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We combine Newton’s variational method with ideas from eigenvector continuation to construct a fast 
& accurate emulator for two-body scattering observables. The emulator will facilitate the application 
of rigorous statistical methods for interactions that depend smoothly on a set of free parameters. Our 
approach begins with a trial K or T matrix constructed from a small number of exact solutions to the 
Lippmann–Schwinger equation. Subsequent emulation only requires operations on small matrices. We 
provide several applications to short-range potentials with and without the Coulomb interaction and 
partial-wave coupling. It is shown that the emulator can accurately extrapolate far from the support 
of the training data. When used to emulate the neutron-proton cross section with a modern chiral 
interaction as a function of 26 free parameters, it reproduces the exact calculation with negligible error 
and provides an over 300x improvement in CPU time.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Nuclear scattering experiments yield invaluable data for testing, 
validating, and improving theoretical models such as chiral effec-
tive field theory (EFT) [1–4]—the method of choice for deriving 
microscopic nuclear interactions at low energies. However, there 
are competing formulations of chiral EFT with open questions on 
issues including EFT power counting, sensitivity to regulator ar-
tifacts, and differing predictions for medium-mass atomic nuclei. 
Low-energy nuclear scattering data combined with rigorous statis-
tical methods such as Bayesian parameter estimation [5], model 
comparison [6], and sensitivity analysis [7] applied to chiral EFT 
predictions will provide important insights to address these issues 
[8].

But taking full advantage of the available data using such sta-
tistical methods requires fast & accurate predictions across a wide 
range of model parameters. While, in principle, the scattering 
equations can be solved accurately in few-body systems, doing so 
is prohibitively slow for statistical analyses of three- and higher-
body scattering, and even for two-body scattering more efficient 
alternatives are appealing.

In this Letter, we study such an alternative for two-body scat-
tering that has the potential of future extensions to higher-body 
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systems. We introduce an efficient emulator of the Lippmann–
Schwinger (LS) integral equation using Newton’s variational method 
[9,10] combined with ideas from eigenvector continuation (EC) 
[11,12]. The term emulator refers here to an algorithm capable 
of approximating the exact solution of a scattering problem with 
high accuracy while requiring only a fraction of the computational 
resources.

The power of EC as an emulator stems from the fact that, as the 
Hamiltonian parameters are varied, the trajectory of each eigenvec-
tor remains within a small subspace compared to the full Hilbert 
space. Linear combinations of eigenvectors spanning this subspace 
are extremely effective trial wave functions for variational cal-
culations (see also the reduced basis method [13,14]). Emulators 
based on EC have accurately approximated ground-state properties 
such binding energies and charge radii, and even transition ma-
trix elements [7,15–17]. Additionally, EC has recently been used to 
construct effective trial wave functions for applying the Kohn vari-
ational principle to emulate two-body scattering observables [18], 
and for R matrix theory calculations of fusion observables [19]. 
As we will show in this Letter, Newton’s variational method has 
the feature that scattering observables can be predicted using trial 
scattering matrices (e.g., the K matrix) rather than trial wave func-
tions. But emulated wave functions can still be obtained [9,20].

The remainder of this work is organized as follows. In Sec. 2 we 
briefly describe the formalism underlying the emulator. We then 
present in Sec. 3 several applications to short-range potentials with 
and without the long-range Coulomb interaction and partial-wave
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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coupling. In addition to phase shifts, we study the neutron-proton 
(np) total cross section by combining multiple emulators across a 
set of (coupled) partial waves to assess the accuracy and speedup 
of the emulator in realistic scattering scenarios. We conclude this 
Letter in Sec. 4, and refer to the Appendices for more technical de-
tails including the emulation of gradients required by some Monte 
Carlo samplers and optimizers. We use natural units in which 
h̄ = c = 1. The self-contained set of data and codes that gener-
ates all results shown in this Letter will be made publicly available 
[21].

