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The nucleon-pair approximation (NPA) can be a compact alternative to full configuration-interaction (FCI) 
diagonalization in nuclear shell-model spaces, but selecting good pairs is a long-standing problem. While 
seniority-based pairs work well for near-spherical nuclides, they do not work well for deformed nuclides 
with strong rotational bands. We propose an alternate approach. We show how one can write any Slater 
determinant for an even number of particles as a general pair condensate, from which one can project 
out pairs of good angular momentum. We implement this by generating unconstrained Hartree-Fock 
states in a shell model basis and extracting S , D , and G pairs. The subsequent NPA calculations yield 
good agreement with FCI results using the same effective interactions.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Background and motivation

The nuclear shell model is a powerful framework for nuclear 
structure theory. But full configuration-interaction (FCI), that is, di-
agonalization of a Hamiltonian using all configurations in a given 
single-particle space, leads to exponentially exploding basis di-
mensions. Hence, the hunt for efficient truncation schemes is a 
key challenge. The nucleon-pair approximation (NPA) [1–3], based 
on the pair truncation of the shell model configuration space, is 
one appealing approach. The building blocks of the NPA are col-
lective/noncollective fermion pairs with good angular momentum, 
such as S D pairs (collective pairs with angular momentum zero 
and two). The NPA is flexible enough to contain other well-known 
methods. For example, if the model space contains only the col-
lective S pair, the NPA is exactly the generalized seniority scheme 
[4–6]; if all noncollective spin-zero pairs are considered, one ob-
tains seniority truncation (exact pairing) of the shell model [7]; 
if all possible fermion pairs are considered, the NPA configuration 
space is equivalent to FCI; and finally if the Pauli principle is ne-
glected, S D pairs reduce to sd bosons, the building blocks of the 
successful interacting boson model [8,9]. The NPA has been widely 
applied to describe low-lying states of nearly-spherical nuclei in 
mass regions with A ∼ 80, 100, 130, 210 (see Ref. [10] for a recent 
review). The competition between isovector and isoscalar pairing 
in N = Z nuclei has been investigated in the NPA with isospin 
symmetry [11,12]. Finally, the configuration mixing of many major-
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shell orbits can be treated in the NPA with particle-hole excitations 
[13].

The NPA has proven to be a compact truncation, but selecting 
good pairs remains a long-standing problem. In early applications 
of the NPA, which rested primarily upon S D-pair truncation, the 
structure coefficients of the collective S pair were found by solv-
ing the BCS equation, and the collective D pair was obtained by 
the commutation between the quadrupole operator Q̂ and the 
S pair-creation operator, Ŝ†, i.e., D̂† = [Q̂ , ̂S†]. In recent years it 
has been shown that NPA calculations can be improved if pair-
structure coefficients are determined by the generalized seniority 
scheme, namely, the S pair is chosen so that the expectation value 
of Hamiltonian in the S-pair condensate,

〈(Sτ )N |Ĥ|(Sτ )N〉
〈(Sτ )N |(Sτ )N〉 , with τ = π or ν, (1)

is minimized, and non-S pairs obtained by diagonalizing the 
Hamiltonian matrix in the space spanned by the generalized-
seniority-two (i.e., one-broken-pair) states [14]. While seniority-
based pairs provide good descriptions of collective states in 
semimagic nuclei and vibrational nuclei [15,16], they do not work 
well for rotational bands in deformed nuclei. For example, under 
the quadrupole-quadrupole interaction, the moment of inertia and 
the E2 transitions of the system with 6 valence protons and 6 va-
lence neutrons in the pf and sdg shells calculated by the S D-pair 
approximation are much smaller than those obtained by the FCI 
[17].

In this Letter we propose an alternate approach for even-even 
nuclides. We generate an unconstrained Hartree-Fock (HF) state in 
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a shell model basis, and then represent the Slater determinant as a 
pair condensate, from which we project out pairs of good angular 
momentum. We find good agreement between the subsequent NPA 
calculations and FCI diagonalization. This is the first time NPA cal-
culations with realistic shell model interactions have successfully 
reproduced rotational bands.

