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Abstract: The entanglement asymmetry is an information based observable that quantifies
the degree of symmetry breaking in a region of an extended quantum system. We investigate
this measure in the ground state of one dimensional critical systems described by a CFT.
Employing the correspondence between global symmetries and defects, the analysis of the
entanglement asymmetry can be formulated in terms of partition functions on Riemann
surfaces with multiple non-topological defect lines inserted at their branch cuts. For large
subsystems, these partition functions are determined by the scaling dimension of the defects.
This leads to our first main observation: at criticality, the entanglement asymmetry acquires a
subleading contribution scaling as log ℓ/ℓ for large subsystem length ℓ. Then, as an illustrative
example, we consider the XY spin chain, which has a critical line described by the massless
Majorana fermion theory and explicitly breaks the U(1) symmetry associated with rotations
about the z-axis. In this situation the corresponding defect is marginal. Leveraging conformal
invariance, we relate the scaling dimension of these defects to the ground state energy of the
massless Majorana fermion on a circle with equally-spaced point defects. We exploit this
mapping to derive our second main result: the exact expression for the scaling dimension
associated with n defects of arbitrary strengths. Our result generalizes a known formula for
the n = 1 case derived in several previous works. We then use this exact scaling dimension
to derive our third main result: the exact prefactor of the log ℓ/ℓ term in the asymmetry
of the critical XY chain.

Keywords: Conformal and W Symmetry, Field Theories in Lower Dimensions, Global
Symmetries, Scale and Conformal Symmetries

ArXiv ePrint: 2402.03446

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP05(2024)059

https://orcid.org/0000-0003-3943-9777
https://orcid.org/0000-0001-5062-2332
https://orcid.org/0000-0001-7678-3185
mailto:mfossati@sissa.it
https://doi.org/10.48550/arXiv.2402.03446
https://doi.org/10.1007/JHEP05(2024)059


J
H
E
P
0
5
(
2
0
2
4
)
0
5
9

Contents

1 Introduction 1

2 Symmetries, topological defects, and entanglement asymmetry 3
2.1 Symmetries and topological defects 4
2.2 Entanglement asymmetry 5

3 The XY spin chain and the massless Majorana fermion field theory 11

4 Calculation of the scaling dimension associated to n defects in the Majo-
rana CFT 13
4.1 Conformal mapping to the cylinder with n defect lines 14
4.2 Ground state energy for a single defect (n = 1) 16
4.3 Ground state energy for n equally-spaced defects 19
4.4 Summary 22

5 Rényi entanglement asymmetry in the critical XY spin chain 22
5.1 Numerical checks 22
5.2 Asymptotic behavior of the entanglement asymmetry 25

6 Conclusions 28

A Fermionization and continuum limit of the XY spin chain 30

B Defects in the Hamiltonian formalism 31

C Numerical calculation of the charged moments 32

1 Introduction

Symmetries play a pivotal role in the foundations of modern physics. Their presence implies
conservation laws that have deep consequences in the behavior of physical systems and
facilitate enormously the resolution of many problems, which would otherwise remain open.
As crucial as the existence of symmetries is their breaking, both explicit and spontaneous. Such
breaking is responsible for a plethora of very important phenomena across different branches
of physics. A relevant aspect that has received little attention so far is the quantification of
how much a global symmetry is broken. Local order parameters have been usually employed
to discern whether or not a quantum state respects a symmetry. However, they present
the disadvantage that, while a non-zero value manifests that the symmetry is broken, the
converse is not always true. Furthermore, in extended quantum systems, the question of
measuring symmetry breaking is intrinsically tied to consider a specific subsystem. In fact,
there may exist long-range correlations between the parts of the system that do not respect
the symmetry and are not taken into account by any local order parameter.
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In this context, an appealing idea is quantifying symmetry breaking by leveraging tools
from the theory of entanglement, as they capture non-local correlations. A quantity based on
the entanglement entropy and dubbed entanglement asymmetry has been recently introduced
as a measure of how much a symmetry is broken in a subsystem. The entanglement asymmetry
has proven to be a powerful instrument to identify novel physical phenomena. It has been
applied to investigate the dynamical restoration of a U(1) symmetry from an initial state that
breaks it after a quench to a Hamiltonian that respects the symmetry [1]. Surprisingly, the
entanglement asymmetry shows that the restoration of the symmetry may occur earlier for
those states that initially break it more, a quantum version of the yet unexplained Mpemba
effect (the more a system is out of equilibrium, the faster it relaxes). This quantum Mpemba
effect has been observed experimentally by measuring the entanglement asymmetry in an ion
trap [2] and the microscopic mechanism and the conditions under which it occurs are now well
understood for free and interacting integrable systems [3–5], although they remain elusive for
non-integrable ones. In addition, the entanglement asymmetry has been applied to examine
the dynamical restoration of a spontaneously broken Z2 symmetry [6] and the relaxation
to a non-Abelian Generalized Gibbs ensemble in the exotic case that the symmetry is not
restored [7]. It has been also generalized to study the quench dynamics of kinks [8]. Beyond
non-equilibrium physics, the entanglement asymmetry has been employed to understand the
implications of quantum unitarity for broken symmetries during black hole evaporation [9].

A significant point in the characterization of the entanglement asymmetry is its asymptotic
behavior with the size of the subsystem considered. As this observable is based on the
entanglement entropy, one may wonder whether it inherits some of its properties. For
example, the entanglement entropy follows an area law in the ground state of one dimensional
systems with mass gap. In contrast it grows logarithmically with the subsystem size when
the mass gap vanishes; this logarithmic growth is proportional to the central charge of the
conformal field theory (CFT) that describes the low energy physics of the critical point [10–12].
Conversely, the entanglement asymmetry exhibits a fundamentally distinct behavior. It has
been shown in ref. [13] that, for matrix product states, the entanglement asymmetry for a
generic compact Lie group grows at leading order logarithmically with the subsystem size,
with a coefficient proportional to the dimension of the Lie group, while, for finite discrete
groups, the entanglement asymmetry satisfies an area law, saturating to a value fixed by the
cardinality of the group. Similar results have been obtained in the ground state of the XY spin
chain when studying the particle number U(1) symmetry that this model explicitly breaks [4]
and the spin-flip Z2 symmetry, spontaneously broken in the ferromagnetic phase [6, 14].

In this paper, we examine the implications of quantum criticality for the entanglement
asymmetry, which remain barely unexplored, using CFT methods. Only ref. [15] reports
calculations for the entanglement asymmetry in certain particular excited states of the massless
compact boson. To this end, we develop a general scheme to compute the entanglement
asymmetry in (1+1)-dimensional quantum field theories in terms of the charged moments
of the subsystem’s reduced density matrix. Employing the path integral formulation, the
charged moments can be identified with the partition functions of the theory on Riemann
surfaces with defect lines inserted along its branch cuts. These defect lines are associated with
the elements of the symmetry group under analysis [16, 17]. A symmetry is considered broken
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when the associated defects are not topological, and any continuous deformation of these
defects leads to a change in the partition function. Therefore, within this framework, the
entanglement asymmetry can be naturally interpreted as a measure of how much the defects
are not topological. We apply this approach to determine the entanglement asymmetry in
the ground state of the XY spin chain at the Ising critical line for the U(1) group of spin
rotations around the transverse direction. After fermionizing it through a Jordan-Wigner
transformation, the scaling limit of this model is described by the massless Majorana fermion
theory and the defect lines corresponding to this group are marginal. We then exploit
conformal invariance to map the Riemann surfaces to a single cylinder with defect lines
parallel to its axis. In this setup, the calculation of the partition functions for large subsystems
boils down to computing the ground state energy of the massless Majorana fermion on a circle
with equally-spaced marginal point defects. The spectrum of this theory has been studied
on the lattice in refs. [18, 19]. Here we revisit this problem and diagonalize systematically
its Hamiltonian for an arbitrary number of equi-spaced point defects of different strengths.
The study of defects in the massless Majorana fermion and Ising CFTs has a long story,
see e.g. [16, 20–31]. Partition functions on Riemann surfaces with (topological and non
topological) defect lines also arise in the analysis of the entanglement across inhomogeneities,
interfaces, or junctions and after measurements [32–46]; in particular, those with topological
defect lines appear in the symmetry resolution of entanglement measures [47–69], which has
recently been investigated in profusion.

The paper is organized as follows. In section 2, we review the relation between symmetries
and defects in (1+1)-quantum field theories, we introduce the entanglement asymmetry, and
we show how to compute it from the partition function on a Riemann surface with defect lines.
We also derive the asymptotic behavior of the entanglement asymmetry for a generic compact
Lie group in the ground state of a one dimensional critical system. In the rest of the sections,
we focus on the critical XY spin chain and the associated CFT, the massless Majorana
fermion theory. In section 3, we introduce these systems and we review the known previous
results for the entanglement asymmetry. In section 4, we calculate the partition function of
the Majorana CFT on the Riemann surfaces that enter in the calculation of the entanglement
asymmetry. In particular, by conformal invariance, these partition functions are given by
the ground state energy of a massless Majorana fermion with evenly-spaced point defects.
We carefully diagonalize its Hamiltonian for an arbitrary number of defects with different
strengths. In section 5, we apply these results to obtain the entanglement asymmetry of the
critical XY spin chain, checking them against exact numerical computations on the lattice.
Finally, in section 6, we draw our conclusions and consider future prospects. We also include
several appendices where we discuss with more detail some technical points of the main text.

2 Symmetries, topological defects, and entanglement asymmetry

In this section, we briefly review the identification between symmetries and topological defects.
Then we introduce the Rényi entanglement asymmetry as a quantifier of symmetry breaking
and we interpret it in terms of defects. With simple scaling arguments, we derive some
general results for the asymptotic behavior of the Rényi entanglement asymmetry in the
ground state of a critical one dimensional quantum system in the thermodynamic limit.
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Figure 1. Each element g of a group G acts on the Hilbert space of an extended quantum system as
a unitary operator UΣt,g defined along a line Σt at a fixed time t. If G is a symmetry of the theory,
then any continuous transformation of Σt, as the ones performed in the figure, leaves invariant the
partition function with insertions of these operators. We indicate this by the symbol = between the
three diagrams. When two operators UΣt,g and UΣt,g′ overlap, as in the right diagram, they can be
fused according to the composition rule UΣt,gUΣ,g′ = UΣt,gg′ .

2.1 Symmetries and topological defects

Global symmetries in spatially extended quantum systems are realized through extended
operators that form a unitary representation of the symmetry group. In fact, if we consider a
generic (1+1)-dimensional quantum field theory whose spacetime is a flat surface M, then
the action of an element g of the group G (either discrete or continuous) is implemented in
its Hilbert space H by a unitary operator UΣt,g that has support on a spatial line Σt ⊂ M at
a fixed time t. A familiar instance is the case of a U(1) symmetry. The Noether theorem
ensures the existence of a conserved current jµ. Therefore, the associated charge at Σt

is QΣt =
∫

Σt
dx j0(x) and the group is represented by the operators UΣt,α = exp[iαQΣt ],

with α ∈ [0, 2π).
The extended operators UΣt,g representing symmetries possess the crucial property of

being topological. This means that continuous deformations of Σt do not affect any expectation
value that contains the insertion of an operator UΣt,g. For example, since a symmetry operator
commutes with the Hamiltonian of the theory, it will not evolve in the Heisenberg picture
and then UΣt,g = UΣt′ ,g, as depicted in the first equality of figure 1. When the support of
two extended operators UΣt,g, UΣt,g′ coincides, the operators fuse according to the standard
composition rule UΣt,gUΣt,g′ = UΣt,gg′ , as we illustrate in the second equality of figure 1.