2. Formalism

We aim to construct an efficient emulator for the LS equation 
given a short-range potential V (�a) that depends smoothly on a 
set of parameters �a, such as the low-energy couplings of a chi-
ral potential. Specifically, we consider here the LS equation for the 
scattering K matrix, which reads in operator form1

K = V + V G0 K , (1)

with the free-space Green’s function operator G0(Eq) at the on-
shell energy Eq = q2/2μ and reduced mass μ. The energy de-
pendence is implicit in what follows. We stress that using the 
K matrix is just a convenient choice. In fact, T (±) can be emulated 
by imposing the associated boundary conditions on G0. Although 
the LS equation (1) has the formal solution

K = (1− V G0)
−1 V , (2)

evaluating Eq. (2) in a given basis can be prohibitively slow for 
large-scale Monte Carlo sampling because of the fine (quadrature) 
grids typically necessary to obtain high-accuracy results.

Instead of solving the LS equation (1) directly for each sampling 
vector �a, we propose a variational approach starting with a trial 
K matrix motivated by EC:

K̃ ( �β) =
nt∑

i=1

βi Ki . (3)

Here, {Ki ≡ K (�ai)}nt
i=1 are the exact solutions of the LS equation (1)

for the training set {�ai}nt
i=1, while {βi}nt

i=1 are a priori unknown 
coefficients.2 To determine these coefficients at each �a, we apply 
Newton’s variational method [9,10], which provides a stationary 
approximation to the exact scattering K matrix using the func-
tional

K[K̃ ] = V + V G0 K̃ + K̃ G0 V − K̃ G0 K̃ + K̃ G0 V G0 K̃ , (4)

given a trial matrix K̃ such as the one in Eq. (3). The functional (4)
is stationary about exact solutions of the LS equation, i.e., K[K +
δK ] = K + (δK )2.

In practice, we determine the stationary solution of the func-
tional (4) in a chosen basis and emulate the scattering K matrix as 
the matrix element 〈φ′|K |φ〉. For example, one could choose |φ〉
to be a plane-wave partial-wave basis |k�m〉 with momentum k
and angular momentum quanta (l, m), or one could keep the an-
gular dependence explicit via |φ〉 = |k〉 in a single-particle basis. 
We are interested in emulating K at the on-shell energy Eq , so 

1 All subsequent equations work for any boundary conditions imposed via G0, 
although we use its principal value formulation here. That is, using G(±)

0 and making 
the replacement K → T (±) will yield an emulator for T (±) .

2 The coefficients are not normalized, i.e., ∑nt
i=1 βi 	= 1, as opposed to the Kohn 

variational approach in Ref. [18].
2

then k = k′ = q for |φ〉 and 〈φ′|. Expressed in the chosen basis, 
simplifying the functional (4) after inserting (3) yields

〈φ′|K(�a, �β)|φ〉 = 〈φ′|V (�a)|φ〉 + �βᵀ �m(�a) − 1

2
�βᵀM(�a) �β, (5)

with

mi(�a) = 〈φ′| [Ki G0 V (�a) + V (�a)G0 Ki] |φ〉 , (6)

Mij(�a) = 〈φ′| [Ki G0 K j − Ki G0 V (�a)G0 K j

+ K j G0 Ki − K j G0 V (�a)G0 Ki] |φ〉 . (7)

If the potential V (�a) is linear in the parameter vector �a, then �m
and M can be efficiently reconstructed by linear combinations of 
matrices pre-computed during the training phase of the emulator. 
This results in substantial improvements in CPU time, e.g., for chi-
ral nucleon-nucleon (NN) interactions.