2. Methods

We start with unconstrained HF calculations in a shell model 
basis, that is, our HF states have arbitrary shape and orientation 
(and even parity mixing if the space contains single-particle or-
bits of both parities) without enforcing additional symmetries such 
as axial or time-reversal symmetry, using a previously developed 
code [18]. In general, the HF states have nonzero expectation val-
ues of the quadrupole tensor, and for simplicity we call them 
deformed HF. We use Greek letters α, β, . . . to label the original 
single-particle states with quantum numbers, including good an-
gular momentum, n, l, j, m, with fermion creation operator in this 
basis written as â†

α . The deformed single-particle states from our 
HF calculations, labeled by Latin letters a, b, . . . with creation op-
erator ĉ†

a , are a transformation of the original single-particle states:

ĉ†
a =

∑
α

Uaαâ†
α. (2)

The columns of U form orthonormal vectors, and so form part of 
a unitary transformation.

A Slater determinant for an even number of valence protons or 
neutrons can be written as a pair condensate:

2N∏
a=1

ĉ†
a|0〉 = (N!)−1

(
ĉ†

1ĉ†
2 + · · · + ĉ†

2N−1ĉ†
2N

)N |0〉

= (N!)−1

(∑
ab

gab ĉ†
aĉ†

b

)N

|0〉 (3)

The r.h.s. of Eq. (3) is a pair condensate, where g12 = g34 = . . . =
g(2N−1)(2N) = ±1, and other gij = 0. The ordering of 1,2,3,4... is ar-
bitrary, as is the phase ±1 in front of each noncollective pair. In 
general, for even-even nuclei the HF single-particle states have de-
generate time-reversed partners, and for simplicity we order by 
single-particle energy.

Using standard techniques [19] one can project out pairs of 
good angular momentum from the deformed HF pair

Ĉ† =
∑
ab

gabĉ†
aĉ†

b = 1

2

∑
αβ

Cαβ â†
αâ†

β (4)

where we’ve introduced the antisymmetric matrix

Cαβ =
∑
ab

gab
(
UaαUbβ − UbαUaβ

)
(5)

To facilitate our development, we separate out the jz quantum 
numbers (and order α, β without loss of generality), writing

Ĉ† =
∑

α≤β;kαkβ

Cαkα,βkβ
â†
αkα

â†
βkβ

, (6)

where kα, kβ are the z-projections of angular momentum in the 
“intrinsic” state, and α, β now contain all other quantum num-
bers.

Now we apply the rotation operator R̂(�), where � represents 
the Euler angles. For details see [19,20], but all we need are the 
Wigner D-matrices: any state with good angular momentum | J , K 〉
gets transformed under rotation as

R̂(�)| J , K 〉 =
∑

M

D( J )
M,K (�)| J , M〉. (7)

Applying this to the pair creation operator,

R̂(�)Ĉ† R̂−1(�) =
∑

α≤β;kαkβ

Cαkα,βkβ

×
∑

mαmβ

D( jα)

mαkα
(�)â†

αmα
D( jβ )

mβkβ
(�)â†

βmβ
. (8)

But using [20]

D( jα)

mαkα
(�)D( jβ )

mβkβ
(�) =

∑
J ′,μ,μ′

D( J ′)
μμ′(�)

×( jαmα, jβmβ | J ′μ)( jαkα, jβkβ | J ′μ′) (9)

we get

R̂(�)Ĉ† R̂−1(�) =
∑

α≤β;kαkβ

Cαkα,βkβ

∑
J ′,μ,μ′

×D( J ′)
μμ′(�)( jαkα, jβkβ | J ′μ′)

[
â†
α ⊗ â†

β

]
J ′,μ

. (10)

Now use the orthogonality of the D-matrices [20] to project out a 
pair

B̂†
J ,M K = 2 J + 1

8π2

∫
d�D( J )∗

M,K (�)R̂(�) Ĉ† R̂−1(�)

=
∑

α≤β;kαkβ

Cαkα,βkβ
( jαkα, jβkβ | J K )

[
â†
α ⊗ â†

β

]
J M

=
∑
α≤β

y J ,K (αβ)
[
â†
α ⊗ â†

β

]
J M

(11)

where the structure coefficients are defined by

y J ,K (αβ) =
∑
kαkβ

Cαkα,βkβ

( jαkα, jβkβ | J K )

1 + δαβ

. (12)

Of course, we want physically unique pairs, and not merely ro-
tated copies, as well as results independent of the arbitrary orien-
tation of the initial HF states. Hence we compute the norm matrix,

N( J M)

