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1 Introduction

QCD has long been confirmed as the theory of strong interactions and is now decisively in
the precision era. The demand for percent-level precision on QCD calculations is primarily
being driven by LHC phenomenology with the large volume of experimental data accu-
mulated at the LHC and the focus on firmly establishing the properties of the Standard
Model Higgs sector as well as the search for possible subtle signs of new physics [1–4].

On the theoretical QCD side, in the context of precision, there has been particularly
impressive recent progress in fixed-order perturbative calculations (see ref. [5] for a review
and further references). For a number of LHC applications however, one often needs to go
beyond fixed-order calculations which are perturbative approximations involving a small
number of partons, in contrast to the high-multiplicity hadronic final states seen in practice
at colliders. The need for predictions beyond fixed-order becomes particularly obvious when
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one encounters observables sensitive to widely disparate scales and hence large logarithms
in scale ratios, which require resummation.

Resummed calculations and the techniques behind them have also undergone substan-
tial development over the past couple of decades. For a broad class of observables that have
a property called recursive infrared and collinear (rIRC) safety [6] we can write resummed
results for the cumulative distribution, i.e the distribution integrated up to some value
v = e−L, in a standard exponentiated form [7]:

Σ(αs, αsL) = exp
[
α−1
s g1(αsL) + g2(αsL) + αsg3(αsL) + · · ·

]
, (1.1)

where knowledge of the functions g1, g2 and g3 corresponds to achieving leading loga-
rithmic (LL), next-to-leading logarithmic (NLL) and next-to-next-to leading (NNLL) log-
arithmic accuracy respectively. The state-of-the art has progressed from the NLL accu-
racy achievable for a limited number of observables in the early 1990’s to achievement
of automated NLL calculations for a wide range of global observables [6, 8, 9], and the
development of NNLL (and in some cases essentially N3LL ) resummed calculations for
the main classes of resummation [10–42], including progress on automated resummation
frameworks [29, 30, 40, 42]. However it remains true that the scope of analytic (or semi-
numerical) resummation is still limited to a few types of observable which can be easily
understood analytically in specific limits. On the other hand the range of observables that
is relevant for phenomenology is ever increasing. Some notable examples come from the
field of jet substructure in the boosted domain, where for the purposes of tagging and
grooming it is common to simultaneously cut on a range of variables in order to achieve
good discrimination between signal and background. In such cases, while resummation is
essential to describe the results obtained, it is often hard to achieve analytically beyond
the most basic modified LL accuracy (see ref. [43] for a recent example from top tagging).

Given the limitations of current analytic resummation approaches, it is important to
consider other available tools for handling general multiscale problems. This brings us to
parton shower algorithms which are at the core of general purpose Monte Carlo event gen-
erators programs [44]. These, by their very nature, provide all-order perturbative results
encapsulating the resummation of large logarithms for general observables. Parton showers
have very broad applicability, but the question of understanding their logarithmic accuracy
has proved elusive until recently. While showers are often stated to achieve leading logarith-
mic accuracy, and also include the main ingredients necessary for reaching NLL accuracy,
ref. [45] demonstrated that a widely used class of dipole showers, including the Pythia
transverse-momentum ordered shower [46], which is the default shower in the Pythia8 pro-
gram [47], failed to achieve general LL accuracy beyond the leading colour approximation
and also failed to reach NLL accuracy for a number of common observables even at leading
colour. Angular-ordered showers on the other hand have long been known to fail NLL ac-
curacy criteria for non-global observables [48, 49]. With a better understanding emerging
of the limitations of various classes of showers, it has been possible to identify a set of prin-
ciples that should be satisfied for a shower to be deemed NLL accurate [50]. NLL accurate
showers, the PanScales showers, based on these principles have been constructed and nu-
merically demonstrated to achieve full NLL accuracy for a wide range of global observables,
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including also subleading colour effects and spin correlations [50–52]. Other candidates for
NLL accurate showers have also been proposed and analytically demonstrated, to achieve
NLL accuracy for the thrust [53–56] and the jet multiplicity [53, 54].

Given the recent spurt in activity in the context of NLL showers, which demonstrates
that showers can be designed to achieve broad NLL accuracy, it is legitimate to think about
whether further advances in resummation can be brought to bear on the construction of
NNLL accurate showers. This is a substantially more challenging problem, but solutions to
it would be invaluable in the context of extending theoretical precision for collider studies.
A first obvious step in thinking about NNLL showers would be to consider the higher-order
ingredients that shall be needed in order to extend shower accuracy. Once identified, the
inclusion of these ingredients consistently with the existing shower framework would be
required, which one can expect to be a highly non-trivial task.

In terms of the higher-order ingredients that may be necessary for extending shower
accuracy, the criteria set out in ref. [50] are useful to examine. In particular while NLL
accurate configurations involve strong ordering between all pairs of emissions in at least one
of two logarithmic variables (e.g. energy and angle), NNLL accuracy requires us to allow for
a pair emissions that have comparable values for both logarithmic variables. Meeting this
requirement entails the inclusion of higher-order splitting kernels that emerge in the double-
soft and triple-collinear kinematic limits [57–60]. The inclusion of higher-order kernels in
showers has been actively investigated in recent literature, both in the double-soft and
triple-collinear limits [61–64] (see also related work in refs. [65, 66]). In the same context
one should perhaps note that the inclusion of higher-order ingredients does not automat-
ically improve the logarithmic accuracy of showers, which depends on the existing shower
structure already being NLL accurate and its interplay with the higher-order ingredients.
Given this, an investigation of the logarithmic accuracy of a shower following the inclu-
sion of higher-order ingredients should be carried out, along similar lines to the detailed
numerical tests presented in ref. [50], before NNLL accuracy can reasonably be claimed.