By imposing the stationary condition dK/d �β = 0, one then 
finds �β�(�a) such that M �β� = �m. Given that the optimal �β�(�a) yields 
a trial matrix (3) with an error δK , we insert �β� in Eq. (5) to obtain 
an error (δK )2. The resulting emulator K�(�a) ≡K(�a, �β�) is then

〈φ′|K |φ〉 ≈ 〈φ′|K�|φ〉 = 〈φ′|V |φ〉 + 1

2
�mᵀM−1 �m. (8)

Equations (6)–(8) are the main expressions for emulating scatter-
ing observables with short-range interactions. We extend the im-
plementation to the long-range Coulomb potential in Sec. 3.2.3

The EC-motivated trial K matrix (3) causes increasingly ill-
conditioned matrices M with increasing number of training points 
nt . To control the numerical noise in the evaluation of Eq. (8), we 
follow Ref. [18] and add the regularization parameter η = 10−12 to 
the diagonal elements Mii . This is a relatively simple yet effective 
approach compared to other regularization methods [22].

Besides numerical instabilities, Newton’s variational method 
can also exhibit spurious singularities [23], similar to the so-called 
Kohn (or Schwartz) anomalies [24,25] observed in applications of 
the Kohn variational principle [26,27]. For instance, we expect spu-
rious singularities to occur at energies where M is singular, i.e., 
when there is no (unique) stationary approximation to the K ma-
trix due to the functional (4). Different methods to mitigate these 
singularities have been proposed in the literature [28,29]. Recently, 
Ref. [30] demonstrated that an EC-driven emulator that assesses 
the consistency of results obtained from a set of Kohn variational 
principles (with different boundary conditions) is effective in de-
tecting Kohn anomalies. If detected, they can be mitigated at a 
given energy, e.g., by changing the number of training points used 
for emulation. A similar approach could be applied here; however, 
we have not encountered issues related to spurious singularities 
in our comprehensive proof-of-principle calculations presented in 
Sec. 3.

In Appendix A, we show that our approach also allows for gra-
dients with respect to model parameters to be straightforwardly 
propagated. This is an important feature since many optimization 
and sampling algorithms require gradients. In Appendix B, we dis-
cuss a simple and computationally efficient method to evaluate 
products involving Green’s functions in the partial-wave basis.

3. Results

Throughout this section, we use the convention that K� =
− tan δ� (which is opposite to Ref. [18]) with all factors of π , the 
reduced mass, and momentum accounted for.

3 Emulating the wave function could follow from working out |ψ(�a)〉 = |φ〉 +
G0K�(�a) |φ〉, where again the appropriate boundary conditions are implied by the 
choice of G0 [9,20].
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Fig. 1. Nucleon-nucleon 1 S0 phase shifts δ0 (top panel) and their absolute residuals 
relative to the exact solutions (bottom panel) for the Minnesota potential [31]. The 
training parameters consist of four sets of potential depths in Eq. (9), and the exact 
phase shifts corresponding to these training points are depicted by the gray lines. 
For details, see the main text.

3.1. The Minnesota potential

Following Ref. [18], we apply our emulator to the Minnesota 
potential [31] in the 1 S0 channel as a simple test case:

V (r) = V 0R e−κR r2 + V 0se−κsr2
. (9)

The values best reproducing NN scattering phase shifts are V 0R =
200 MeV and V 0s = −91.85 MeV, as well as κR = 1.487 fm−2 and 
κs = 0.465 fm−2 [31]. We use the same parameter set as in 
Ref. [18] for training, i.e., (V 0R , V 0s) = {(0., −291.85), (100., 8.15), 
(300., −191.85), (300., 8.15)} in units of MeV, and keep κR and 
κs fixed at their best values. Fig. 1 shows the emulated 1 S0 phase 
shifts (top panel) and the absolute residuals (bottom panel) as a 
function of the center-of-mass energy at the best-fit values. For 
comparison, the phase shifts corresponding to exact solutions of 
the LS equation (1) for the 4 training points are depicted as gray 
lines. The emulated phase shifts reproduce well the exact results, 
as quantified by the absolute residuals in the bottom panel.