K ′ K = 〈0|B̂ J ,M K ′ B̂†
J ,M K |0〉

=
∑
α≤β

(1 + δαβ)y∗
J ,K ′(αβ)y J ,K (αβ), (13)

where we’ve used [21]

〈0|
[
â†
α ⊗ â†

β

]†

J ′M ′

[
â†
α ⊗ â†

β

]
J M

|0〉
= δ J ′ J δM ′M(1 + (−) J δαβ), (14)

and y J ,K (αα) = 0 for odd J . Note the norm matrix is independent 
of M . Now diagonalize∑

K

N ( J )
K ′ K g( J )

K ,r = ν
( J )
r g( J )

K ′,r (15)

The number of nonzero eigenvalues ν( J )
r is the number of unique 

pairs. Finally, we construct the unique collective pairs,
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Â†
J M(r) = (ν

( J )
r )−1/2

∑
K

g( J )
Kr B̂†

J ,M K

=
∑
α≤β

u( J )
r (αβ)

[
â†
α × â†

β

]
J ,M

, (16)

where

u( J )
r (αβ) = (ν

( J )
r )−1/2

∑
K

g( J )
Kr y J K (αβ). (17)

While these structure coefficients are calculated from a HF state 
with a particular orientation, the final result is independent of that 
orientation, which we confirmed numerically.

As mentioned above there is ambiguity in the choice of phases 
g(2i−1)(2i) in Eq. (3). In this work, the phases are chosen so that the 
amplitude is maximized for J = 0, 2. In our calculations we have 
always found the amplitudes for S D pairs to be large.

3. Results and discussion

To test the validity of collective pairs derived from a HF state, 
we perform calculations for four rotational nuclei with valence nu-
cleons outside doubly magic cores, both in the full configuration-
interaction space (using the BIGSTICK code [23,24]) and in the 
NPA. Specifically, we consider 52Fe in the f p shell with the 
KB3G interaction [25] with a 40Ca core, 68Se and 68Ge in the 
0 f5/21p0g9/2 shell using the JUN45 interaction [26] with a 56Ni 
core, and 108Xe in the 0g7/21d2s0h11/2 shell with a 100Sn core us-
ing the monopole-optimized effective interactions [27,28] based on 
the CD-Bonn potential renormalized by the perturbative G-matrix 
approach. We also calculate the reduced electric quadrupole tran-
sition probability, for which we take the standard effective charges 
(eπ , eν) = (1.5, 0.5) for 52Fe and 108Xe, and (1.5, 1.1) for 68Se and 
68Ge.

Much of the motivation for the NPA is the significantly re-
duced dimensionality, and our purpose here is to validate this 
new approach for application of the NPA to heavy nuclei be-
yond the reach of FCI calculations. Our FCI calculations are in 
the M-scheme (fixed total J z), and the largest dimension calcu-
lation was 68Se, with an J z = 0 dimension of 165 million basis 
states. The largest NPA dimensionality, in fixed J -scheme, was 
the band-mixing (labeled S DG (II) below) calculation for 68Se, for 
J = 4, with a dimension of 7,253 basis states. On a PC with an 
8-core 4 GHz CPU, the M-scheme full configuration code BIG-
STICK takes about 400 minutes, while the J -scheme NPA code 
takes 4 minutes in the truncated space. Recent work [29] suggests 
an M-scheme NPA code could run significantly faster, allowing one 
to reach much larger spaces. For comparison, the J -scheme full-
configuration code NuShellX [30] took about a day and a half 
(the untruncated J = 4 space has a dimension of 12.8 million ba-
sis states).

We start with 52Fe. As discussed above, for an even-even 
nucleus the HF single-particle orbits come in degenerate time-
reversed partners. If the system is axially symmetric, those part-
ners can have z-projection components ±m, in which case the 
collective pair in the HF defined in Eq. (3) is restricted to M = 0, 
and for each J there is one unique pair. From the prolate HF state 
of 52Fe we extract one S pair, one D pair, and one G pair. The am-
plitude of G pairs is non-negligible, and so in the NPA calculation 
of 52Fe, we construct our model space using S DG pairs.

Fig. 1 and Table 1 compare for the ground state band of 52Fe 
the experimental data [22], the FCI, and the S DG-pair approxima-
tion results. Both the level energies and the B(E2) values obtained 
by the S DG are in good agreement with the data or the FCI results, 
although the S DG predicts a slightly larger moment of inertia and 
slightly smaller B E2 values for 2+ → 0+ and 4+ → 2+ .
Fig. 1. Ground band of 52Fe. Experimental data from [22]. FCI = full configuration 
interaction, while S DG is our NPA calculation.