The transformation of a field ϕ of the theory under the group G is described by a
matrix Rg such that

U †
Σt,gϕ(x)UΣt,g = Rgϕ(x), x ∈ Σt. (2.1)

Therefore, within the path integral formalism, the insertion of an operator UΣt,g in an
expectation value is equivalent to performing a cut along the line Σt and imposing for the
fields the following gluing conditions

ϕ(x+) = Rgϕ(x−), x ∈ Σt, (2.2)

where ϕ(x±) denote the field ϕ(x) at each side of the cut as we indicate in figure 2. The
composition property UΣt,gUΣt,g′ = UΣt,gg′ can be then understood as the fusion of two
cuts with gluing conditions Rg and Rg′ into a cut with gluing condition RgRg′ = Rgg′ . In
Euclidean spacetime, UΣ,g is not needed to be defined along a line Σt orthogonal to the time
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UΣ,g
Rgϕ(x−)

= UΣ,g

ϕ(x+)

Figure 2. Graphical representation of eq. (2.2). The insertion of an extended operator UΣ,g associated
with the element g of a group G and with support on the line Σ corresponds, in the path integral ap-
proach, to a defect line along Σ with the gluing condition (2.2) for the field ϕ(x) at each side of the defect.

direction, but it can have support on any curve Σ on the surface M. Due to the previous
considerations, the extended operators UΣ,g are commonly referred to as defects, and when
they enforce symmetries, they are topological defects [17]. A more detailed introduction to the
role of topological operators in quantum systems can be found in, e.g., the recent review [70].

The question of whether a system is symmetric under a certain group can thus be
reformulated as asking whether the defects associated to the symmetry are topological. In
this paper, we are interested in quantifying the extent to which a symmetry is broken or, in
other words, measuring how much the corresponding defects are not topological. This can
be done with the entanglement asymmetry, which we now introduce.

2.2 Entanglement asymmetry

2.2.1 Definition

Let us take an extended quantum system in a state described by the density matrix ρ. We
consider a spatial bipartition Σ = A∪ Ā in which A consists of a single connected region such
that the total Hilbert space H factorizes into H = HA ⊗HĀ. We assume that the extended
operators that represent the group G decompose accordingly as UΣ,g = UA,g ⊗ UĀ,g. The
state of subsystem A is given by the reduced density matrix ρA = trĀ ρ, obtained by tracing
out the degrees of freedom in the region Ā. Under an element of the group G, it transforms
as ρA 7→ UA,gρAU

†
A,g. Therefore, the state ρA is symmetric if [ρA, UA,g] = 0 for all g ∈ G.

To define the entanglement asymmetry, we introduce the symmetrization of ρA as the
average over G of the transformed density matrix UA,gρAU

†
A,g; that is,

ρA,G := 1
volG

∫
G
dg UA,gρAU

†
A,g, (2.3)

if G is a compact Lie group, where dg is its Haar measure and volG its volume. An analogous
formula can be written up for a finite discrete group G of cardinality |G| replacing the Haar
integral by a sum over its elements. To lighten the discussion, we focus on compact Lie
groups and we refer the reader to refs. [6, 13, 14] where the entanglement asymmetry has
been examined for discrete groups. The density matrix ρA,G is by construction symmetric
under G and has trace one. Note that ρA is symmetric if and only if ρA = ρA,G. Then the
entanglement asymmetry is the relative entropy between ρA an ρA,G [1],

∆SA := S(ρA||ρA,G) = tr [ρA(log ρA − log ρA,G)] . (2.4)

Given the form of ρA,G, and applying the cyclic property of the trace, ∆SA can be rewritten as

∆SA = S(ρA,G)− S(ρA), (2.5)
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g2

g1

Figure 3. Riemann surface Mn for n = 2 (two sheets) with line defects (in blue) inserted along the
branch cut of each sheet. The defects are associated respectively with the group elements g1 and g2.
The quotient (2.12) of the partition functions on this surface with and without the line defects gives the
normalized charged moment Z2(g), defined in eq. (2.9). The Dirac delta in eq. (2.8) will set g2 = g−1

1 .

where S(ρ) is the von Neumann entropy of ρ, S(ρ) = − tr(ρ log ρ). The entanglement
asymmetry satisfies two essential properties as a measure of symmetry breaking in the
subsystem A: it is non-negative, ∆SA ≥ 0, and it vanishes if and only if A is in a symmetric
state, i.e. ρA = ρA,G [71, 72].

In general, the direct calculation of the entanglement asymmetry is complicated due to
the presence of the logarithm in the von Neumann entropy. Alternatively, a much simpler
indirect way of computing it is via the replica trick [10–12]. By replacing in eq. (2.5) the
von Neumann entropy by the Rényi entropy, S(n)(ρ) = 1

1−n log tr ρn, we introduce the Rényi
entanglement asymmetry

∆S(n)
A = S(n)(ρA,G)− S(n)(ρA). (2.6)

Observe that the entanglement asymmetry (2.5) is recovered in the limit lim
n→1

∆S(n)
A = ∆SA.

The advantage of the Rényi entanglement asymmetry is that, for integer n, it can be expressed
in terms of charged partition functions. If we plug the definition of ρA,G in eq. (2.6), we obtain

∆S(n)
A = 1

1− n
log

[
1

(volG)n

∫
Gn

dg
tr(UA,g1ρAUA,g−1

1
. . . UA,gnρAUA,g−1

n
)

tr(ρn
A)

]
, (2.7)

where Gn = G× n· · · ×G and g stands for the n-tuple g = (g1, . . . , gn) ∈ Gn. This integral
can be rewritten as

∆S(n)
A = 1

1− n
log

 1
(volG)n−1

∫
Gn

dgZn(g)δ

 n∏
j=1

gj

 , (2.8)

where Zn(g) are the (normalized) charged moments of ρA

Zn(g) =
tr(ρAUA,g1 . . . ρAUA,gn)

tr(ρn
A)

. (2.9)

2.2.2 Interpretation in terms of defects

In a (1+1) quantum field theory, using the path integral representation of the reduced density
matrix ρA, the neutral moments tr(ρn

A) can be identified with the partition function on an
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n-sheet Riemann surface Mn [11]. If we consider the ground state |0⟩ of the theory, i.e.
ρ = |0⟩ ⟨0|, and a single interval of length ℓ as subsystem A, the surface Mn is constructed
as follows. We take the spacetime M where the theory is defined, which is the complex
plane when working in Euclidean time and in the thermodynamic limit (infinite spatial
direction). To obtain Mn, we perform a cut on M along the interval A = [0, ℓ], we replicate
n times this cut plane, and we sew the copies together along the cuts in a cyclical way, as
we show in figure 3 for n = 2. Denoting as Z(Mn) the partition function on this surface,
the neutral moments of ρA are given by

tr(ρn
A) =

Z(Mn)
Z(M)n

. (2.10)

Following the discussion in section 2.1, the insertion of the operators UA,gj in this trace,
as in eq. (2.9), corresponds to putting a defect line along the branch cut [0, ℓ] of each sheet of
Mn with a gluing condition (2.2), being g = gj , as depicted in figure 3. If Z(Mg

n) stands for
the partition function on the surface Mn with these n defect lines, then we have that

tr(ρAUA,g1 · · · ρAUA,gn) =
Z(Mg

n)
Z(M)n

. (2.11)

Therefore, in the ground state, the normalized charged moments Zn(g) introduced in eq. (2.9)
are the ratio of the partition functions on the surface Mn with and without n defect lines
inserted at the branch cut of each sheet,

Zn(g) =
Z(Mg

n)
Z (Mn)

. (2.12)

If ρA is symmetric under G, then [ρA, UA,g] = 0 for all g ∈ G. As we have previously
seen, this implies that the defect lines associated with the insertions UA,gj are topological
and they can be moved between the sheets of Mn under continuous transformations leaving
the partition function Z(Mg

n) invariant. In that case, it is possible to fuse them in the same
sheet, which is equivalent to the equality tr(ρAUA,g1 . . . ρAUA,gn) = tr(ρn

AUA,g1···gn). Since the
Dirac delta in (2.8) forces the product of all the group elements gj to be the identity, the
fusion yields UA,g1,...gn = 1. Consequently, Zn(g) = 1 and, according to eq. (2.8), the Rényi
entanglement asymmetry vanishes. On the other hand, if ρA is not symmetric, [ρA, UA,g] ̸= 0,
then the defect lines associated to UA,gj are not topological. In that case, any continuous
deformation of them does change the partition function Z(Mg

n) and, as a result, Zn(g) ̸= 1.
In this sense, the entanglement asymmetry quantifies how much the defect lines associated
with a group are non topological.

From generic scaling arguments, we can determine the asymptotic behavior of the
partition functions Z(Mn) and Z(Mg

n). In two dimensions, the leading order contributions
to the free energy − logZ are proportional to the area |Mn| of the surface Mn, on which the
partition function Z is defined. [Of course, strictly speaking, the area |Mn| is infinity, but
it can be regularized, for instance by imposing periodic boundary conditions both spatial
and imaginary time directions for each sheet of Mn, far away from the interval.] Therefore,
in the absence of defects,

− logZ(Mn) = fbulk|Mn|+O(1), (2.13)

– 7 –
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where fbulk is the bulk free energy density. In the presence of defects, we expect that each of
them contributes with an additional term proportional to the volume of the defect, which
in this case is the length ℓ of the interval A. The free energy in that case is

− logZ(Mg
n) = fbulk|Mn|+ Tn(g)ℓ+O(1), with Tn(g) :=

n∑
j=1

t(gj), (2.14)

and t(gj) can be interpreted as the line tension of the defect associated with the insertion UA,gj .
All these terms are cut-off dependent and, therefore, non universal. Plugging eqs. (2.13)–(2.14)
into eq. (2.12), one sees that the bulk contribution in the free energy cancels, and the charged
moments Zn(g) decay exponentially with the subsystem length ℓ as

Zn(g) = e−Tn(g)ℓ+O(1). (2.15)

If the theory is critical, the conical singularities at the branch points of the surface Mn

give rise in eqs. (2.13) and (2.14) to an extra universal (cut-off independent) term,

− logZ(Mg
n) = fbulk|Mn|+ Tn(g)ℓ− logZCFT(Mg

n) +O(1), (2.16)

which, as argued for instance in ref. [73], behaves as − logZCFT(Mg
n) ∝ log ℓ. The presence

of defect lines may in general modify the coefficient of this term, so

ZCFT(Mg
n)

ZCFT(Mn)
= ℓ−βn(g) (2.17)

and it does not cancel in the ratio (2.12) of partition functions that gives the normalized
charge moments Zn(g). Therefore, for a critical system, we expect

Zn(g) = e−Tn(g)ℓ+O(1)ℓ−βn(g), (2.18)

where the coefficient βn(g) is universal and can be computed in the infrared (IR) CFT that
describes the critical system. It depends on the specific CFT and the nature of the defects
corresponding to the group G under study, and we do not have a generic expression for it. Its
computation has to be worked out case by case. In this paper, we calculate it in the massless
Majorana fermion field theory for a U(1) group for which the defects are marginal.