We now demonstrate that the emulator is also a robust tool 
for extrapolations. We set the Minnesota potential parameters 
(V 0R , κR , κs) to their best fit values, train on only two purely 
repulsive parameter sets with V 0s = 30 and 100 MeV, and then 
extrapolate to purely attractive potentials (capable of supporting 
bound states). Fig. 2 shows the resulting on-shell K matrices in the 
1 S0 channel obtained using our emulator (colored dots) in compar-
ison to the exact solutions of the LS equation (black lines). Each set 
of colored dots corresponds to a specific center-of-mass energy in 
the range 1–70 MeV (see the legend for details). The two training 
points are depicted by the open circles, and the cross marks the 
location of the best-fit value for V 0s . As the figure illustrates, the 
emulator can accurately extrapolate far away from the two training 
points even after passing through poles in both K and K −1.

3.2. Including the Coulomb interaction

Long-range interactions, such as the Coulomb interaction, are 
problematic for the LS equation approach whether or not an em-
ulator is employed. Nevertheless, we can include the Coulomb in-
teraction via the Vincent-Phatak method [32,33]. The basic idea is 
to cut off the Coulomb potential at a finite radius so that Eq. (1)
3

Fig. 2. The emulator as a robust tool for extrapolation: on-shell K matrix in the 1 S0

channel at fixed center-of-mass energies as a function of the Minnesota potential 
parameter V 0s . The exact solutions of the LS equation are shown as black lines 
and the emulator predictions as colored dots. Each set of colored dots corresponds 
to a specific center-of-mass energy (blue: 1 MeV, orange: 15 MeV, green: 30 MeV, 
red: 50 MeV, and purple: 70 MeV). Only the two training points, depicted by the 
open circles, were used. The cross marks the location of the best value for V 0s

corresponding to Fig. 1. See the main text for more details.

applies and then restore this physics using a matching proce-
dure. Specifically, we emulate the K matrix from the potential 
V rc (r, r′) = V s(r, r′) + V rc

C (r)δ(r −r′)/(rr′), where V s(r, r′) is a (non-
local) short-range potential and

V rc
C (r) = V C (r)θ(rc − r) (10)

is the Coulomb potential cut off at a radius rc large enough 
such that the short-range potential V s is negligible. The modi-
fied potential V rc (r, r′) is short-ranged and hence compatible with 
Eqs. (6)–(8); this is the potential we use to train the emulator.

Suppose we want to emulate the K matrix in an uncoupled 
partial-wave channel with angular momentum �. Solving Eq. (8)
with V rc

� yields the associated K rc
� , but this is an artificial quan-

tity representing the phase shift relative to the free radial wave 
functions, i.e.,

urc
� (q, r) = j�(qr) + K rc

� y�(qr), for r � rc, (11)

expressed in terms of the regular j�(qr) and irregular y�(qr)
Riccati-Bessel function. To obtain the phase shifts with respect to 
the Coulomb wave functions (Sommerfeld-parameter dependencies 
being implicit), i.e.,

u�(q, r) = J�(qr) + K C
� Y�(qr), for R � r � rc, (12)

we match the logarithmic derivatives of Eqs. (11) and (12) at r =
rc . (Here R is the range of the short-range potential.) This amounts 
to computing

K C
� = − J� − A� J ′

�

Y� − A�Y ′
�

, where A� = j� + y�K rc
�

j′� + y′
�K rc

�

(13)

and primes denote derivatives with respect to r. Now, both K C
� =

− tan δC
� and the phase shift δC

� are with respect to the Coulomb 
wave functions such that the dependence on the choice of rc has 
been removed. Note that the above relies on a sign convention 
where, e.g., y0 ∼ − cos(qr) and similarly for Y0. Each of j� , y� , J� , 
Y� and their derivatives can be computed once and stored for em-
ulation purposes. Solving for K C need only be performed for the 
�
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Fig. 3. Proton-alpha 1 S0 phase shifts δC
0 with respect to Coulomb wave functions for 

the non-local potential (14) (top panel). Notice the small absolute residuals (bottom 
panel) that were obtained with only four training points. For more details, see the 
caption of Fig. 1 and the main text.

on-shell matrix and is a quick post-processing step for the emula-
tor.