In the current paper we shall carry out analytical studies, relevant to the derivation
of specific higher-order shower ingredients, focussing purely on the triple-collinear limit.
While the inclusion of the full triple-collinear splitting kernels [58, 59] is eventually needed
for general NNLL accuracy as mentioned above, we shall initially consider observables such
as global event shapes, which are not directly sensitive to the splitting kernels themselves
but receive an NNLL collinear contribution from an integral over the splitting kernels.1
The coefficient that emerges from the integral of the triple-collinear splitting kernels is
known in the resummation literature as B2 [67–70]. This coefficient governs the intensity
of hard-collinear radiation from an initial parton at order α2

s. Its effective inclusion along
with that of the resummation coefficient A3 relevant to the soft limit [71, 72], will be a key
component of any future NNLL showers.

1This is analogous to the fact that to reach NLL accuracy for global event shapes, one needs to include
the CMW coefficient K (also known as A2 in the resummation literature) which is given by an integral
of the double-soft correlated emission matrix element, but one does not need the full double-soft matrix
element itself.
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In this article we seek to better understand the connection between the B2 coefficient
and the triple-collinear splitting kernels by aiming to derive Bq

2, the result for a quark
initiated jet, directly from the splitting kernels. In ref. [73] we have recently derived the
NNLL terms for the groomed jet mass distribution using the modified Mass Drop Tagger
(mMDT or equivalently Soft Drop (β = 0) [74, 75]), directly from the triple-collinear
splitting functions. This work included reconstructing Bq

2 as well as involving derivation
of relevant NNLL jet clustering corrections.2 In the current work we shall aim to extend
and generalise the insight that emerged from the study of ref. [73]. In particular, in order
to facilitate eventual inclusion in parton showers, we shall derive here a version of Bq

2 that
is differential in the kinematics of a given emission and allows us to project to a definite
phase-space point for a 1 → 2 branching. This in turn potentially allows us to include
Bq

2 by effectively giving an NLO weight to emissions that is correct in the hard-collinear
limit and reproduces the standard Bq

2, familiar from resummation, upon integration over
emission kinematic variables. As we shall demonstrate, examining higher-order collinear
branchings in this manner also naturally produces a picture that points to an extension
of the CMW coupling scale and scheme beyond the soft limit. Such an extension of the
physical coupling ought to be of value for parton shower development but is also, we believe,
of intrinsic theoretical interest.

This paper is organised as follows: we start in section 2 with a brief reminder of
the resummation coefficients, including Bq

2 as defined and used in the literature. We
also provide a reminder of the triple-collinear splitting functions and the phase-space we
use for our calculations, as well as discussing the differential distributions we shall study.
Section 3 is dedicated to our results. We start by briefly presenting leading-order results
for the distributions in jet mass ρ or equivalently the angle θ2

g , and energy fraction z for
a given emission. In subsections 3.1, 3.2 and 3.3 we describe our order α2

s results for
the CFTRnf , CF (CF − CA/2) and pure CFCA terms respectively, all of which arise from
the decay of an initially emitted massive parent gluon. The results we obtain are for the
differential distributions in the invariant mass of the three parton system ρ and the energy
fraction z of the parent gluon emission, as well as results for the distribution in θ2

g and
z, with θ2

g being the angle of the parent gluon with respect to the final state quark. In
subsection 3.4 we use our results to extract the contribution corresponding to Bq2(z), i.e. a
differential version of Bq

2, for each colour channel arising from the gluon decay subprocess.
We discuss the structure of the results, including the relationship between the results for
the ρ and θ2

g distributions and explain how they are connected. We also obtain a direct
connection between the z dependent functions we obtain from our differential distributions,
and the NLO non-singlet timelike DGLAP splitting functions. In subsection 3.5 we combine
our results with leading-order (order αs) results, show how our results point towards an
extension of the CMW coupling scale and scheme, and may be viewed as an effective
extension of the concept of a web [77–80] beyond the soft limit. In subsection 3.6 we
demonstrate how we may extract Bq2(z) in the abelian C2

F channel by noting that it ought to

2For related past work from other authors, involving triple-collinear splittings for the case of initial state
splittings, we refer the reader to ref. [76].
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arise from the difference between a calculation performed with the triple-collinear splitting
functions (including the one-loop corrections to a 1 → 2 splitting) and that performed
using simply an iteration of successive 1 → 2 splittings. Finally in section 4 we draw our
conclusions, and comment on prospects for future work. All other technical details relevant
to our calculations can be found in the appendices.