2.2.3 Asymptotic behavior

Before delving into the study of the charged moments and entanglement asymmetry in a
particular theory, it is insightful to explore the implications of the generic result of eq. (2.18) for
the asymptotic behavior of the entanglement asymmetry in the limit of large subsystem size ℓ.

When we plug eq. (2.18) in eq. (2.8), we have to perform an n-fold integral over the group
G. Since the leading term in eq. (2.18) decays exponentially with ℓ, the main contribution
to this integral comes from the points h ∈ Gn where Zn(h) = 1 (i.e. where both Tn(h) and
βn(h) vanish). These correspond to the elements of G that leave the reduced density matrix
ρA invariant and form a symmetry subgroup H of G. i.e.

H =
{
h ∈ G | UA,hρAU

†
A,h = ρA

}
. (2.19)
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Therefore, the strategy is to perform a saddle point approximation of the integral (2.8)
around the points h ∈ Hn; see also refs. [4, 5, 7, 13].

For simplicity, let us assume that H is a finite subgroup. In the integral (2.7) the
numerator tr(UA,g1ρAUA,g−1

1
. . . UA,gnρAUA,g−1

n
) is invariant under a right multiplication

(g1, . . . , gn) 7→ (g1h1, . . . , gnhn). Consequently, all the saddle points h ∈ Hn contribute
equally. Then, to calculate the integral (2.8) for ℓ≫ 1, we can expand it around the identity
point (Id, . . . , Id) ∈ Gn, where Id is the identity in G, and multiply the result by the total num-
ber of saddle points, which is given in terms of the cardinality |H| of H as |H|n−1. We finally
perform the integral by choosing some local coordinates on the group around the identity.

In a neighborhood UId ⊂ G of the identity, the group elements g can be written as
g = eiX , where X is an element of the Lie algebra g associated with G, of dimension
d = dimG. Let {Ja}, a = 1, . . . , d, be generators of g, if we take the local coordinate chart
x = (x1, . . . , xd) ∈ Rd 7→ g(x) = ei

∑
a

xaJa , then, for an arbitrary function f(g) on G, we have∫
UId

dg f(g) =
∫

g−1(UId)
µ(x) dx f(g(x)), (2.20)

where µ(x) dx is the Haar measure of G in the local coordinates x. Since we have to perform an
n-fold integral over G, we denote by x the coordinates for Gn, that is x = (x1, . . . , xn) ∈ Rdn.
Now we can express the exponents Tn(g) and βn(g) of the charged moments (2.18) in
coordinates and expand them around the identity, which corresponds to x = 0,

Tn(g(x)) =
1
2xtHTnx +O(x3),

βn(g(x)) =
1
2xtHβnx +O(x3),

(2.21)

where HTn and Hβn are dn × dn Hessian matrices, made of n × n blocks of dimension
d × d. Therefore, in the local coordinate chart that we are considering, for large ℓ the
n-fold integral (2.8) reads∫

Gn
Zn(g)δ

(∏
j

gj

)
dg ∼ |H|n−1µ(0)n−1

∫
Rdn

dx e−
1
2 xt(HTn ℓ+Hβn log ℓ)xδ

 n∑
j=1

xj

 . (2.22)

Here the factor |H|n−1 counts the total number of saddle points. In coordinates, the Dirac
delta δ

(∏
j gj

)
over the group G is replaced by δ

(∑x
j=1 xj

)
/µ(0). Notice that we have also

expanded the measure µ(x) around x = 0 and restricted to the zeroth order term µ(0) since
the next order terms yield subleading corrections in ℓ.

Since Tn(g) is the sum of the contributions of each defect line according to eq. (2.14), HTn

is block diagonal, HTn = 1n ⊗Ht, where Ht is the d×d dimensional Hessian of t(g(x)). Due to
the cyclic property of the trace, the coefficient βn(g) is symmetric under cyclic permutations
of the entries gj of g. Thus Hβn is a block-circulant matrix; that is, it has the block structure

Hβn =



C1 Cn · · · C3 C2
C2 C1 Cn C3
... C2 C1

. . . ...

Cn−1
. . . . . . Cn

Cn Cn−1 · · · C2 C1


, (2.23)
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with blocks Cj of size d × d. A block-circulant matrix can be diagonalized in blocks Dp,
p = 0, . . . , n − 1, with a Fourier transform of the blocks Cj ,

Dp =
n∑

j=1
Cje

i 2π
n

jp. (2.24)

Therefore, if we apply the change of variables

xj = 1√
n

n−1∑
p=0

ωpe
−i 2π

n
jp, j = 1, . . . , n, (2.25)

then the integral (2.22) becomes∫
Gn

Zn(g)δ
(∏

j

gj

)
dg ∼ |H|n−1µ(0)n−1

√
n

∫
Rdn

dωe
− 1

2
∑n−1

p=0 ωp(Htℓ+Dp log ℓ)ωpδ (ω0) . (2.26)

Integrating out the variable ω0, we find

∫
Gn

Zn(g)δ
(∏

j

gj

)
dg ∼ |H|n−1µ(0)n−1

√
n

n−1∏
p=1

∫
Rd

dω e−
1
2 ω(Htℓ+Dp log ℓ)ω. (2.27)

The remaining integral is Gaussian and we can easily perform it, if we assume that Htℓ+Dp log ℓ
is a symmetric definite-positive matrix,∫

Rd
dωe−

1
2 ω(Htℓ+Dp log ℓ)ω =

(
det (2π(Htℓ+ Dp log ℓ)−1

)1/2
. (2.28)

Plugging it in eq. (2.27), we obtain

∫
Gn

Zn(g)δ
(∏

j

gj

)
dg ∼ (2πℓ)

d(1−n)
2

√
n

( |H|µ(0)√
detHt

)n−1 n−1∏
p=0

(
det

(
1+ H−1

t Dp
log ℓ
ℓ

))1/2
.

(2.29)
This result is independent of the local coordinate chart that we consider to perform the
integration. In fact, under a change of local coordinates x 7→ y(x), the measure µ(x)
transforms as µ(x) =

∣∣∣det(∂yσ/∂xb)
∣∣∣µ′(y) and, because quadratic forms are (0, 2)-tensor

fields, the determinant of the Hessian Ht transforms as detHt(x) =
∣∣∣det(∂yσ/∂xb)

∣∣∣2 detH′
t(y).

Therefore, the quotient µ(0)/
√
detHt is coordinate independent. The same applies for the

terms det(1 + H−1
t Dp log ℓ/ℓ).

Finally, applying (2.29) in eq. (2.8) and using the identity log detM = tr logM for a
matrix M , we find that the Rényi entanglement asymmetry for a compact Lie group G in
the ground state of a critical one dimensional quantum system behaves as

∆S(n)
A = dimG

2 log ℓ+ an + bn
log ℓ
ℓ

+ · · · , (2.30)

where

an = log volG
|H|

+ 1
2 log n

1
n−1 detHt

(2π)dim Gµ(0)2 , (2.31)
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and

bn = 1
2(n− 1)

n−1∑
p=1

tr
(
DpH−1

t

)
. (2.32)

Eq. (2.30) is the first main result of this paper. We stress that the first two terms in (2.30),
of order O(log ℓ) and O(1) respectively, have already been observed in the XY spin chain
when considering the particle number U(1) (a)symmetry [4], and more generically for matrix
product states in ref. [13]. Crucially, what is new here is the last term in eq. (2.30), of
order O(log ℓ/ℓ). While the terms of order O(log ℓ) and O(1) are present in the ground
state of critical and non-critical systems alike, the term of order O(log ℓ/ℓ) only appears
when the system is at a critical point.

This log ℓ/ℓ term appears only when the exponent βn(g) in eq. (2.18) is non-zero.
Although this exponent is universal, the coefficient bn is non-universal since it also depends
on the defect tension Tn(g) (via Ht), which is cut-off dependent. Semi-universal corrections
of the form log ℓ/ℓ have been found in, e.g., the corner free energy in critical systems [74]
and in the ground state full counting statistics of the critical XY spin chain [75].

We finally discuss the group structures that were not considered earlier. When both G

and H are finite, it is straightforward to show that the logarithmic term is vanishing, the O(1)
term is just log(|G|/|H|) and there are no log ℓ/ℓ corrections (see also [13]). When both G and
H are continuous, the leading log ℓ term has a prefactor equal to (dimG− dimH)/2, but the
explicit expressions for the subleading terms are more cumbersome and not very illuminating.

3 The XY spin chain and the massless Majorana fermion field theory

In the rest of the paper, we focus on a particular gapless system: the XY spin chain at the
Ising critical line. We consider its ground state, and compute the charged moments and the
Rényi entanglement asymmetry associated with the rotations of the spin around the z-axis.

The Hamiltonian of the XY spin chain is

HXY = −1
2
∑
j∈Z

(1 + γ

2 σx
j σ

x
j+1 +

1− γ

2 σy
j σ

y
j+1 + hσz

j

)
, (3.1)

where σα
j are the Pauli matrices at the site j. The parameter γ tunes the anisotropy between

the couplings in the x and y components of the spin and h is the strength of the transverse
magnetic field. The XY spin chain is gapless along the lines γ = 0, |h| < 1 and γ ̸= 0, |h| = 1
in parameter space, and the scaling limits along those lines are respectively the massless
Dirac and Majorana fermion field theories.

For γ ̸= 0, the Hamiltonian of eq. (3.1) is not invariant under the rotations Uα = eiαQ

around the z-axis, generated by the transverse magnetization

Q = 1
2
∑
j∈Z

(σz
j − I), (3.2)

except for α = π, which corresponds to the Z2 spin flip symmetry. The entanglement
asymmetry associated with this U(1) symmetry has been thoroughly studied in ref. [4] for
the ground state of (3.1) outside the critical lines γ ̸= 0, |h| = 1 using exact methods on the
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lattice. In that case, the charged moments Zn(α) decay exponentially for large subsystem
size ℓ as in eq. (2.15), where the coefficient Tn(α) =

∑n
j=1 t(αj) is the sum of the string

tension t(αj) of each defect, which here is given by [4]

t(α) = −
∫ π

−π

dk
4π log(i cos ξk sinα+ cosα), (3.3)

with
eiξk = h− cos k + iγ sin k√

(h− cos k)2 + γ2 sin2 k
. (3.4)

Note that the string tension t(α) is not real; as we will see in section 4, this is related to
the fact that the gluing conditions of the defects associated with this U(1) group make
the theory non-Hermitian.