We apply this approach, with rc = 20 fm, to proton-α scattering 
with the non-local potential [34]4

V�(r, r′) = V (0)
pα,�r′�r�e−β�(r+r′) (14)

in the S-wave; i.e., � = 0. With the four training points V (0)
pα,� =

{−30, −1, 1, 10} fm−3 and β0 = 0.8 fm−1, the emulator accurately 
predicts the phase shift at the optimal value of V (0)

pα,� = −6.5 fm−3

[34], as shown in Fig. 3. Across the energy range shown in the 
figure, Ecm � 60 MeV, the absolute residuals in the phase shift em-
ulator (bottom panel) are negligible. The high accuracy obtained is 
remarkable because computing the phase shift at each energy only 
involves inverting a 4 × 4 matrix.

3.3. Coupled channels

The straightforward extension to scattering in coupled chan-
nels is one of the strengths of our emulator approach. In fact, 
Eqs. (6)–(8) handle them as a special case. Although the term cou-
pled channels can also refer to different reaction channels, in the 
following we specifically consider coupled (spin-triplet) partial-
wave channels.

For potentials that are coupled across nc different channels 
(e.g., nc = 2 for the deuteron), solving the LS equation exactly for 
one on-shell point requires solving a linear system of dimension 
ncnk × ncnk , with nk being the size of the mesh for an uncoupled 
channel. The coupled-channel emulator with nt training points in-
stead only involves operations on an nt × nt matrix for each de-
sired matrix element of K , where nt � nk . Generally, this requires 
running at most nc(nc + 1)/2 of such emulations because the re-
maining matrix elements can be determined by symmetry.

We apply this approach to np scattering in the coupled 
3 S1–3 D1 channel. The potential used here is the semilocal mo-
mentum-space (SMS) regularized chiral potential at N4LO+ con-
structed by Reinert, Krebs, and Epelbaum with momentum cutoff 

4 This non-local potential includes a factor of rr′ consistent with the convention 
V (r, r′) = V (r)δ(r − r′) for a local potential. Note that V (0)

pα,� includes a factor of 2μ.
4

 = 450 MeV [35]. At this chiral order the 3 S1–3 D1 channel de-
pends on na = 6 non-redundant parameters, or low-energy con-
stants (LECs), in the NN sector [35]. We choose nt = 2na = 12
training points randomly in the range [−5, 5], where the unit of 
each parameter is as given in Ref. [35] and left implicit here. The 
emulator’s predictions are then validated at the best values of the 
parameters found in Ref. [35]. We use a compound Gauss–Legendre 
quadrature mesh of 80 momentum points to exactly solve the LS 
equation at the training points.

Fig. 4 shows the resulting on-shell K matrix obtained from 
the exact calculation and emulator as a function of the laboratory 
energy. Each column corresponds to a different partial-wave com-
ponent of the K matrix. The emulator accurately reproduces the 
exact K matrix elements across the wide range of energies shown, 
1–350 MeV. Except for a spike near the energy region where the K
matrix is singular, the residuals are on the order of 10−12. These 
errors are far beneath the experimental uncertainties if the K ma-
trix were to be converted to phase shifts [36].

3.4. The scattering cross section

We now combine multiple partial-wave emulators into an over-
all emulator for nuclear observables. As a simple example, we 
show np total cross sections using partial waves up to jmax =
20—again with the  = 450 MeV N4LO+ SMS potential [35], which 
reproduces well the total cross sections from the partial-wave anal-
ysis [36] over a wide range of laboratory energies. This requires 
training partial-wave emulators across singlet and triplet channels 
up to j = 4, while the remaining waves are fixed with respect to �a. 
There are a total of 26 free parameters in �a. The nt training loca-
tions are again chosen randomly in [−5, 5], where nt is determined 
based on the na NN LECs in each partial wave via nt = max(2na, 4).