2 Bq
2, triple-collinear splitting functions and observable definitions

We begin with a brief reminder of the resummation literature in order to introduce the
Bq

2 coefficient, whose differential version we seek to compute in this article. This is the
coefficient that controls the intensity of collinear radiation from a quark at order α2

s, and
hence is directly related to the quark Sudakov form factor. To exemplify this we report
below the expression for the Sudakov form factor for the case of transverse momentum
related resummation:

S(Q, b) = exp
(
−
∫ Q2

b̄2/b2

dq2

q2

[
A
(
αs
(
q2
))

ln Q
2

q2 +B
(
αs
(
q2
))])

, b̄ = 2e−γE , (2.1)

where b is the impact parameter which is the Fourier conjugate of the transverse momentum
or related variable. The A function encompasses soft emission effects, while the B function
captures the effects of hard-collinear radiation. Each function admits a perturbative series

A(αs) =
∞∑
n=1

(
αs
2π

)n
An , B(αs) =

∞∑
n=1

(
αs
2π

)n
Bn . (2.2)

The perturbative coefficients are then determined by matching the resummation formula
onto a fixed-order computation for a given observable [76, 81, 82]. The form of Bq

2 has long
been known to have the following structure [42, 76, 81, 83]

Bq
2 = −γ(2)

q + CF b0Xv, b0 = 11
6 CA −

2
3TRnf , (2.3)

where b0 is the first coefficient of the QCD beta function and Xv is a process and observable
dependent constant. Finally, γ(2)

q is the end-point contribution of the non-singlet next-to-
leading order DGLAP kernel [84]

γ(2)
q = C2

F

(
3
8 −

π2

2 + 6ζ(3)
)

+ CFCA

(
17
24 + 11π2

18 − 3ζ(3)
)
− CFTRnf

(
1
6 + 2π2

9

)
.

(2.4)
Having provided a reminder of the Bq

2 coefficient, we turn to the triple-collinear split-
ting functions that we shall use throughout this paper. The polarisation-averaged triple-
collinear splitting functions we consider here were first derived in refs. [58, 59]. For an initial
quark there are four distinct splitting functions to consider. In the notation of ref. [59],
these are:

• 〈P̂q̄′1q′2q3〉 corresponding to a 1 → 3 quark splitting involving non-identical quark
flavours, associated with a CFTR colour factor.
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θg

z1 = (1− z)zp

θ12 z2 = (1− z)(1− zp)

z3 = z

Figure 1. The Feynman diagram representing gluon decay to a qq̄ pair, where the quark from
the gluon decay is either identical or non-identical to the initiating quark. The mapping of the
momentum fractions to a set of independent variables is explained in the text.

• 〈P̂ (id)
q̄1q2q3〉 representing an additional interference contribution coming from identical

quark flavours, with a CF (CF − CA/2) colour factor.

• 〈P̂ (nab)
g1g2q3〉 the non-abelian contribution leading to two final-state gluons and a quark,

with a CFCA colour factor.

• 〈P̂ (ab)
g1g2q3〉 the abelian contribution also involving two final-state gluons and a quark

but arising from independent gluon emission off a quark, with a C2
F colour factor.

We shall work in terms of the energy fractions of the three collinear partons zi, satis-
fying ∑i zi = 1, and shall label the angles between partons i and j as θij , such that in the
collinear approximation, relevant to this work, θij � 1. The splitting functions are reported
in ref. [59] as functions of zi and invariants sij and s123 where sij = (pi + pj)2 ≈ E2zizjθ

2
ij

where E is the energy of the initial quark and s123 = (p1 + p2 + p3)2 = s12 + s13 + s23. The
triple-collinear phase-space in d = 4− 2ε dimensions may be expressed in the form [85]

dΦ3 = 1
π

(E)4−4ε 1
(4π)4−2ε Γ (1− 2ε)

dz2dz3dθ2
13dθ2

23dθ2
12 (z1z2z3)1−2ε ∆−1/2−ε θ(∆), (2.5)

where the Gram determinant ∆ is defined as

∆ = 4θ2
13θ

2
23 −

(
θ2

12 − θ2
23 − θ2

13

)2
. (2.6)

Additionally, in ref. [73] we used a set of variables, which can be referred to as “web
variables”, to parametrize the triple-collinear phase space. The web variables will again
prove essential to obtain analytic expressions for the distributions we are interested in. In
appendix A.1 we recapitulate the phase space and recollect the physical meaning of the
different variables.

In figures 1–3 we illustrate the splitting sub-processes involved here, namely a gluon
decay contribution showing a q → qg splitting followed by gluon splitting to a qq̄ pair
(figure 1) and a gg pair (figure 2) as well as the abelian contribution to q → qgg with
independent gluon emission off a quark (figure 3). The splitting process shown in figure 1
gives both the identical and non-identical fermion splitting functions. Figures 1–3 also
illustrate our change of independent variables from z2, z3 to z and zp which are the variables
associated to successive splittings, and are defined so that in the limit of strong angular-
ordering between successive branchings the triple-collinear splitting functions reduce (after
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θg

z1 = (1− z)zp

θ12 z2 = (1− z)(1− zp)

z3 = z

Figure 2. The Feynman diagram representing the gluon decay CFCA channel. The mapping of
the momentum fractions to a set of independent variables is explained in the text. The angle θg is
that between the parent gluon and the final-state quark.

z1 = 1− z

θ1,2+3

z2 = z(1− zp)

θ23 z3 = zzp

Figure 3. The Feynman diagram representing the gluon emission C2
F channel. The mapping of

the momentum fractions to a set of independent variables is explained in the text.

azimuthal integration for the gluon decay channels) to a product of leading-order splitting
functions in z and zp respectively.