To obtain the Rényi entanglement asymmetry, we can apply the general result of eq. (2.30).
In this case, since G = U(1), we have that dimG = 1, volG = 2π, µ(0) = 1, and the symmetric
subgroup is the Z2 spin-flip symmetry, H = Z2. Since dimG = 1, the block Ht is a scalar
and it is given by eq. (3.3) such that Ht = t′′(0) = ∂2t(α)/∂α2|α=0.

In ref. [4], the following result was derived for the XY chain out of the critical line |h| = 1:

∆S(n)
A = 1

2 log ℓ+ 1
2 log πt

′′(0)n1/(n−1)

2 +O(ℓ−1), (3.5)

with

t′′(0) =


1
2

γ
γ+1 , |h| < 1,

1
2

γ2

1−γ2

(
|h|√

h2+γ2−1
− 1

)
, |h| > 1.

(3.6)

Notice that t′′(0) is continuous at |h| = 1, reflecting the fact that this result also applies along
the critical line. Indeed, in this case, the string tension Tn(α) is still given by eq. (3.3), and
following the same steps as in ref. [4] one arrives at the same result.

However, crucially for this paper, along the critical line γ ̸= 0, |h| = 1, we also expect
that the charged moments Zn(α) contain the algebraically decaying factor of eq. (2.18),
according to the general reasoning of section 2.2.3. However, an analytical expression for the
coefficient βn(α) is unknown. In what follows, we will obtain it by exploiting the conformal
invariance of the underlying field theory.

As we have already mentioned, the scaling limit of the XY spin chain (3.1) along the
critical lines γ ̸= 0, |h| = 1 is the massless Majorana fermion field theory, whose Hamiltonian is

H = 1
2i

∫
R
ψ(x)∂xψ(x)− ψ̄(x)∂xψ̄(x) dx, (3.7)

where the Majorana fields ψ(x) and ψ̄(x) satisfy the algebra

{ψ(x), ψ(y)} = δ(x− y), ψ†(x) = ψ(x), (3.8)
{ψ̄(x), ψ̄(y)} = δ(x− y), ψ̄†(x) = ψ̄(x), (3.9)

and {ψ(x), ψ̄(y)} = 0. The U(1) charge operator in eq. (3.2) corresponds in this field theory to

Q = i

∫
R
ψ(x)ψ̄(x) dx. (3.10)
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The details on the derivation of the Hamiltonian (3.1) and Q in the continuum limit are
reported in appendix A.

The transformations

UA,α = eiαQA = exp
(
−α

∫
A
ψ(x)ψ̄(x) dx

)
(3.11)

generated by the charge (3.10) in a subsystem A act on the fields ψ(x), ψ̄(x) in the fol-
lowing way

U †
A,αΨ(x)UA,α = R̃αΨ(x), if x ∈ A, (3.12)

with

Ψ =
(
ψ

ψ̄

)
, R̃α =

(
cosα − sinα
sinα cosα

)
∈ SO(2). (3.13)

The group action consists of a rotation that mixes ψ and ψ̄. In general, this is not a symmetry
of the theory, unless α = π, for which ψ 7→ −ψ and ψ̄ 7→ −ψ̄. For α purely imaginary, the
defect can be realized in the classical 2d Ising model by rescaling the couplings on all the bonds
that intersect the defect line. A dictionary between the two realizations is given, e.g., in [36].

Crucially for our analysis, the field ψ(x)ψ̄(x) has scaling dimension 1, therefore the line
defect implemented by UA,α corresponds to a marginal perturbation of the CFT action along
the line. This is very important for the calculations reported in section 4, as it introduces a
non-trivial dependence of the CFT partition function on the defect strength α. Indeed, if the
perturbation were instead irrelevant, then the effects of the defect would be renormalized to
zero in the IR limit. If the perturbation were relevant, then the defect would flow to some
fixed point in the IR, corresponding to some boundary condition along the line, and the
CFT partition function would also be independent on the precise value of α. For instance,
such a situation would occur if we looked at the asymmetry with respect to rotations around
the x-axis, as opposed to the z-axis, corresponding to replacing σz

j with σx
j in eq. (3.2). In

the CFT, this would then correspond to a perturbation by the relevant operator σ(x) with
scaling dimension 1/8. The defect line would flow to a fixed boundary condition in the IR,
and this would completely change the way we do the analysis, see in particular ref. [76]
for more details on that situation.

4 Calculation of the scaling dimension associated to n defects in the
Majorana CFT

In section 2.2, we have seen that the charged moments Zn(α) can be cast as the ratio
Z(Mα

n )/Z(Mn) between the partition function Z(Mα
n ) of the model on the n-sheet Riemann

surface Mn with n defect lines with strengths α = (α1, . . . , αn) along its branch cuts and
the one, Z(Mn), without them. As we discussed, in critical systems, this ratio contains
a universal term ZCFT(Mα

n )/ZCFT(Mn), fully determined by the CFT that describes the
low-energy physics. In this section, we study it in the massless Majorana fermion theory (3.7)
for the marginal defect lines (3.11).
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αn 2ϵ

0 ℓ

→Mα
n = Cα =

α2

0 ℓ

α1

0 ℓ

α1αn

α2 2
n log ℓ

ϵ

2π

α1

α2

αn

2π

Figure 4. On the left, we represent the n-sheet Riemann surface Mn with n marginal defect lines
inserted along the branch cut [0, ℓ] of each replica sheet, which arises in the calculation of the ground
state charged moments Zn(α). At the branch points 0 and ℓ, two disks of radius ϵ have been removed
as UV cut-off. Under the conformal transformation (4.4), Mn is mapped into the cylinder C on the
middle, of circumference 2π and height 2

n log ℓ
ϵ . The defect lines in Mn are mapped into n evenly

spaced vertical defects at the points xj = 2πj
n , j = 1, . . . , n. The CFT partition functions on these two

surfaces with the marginal defects are equal. On the right, top view of the cylinder C with the defects.

When there are no defects, it is well-known [10–12] that, for a generic CFT,

ZCFT(Mn)
ZCFT(M)n

∝ ℓ−2δn , δn = c

12

(
n− 1

n

)
, (4.1)

where c is the central charge of the CFT, which for the massless Majorana fermion is c = 1/2.
In the massless Majorana fermion theory, when we insert the n marginal defect lines

along each branch cut of the surface Mn, the result (4.1) changes as

ZCFT(Mα
n )

ZCFT(M)n
∝ ℓ

−2
(

δn+ ∆̃n(α)
n

)
, (4.2)

as we will show below. The contribution of the n marginal defects is encoded in the exponent
∆̃n(α). Then the ratio of the partition functions on the surface Mn with and without defects is

ZCFT(Mα
n )

ZCFT(Mn)
= ℓ−

2
n

∆̃n(α), (4.3)

and, comparing with eq. (2.18), βn(α) = 2
n∆̃n(α). The rest of the section will be devoted to

deriving eq. (4.2) and computing explicitly the coefficient ∆̃n(α).

4.1 Conformal mapping to the cylinder with n defect lines

To determine the partition function ZCFT(Mα
n ) with the n marginal defect lines, we perform

the conformal transformation

z 7→ w(z) = i log
[(

z

z − ℓ

)1/n
]
. (4.4)

If at the branch points z = 0 and z = ℓ of the Riemann surface Mn we remove a disk of
radius ϵ as a UV cut-off, then eq. (4.4) maps Mn to a cylinder with circumference 2π and
height W = 2

n log(ℓ/ϵ), which we denote as C, see figure 4. We choose as coordinates of the
cylinder w = x + iτ , with x ∼ x + 2π and τ ∈ [− 1

n log(ℓ/ϵ), 1
n log(ℓ/ϵ)].
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Under eq. (4.4), the n branch cuts [0, ℓ] of Mn are mapped to the equally-spaced lines
xj = 2πj

n , j = 1, . . . , n (xn = 2π is identified with x = 0) on the cylinder, as we illustrate
in figure 4. Thus, on the cylinder C, the n marginal defects are inserted along these lines.
We assume the Majorana fields ψ, ψ̄ to have trivial monodromy on Mn along the cycle that
connects all the replicas. Therefore, after the map (4.4), these fields satisfy anti-periodic
boundary conditions on the cylinder since they have half-integer spin [77].

The next step is to carefully determine the gluing condition that is satisfied by the
Majorana fields ψ and ψ̄ across each defect after the conformal map (4.4) to the cylinder.
In the previous section, we found that, on the Riemann surface Mn, the gluing condition
across a defect with strength αj is given by eq. (3.12), i.e.

Ψ(z = x+ i0+) = R̃αjΨ(z = x+ i0−), for x ∈ [0, ℓ], (4.5)

where the 2× 2 matrix R̃αj is defined in eq. (3.13). Crucially, this gluing condition changes
under the conformal transformation (4.4). Indeed, since the Majorana fields ψ and ψ̄ are
primaries with conformal dimension 1/2, they transform as

ψ(w) =
(
dw

dz

)−1/2
ψ(z), ψ̄(w̄) =

(
dw̄

dz̄

)−1/2
ψ̄(z̄). (4.6)

Combining this with eq. (4.5) and noting that a point slightly above the defect on Mn (i.e.
at z = x+ i0+) is mapped to a point slightly to the left of the defect on the cylinder (i.e. at
w = xj + iτ + 0−), we find that the condition that ψ and ψ̄ must satisfy across the defect
at the line xj = 2πj

n on the cylinder C is

Ψ(w = xj + iτ + 0−) = RiαjΨ(w = xj + iτ + 0+), (4.7)

where we define

Riαj =


(

dw
dz

)−1/2
0

0
(

dw̄
dz̄

)−1/2

 R̃αj


(

dw
dz

)1/2
0

0
(

dw̄
dz̄

)1/2

 =
(
cosαj i sinαj

i sinαj cosαj

)
. (4.8)

Observe that, in the first equality, we can take out a factor
∣∣∣dw

dz

∣∣∣−1/2
from the first matrix and

a factor
∣∣∣dw

dz

∣∣∣1/2
from the third one. Taking into account that dw

dz /
∣∣∣dw

dz

∣∣∣ = i for z = x+ i0+,
we find the second equality.