Upon emulating K j , the total cross section can be calculated via

σtot(q) = − π

2q2

jmax∑
j=0

(2 j + 1)Re
{

Tr
[

S j(q) − 1
]}

, (15)

where S j = 1 + 2i(1 + iK j)
−1 K j and q is the center-of-mass mo-

mentum. Both S j and K j are 4 × 4 matrices that contain both 
the triplet-triplet and the singlet-triplet channels. Fig. 5 shows the 
emulated σtot at the optimal values of �a determined in Ref. [35]. 
The emulator has an error � 10−10 mb for E lab > 50 MeV. For 
E lab < 50 MeV, the error is � 10−8 mb except for the spike due 
to the singular K matrix in the 3 S1–3 D1 channel, as discussed in 
Sec. 3.3. In either case, these errors are vanishingly small compared 
to both the size of the cross section itself and its experimental un-
certainty [36].

When randomly sampling 500 values of the NN LECs in the 
range of [−15, 15]—an extrapolation of ±10 beyond the range of 
the training data (in the appropriate units)—the average absolute 
emulator error is less than 10−7 mb. Furthermore, the emulator 
provides a factor of > 300x improvement in terms of CPU time 
relative to the exact calculation. If the size of the momentum mesh 
used in the LS equation is increased from 80 to 160 quadrature 
points, then the factor becomes > 1000x. Further acceleration can 
be expected as finer momentum meshes are used in solving the LS 
equation, and as �a enter into higher partial waves at higher chiral 
orders.

Meaningful comparisons of the speed and accuracy obtained 
here with the emulators in Refs. [18,30] requires, at least, that 
all calculations be performed in the same space. For this bench-
mark, we have implemented the Kohn variational principle with 
uncoupled channels in momentum space. Our findings so far indi-
cate that the two variational methods are comparable in accuracy 
(for the same quadrature rule) for the chiral potential, although 
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Fig. 4. The partial-wave components of the on-shell K matrix for the 3 S1–3 D1 coupled channel in np scattering. From left to right: pure D-wave, pure S-wave, and mixed 
S–D-wave component. The predictions are made using the semilocal chiral NN potential N4LO+ SMS regularized with momentum cutoff  = 450 MeV, which depends on 6 
parameters. We use 12 randomly selected �a values in [−5, 5] (in the appropriate units) to train the emulator, whose exact predictions are shown in gray. For more details, 
see the caption of Fig. 1 and the main text.
Fig. 5. The np total cross section using the  = 450 MeV N4LO+ SMS potential [35]
up to jmax = 20. The inset shows the mean absolute error between the emulator 
and the exact solution for 500 different samples of the NN LECs �a (red line) as well 
as the absolute residual at the best-fit �a. These errors are negligible compared to 
any experimental uncertainties. See the main text for more details.

the relative speedups are implementation dependent. More work 
is necessary to provide more quantitative comparisons.

We also compare the accuracy of our emulator to a promising 
accelerator for NN scattering observables developed in Ref. [37]. 
Instead of a variational method, Miller et al. employed the wave-
packet continuum discretization (WPCD) method to approximate 
scattering solutions at multiple energies at once. This method 
is well-suited for parallelization using Graphics Processing Units, 
which can lead to significant speedups compared to exact calcula-
tions via conventional matrix inversion. Depending on the labora-
tory energy and the number of wave packets included, Miller et al.
reported averaged errors in the total cross section on the order of 
1 mb at best based on the chiral interaction NNLOopt [38]. These 
errors suggest that our emulator motivated by EC can provide sig-
nificantly higher accuracies, even when only a few training points 
per partial-wave channel are used. A quantitative comparison of 
the methods’ efficiencies, however, would require a scattering sce-
nario with matching nuclear interactions.

4. Summary and outlook

We showed that Newton’s variational method combined with 
ideas from eigenvector continuation allows for the construction of 
5

a fast & accurate emulator for two-body scattering observables. 
Our approach begins with a trial K or T matrix constructed from a 
small number of exact solutions to the LS equation in the param-
eter space of the Hamiltonian. Subsequent emulation only requires 
linear algebra operations on low-dimensional matrices.