Finally we discuss the quantities we study here. These include the double differential
distribution in ρ = s123/E

2 and z, where ρ is the normalised invariant mass of the three
parton system that arises from the triple-collinear splitting of a quark jet with energy E, and
the splitting variable z may be associated to an initial splitting as illustrated in figures 1–3.3
For the gluon decay contributions, as should be evident from figures 1 and 2, the variable z
also corresponds to the energy fraction of the final-state quark so that 1− z represents the
energy fraction associated to the “parent” gluon. In addition to the ρ distribution we shall
also study the distribution differential in z and angle θg of the parent gluon. A comparison
of the two distributions shall give further insight into the general structure of the result.
For the abelian gluon emission process in figure 3, we shall fix θ13 = θ � 1, the angle of
emission 1 w.r.t. the final quark, which shall set the collinearity, and then study the NLO
structure induced by a smaller angle emission labelled 2, with angle θ23 < θ.

We integrate the splitting functions over phase-space in d = 4−2ε dimensions to obtain
real emission contributions that contain poles in ε which reflect singularities that cancel
when we combine with virtual corrections. The integrals we carry out are generically of
the form

v

σ0

dσ

dv
=
∫

dΦ3(zi, θij)
(
8παµ2ε)2
s2

123
〈P̂ 〉 v δ (v − v (zi, θij)) (2.7)

where v denotes the quantity we hold fixed, 〈P̂ 〉 denotes the different 1 → 3 splitting
functions mentioned above, α denotes the bare QCD coupling, and σ0 is the Born cross
section. Our results will be expressed in terms of a renormalised MS coupling αs, given by

3This initial splitting will also set the small angular scale which defines the collinearity of the problem.
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the relation
µ2εα = S−1

ε µ2ε
Rαs(µ2

R) +O(α2
s), (2.8)

where we have the standard MS factor

Sε = (4π)εe−εγE , (2.9)

and we choose µR = E (the energy of the hard initiating parton). For the results that
follow we define αs ≡ αs(E2) in the MS scheme.

3 Results

We note that the leading-order collinear limit result for the ρ distribution is given by
considering a single collinear gluon emission from a quark, with energy fraction z and angle
θg so that ρ = z(1−z)θ2

g . This result is equivalent to that for fixed θg and z so that we have

ρ

σ0

d2σ(1)

dρ dz
=
θ2
g

σ0

d2σ(1)

dθ2
g dz

= CFαs
2π

(
1 + z2

1− z

)
. (3.1)

3.1 CFTRnf terms

At order α2
s we start by considering CFTRnf terms both for fixed invariant-mass of the

three-parton system ρ and z, as well as for fixed θg and z where θg is the angle of the
parent gluon with respect to the final quark. For the former case we have already obtained
a previous fully analytic result as part of our study of the modified Mass Drop Tagger’s jet
mass distribution. This was reported in ref. [73] and we shall analyse its structure in more
detail here, together with that of the θ2

g distribution calculated here.

3.1.1 Fixed invariant-mass

The order α2
s result for the ρ distribution, in the collinear limit, was calculated in ref. [73].

Two separate calculations were performed there. Firstly we carried out a part analytic and
part numerical computation where the divergent terms were computed analytically and a
finite remainder computed through numerical integration in four dimensions. Secondly we
computed a fully analytical result using a parametrisation of the phase space based on web
variables. The two calculations were found to be in perfect agreement and we report below
the fully analytical result [73]:(

ρ

σ0

d2σ(2)

dρ dz

)CFTRnf
= CFTRnf

(
αs
2π

)2
(

1 + z2

1− z

(2
3 ln (ρ(1− z))− 10

9

)
− 2

3(1− z)
)
.

(3.2)

3.1.2 Fixed parent angle

We now study the distribution in the angle of the parent gluon and z. The angle of
the parent can be straightforwardly expressed in terms of our phase-space variables and is
given, in a collinear approximation, by θ2

g ' zpθ2
13 +(1−zp)θ2

23−zp(1−zp)θ2
12 with variables

as illustrated in figure 1. We note that in the limits zp → 0 or zp → 1, where all the energy
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is carried by a given offspring parton, θ2
g reduces to the angle of the energetic offspring

parton (1 or 2) w.r.t. parton 3 i.e. the quark. In the collinear limit θ12 → 0, θ13 → θ23, θ2
g

reduces to the angle between the direction of either collinear parton and the quark.
We follow the same strategy as the one adopted in ref. [73] for the ρ distribution and

perform the calculation using two different methods: firstly a partly analytical calculation
with a finite remainder evaluated numerically and secondly a fully analytical calculation
using web variables.

In the partly analytic approach, integrating the triple-collinear splitting function
〈P̂q̄′1q′2q3〉 at fixed z and θg we obtain a result that has only a 1

ε pole which originates
in the collinear divergence as the angle between gluon offspring partons θ12 → 0. The
collinear pole is multiplied as usual by an ε dependent factor and on performing an ε

expansion we obtain a pure 1
ε pole term and associated finite terms.