Table 1
B(E2 : I → I − 2) (W.u.) for 52Fe 
yrast states.

Iπ Expt. FCI S DG

2+ 14.2(19) 16.0 12.9
4+ 26(6) 21.3 16.6
6+ 10(3) 11.8 13.4
8+ 9(4) 7.2 9.0
10+ 6.4 5.2

Shape coexistence has been experimentally observed in 68Se 
[32] and reproduced by the FCI calculation with the JUN45 in-
teraction [26]. The ground rotational band is interpreted as an 
oblate deformation, and the low-lying side band as a prolate de-
formation. Our HF calculation produces an oblate minimum with 
〈β〉 = 0.22 and 〈γ 〉 = 60◦ and a prolate one with 〈β〉 = 0.21 and 
〈γ 〉 = 0◦ , separated only by 900 keV. From the above HF states, we 
obtained two different sets of S DG pairs, and the configuration 
spaces constructed by them are denoted by L1 and L2, respec-
tively. We carried out the NPA calculation of 68Se in two different 
ways: (I) the oblate and prolate bands are calculated by diagonal-
izing the Hamiltonian in the L1 and L2 spaces, respectively; (II) 
the oblate and prolate bands are calculated in the L1

⊕
L2 space, 

i.e., we mix the basis states from the two HF states.
Fig. 2 compares excitation energies from experiment [31], the 

FCI calculations, and the S DG-pair approximation (I) and (II). One 
sees that at low excitation energies the coexistence of the oblate 
and prolate bands is well reproduced by our S DG pairs. The low-
lying states calculated in S DG (II) are very close to the S DG (I) 
results, which means the configuration mixing between the oblate 
and prolate states is weak. Table 2 shows that the B(E2) values in 
these two bands obtained by the S DG (I) are very close to the FCI 
result. The quadrupole moments of the 2+

1 and 2+
2 states calculated 

by the S DG (I) are equal to +51 and −48 e-fm2, which are also 
very close to the FCI result. Both the FCI and the S DG predict 
the prolate bandhead is a 0+ state, which has not yet been found 
experimentally.

Similarly, 68Ge also has a low-lying side band, starting with 
the 0+

2 state at 1.754 MeV (see Fig. 3). Our unconstrained, unre-
stricted HF calculation produces two minima differing in energy 
by only 1.114 MeV, both of which are triaxially deformed: the 
first minimum has 〈β〉 = 0.17, 〈γ 〉 = 38◦ , and the second one has 
〈β〉 = 0.24, 〈γ 〉 = 44◦ . We confirm these local minima are stable, 
as the stability matrix, which is just the Tamm-Dancoff approxi-
mation matrix, has only positive eigenvalues [19]. From the above 
HF states, we obtained two different sets of S DG pairs, and the 
configuration spaces constructed by them are denoted by L1 and 
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Fig. 2. The ground rotational band (oblate) and the side band (prolate) of 68Se. Ex-
perimental data from [31].

Table 2
B(E2 : I → I − 2) (W.u.) for 68Se ground 
(oblate) and side (prolate) bands.

Iπ Expt. FCI S DG (I)

ground (oblate) band

2+ 27(4) 35.6 38.7
4+ 51.0 52.2
6+ 52.1 51.1
8+ 40.0 43.1

side (prolate) band

2+ 32.8 32.9
4+ 45.4 45.7
6+ 45.4 46.2
8+ 38.4 40.3

Fig. 3. The ground rotational band and the side band of 68Ge. Experimental data 
from [31].

L2, respectively. Similar to the case of 68Se, the NPA calculation of 
68Ge is carried out in two different ways, i.e., S DG-pair approxi-
mation (I) and (II).

For 68Ge, Fig. 3 and Table 3 compare experimental data [31], 
the FCI, and the S DG (I) and (II). The low-lying states calculated 
Table 3
B(E2 : I → I − 2) (W.u.) for 68Ge ground and side 
bands. In S DG (I) the bands are computed sepa-
rately; in S DG (II) they are mixed.