We then provided several applications to short-range poten-
tials with and without the Coulomb interaction and partial-wave 
coupling. In all cases studied, the emulator is capable of reproduc-
ing phase shifts and total cross sections with remarkable accuracy, 
even far from the support of the training data and across poles in 
K and K −1. In particular, for a modern chiral interaction at N4LO+
the emulator reproduced the exact neutron-proton cross section 
with negligible error but was over 300x faster in CPU time. The 
code that generates all results and figures within this Letter will 
be made publicly available [21].

While the number of emulators applicable to bound-state ob-
servables in few- and many-body systems is growing [7,15,16,39], 
developing methods with similar efficacy for three- and higher-
body scattering is an important avenue. Thanks to emulators, si-
multaneous Bayesian fits of chiral interactions to pion-nucleon, 
nucleon-nucleon, and three-nucleon observables [16] with theoret-
ical uncertainties rigorously quantified [5,40] already have become 
feasible. Next-generation emulators have the potential to extend 
these studies to three- and higher-body scattering observables and 
to shed light on important issues inherent in chiral EFT. Our ap-
proach, together with the advances made in applying Kohn vari-
ational principles based on EC trial wave functions to three-body 
scattering [41], is promising in this direction. Further, the fast con-
vergence we observed with EC-inspired trial matrices (instead of 
wave functions) motivates the exploration of the EC concept ap-
plied to stationary functionals in a more general context. Alto-
gether, these are exciting prospects for rigorous Bayesian uncer-
tainty quantification in nuclear physics and reaction theory.
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Appendix A. Gradients

Gradients of predictions with respect to the input parameters 
are useful for various optimization and Monte Carlo sampling al-
gorithms. For this reason, and because their form is quite simple, 
we provide the emulator gradients here. Consider one parameter 
ak of the potential V (�a). Then, from Eqs. (6)–(8) we have

∂

∂ak
〈φ′|K�|φ〉 = ∂

∂ak
〈φ′|V |φ〉

+ 1

2

∂ �mᵀ

∂ak
M−1 �m + 1

2
�mᵀM−1 ∂ �m

∂ak
(A.1)

− 1

2
�mᵀM−1 ∂M

∂ak
M−1 �m,

where

∂mi

∂ak
= 〈φ′| [Ki G0

∂V

∂ak
+ ∂V

∂ak
G0 Ki] |φ〉 (A.2)

∂Mij

∂ak
= −〈φ′| [Ki G0

∂V

∂ak
G0 K j + K j G0

∂V

∂ak
G0 Ki] |φ〉 . (A.3)

The value of �β� = M−1 �m must already be computed for the em-
ulator itself and thus can be reused in Eq. (A.1). The M matrix is 
symmetric, which means that �mᵀM−1 = (M−1 �m)ᵀ requires no fur-
ther computation.

If V (�a) is linear in �a, then each projection of the gradient 
tensors ∂ �m/∂ak and ∂M/∂ak can be performed once and stored. 
Therefore, all components of the gradient at �a can either be pre-
computed during training or have already been completed during 
the emulation step for K (�a)—only matrix multiplication remains to 
be done to obtain ∂ K/∂ak . Thus, not only is the emulator fast to 
compute, the gradient of the emulator is also fast because it op-
erates in the small space of training points. This makes gradients 
feasible to incorporate into sampling codes with little computa-
tional overhead.

As an example, Fig. 6 shows the gradients of the K matrix 
from the Minnesota potential considered in Sec. 3.1—with the same 
training points. The gradient is computed at the best values of V 0R

and V 0s; the residuals compared to the exact calculation are neg-
ligible for all center-of-mass energies shown.