Further, on subtracting the leading collinear divergent piece from the full integrand, we
also obtain a finite term in addition to the collinear divergent term, that can be computed
by integration in four dimensions, i.e. setting ε→ 0. This finite term has two components: a
term that behaves as 1/(1−z) i.e. is singular in the limit of a soft parent and we can extract
analytically, and a term that is regular as z → 1 which we can leave to numerical integration.

In this approach, the analytically determined component of our answer, which contains
the collinear divergence, can be expressed as(
θ2
g

σ0

d2σ(2)

dθ2
gdz

)CFTRnf ,div.
=CFTRnf

(
αs
2π

)2
(

1+z2

1−z

(
− 2

3ε−
10
9 +4

3ln(z(1−z)2θ2
g)
)
−7

9(1−z)
)
.

(3.3)
The additional finite term that can be evaluated in four dimensions turns out to be

identical to the corresponding result for the ρ distribution. This term takes the form below,
confirmed by both our numerical evaluation and our separate fully analytic evaluation (see
appendix A.2)(

θ2
g

σ0

d2σ(2)

dθ2
gdz

)CFTRnf ,fin.
= CFTRnf

(
αs
2π

)2
(

2
3

1 + z2

1− z ln z + 7
9(1− z)

)
. (3.4)

Finally we need the one-loop virtual correction to the 1 → 2 q → qg splitting which
reads:(

θ2
g

σ0

d2σ

dθ2
gdz

)CFTRnf ,virt.
=CFTRnf

(
αs
2π

)2
(

2
3

1+z2

1−z

(1
ε
− ln(z2(1−z)2θ2

g)
)
− 2

3(1−z)
)
.

(3.5)
Combining all terms we get(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)CFTRnf
= CFTRnf

(
αs
2π

)2
(

1 + z2

1− z

(2
3 ln

(
z(1− z)2θ2

g

)
− 10

9

)
− 2

3(1− z)
)
.

(3.6)
A notable feature of our result is that it can be obtained from that for the ρ distri-

bution via the replacement ρ → z(1 − z)θ2
g which is an exact relationship between the

two observables at leading order i.e. for the emission of an on-shell gluon. The reason for
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this is simply the fact that the observable dependence of our result comes solely from the
divergent limit when θ12 → 0, where IRC safe observables tend to their leading-order form.
The finite terms that are computable in four dimensions are instead observable indepen-
dent. More specifically, for some fixed value of observable v, once divergent contributions
are removed we are left with genuine triple-collinear configurations with three energetic
partons with comparable opening angles of order θ2 ∼ v. The overall 1/θ2 scaling of the
triple-collinear splitting functions then implies that vdσ/σ0dv is independent of v.

3.2 CF
(
CF − CA

2

)
terms

Next we examine the colour suppressed identical fermion term also arising from gluon
splitting to qq̄. This is a purely finite term and can be calculated in four dimensions.
In ref. [73] we numerically computed the contribution of this term to ρdσdρ as part of our
calculations for the mMDT jet mass. However, in ref. [73], we did not determine the z
dependence of our result as we only required the integral over z. After the computational
steps explained in appendix A.5, we provide a fully analytical result for the ρ distribution
also differential in z. We also carry out a numerical calculation for fixed θ2

g where we
continue to label as θg the angle θ1+2,3, the angle between the direction of the 1, 2 parton
pair and the quark labelled 3. However we note that it is no longer possible to interpret this
angle unambiguously as the angle of the parent gluon due to the identical quarks present in
the final state. As expected, for pure finite terms, the results for the ρ and θ2

g distributions
coincide so that we obtain(

ρ

σ0

d2σ(2)

dρ dz

)(id.)

=
(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)(id.)

= CF

(
CF −

CA
2

)(
αs
2π

)2
P(id.)(z), (3.7)

P(id.)(z) =
(

4z − 7
2

)
+ 5z2 − 2

2(1− z) ln z + 1 + z2

1− z

(
π2

6 − ln z ln(1− z)− Li2(z)
)
.

In deriving P(id.)(z) we have defined z3 = z as usual but the same result is obtained for
the distribution in z2, as one may readily anticipate for identical particles.

3.3 Pure CFCA term

In ref. [73] we provided a calculation for the CFCA contribution for the ρ distribution, that
arises from the decay to gg of a parent gluon emitted off a quark. Our results were obtained
in a form which was partly analytic, while finite terms computable in four dimensions were
obtained through numerical integration. Here we report a fully analytic result with the
details of the calculation left to appendix A.4. We obtain(

ρ

σ0

d2σ(2)

dρ dz

)nab.

= CFCA

(
αs
2π

)2
P(nab.)(z; ρ) , (3.8)

where

P(nab.)(z;ρ) =
(

1+z2

1−z

)(
−11

6 ln(ρ(1−z))+ 67
18−

π2

6 +ln2 z+Li2
(
z−1
z

)
+2Li2(1−z)

)

+ 3
2
z2 lnz
1−z + 1

6(8−5z) . (3.9)
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The results for the θ2
g distribution give a corresponding function Pnab.(z; θ2

g). As observed
for the CFTRnf term the observable dependence in ρ/σ0 dσ/dρ arises from the collinear
divergent limit so that one may obtain the θ2

g result via a simple substitution for ρ. Hence
we have (

θ2
g

σ0

d2σ(2)

dθ2
g dz

)nab.