Iπ Expt. FCI S DG (I) S DG (II)

ground band

2+ 15.3(8) 28.1 23.9 25.4
4+ 12.8(15) 38.6 31.3 35.1
6+ 12(4) 44.9 28.4 35.2
8+ 14(3) 32.6 13.8 28.6

side band

2+ 22(7) 21.8 35.3 24.1

Fig. 4. The ground rotational band and B(E2 : I → I − 2) of 108Xe.

in S DG (II) are in good agreement with the FCI results, but those 
from S DG (I) are not. For example, the excitation energy of the 0+

2
state in S DG (II) is 1.781 MeV, close to experimental data, but that 
from S DG (I) is only 0.644 MeV. The B(E2) values given by S DG
(II) are very close to the FCI results, but S DG (I) yields smaller 
values for the ground band and a larger value for the side band. 
The above results indicate that the configuration mixing between 
the two different HF states is important in the ground and side 
bands of 68Ge.

The N = Z isotope of 108Xe has been observed recently [33], but 
the low-lying spectrum has not yet been experimentally studied. 
Our HF calculation of 108Xe has triaxial deformation (〈γ 〉 = 11◦). 
From this HF state, we obtain one S pair, two D pairs, two G pairs, 
and two I pairs (collective pairs with spin six). The amplitudes of 
the second DG I pairs are relatively much smaller than those of the 
first ones. For 108Xe, we focused on the ground rotational band, 
and thus our NPA model space is constructed from only the first 
S DG pairs. Since the amplitude of the first I pair is non-negligible, 
we also perform an NPA calculation in the space constructed by 
using the first S DG I pairs.

Fig. 4 compares the excitation energies and B(E2) values be-
tween the FCI results, the S DG- and S DG I-pair-approximation 
results for 108Xe. The level energies of the low-lying 2+ and 4+
states obtained by the S DG are in quite good agreement with 
the FCI results, and the same to the B(E2) values for 2+ → 0+
and 4+ → 2+ . However, for higher-spin states we see increasing 
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discrepancy, suggesting the collective I pair may be important. In-
deed, for level energies and B(E2) values, the agreement between 
the S DG I and the FCI results are significantly improved, even if the 
former predict a moment of inertia slightly larger than the latter 
and B(E2) values slightly smaller than the latter. While these re-
sults are satisfactory, if the second D pair, which appears because 
of triaxial deformation, is included in the basis states (for simplic-
ity the maximum number of the second D pair is constrained to 
one), results are further improved (see S DG I D ′ in Fig. 4).

4. Summary and acknowledgments

In this paper, we propose a simple and practical approach to 
generate collective nucleon pairs of good angular momentum for 
realistic NPA calculations for even-even rotational nuclei. We recast 
HF states, computed in a shell model basis, as a pair condensate, 
from which we project out pairs of good angular momentum. Ap-
plying this method to calculations of 52Fe, 68Se, 68Ge, and 108Xe 
with effective interactions, we find that the S DG pairs obtained 
by our approach provide us with good descriptions for low-lying 
states of the rotational bands and the phenomenon of shape co-
existence, and that a high-spin I pair is responsible for high-spin 
states of 108Xe.

One can generalize this approach further. For example, if one 
replaces the pair condensate in Eq. (3) with a wave function(

ĉ†
1ĉ†

2 + · · · + ĉ†
2�−1ĉ†

2�

)N |0〉, (18)

where 2� is the number of single-particle states in the space, one 
has something akin to a seniority-zero wave function. One can also 
replace Eq. (3) with a number-projected BCS wave function(∑

a

gaā ĉ†
aĉ†

ā

)N

|0〉, (19)

where aā are time-reversed orbits, and gaā is the occupation prob-
ability. The generalization with the number-projected BCS is rea-
sonably expected to further improve validity of the NPA.

It should be noted that for rotational nuclei, the NPA truncates 
the shell model configuration space in the spherical single-particle 
basis, while the adopted collective pairs are projected out from the 
deformed HF, connecting the spherical shell model with deformed 
models. This work also suggests the microscopic foundation of the 
interacting boson model for deformed nuclei in terms of nucleon 
degree of freedom. A boson mapping from shell model effective 
interactions would be very interesting.

With this approach the NPA can be a practical and powerful 
truncation scheme of the shell model to study quadrupole defor-
mation, nuclear shape-phase transition, and octupole collectivity 
in low-lying states of heavy nuclei which are difficult to be real-
ized in the large-scale FCI due to huge dimensions of configuration 
space.
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