Appendix B. A convenient form for the partial-wave Green’s 
function

The free-space Green’s function regularly acts between opera-
tors when setting up the emulator, and possibly during each emu-
lation if V (�a) cannot be projected and stored up front. Although a 
product like V G0 K appears straightforward to evaluate, there are 
technicalities involving numerical instabilities and integration mea-
sures that are obscured when the LS equation (1) and the emulator 
equations (6) and (7) are written in operator form. Thus, it can 
be convenient to construct a form of G0 that can be applied as a 
matrix-matrix product, such that all the aforementioned equations 
can be evaluated straightforwardly. This approach has the added 
benefit that it only requires generating the potential V on the fixed 
6

Fig. 6. The exact and emulated gradients of the K matrix with respect to the Min-
nesota potential parameters V 0R (in blue) and V 0s (in orange). The prediction is 
made at the best fit values of V 0R = 200 MeV and V 0s = −91.85 MeV [31]. The em-
ulator uses the same four training locations as in Sec. 3.1 and is able to reproduce 
the exact gradients to within 10−6 MeV−1 for almost all center-of-mass energies 
(bottom panel).

grid used for solving the LS equation [43,44], rather than append-
ing entries for each specific on-shell solution [45]. This means that 
generating V and K for new parameters �a becomes more efficient 
in both runtime and memory.

When solving the LS equation in partial waves, the following 
projection arises [45]:

〈p′�m|V G0 K |p�m〉 = 2

π
P

∞∫
0

dk k2 V�(p′,k)K�(k, p;q)

(q2 − k2)/2μ
, (B.1)

where we work in uncoupled channels for simplicity and μ is the 
reduced mass. The P denotes the principal value integral due to 
our choice of G0. To avoid the numerical instability (i.e., pole) at 
k = q, a zero integral is subtracted to yield

〈p′�m|V G0 K |p�m〉 (B.2)

= 2

π

∞∫
0

dk
V�(p′,k)K�(k, p;q)k2 − V�(p′,q)K�(q, p;q)q2

(q2 − k2)/2μ
.

See also Ref. [46] for a similar numerical approach. This can be 
compressed by writing

〈p′�m|V G0 K |p�m〉 = 2

π

∫
V�(p′,k)dG0(k;q) K�(k, p;q), (B.3)

where, in the partial-wave basis,

dG0(k;q) = 2μk2 dk

q2 − k2
− dk δ(k − q)

∞∫
0

dp
2μq2

q2 − p2
. (B.4)

The left-hand term is the standard free-space Green’s function 
with a factor of k2 dk included. The right-hand term is the zero 
integral (in principal value) included for numerical stability, which 
has been multiplied by a factor that will get the on-shell portion 
of whatever matrices it acts upon.

In practice, the potential—and hence K —must be evaluated on 
a grid using, e.g., Gauss–Legendre quadrature for k and dk. This 
means that the dk δ(k − q) will not be able to set the gridded 
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matrix elements to k = q. Thus, we replace dk δ(k − q) with an 
interpolation vector S(q) that performs the mapping∑

k

f (k)Sk(q) → f (q) (B.5)

for any smooth f that has been evaluated on some grid of k, as in 
Ref. [44]. Because both the quadrature grid in k and the required 
on-shell locations q are fixed throughout the emulation process, 
Sk(q) needs only to be computed once. Therefore, all the compo-
nents of dG0 are independent of �a and we can avoid unnecessary 
calculations while sampling.

The resulting matrix dG0, which is diagonal in momentum 
space, is what we use as G0 in all emulators shown here. It reduces 
the radial integrals over k and singularity smoothing in products 
like V G0 K to a matrix product of V dG0 K for matrices on a fixed 
mesh for k and dk. Another benefit of this approach is the simplic-
ity it brings to the exact solutions of the LS equation: we can now 
use dG0 in Eq. (2). Upon solving for K�(p′, p; q) via Eq. (2), one can 
again use the interpolation vector S(q) to compute the on-shell 
component: K�(q) = S(q)ᵀK� S(q). This sidesteps the requirement 
of creating unique (nk + 1) × (nk + 1) matrices for each desired on-
shell K�(q), as espoused in Ref. [45] and elsewhere. The advantage 
is prominent when computing the different partial waves for the 
total cross section calculation.
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