In summary, using the conformal transformation (4.4), the partition function ZCFT(Mα
n )

of the massless Majorana fermion with n marginal defect lines at the branch cuts of the
surface Mn is equal to the partition function ZCFT(Cα) of the theory on the cylinder C with
n equally-spaced defect lines along its longitudinal direction and described by the gluing
conditions (4.7). If we impose conformal boundary conditions |a⟩ and |b⟩ at the extremes of
the cylinder C, the partition function ZCFT(Cα) can be written as

ZCFT(Cα) = ⟨a| e−W H |b⟩ , (4.9)

where H is the Hamiltonian of the free Majorana fermion (3.7) defined on a circle of
length 2π with the fields ψ and ψ̄ satisfying the gluing conditions (4.8) at the points
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xj = 2πj
n , j = 1, . . . , n with strengths α = α1, α2, . . . , αn respectively. Alternatively, as

we show in detail in appendix B, these conditions can be explicitly implemented in the
Hamiltonian (3.7) by including in it n point defects of the form ψ(xj)ψ̄(xj),

H = 1
2i

∫ 2π

0
(ψ∂xψ − ψ̄∂xψ̄) dx+

n∑
j=1

iµjψ(xj)ψ̄(xj), (4.10)

where the parameters µj are related to the strength of the defects by µj/2 = i arctan(αj/2).
For W ≫ 2π, i.e. for large subsystem length ℓ, the dominant term in the partition

function (4.9) is given by the ground state energy E(α) of the Hamiltonian with defects (4.10),

ZCFT(Cα) ∝ e−W E(α). (4.11)

The ground state energy should satisfy the usual CFT formula

E(α) = ∆̃n(α)− c

12 , (4.12)

where ∆̃n(α) takes into account the contribution of the defects and, consequently, it vanishes,
∆̃n(000) = 0, in their absence. It may be interpreted as the scaling dimension of a n-defect
insertion operator. Combining the two previous equations, and taking into account that
W = 2

n log(ℓ/ϵ), we arrive at eq. (4.2). Therefore, since ∆̃n(α) = E(α)− E(0), the problem
of computing the scaling dimension ∆̃n(α) boils down to determining the ground state
energy of the Hamiltonian (4.10) with n point defects. We will devote the rest of this
section to calculating it.

However, before proceeding, it is important to note that the gluing condition (4.8) on the
cylinder presents an issue: if α ∈ R, it does not respect the self-adjointness of the Majorana
fields ψ(w) and ψ̄(w̄). The same problem arises in the Hamiltonian with defects (4.10), which
is not Hermitian for α ∈ R. To calculate ∆̃n(α), it is important that the Hamiltonian is
Hermitian to ensure that its spectrum is real and, therefore, the energy of its ground state is
well-defined. In order to cure this problem, we can analytically continue the defect strength
α → −iλ with λ ∈ R. This changes the 2 × 2 gluing matrix (4.8)

Riα → Rλ =
(
cosh λ sinh λ
sinh λ cosh λ

)
. (4.13)

Since all its entries are real, it is now compatible with the self-adjointness of the Majorana
fields. This analytic continuation also makes the Hamiltonian with defects (4.10) Hermitian.
In the following, we carry out the calculation of the ground state energy assuming that the
gluing matrix is (4.13) with λ ∈ R. We will eventually take λ→ iα in the final result, which
we check against exact numerical calculations in the XY spin chain.

4.2 Ground state energy for a single defect (n = 1)

We start by solving the case of a single marginal defect. We take the spatial coordinate
x defined on the interval x ∈ [−π, π] with the points x = −π and π identified and, for
simplicity, we put the defect at x = 0. We impose the following boundary conditions for
the fields ψ(x), ψ̄(x) at x = 0 and x = π:

Ψ(0−) = RλΨ(0+), Ψ(−π) = −Ψ(π). (4.14)
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The first one is the gluing condition for the defect, while the second one is the anti-periodic
boundary condition. With these boundary conditions imposed on the fields, the Hamiltonian is

H = 1
2i

∫ 0

−π
dxΨ†DΨ + 1

2i

∫ π

0
dxΨ†DΨ, D =

(
∂x 0
0 −∂x

)
. (4.15)

4.2.1 Diagonalization of the Hamiltonian

The goal now is to diagonalize the Hamiltonian (4.15). To do this, we look for pairs of functions
(u(x), v(x)) that satisfy the same gluing and anti-periodic boundary conditions as Ψ(x),(

u(0−)
v(0−)

)
= Rλ

(
u(0+)
v(0+)

)
,

(
u(−π)
v(−π)

)
= −

(
u(π)
v(π)

)
, (4.16)

and are eigenstates of the differential operator 1
iD. These are piecewise plane waves,

uk(x) =

A0e
ikx, x ∈ (−π, 0),

A1e
ikx, x ∈ (0, π),

vk(x) =

B0e
−ikx, x ∈ (−π, 0),

B1e
−ikx, x ∈ (0, π).

(4.17)

If they satisfy the boundary conditions, then such wavefunctions are automatically eigen-
functions of 1

iD with eigenvalue k.
The conditions (4.16) impose the following constraints on the amplitudes:(

A0
B0

)
= Rλ

(
A1
B1

)
,

(
A0e

−ikπ

B0e
ikπ

)
= −

(
A1e

ikπ

B1e
−ikπ

)
. (4.18)

This linear system of equations admits a non-zero solution if and only if

det
[
I+Rλ

(
e−ik2π 0

0 eik2π

)]
= 0. (4.19)

Let us introduce the polynomial

Pλ(z) = z det
[
I+Rλ

(
1/z 0
0 z

)]
(4.20)

of degree 2. Eq. (4.19) is equivalent to the polynomial equation

Pλ(z) = 0 (4.21)

for the variable z = ei2πk. From the explicit form of Rλ, we find that Pλ(z) is

Pλ(z) = const.× (z − eiθ)(z − e−iθ), (4.22)

with
θ = 2arctan

(
tanh λ2

)
+ π ∈ [0, 2π). (4.23)

Then the full set of solutions k of eq. (4.19) is

k ∈ Sλ =
(
Z+ θ

2π

)
∪
(
Z− θ

2π

)
. (4.24)
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For each solution k ∈ Sλ, the pair (uk, vk) can be used to construct a Bogoliubov mode for
the Hamiltonian (4.15), taking the scalar product with the two-component field (ψ, ψ̄)

ηk =
∫ π

−π
dx [u∗k(x)ψ(x) + v∗k(x)ψ̄(x)], (4.25)

which automatically satisfies [H, ηk] = k ηk. Then, using the orthonormality of the set of
functions (uk(x), vk(x)) we get

H = 1
2
∑

k∈Sλ

kη†kηk, (4.26)

where the sum in k runs over all the solutions in eq. (4.24) and the modes satisfy the
anticommutation relations {η†k, ηq} = δk,q.

Notice that, taking the complex conjugate of the eigenvalue equation for 1
iD, we get

that (u∗k, v∗k) is an eigenvector with eigenvalue −k,

D

(
uk

vk

)
= ik

(
uk

vk

)
=⇒ D

(
u∗k
v∗k

)
= −ik

(
u∗k
v∗k

)
. (4.27)

Thus we can set u−k(x) = u∗k(x) and v−k(x) = v∗k(x). This implies that η−k = η†k, and
eq. (4.26) can be rewritten in the form

H = 1
2
∑

k∈Sλ

k ηkη−k. (4.28)

Alternatively, we can express it as a sum restricted to the set of positive solutions k,
S+

λ = {k ∈ Sλ | k > 0},

H =
∑

k∈S+
λ

k (ηkη−k − 1/2). (4.29)

4.2.2 Ground state energy

From eq. (4.29), it is clear that the ground state of the single-defect Hamiltonian (4.15) is
the state annihilated by all the modes η−k for k ∈ S+

λ . The ground state energy is

E(λ) = −1
2
∑

k∈S+

k = −1
2

[ ∞∑
m=0

(
m+ θ

2π

)
+

∞∑
m=1

(
m− θ

2π

)]
. (4.30)

These infinite sums can be evaluated by zeta-regularization. Taking into account that

lim
s→−1

∞∑
m=0

(m+ a)−s = ζ(−1, a), (4.31)

where ζ(s, a) =
∑∞

m=0(m + a)−s is the Hurtwitz zeta function, the ground state energy
can be written as

E(λ) = −1
2

[
ζ

(
−1, θ2π

)
+ ζ

(
−1, 1− θ

2π

)]
. (4.32)
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Using the identity ζ(−1, a) = − 1
12 + a

2 − a2

2 = ζ(−1, 1 − a), we arrive at

E(λ) = 1
2

( 1
π
arctan

(
tanh λ2

))2
− 1

24 . (4.33)

Identifying this expression with the standard formula for the ground state energy in a CFT,

E(λ) = ∆1(λ)−
c

12 , (4.34)

with c = 1/2 for the massless Majorana fermion, we find that the scaling dimension associated
with the insertion of a single marginal defect of strength λ is

∆1(λ) =
1

2π2 arctan2
(
tanh λ2

)
. (4.35)

4.2.3 Connection with previous works

The scaling dimension associated with a single defect was computed in ref. [19] applying
lattice methods in the quantum Ising chain and in ref. [23] using a boundary CFT approach.
In the latter, the Ising CFT with a defect is folded along the defect, obtaining a Z2 orbifold
of the compact boson in which the defect is encoded in the boundary condition. The relation
between such bosonic boundary condition and our gluing parameter λ can be found in ref. [36].

In the case n = 1, the charged moments (2.9) specialize to Z1(α) = Tr(ρAe
iαQA). This

is the full counting statistics, i.e. the cumulant generating function, of the charge QA in
the subsystem A. In our setup, it corresponds to the expectation value of a single defect
line on the single replica surface M. In the ground state of the critical XY spin chain, this
quantity was calculated in refs. [78, 79] employing lattice methods, see also [75, 80, 81],
and obtaining that Z1(α) = e−t(α)ℓℓ−2∆̃1(α), with t(α) given by eq. (3.3), and the exponent
∆̃1(α) = ∆1(−iα) that we have found in eq. (4.35) using CFT.

Notice that the case λ = iπ corresponds to the Z2 spin-flip symmetry of the spin chain
and the associated defect is topological — the ε Verlinde line [16, 24, 82]. When this line is
open, as in our case, two disorder operators µ(z) are inserted at its end-points [16]. Therefore,
by the Kramers-Wannier duality, Z1(π) should be proportional to the two-point function
of the spin fields σ(z) at its end-points, Z1(π) ∝ ⟨σ(0)σ(ℓ)⟩ = ℓ−2∆σ , which have scaling
dimension ∆σ = 1/8, that is precisely ∆1(iπ).

4.3 Ground state energy for n equally-spaced defects

We now extend the calculation of the previous section to the case of multiple defects. In
this section we take the spatial coordinate x in the interval [0, 2π], and we put the defects at
positions xj = 2πj

n with j = 1, . . . , n. We also define x0 = 0. The Hamiltonian is

H =
n∑

j=1

1
2i

∫ xj

xj−1
dxΨ†DΨ, D =

(
∂x 0
0 −∂x

)
, (4.36)

with the following gluing conditions corresponding to n equally-spaced defects of strengths
λ1, λ2, . . . , λn,

Ψ(xj + 0−) = Rλj
Ψ(xj + 0+), (4.37)

where the matrix Rλ was defined in eq. (4.13), and the anti-periodic boundary condition
Ψ(0) = −Ψ(2π).
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4.3.1 Diagonalization of the Hamiltonian

To diagonalize that Hamiltonian, we proceed as in the n = 1 case. We look for pairs of
functions (uk(x), vk(x)) that satisfy the same gluing conditions as Ψ(x) and are eigenstates
of 1

iD. We look for solutions in the form of piecewise plane waves,

uk(x) =



A0e
ikx, x ∈ (0, x1),

A1e
ikx, x ∈ (x1, x2),

...
Ane

ikx, x ∈ (xn−1, xn),

vk(x) =



B0e
−ikx, x ∈ (0, x1),

B1e
−ikx, x ∈ (x1, x2),

...
Bne

−ikx, x ∈ (xn−1, xn).

