppression to happen for σ � λg . So the 
proportionality factor can be ignored with the understanding that 
we now redefine λg as O(1)(Gm/c2). We can thus conclude that 
a natural and minimal modification of the path integral sum in 
Eq. (4), which incorporates the self gravity of a particle of mass 
m = mi = mg , will lead to the propagator:

G(x, y) ≡
∑

paths σ

exp

[
− σ

λc

]
exp

[
−λg

σ

]

=
∑
σ

exp

[
−m

(
σ + L2

σ

)]
(8)

where L = O(1)L P . This modification, given by Eq. (8) is identical 
to the one in Eq. (5) and has the same [2] symmetry: viz. the 
amplitude is invariant under the duality transformation σ → L2/σ .

The result depends on the Principle of Equivalence in a subtle 
and interesting way. The Compton wavelength λc = h̄/(mic) is de-
fined in terms of the inertial mass of the particle and gives part 
of the path integral amplitude exp[−(σ /λc)], which comes from 
combining special relativity with quantum theory; this factor does 
not depend on the existence of gravity. On the other hand, the 
gravitational radius λg ≡ Gmg/c2 is defined in terms of the gravi-
tational mass of the particle and leads to the factor exp[−(λg/σ )]. 
These two factors exist separately in the first equality of Eq. (8). 
But they can be expressed as in the second equality of Eq. (8) only 
because of the assumption mi = mg ! If mi �= mg then we will end 
up with the argument of the exponential:

miσ

h̄c
+ Gmg

c2σ
= 1

λc

[
σ +

(
mg

mi

)
L2

P

σ

]
(9)

Clearly, there is no universal, geometrical interpretation for such a 
factor in the square bracket, occurring in a path integral. The ad-
dition of a universal zero-point-length to the spacetime — which 
is independent of any parameters of the matter sector — will not
be equivalent to the modification of the propagator due to its self-
gravity if mi �= mg . Just as classical gravity admits a purely geometrical 
description only because mi = mg , the quantum geometry allows a uni-
versal description in terms of zero-point-length only because of mi = mg .
We now have Principle of Equivalence operating at Planck scales! 
So the duality symmetry for σ → L2/σ is closely related to the 
Principle of Equivalence.3

3 This result also tells us why the exponential form of the suppression 
exp[−(λg/σ )] — rather than some other functional form — in Eq. (8), for path 
lengths smaller than Schwarzschild radius, is uniquely selected. No other functional 
form will lead to the geometrical factor [σ + (L2/σ )], which is required.
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The above argument, in a way, also “discovers” Planck length. The 
first equality in Eq. (8) gives two exponential suppression factors, 
based on two length scales λc and λg associated with the particle. 
Both factors depend on the mass of the particle. But when combined 
together, as in the second equality, the Planck length appears (es-
sentially as the geometric mean L P = √

λcλg ) which is indepen-
dent of the mass of the particle and a universal constant. As a 
bonus, the duality structure, with respect to L P , emerges.

4. Summary

Given the dominantly conceptual nature of this paper, it is 
worthwhile to summarize the flow of logic and the key results:

• At the mesoscopic scales — which are close to but not too 
close to Planck length — we expect an effective geometrical 
description to emerge with some quantum gravitational cor-
rections. I take it as a working hypothesis that these correc-
tions to the dynamics of a massive scalar field can be captured 
by modifying the standard propagator Gstd to GQG in Eq. (3). 
This postulate has been investigated several times in the past 
literature [1–4]; here I explore some further consequences of 
the same.

• The expression for GQG in Eq. (3) is valid in any spacetime 
including flat spacetime. This shows that the flat spacetime 
— possibly considered as the ground state in quantum grav-
ity — will exhibit quantum gravitational effects just as, for 
example, the electromagnetic ground state exhibits QED vac-
uum fluctuations. These effects are again captured through the 
zero-point-length in flat spacetime.

• In any arbitrary curved spacetime, around any non-singular 
event P one can introduce a Riemann normal coordinates, 
which reduces the metric to that of flat spacetime in a region 
small compared to the background curvature length scale Lcurv
at P . I will assume that L P � Lcurv by several orders of mag-
nitude. When the spacetime is probed at mesoscopic scales λ
with L P � λ � Lcurv the QG effects will appear in the freely 
falling frame (FFF), but any effects due to the background cur-
vature will be negligible. I call this the regime of flat spacetime 
quantum gravity.

• Principle of Equivalence demands that the quantum gravita-
tional effects in this FFF must be identical to those in a glob-
ally flat spacetime and must be governed by the Planck length. 
In this FFF, described locally by flat metric, there is no gravity 
and no notion4 of the gravitational constant G; therefore, there 
is no operational notion of Planck length in the FFF! How can 
we then understand the zero-point-length in this context? The 
Principle of Equivalence, allowing the construction of the FFF, 
seems to have made us ‘lose’ the Planck length!