= CFCA

(
αs
2π

)2
P(nab.)(z; θ2

g) , (3.10)

P(nab.)(z; θ2
g) = P(nab.)(z; ρ = z(1− z)θ2

g) . (3.11)

3.4 Bq2(z) and comments on general structure

We now study the link between our results and Bq
2, the parameter in the quark form factor

that relates to the intensity of collinear radiation from a quark at O(α2
s). We discuss also

the connection between our results and the NLO timelike splitting functions [84]. Finally
we show how to combine our results with the corresponding leading-order results, recov-
ering the expected behaviour in the soft limit and giving a simple picture for z dependent
corrections beyond the soft limit.

3.4.1 Extracting Bq
2

Let us start with the θ2
g distribution, whose CFTRnf term is reported in eq. (3.6). In the

soft limit, z → 1 the result reduces to a familiar one:

(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)soft,CFTRnf
= CFTRnf

(
αs
2π

)2 2
1− z

(2
3 ln

(
(1− z)2θ2

g

)
− 10

9

)
(3.12)

= CF
2

1− z

(
αs
2π

)2
(
−b(nf )

0 ln k2
t

E2 +K(nf )
)

(3.13)

where we note the presence of a soft divergence as z → 1, reflecting the singular behaviour of
the q → qg splitting function. In writing the second line we have introduced the transverse
momentum of the emitted parent gluon k2

t = E2(1− z)2θ2
g w.r.t. the final quark direction.

We have also defined b(nf )
0 , which is the nf part of the first perturbative coefficient of the

QCD beta function (see eq. (2.3)) and K(nf ) is the nf term in the CMW constant [86]

K =
(

67
18 −

π2

6

)
CA −

10
9 TRnf . (3.14)

The terms appearing in eq. (3.12) are essentially related to NLL rather than NNLL struc-
ture, leading to the well known soft-limit prescriptions for the scale and physical scheme for
the strong coupling. Indeed in terms of the type of decomposition into soft and collinear
pieces presented in eq. (2.1) these terms are all associated to the “A” series of coefficients
owing to the presence of the soft divergence. Here we wish to obtain the pure collinear
NNLL structure and hence we shall subtract off these terms. We shall also remove the
remaining piece of the ln θ2

g term ∝ −(1 + z) ln θ2
g as this term is also an NLL contribu-
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tion. Indeed, the −(1 + z) ln θ2
g yields after z integration −3/2 ln θ2

g which makes clear its
association with the B1 hard-collinear coefficient, rather than B2.4

Hence we obtain

Bq,nf2 (z;θ2
g)=

(
θ2
g

σ0

d2σ(2)

dθ2
gdz

)CFTRnf
−

( θ2
g

σ0

d2σ(2)

dθ2
gdz

)soft,CFTRnf
−CFTRnf

2
3

(
αs
2π

)2
(1+z)lnθ2

g


(3.15)

=CFTRnf
(
αs
2π

)2
(

1+z2

1−z
2
3lnz−(1+z)

(2
3ln(1−z)2−10

9

)
−2

3(1−z)
)
, (3.16)

where the subtracted terms are placed in square brackets and leave an NNLL pure collinear
result denoted by Bq,nf2 (z; θ2

g), which is a differential version of the nf term of Bq
2.

A similar result can of course be written for the ρ distribution by again removing soft
enhanced and NLL in ρ terms . Indeed, as we have noted before, the result for the ρ distri-
bution can be reached from that for the θ2

g distribution via the one-gluon relation between
observables i.e. via the replacement θ2

g → ρ/(z(1 − z). This correspondence ultimately
results in the relationship:

Bq,nf2 (z; ρ) = Bq,nf2 (z; θ2
g)− CFTRnf

(
αs
2π

)2
(

1 + z2

1− z
2
3 ln z − (1 + z)2

3 ln(1− z)
)
. (3.17)

We can now perform the integrals over z to write the results in a standard form:

B
q,ρ,nf
2 =

(2π
αs

)2 ∫ 1

0
dz Bq,nf2 (z; ρ)

= CFTRnf
5
2 = −γ(2,nf )

q + CF b
(nf )
0 Xρ , (3.18)

B
q,θ2

g ,nf
2 =

(2π
αs

)2 ∫ 1

0
dz Bq,nf2 (z; θ2

g)

= CFTRnf

(
9
2 −

2π2

9

)
= −γ(2,nf )

q + CF b
(nf )
0 Xθ2

g
, (3.19)

where γ(2,nf )
q is the nf part of the endpoint contribution to the DGLAP splitting kernels

given in eq. (2.4) and we determine the observable dependent constants

Xρ = π2

3 −
7
2 , Xθ2

g
= 2π2

3 − 13
2 . (3.20)

Notice that we inserted a factor of (2π/αs)2 in the equations above. This is done to cancel
the factor of (αs/2π)2 in our definition of Bq2(z), so that our result for Bq

2 agrees with the
form reported in the literature. The above results are in line with the expected form of
the B2 coefficients (see eq. (2.3)) and hence consistent with previous observations in the
literature [81] that B2 is always related to the endpoint terms of the DGLAP splitting