(4.38)

The gluing conditions (4.37) imply the following relations between consecutive amplitudes(
Aj−1
Bj−1

)
=
(
e−ikxj 0

0 eikxj

)
Rλj

(
eikxj 0
0 e−ikxj

)(
Aj

Bj

)
, (4.39)

while the anti-periodicity condition implies(
A0
B0

)
= −

(
eik2π 0
0 e−ik2π

)(
An

Bn

)
. (4.40)

This system of equations admits a non-zero solution if and only if k is such that

det
(
I+Rλ1

(
e−i k2π

n 0
0 ei k2π

n

)
Rλ2

(
e−i k2π

n 0
0 ei k2π

n

)
. . . Rλn

(
e−i k2π

n 0
0 ei k2π

n

))
= 0. (4.41)

It is convenient to define the polynomial

Pλ(z) = zn det
(
I+Rλ1

(
1/z 0
0 z

)
Rλ2

(
1/z 0
0 −z

)
. . . Rλn

(
1/z 0
0 z

))
, (4.42)

of degree 2n. This polynomial is palindromic, i.e. it satisfies Pλ(z) = z2nPλ(1/z), and it
has real coefficients. Let us call zj , j = 1, . . . , 2n, the roots of that polynomial. When
λ ∈ Rn, the roots lie on the unit circle |zj | = 1. This corresponds to having real solutions
for k in eq. (4.41). Therefore, in this case, we can write zj = eiθj with θj ∈ [0, 2π). Later,
when we will analytically continue our result, the relation between zj and θj will just be
θj = −iLog zj , without the property θj ∈ R.

The polynomial (4.42) can be rewritten in terms of its roots

Pλ(z) = const.×
2n∏

j=1
(z − eiθj(λ)), θj(λ) ∈ [0, 2π), (4.43)

and each root determines a family of solutions to the quantization condition (4.41) for k
via zj = eik2π/n. The set of all such solutions is then

Sλ =
2n⋃

j=1
n

(
Z+ θj(λ)

2π

)
. (4.44)
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Each k ∈ Sλ defines a Bogoliubov mode

ηk =
∫ 2π

0
dx [u∗k(x)ψ(x) + v∗k(x)ψ̄(x)], (4.45)

which automatically satisfies [H, ηk] = k ηk along with (ηk)† = η−k, and the canonical
anticommutation relations {η†k, ηq} = δk,q. Then the n-defect Hamiltonian (4.36) is diagonal
in terms of them,

H = 1
2
∑

k∈Sλ

kη†kηk, (4.46)

where the sum runs over all the solutions k of eq. (4.41). Alternatively, one can write it as

H =
∑

k∈S+
λ

k(ηkη−k − 1/2), (4.47)

where the sum is now restricted to the set of positive solutions, S+
λ = {k ∈ Sλ|k > 0}. This

expression is particularly convenient to compute the ground state energy.

4.3.2 Ground state energy

According to eq. (4.47), the ground state of the n-defect Hamiltonian (4.36) corresponds to
the configuration with all the positive modes k occupied. Its energy is

E(λ) = −1
2
∑

k∈S+
λ

k = −1
2

2n∑
j=1

∞∑
m=0

n

(
m+ θj

2π

)
. (4.48)

As in the n = 1 case above, these divergent series can be evaluated by zeta-regularization,
using eq. (4.31),

E(λ) = −n2

2n∑
j=1

ζ

(
−1, θj

2π

)
. (4.49)

If we apply the identity ζ(−1, a) = 1
24 −

(a−1/2)2

2 for the Hurwitz zeta function, then we obtain

E(λ) = n

2

2n∑
j=1

(
1
2

(
θj

2π − 1
2

)2
− 1

24

)
. (4.50)

This expression should be identified with the usual CFT formula for the ground state energy,
E = ∆n(λ) − c/12, with c = 1/2. Therefore, we find that for n equally-spaced defects
the scaling dimension ∆n(λ) is

∆n(λ) = −n
2 − 1
24 + n

4

2n∑
j=1

(
θj

2π − 1
2

)2
. (4.51)

This is the second main result of this paper section, which we will use to derive the Rényi
entanglement asymmetry of the critical XY spin chain in the next section, where we also
report the explicit expression of ∆n(λ) for n = 2 and 3. As a first check of eq. (4.51), note
that, when λ1 = λ2 = · · · = λn = 0, we must obtain ∆n(000) = 0. In fact, in that case, the
polynomial (4.42) is Pλ(z) = (zn + 1)2 and its roots are zj = ei2π

j−1/2
n , j = 1, . . . , n, all with

multiplicity 2. Therefore, we have θj = θj+n = 2π(j − 1/2)/n for 1 ≤ j ≤ n. Inserting these
roots in eq. (4.51) and performing the sum, we find ∆n(000) = 0 as it should be.
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4.4 Summary

For the convenience of the reader, let us briefly summarize the main result of this section.
It is the second important result of this paper. It gives the exact scaling dimension ∆n(λ)
associated with the insertion of n-equally-spaced marginal defects in the massless Majorana
fermion on a circle, with strengths λ1, . . . , λn. The result is given by eq. (4.51), which can
also be rewritten in the form

∆n(λ) = −n
2 − 1
24 + n

4

2n∑
j=1

(Log(−zj)
2πi

)2
, (4.52)

where Log(.) is the principal value of the logarithm, whose imaginary part takes values in
(−π, π] and its branch cut is taken along the negative real axis, and the zj ’s (j = 1, . . . , 2n)
are the 2n roots of the following polynomial of degree 2n:

Pλ(z) = zn det
(
I+Rλ1

(
1/z 0
0 z

)
Rλ2

(
1/z 0
0 z

)
. . . Rλn

(
1/z 0
0 z

))
, (4.53)

with
Rλ =

(
cosh λ sinh λ
sinh λ cosh λ

)
. (4.54)

We have derived this result for defect strengths λj ∈ R, but it can be analytically continued
to λj ∈ C. In particular, in what follows, we will take λj → iαj to derive the Rényi
entanglement asymmetry in the critical XY spin chain.

5 Rényi entanglement asymmetry in the critical XY spin chain

In this section, we derive the asymptotic behavior of the Rényi entanglement asymmetry
in the ground state of the critical XY spin chain using the results obtained above. At
the critical lines γ ̸= 0, |h| = 1, the charged moments Zn(α) behave as in eq. (2.18) for
large subsystem length ℓ. While the string tension Tn(α) is given by eq. (3.3), we have
found in section 4.3 that the scaling dimension ∆̃n(α) can be obtained, upon the analytic
continuation λ = iα, from eq. (4.52), which further requires to determine the roots of the
polynomial (4.53). Unfortunately, we are not able to find a general expression for these
roots. Here we first consider the cases n = 2 and 3, and we check our analytic prediction for
Zn(α) against exact numerical results in the ground state of the XY spin chain. We then
derive by applying the saddle point approximation discussed in section 2.2.3 the asymptotic
behavior of the Rényi entanglement asymmetry for any integer index n, and by analytically
continuing it, the replica limit n → 1.

5.1 Numerical checks

5.1.1 n = 2 charged moments

In the case of two defects located at the points indicated in the left panel of figure 5, the
polynomial of eq. (4.42) reads

Pλ(z) = cosh λ1 cosh λ2(1 + z4) + 2(1 + sinh λ1 sinh λ2)z2. (5.1)
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λ1λ2

n = 2

λ1

λ2

λ3

n = 3

λ1

λ2

λ3

λ4

n = 4

Figure 5. Disposition of the point defects on the circle in the calculation of the charged moments
Zn(α) for n = 2, 3 and 4. The circle has length 2π and the defect of strength λj is located at the
point xj = 2πj

n .

It is a bit cumbersome to write the roots explicitly, but using them in eq. (4.52) we arrive at
the formula for the scaling dimension associated with the insertion of two defects

∆2(λ1, λ2) =
1

2π2

[
arctan

(
tanh λ1

2

)
− arctan

(
tanh λ2

2

)]2
. (5.2)

To keep formulas compact, here we write the roots only in the special case λ2 = −λ1 = λ, which
is the case that we use below in our analysis of the asymmetry. In that case the four roots are:

z = ± i± sinh λ
cosh λ , (5.3)

and, taking θ = −i log z, their arguments are

θ1 = π − θ2 = 2arctan tanh(λ/2) + π

2 , (5.4)

θ3 = 3π − θ4 = 2arctan tanh(λ/2) + 3π
2 . (5.5)

Plugging them in eq. (4.52), we obtain

∆2(λ,−λ) =
2
π2 arctan2

(
tanh λ2

)
(5.6)

and, taking the analytic continuation λ = iα,

∆̃2(α,−α) = − 2
π2 arctanh2

(
tan α2

)
. (5.7)

Note that, in eq. (5.7), ∆̃2(α,−α) is only well-defined in the interval α ∈ (−π/2, π/2) since
the domain of definition of arctanh(x) is x ∈ (−1, 1). On the other hand, the ground state
of the critical XY spin chain is invariant under the subgroup Z2 ⊂ U(1) of spin flips, which
implies that the charged moments Z2(α) are periodic Z2(α+π) = Z2(α). Therefore, eq. (5.7)
must be extended outside the interval α ∈ (−π/2, π/2) such that this periodicity is satisfied,

∆̃2(α,−α) =

− 2
π2 arctanh2 (tan α

2
)
, α ∈ (−π/2, π/2),

− 2
π2 arctanh2

(
tan (π−α)

2

)
, α ∈ (−π,−π/2) ∪ (π/2, π).

(5.8)
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−π −π/2 0 π/2 π0

0.5

1

1.5

α1

−
∆̃

2
(α

)
n = 2

γ = 1, h = 1

γ = 0.3, h = 1

−π −π/2 0 π/2 π0

0.25

0.50

0.75

α1

−
∆̃

3
(α

)

n = 3

γ = 1.1, h = 1

γ = 0.5, h = 1

Figure 6. Scaling dimension ∆̃n(α) for two (left panel) and three (right panel) defects, which appears
in the asymptotic behavior of the charged moments Zn(α). For n = 2, we take α2 = −α1 and we vary
α1. For n = 3, we set α1 +α2 +α3 = 0 and change α1 with α2 = 1.9. The symbols have been obtained
numerically as detailed in the main text for the ground state of the XY spin chain along the critical
line γ > 0 and h = 1. The curves are the CFT prediction (4.52), that for n = 2 simplifies to (5.8).

In the left panel of figure 6, we numerically check this result. As we explain in appendix C,
the charged moments Zn(α) can be exactly calculated numerically in the ground state of
the critical XY spin chain with eq. (C.4). Using this expression together with eq. (3.3),
we compute log(Z2(α)eT2(α)ℓ) with α = (α,−α) for a fixed α and ℓ = 50, 60, . . . , 100 and
we fit the curve −∆̃2(α) log ℓ + const. to this set of points. In the plot on the left side of
figure 6, the symbols correspond to the values of ∆̃2(α) obtained in the fit for different
angles α and couplings (h = 1, γ), while the solid curve is the prediction of eq. (5.8). We
obtain a very good agreement between them.