• The answer to this paradox lies in the self-gravity of the 
matter sector. The standard propagator for the scalar field 
of mass m is described by the world-line path integral in 
Eq. (4) which does not take into account the self gravity of 
the scalar field. This expression for path integral cannot be 
valid for paths with lengths σ � λg where λg ≈ Gmg/c2 is 
the Schwarzschild radius associated with mass m. Consistency 
demands that the suppression of the world-line path integral 
amplitude for paths with length σ � λg must lead to the same 
modified propagator GQG. This is indeed possible if and only 

4 The Planck length is built from three fundamental constants, h̄ (describing 
quantum theory), c (describing relativity) and G (describing gravity). It is not pos-
sible to choose a coordinate system and make the effects of quantum theory or 
relativity to vanish. However, you can always choose a coordinate system in which 
the effects of gravity vanishes to the lowest order, showing that G has a rather 
amusing role to play in this discussion compared to h̄ or c.
if the inertial mass mi is equal to the gravitational mass mg . 
When we use this version of Principle of Equivalence, we find 
that the Planck length reappears in the expression now as a 
geometric mean L P = √

λcλg of the Compton wavelength and 
the Schwarzschild radius corresponding to a mass m. We re-
discover the Planck length.

Thus, what the Principle of Equivalence taketh away, it giveth back!
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Appendix A

I this appendix, I summarise some aspects of the approach, 
which incorporates zero-point-length into the propagator, for the 
sake of conceptual completeness. More details can be found in the 
cited references.

• The idea of introducing the zero-point-length by the modifi-
cation σ 2(x2, x1) → σ 2(x2, x1) + L2 should be thought of as a 
working hypothesis which is postulated to make progress, in 
the absence of a complete theory of quantum gravity. Such an 
idea has been introduced and explored extensively in the past 
two decades or so in the literature [1–4] and I have explored 
some further consequences of this approach in this paper.
In principle, one should be able to derive this form of the 
propagator from a more complete theory. For example, it can 
be obtained from the string theory [6] in a specific approxima-
tion; but for the purpose of this work, it is enough to consider 
it as a working hypothesis.

• Working directly with the propagator bypasses several nuances 
of standard QFT which may all require some kind of revision 
at mesoscopic scales. However, we know that both the dy-
namics and the symmetries of a free quantum field, propagating 
in a curved geometry, is completely encoded in the Feynman 
propagator. So, if we understand how QG effects modify the 
propagator, we get a direct handle on both the dynamics and 
the symmetries of the theory at mesoscopic scales. This is 
an efficient procedure which underlies this approach, viz., we 
work directly with the propagator containing QG corrections, 
without worrying about the (unknown) modifications to the 
standard formalism of QFT at mesoscopic scales.

• As an example of the economy involved in this approach, let 
me stress the notion of diffeomorphism invariance in a curved 
geometry and — as a special case, Lorentz symmetry — in 
flat spacetime. The prescription σ 2(x2, x1) → σ 2(x2, x1) + L2

is generally covariant when L is treated as a constant scalar 
number. In flat spacetime, this modification will replace (x2 −
x1)

2 by (x2 − x1)
2 + L2 which is clearly Lorentz invariant. The 

mere introduction of a constant, scalar, length scale into the 
propagator will not violate Lorentz invariance, as should be ob-
vious from the fact that the propagator for the massive scalar 
field does depend on the length scale m−1 and is still per-
fectly Lorentz invariant. The results of detailed computations 
(see e.g., the extensive set of computations in the last paper 
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in ref. [3]) explicitly demonstrate the generally covariance and 
Lorentz invariance of the prescription.
This result is similar to that in, for example, LQG which con-
tains a length scale but does not violate Lorentz invariance 
[7]. Moreover, in our approach, the general covariance (and 
Lorentz invariance) is manifest in the prescription σ 2(x2, x1) →
σ 2(x2, x1) + L2; so no special demonstration of this fact is 
required unlike, for example, in the case of LQG [7]. Some 
other prescriptions in the literature for introducing a ‘mini-
mal length’, do create problems for Lorentz invariance but our
prescription is (manifestly) generally covariant.

• There are many (later) approaches, in the literature (see e.g., 
[8]) to modify the theory at mesoscopic scales. Some of these 
more recent attempts, rather intriguingly, share notions like 
duality first introduced in ref. [2]. Our approach has the ad-
vantage that (a) it is minimalistic and economical and (b) the 
basic prescription is strikingly simple to allow detailed and 
explicit computations. Since the other approaches use much 
more complex set of assumptions and prescriptions, it is not 
easy to compare these approaches. Roughly speaking, it ap-
pears that the introduction of zero-point-length is enough for 
some kind of duality to emerge but such a result is hard to 
prove rigorously.
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