4Specifically we can see from eq. (2.1) the presence of a term B1αs(q2) which, with the transverse
momentum q2 ∝ θ2

g , results in the presence of a term of the form 3/2α2
s b0 ln θ2

g as seen in our results after
z integration.
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kernels and additional b0X terms where X depends on the observable. Our result in
eq. (3.18) for the ρ distribution is in agreement with the collinear NNLL result in the
literature for the plain jet mass [42, 87] as we also pointed out in ref. [73]. The result for
the θ2

g case has been computed here for the first time, to our knowledge.
For the identical particle contribution there is no soft contribution to be removed nor

any observable dependent b0X terms. The result derived in eq. (3.7) corresponds to the
pure NNLL constant and hence we have

Bq,(id.)2 (z) = CF

(
CF −

CA
2

)(
αs
2π

)2
P(id.)(z) , (3.21)

which gives

B
q,(id.)
2 =

(2π
αs

)2 ∫ 1

0
dz Bq,(id.)2 (z) = CF

(
CF −

CA
2

)(13
4 −

π2

2 + 2ζ(3)
)

. (3.22)

The above analytical result is consistent with our previous numerical evaluation in the
context of the Soft Drop jet mass [73].5

Next we turn to the non-abelian contribution to q → qgg, involving the decay of the
parent gluon to a pair of gluons, g → gg. An exactly analogous procedure can be followed as
for the g → qq̄ decay to remove soft and higher logarithmic order (i.e. NLL) contributions.
In particular, in the soft limit we obtain the result given in eq. (3.13) with b(nf )

0 and K(nf )

replaced by the corresponding CA terms. We thus derive the results below:

Bq,(nab.)2 (z;θ2
g) =CFCA

(
αs
2π

)2
(

(1+z)
(

11
6 ln(1−z)2− 67

18 + π2

6

)
+ 3

2
z2 lnz
1−z + 8−5z

6

+1+z2

1−z

(
−11

6 lnz+ln2 z+Li2
(
z−1
z

)
+2Li2(1−z)

))
, (3.23)

and

Bq,(nab.)2 (z; ρ) = Bq,(nab.)2 (z; θ2
g) + 1 + z2

1− z
11
6 ln z − 11

6 (1 + z) ln(1− z). (3.24)

We note that the sum of dilogarithms multiplying the LO splitting function pqq(z), on the
second line of eq. (3.23), is regular as z → 1 and has a small z limit given by −1

2 ln2 z +
π2

6 +O(z).
We then have the following integrated results:

B
q,ρ,(nab.)
2 =

(2π
αs

)2 ∫ 1

0
dz Bq,(nab.)2 (z; ρ) = CFCA

(
−11

2 −
π2

4 + 4ζ(3)
)
, (3.25)

B
q,θ2

g ,(nab.)
2 =

(2π
αs

)2 ∫ 1

0
dz Bq,(nab.)2 (z; θ2

g) = CFCA

(
−11 + 13

36π
2 + 4ζ(3)

)
. (3.26)

5The result here is for a single emitting leg which results in a factor of 1/2 relative to the calculations
of ref. [73].
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As we would expect the difference between the results for ρ and θ2
g distributions comes

only from the CFβ0X observable dependent terms with values of X already identified in
eq. (3.18). Thus we have

B
q,ρ,(nab.)
2 −Bq,θ2

g ,(nab.)
2 = CFCA

(11
2 −

11
18π

2
)

= CF b
(CA)
0

(
Xρ −Xθ2

g

)
, (3.27)

where b(CA)
0 = 11

6 CA. Note however that the integrated results given in eq. (3.25) do not
yet fully correspond to the standard form given in eq. (2.3). In particular in order to fully
recover the CFCA term of the DGLAP endpoint contribution, γ(2,CA)

q , we need to combine
the CFCA results from eq. (3.25) with the identical particle contribution computed in
eq. (3.22) which, by virtue of its CF (CF − CA/2) colour factor, contributes to both C2

F

and CFCA colour channels. Defining Bq,(id.),CA
2 as the CFCA piece of the identical particle

term in eq. (3.22), and taking the example of the ρ distribution, we have6

B
q,(id.),CA
2 +B

q,ρ,(nab.)
2 = CFCA

(
3ζ(3)− 57

8

)
= −γ(2,CA)

q + CF b
(CA)
0 Xρ , (3.28)

with γ(2,CA)
q being the standard CFCA piece of the DGLAP endpoint contribution.

3.4.2 Relationship to NLO timelike nonsinglet DGLAP splitting kernels

Having extracted the z dependent Bq2 pieces in the previous section, it is also of interest
to consider the relationship between our results and the NLO timelike DGLAP splitting
kernels themselves.7 In order to establish a formal connection with the full structure of the
mass-singularity factorisation formula in QCD, we would need to integrate our results over
ρ or θ2

g and examine the resulting pole structure to recover the NLO splitting kernels. Here
it is not our intention to pursue the connection from this viewpoint but rather to study the
functional dependence of our results on z, and its possible link to the NLO splitting kernels.