The divergence of ∆̃2(α) in α = (±π/2,∓π/2) does not mean that the charged moment
is divergent itself but that the charged moment has a different scaling in ℓ. We numerically
observe that in this case the scaling is logZ2(α) = −T (α)ℓ + O

(
(log ℓ)2). In general, we

observe this anomalous scaling with a (log ℓ)2 term in the charged moment Zn(α) for every
n when at least one αj is equal to π/2. Being these points a measure zero set in the integral
for the asymmetry, the analysis performed in section 2.2.3 does not change.

5.1.2 n = 3 charged moments

For three defects at the positions of the middle panel of figure 5 on a circle, the polyno-
mial (4.42) is

Pλ(z) = Cλ + Sλz
2 + 2z3 + Sλz

4 + Cλz
6, (5.9)

with

Cλ = cosh λ1 cosh λ2 cosh λ3, Sλ = sinh λ1 sinh λ2 cosh λ3 + cycl. perm. (5.10)

To compute the coefficient ∆̃3(α) that enters in the asymptotic behavior of the charged
moment Z3(α), we have to impose λ1 + λ2 + λ3 = 0 due to the Dirac delta in eq. (2.8).
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z1z2

z3z4

ζ1

ζ2
C

Figure 7. Schematic representation of the contour integral that gives the scaling dimension ∆n(λ)
for the case n = 2. The zig-zag line is the branch cut [0,∞) of the function Log(z). The filled black
dots are the roots zj of the polynomial Pλ(z) and the white ones represent the poles of the integrand
in eq. (5.16), after expanding quadratically Pλ(z) in λ.

In that case, Sλ = 1 − Cλ and the polynomial has two equal roots z1 = z2 = −1. The
other four roots are

z3 = z∗4 =
√
Cλ +

√
Cλ − 1± i

√
1 + 2Cλ − 2

√
Cλ(Cλ − 1)

2
√
Cλ

,

z5 = z∗6 =
√
Cλ −

√
Cλ − 1± i

√
1 + 2Cλ + 2

√
Cλ(Cλ − 1)

2
√
Cλ

.

(5.11)

Plugging them in eq. (4.52) and performing the analytic continuation λ = iααα, we obtain the
analytic expression for ∆̃3(α). We numerically check it in the right panel of figure 6 as we
have done for the case n = 2. We can calculate the exact value of the charged moment Z3(α)
in the critical XY spin chain employing eq. (C.4) in the appendix. Combining it with eq. (3.3),
we compute log(Z3(α)eℓT3(α)) for a given α = (α1, α2,−α1 − α2) and ℓ = 50, 60, . . . , 100.
With the resulting set of points, we fit the function −2∆̃3(α)/3 log ℓ + const. In the plot
on the right side of figure 6, the symbols represent the coefficient ∆̃3(α) that we get in the
fit in terms of α for different couplings (h = 1, γ) and the curve is the CFT prediction of
eq. (4.52) using the roots (5.11). The agreement is excellent.

5.2 Asymptotic behavior of the entanglement asymmetry

We now compute the asymptotic behavior of the entanglement asymmetry for large subsystem
size ℓ applying the general result (2.30). As we have seen in section 3, for the U(1) group
that we are considering we have volG = 2π, dimG = 1, µ(0) = 1, and the symmetric
subgroup H is the Z2 spin-flip symmetry. The string tension Tn(α) is given by eq. (3.3),
Ht = t′′(0), and, according to eq. (3.6), t′′(0) = γ/(2(1 + γ)) at the critical lines |h| = 1.
Since dimG = 1, the matrices Dp, defined in eq. (2.24), that enter in the calculation of
the coefficient bn of the log ℓ/ℓ term are scalars and correspond to the eigenvalues νp of the
Hessian matrix of the scaling dimension ∆n(λ),

(H∆n)ab =
(
∂2∆n(λ)
∂λa∂λb

)
λ=0

, a, b = 1, . . . , n, (5.12)
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such that Dp = −2νp/n (recall that in our case βn(α) = 2
n∆n(iα)). Therefore, eq. (2.30)

reads in this case as

∆S(n)
A = 1

2 log ℓ+ an + bn
log ℓ
ℓ

+ · · · (5.13)

with

an = 1
2 log πt

′′(0)n
1

n−1

2 (5.14)

and

bn = 1
n(1− n)t′′(0)

n−1∑
p=1

νp. (5.15)

5.2.1 The Hessian of ∆n(λ)

The only missing ingredient are the eigenvalues νp of the Hessian (5.12) of the scaling
dimension ∆̃n(α). To calculate the latter, it is convenient to rewrite eq. (4.52) as a contour
integral using the residue theorem,

∆n(λ) =
1
2πi

∮
C
dzfn(z)

d
dz LogPλ(z), (5.16)

with

fn(z) = −n
2 − 1
48n + n

4

(
iLog(−z)

2π

)2
. (5.17)

The polynomial Pλ(z) is defined in eq. (4.53). The contour C encircles all the roots of Pλ(z)
as we depict in figure 7, leaving the branch cut of Log(z) outside of the region that it delimits.
The advantage of this approach is that we can easily calculate the second derivatives of
∆n(λ) at λ = 0 by expanding quadratically the polynomial Pλ(z) around this point. If
we rewrite (4.53) in the form

Pλ(z) = zn

{
2 + tr

[
Rλ1

(
1/z 0
0 z

)
. . . Rλn

(
1/z 0
0 z

)]}
, (5.18)

then it is easy perform the expansion,

Pλ(z) = P0(z)

1 + 1
2

n∑
a,b=1

λaλb
z2n−2|b−a| + z2|b−a|

(zn + 1)2

+O(λ3), (5.19)

where P0(z) = (zn + 1)2. If we plug it in the contour integral (5.16) and we integrate
by parts, we find

∆n(λ) = −1
2

n∑
a,b=1

λaλb

∮
C

dz
2πi

dfn(z)
dz

z2(n−|b−a|) + z2|b−a|

(zn + 1)2 +O(λ3), (5.20)

and
dfn(z)
dz = − n

8π2
Log(−z)

z
. (5.21)
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Observe that, according to this result, ∆n(λ) = 0, as expected. Therefore, the components
of the Hessian of ∆n(λ) can be identified with

(H∆n)ab = −
∮

C

dz
2πi

dfn(z)
dz

z2(n−|b−a|) + z2|b−a|

(zn + 1)2 . (5.22)

Given that 0 ≤ |b − a| ≤ n− 1, the numerator of the integrand above is, up to the Log(z)
factor, a polynomial. Since the cut of the logarithm lies outside the region enclosed by C, then
the only singularities the contribute to the integral are the zeros of zn +1 in the denominator,
ζj = ei 2π

n
(j− 1

2 ), j = 1, . . . , n. Applying the residue theorem, we have

(H∆n)ab =
n

8π2

n∑
j=1

res
[
Log(−z)

z

z2(n−|b−a|) + z2|b−a|

(zn + 1)2 , ζj

]
. (5.23)

These residues can be evaluated explicitly,

res
[
zp−1 Log(−z)
(zn + 1)2 , ζj

]
=
ζp

j

n2

(
1 + (p− n) iπ(2j − n− 1)

n

)
.

After summing them in eq. (5.23), we eventually find that the Hessian of ∆n(α) is a
circulant matrix,

(H∆n)ab = ca−b, with cl =
1

4π2 ×

1, if l = 0,
2π
n

l−n/2
sin( 2π

n
l) , if l = 1, . . . , n− 1,

(5.24)

as a consequence of the symmetry under the cyclic exchange of the replicas.

5.2.2 Application to the asymmetry

According to eq. (5.15), the coefficient of the log ℓ/ℓ term in the asymmetry is given by
the eigenvalues νp of the Hessian H∆n . In our case, since the it is a circulant matrix, the
eigenvalues are given by the Fourier transform of its entries,

νp =
n−1∑
l=0

cle
i 2πpl

n . (5.25)

Combining eqs. (5.15) and (5.25), and doing carefully the sums, we find that

bn = γ + 1
2γ ×


1

(1− n)π2 + 1
n(n− 1)π

n/2−1∑
l=1

csc
(2πl
n

)
, n even,

− 1
nπ2 − 1

n2(n− 1)π

n−1∑
l=1

(n− 2l) csc
(2πl
n

)
, n odd,

(5.26)

where we have taken into account that t′′(0) = γ/(2(γ + 1)). This result can be analytically
continued to non integer values of n by using the integral representation of the cosecant function

csc(πz) = 1
π

∫ ∞

0
dx xz

x2 + x
. (5.27)
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Applying it in eq. (5.26) for n even, we find

bn = −γ + 1
2γ

[
1

(n− 1)π2 + 1
n(n− 1)π2

∫ ∞

0

dx
x(x+ 1)

x2/n − x

1− x2/n

]
. (5.28)

It turns out this expression reproduces the exact values of the coefficient bn for n odd as
well, so eqs. (5.26) and (5.28) are equivalent expressions for all integer n.

Eqs. (5.26)-(5.28) are the third main result of this paper: we have arrived at the exact
expression for the coefficient bn of the log ℓ/ℓ term in the Rényi entanglement asymmetry
of the XY spin chain at criticality.

Finally, taking the replica limit n→ 1 in eq. (5.28), we find that the coefficient for the
(von Neumann) entanglement asymmetry is

lim
n→1

bn = −4 + π2

16π2
γ + 1
γ

. (5.29)

Thus, our final result is that the entanglement asymmetry at criticality in the XY spin chain is

∆SA = 1
2 log ℓ+ 1

2 log πγ

4(1 + γ) +
1
2 − 4 + π2

16π2
γ + 1
γ

log ℓ
ℓ

+ · · · (5.30)

We stress once again that what is remarkable here is the log ℓ/ℓ term, which only appears in
critical systems. We also stress that the ‘semi-universality’ of bn (in the sense of ref. [75])
is manifest here, because it depends on the parameter γ of the XY Hamiltonian. A truly
universal quantity —such as, for instance, the scaling dimension ∆n(λλλ) — would depend
only on the CFT data and not on the details of the underlying microscopic model, so it
would not depend on γ.

6 Conclusions

In this paper, we have analyzed the entanglement asymmetry in one dimensional critical
extended quantum systems using CFT methods. This observable measures how much a
symmetry is broken in a part of the system. Applying the replica trick, it can be obtained
from the charged moments of the subsystem’s reduced density matrix. We have seen that,
in the ground state of a 1+1 dimensional quantum field theory, using the correspondence
between the unitary operators that represent the symmetry group in the Hilbert space and
defect lines in the path integral approach, the charged moments can be identified with a
quotient of the partition functions of the theory on a Riemann surface with and without
defect lines inserted along each branch cut. When the state respects the symmetry, the
defects are topological and any deformation leaves the partition function invariant, yielding
a zero asymmetry. In this formulation, the entanglement asymmetry can be interpreted
as a measure of how much the defects are non topological. Utilizing well-known scaling
arguments for the partition function in two dimensions, we have deduced the asymptotic
behavior of the charged moments that provide the entanglement asymmetry. While for non
critical systems the moments decay exponentially with the subsystem size, see refs. [3, 4, 13],
in the critical case we have found that they contain an extra algebraic factor. The coefficient
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of the exponential decaying term can be interpreted as the line tension of the defects and is
non-universal; that is, it depends on the specific lattice realization of the field theory. The
exponent of the algebraic factor is universal and, therefore, it is fully determined by the
CFT that describes the critical point and depends on the properties of the defects associated
with the symmetry group. From this result, we have derived the asymptotic behavior of the
ground state entanglement asymmetry for a generic compact Lie group. Both for non-critical
and critical systems, it grows at leading order logarithmically with the subsystem size ℓ

and a coefficient proportional to the dimension of the Lie group. Criticality yields a log ℓ/ℓ
correction, which is semi-universal as its coefficient depends not only on the universal exponent
of the charged moments but also on the defect tension.

In the rest of the paper, we have specialized to the ground state of the XY spin chain,
which explicitly breaks the U(1) symmetry of spin rotations around the transverse axis. The
charged moments and the entanglement asymmetry of this model have been investigated
outside the critical lines in ref. [4] employing lattice methods. Here we have considered the
critical lines described by the massless Majorana fermion theory in the scaling limit, after
fermionizing it with a Jordan-Wigner transformation. In this case, the defect lines correspond
to a marginal deformation of this CFT. Exploiting conformal invariance, the universal
exponent that appears in the charged moments can be identified with the ground state energy
of the massless Majorana fermion theory on a circle with equi-spaced marginal point defects of
different strength. To obtain it, we have carefully diagonalized its Hamiltonian for an arbitrary
number of defects. Combining this result with those found in ref. [4] for the non-universal
exponential term, we have obtained an analytic expression for the entanglement asymmetry.

A crucial point in our problem is that the defects we are considering are marginal,
which makes non-trivial the dependence of the CFT partition function on them. As we have
already emphasized, the partition function hinges on the specific CFT and symmetry group
under study. Therefore, it would be desirable to consider other models and symmetries; for
example, the SU(2) group of spin rotations in the critical XXZ spin chain, whose continuum
limit is the massless compact boson. The correspondence between global symmetries and
(topological) defect lines that we exploit here can be enlarged to encompass higher-form
symmetries [17], symmetries generated by extended operators supported not only on lines
but also on higher dimensional manifolds, and non-invertible symmetries [82, 83], which
lack of an inverse element. It would be interesting to explore if the notion of entanglement
asymmetry can be extended to these generalized symmetries.
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A Fermionization and continuum limit of the XY spin chain

The fermionization of the XY spin chain is performed with the Jordan-Wigner transforma-
tion [84]. For completeness, we present it in multiple steps. First we map the spin chain to a
model with complex lattice fermions, the Kitaev chain. Then we further map the system to
lattice Majorana fermions. Finally, we take the continuum limit and get the Majorana CFT.

We consider the XY spin chain, writing explicitely the ferromagnetic coupling J . While
in the main text this is set to J = 1, here is important to have it in order to perform the
continuum limit carefully. The Hamiltonian then is

HXY = −J2
∑
j∈Z

(1 + γ

2 σx
j σ

x
j+1 +

1− γ

2 σy
j σ

y
j+1 + hσz

j

)
. (A.1)

Kitaev chain. The Jordan-Wigner transformation is

σx
j = e

iπ
∑

l<j
c†jcj

(
c†j + cj

)
, σx

j = e
iπ
∑

l<j
c†jcj i

(
c†j − cj

)
, σz

j = 1− 2c†jcj , (A.2)

and the operators cj , c
†
j satisfy the anticommutation relations {cj , cl} = 0 and {cj , c

†
l } = δjl.

Then the Hamiltonian (3.1) of the XY model is mapped to the Hamiltonian of the Kitaev chain

HKit = −J2
∑
j∈Z

[
c†jcj+1 + c†j+1cj + γ

(
c†jc

†
j+1 + cj+1cj

)
+ h

(
1− 2c†jcj

)]
(A.3)

and the charge QA for A = {1, . . . , ℓ} becomes QA =
∑

j∈A c
†
jcj .

It is well known that the XY model flows in the infra-red to the Ising CFT for h = 1, γ ∈ R.
Thus all these points in the parameter space belong to the same universality class. For
simplicity, we consider the case h = γ = 1.

Majorana chain. Each pair of complex fermion operators cj , c
†
j can be split in the following

pair of Majorana operators

c†j = 1
2 (a2j + ia2j+1) , cj = 1

2 (a2j − ia2j+1) , (A.4)

which satisfy the algebra a†j = aj and {aj , aj} = 2δjl. Then the Hamiltonian becomes

HMaj =
iJ

2
∑
j∈Z

aj+1aj (A.5)

and the charge

QA = 1
2
∑
j∈A

(1 + ia2j+1a2j) . (A.6)

Continuum limit. The continuum limit is performed by first defining the following new
Majorana lattice operators ψj , ψ̄j

a2j = ψj + ψ̄j , a2j+1 = ψj − ψ̄j , (A.7)
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which form two anticommuting families of Majorana fermions, with algebra

{ψj , ψl} = δjl, {ψ̄j , ψ̄l} = δjl, {ψj , ψ̄l} = 0. (A.8)

The Hamiltonian in these variables reads

HMaj′ =
iJ

2
∑
j∈Z

(
2ψjψ̄j + ψjψj−1 + ψ̄jψj−1 − ψjψ̄j−1 − ψ̄jψ̄j−1

)
(A.9)

and the charge

QA = 1
2
∑
j∈A

(
1 + i2ψjψ̄j

)
. (A.10)

Finally, we perform the continuum limit. We call the continuum variable x ∈ R and introduce
a lattice spacing s so that

ψj ≃ ψ(x)√
s
, ψj−1 ≃ ψ(x− s)√

s
≃ 1√

s
(ψ(x)− s∂xψ(x)). (A.11)

The continuum fields satisfy the algebra {ψ(x), ψ(y)} = δ(x − y), {ψ̄(x), ψ̄(y)} = δ(x −
y), {ψ(x), ψ̄(y)} = 0. The Hamiltonian becomes

H = J ′

2i

∫
R
dx
[
ψ(x)∂xψ(x)− ψ̄(x)∂xψ̄(x)

]
, (A.12)

where J ′ is the continuum version of J , given by J ′ = Js in the limit s → 0 and J → ∞.
Deriving the equations of motion for ψ and ψ̄, J ′ can be recognized to be the sound velocity,
which we set to 1. Finally, the charge operator, discarding the constant term in eq. (A.10)
that acts trivially on the Hilbert space, becomes

QA = i

∫
A
ψ(x)ψ̄(x) dx. (A.13)

B Defects in the Hamiltonian formalism

In this appendix, we consider a massless Majorana fermion on a line, with a defect implemented
as a localized mass term

Hµ = 1
2i

∫
R
(ψ∂xψ − ψ̄∂xψ̄) dx − iµψ(0)ψ̄(0), µ ∈ R. (B.1)

We show that this formulation is equivalent to the one given in the main text, where the
defect is only encoded in the gluing conditions. We provide the explicit relation between
the defect strength µ and the gluing parameter λ. We find that if the defect term in the
Hamiltonian is Hermitian, then λ has to be real. This is a further justification of the analytic
continuation α 7→ −iλ that is performed in the main text.

We have the following commutators

[Hµ, ψ(x)] = i∂xψ(x) + iµδ(x)ψ̄(0), (B.2)[
Hµ, ψ̄(x)

]
= −i∂xψ̄(x)− iµδ(x)ψ(0). (B.3)
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To relate this to gluing conditions at the origin, we can look for eigenmodes of that Hamiltonian
of the form

ηk =
∫
R

[
u∗k(x)ψ(x) + v∗k(x)ψ̄(x)

]
dx, (B.4)

with

uk(x) =

A0e
ikx, x < 0,

A1e
ikx, x > 0,

vk(x) =

B0e
−ikx, x < 0,

B1e
−ikx, x > 0,

(B.5)

for some constants A0, A1, B0, B1. This Ansatz gives the following commutator with the
Hamiltonian,

[Hµ, ηk] = kηk − i

(
A∗

0 −A∗
1 −

µ

2 (B
∗
0 +B∗

1)
)
ψ(0) + i

(
B∗

0 −B∗
1 − µ

2 (A
∗
0 +A∗

1)
)
ψ̄(0). (B.6)

We see that ηk is a Bogoliubov mode with energy k if the last two terms vanish. This
gives the constraint (

A0
B0

)
=

1+µ2/4
1−µ2/4

µ
1−µ2/4

µ
1−µ2/4

1+µ2/4
1−µ2/4

(A1
B1

)
. (B.7)

Thus, we recover the gluing condition (4.7) with the matrix (4.13) obtained after the analytic
continuation of the gluing parameter, provided that

µ

2 = tanh
(
λ

2

)
. (B.8)

C Numerical calculation of the charged moments

In this appendix, we report the formulae that we employ to compute numerically the charged
moments (2.9) for the U(1) group of spin rotations around the z axis in the ground state of the
XY spin chain (3.1). As we show in appendix A, this model maps into a quadratic fermionic
chain after the Jordan-Wigner transformation (A.2). Therefore, its ground state satisfies Wick
theorem. This implies that the reduced density matrix ρA of a single interval A of length ℓ is
Gaussian and it is fully determined by the 2ℓ× 2ℓ two-point fermionic correlation matrix [85]

Γjj′ = 2tr
[
ρA

(
cj

c†j

)
(c†j′ , cj′)

]
− δjj′ , (C.1)

with j, j′ = 1, . . . , ℓ. For the ground state of the XY spin chain, its entries are

Γjj′ =
∫ 2π

0

dk
2πG(k)e

−ik(j−j′), (C.2)

where G(k) is the 2 × 2 matrix

G(k) =
(

cos ξk −i sin ξk

i sin ξk − cos ξk

)
(C.3)

and cos ξk, sin ξk are given in eq. (3.4).
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After the Jordan-Wigner transformation, the transverse magnetization (3.2) that gener-
ates the U(1) symmetry is also quadratic and, consequently, Gaussian. Therefore, the charged
moments Zn(α) are the trace of a product of Gaussian operators. Using the well-known
properties of this kind of operators, the charged moments can be calculated in terms of
the two-point correlataion matrix Γ as

Zn(α) =

√√√√√det

(I − Γ
2

)n
I + n∏

j=1
Wj

, (C.4)

where Wj = (I + Γ)(I − Γ)−1eiαj,j+1nA and nA is a diagonal matrix with (nA)2j,2j = 1,
(nA)2j−1,2j−1 = −1, j = 1, · · · , ℓ. The detailed derivation of this expression can be found
in ref. [7]. We use it to obtain the exact numerical values of the charged moments in the
plots of figure 6.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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