Returning to eq. (3.6) and focussing on its z dependence, i.e. setting θ2
g = 1 so as to

remove the pure ln θ2
g term, we obtain a function that may be expressed as (suppressing

the overall
(αs

2π
)2 factor)

PNLO,nf (z; θ2
g) = CFTRnf

[
1 + z2

1− z

(
−2

3 ln z − 10
9

)
− 4

3(1− z)
]

+ CFTRnf

[
1 + z2

1− z

(2
3 ln(1− z)2 + 2

3 ln z2
)

+ 2
3(1− z)

]
. (3.29)

Written in this form, the top line of eq. (3.29) corresponds to the CFTRnf piece
of the non-singlet time-like splitting function P

V (1)
qq (z) [84]. When integrated with a +

prescription on the 1/(1 − z) factor (or equivalently after removal of terms that diverge
as z → 1) it gives the −γ(2,nf )

q term of eq. (3.19). The second line of eq. (3.29), when
integrated with a + prescription on the ln(1 − z)/(1 − z) factor gives the b(nf )

0 Xθ2
g
term

6Identical considerations of course hold for the θ2
g distribution with Xρ replaced by Xθ2

g
.

7We note here that for the splitting kernels we intend to study in this subsection, the timelike and
spacelike NLO splitting kernels have the same functional form.
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of eq. (3.19). For the ρ distribution we can write the result in the same way in terms of
P
V (1)
qq (z) and a corresponding b(nf )

0 Xρ piece, viz.

PNLO,nf (z; ρ) = CFTRnf

[
1 + z2

1− z

(
−2

3 ln z − 10
9

)
− 4

3(1− z)
]

+ CFTRnf

[
1 + z2

1− z

(2
3 ln(1− z) + 2

3 ln z
)

+ 2
3(1− z)

]
. (3.30)

The difference between the b0X type terms for θ2
g and ρ arise, as we stressed before, purely

from the factors of z and 1− z in the leading-order relation ρ = z(1− z)θ2
g .

Next, let us examine the identical fermion contribution. Here there are no b0X terms
so we might expect a simple relationship of our result to the corresponding NLO timelike
splitting function P V (1)

qq̄ (x). That is indeed the case, however the relevant function is not
the P(id.)(z) obtained in eq. (3.7). The latter is a function of z, which is the energy fraction
z3 of parton 3 which is one of the two identical final state quarks. It is therefore, as we
shall verify below, a contribution to the splitting function P

V (1)
qq (x). If instead we carry

out the calculation with fixed energy-fraction for the antiquark, i.e. set z1 = x, we obtain
a different function which we expect to coincide with P

V (1)
qq̄ (x). To verify this we have

simply performed the calculation numerically for several x values and checked that the
result agrees precisely with the form [84, 88]

P (id.)(x) = 2pqq(−x)S2(x) + 2(1 + x) ln x+ 4(1− x) , (3.31)

where S2(x) = −2Li2(−x) + 1
2 ln2 x−2 ln x ln(1 +x)− π2

6 . The above function, on restoring
the CF

(
CF − CA

2

)
factor, is just the NLO splitting kernel P V (1)

qq̄ (x). Moreover, the integral
over x of P (id.)(x) also gives, as expected, after supplying the colour and coupling factors,
B
q,(id.)
2 as given in eq. (3.22).

Finally we come to the pure CFCA non-abelian term from the q → qgg splitting. The
NLO collinear limit result for the ρ distribution is explicitly written in eq. (3.8). Following
a similar strategy to that for the nf piece involves setting ρ = 1 and separating the result
into two pieces, one of which yields the b(CA)

0 Xρ term and the other that we may expect to
be linked to the splitting kernels. It is simple to identify the terms that lead to b(CA)

0 Xρ.
These are the same as the corresponding terms for the nf piece written on the second line
of eq. (3.30) but with the replacement of 2

3 → −
11
6 . The equation analogous to (3.30) may

be written as

PNLO,nab.(z; ρ) = PNLO,nab.
sub. (z; ρ)− CFCA

[
1 + z2

1− z

(11
6 ln z + 11

6 ln(1− z)
)

+ 11
6 (1− z)

]
,

(3.32)
where

PNLO,nab.
sub. (z;ρ) =CFCA

(
1+z2

1−z

)(
11
6 lnz+ 67

18−
π2

6 +ln2 z+Li2
(
z−1
z

)
+2Li2(1−z)

)

+CFCA

(
11
6 (1−z)+ 3

2
z2 lnz
1−z + 1

6(8−5z)
)
, (3.33)
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and where the suffix “sub.” is a reminder that terms contributing to b0X have been sub-
tracted off to obtain this function. We can indeed use this result for PNLO,nab.

sub. (z; ρ) to
obtain the CFCA piece of the splitting kernel P V (1)

qq (z). In order to do so we note that
P
V (1)
qq (z) represents the splitting function where one obtains a final quark with momentum

fraction z. In terms of all ways in which this can happen we should also consider the CFCA
contribution from the CF (CF − CA/2) identical particle term which yields two identical
quarks from the splitting of an initial quark. The momentum distribution of each of these
final quarks is the same and is given by the function P(id.)(z) reported in eq. (3.7). Thus
we are led to the combination

PNLO,nab.
sub. (z,ρ)+2×

(
−CF

CA
2

)
P(id.)(z) =CFCA

[
1+z2

1−z

(
1
2 ln2 z+ 11

6 lnz+ 67
18−

π2

6

)

+(1+z) lnz+ 20
3 (1−z)

]
, (3.34)

where the result on the r.h.s. does not involve any dilogarithmic terms8 and is in agreement
with the CFCA term of P V (1)

qq (z).

3.5 Combination with leading-order results

In this section we consider the combination of our O
(
α2
s

)
results for the CFTRnf and pure

CFCA non-abelian terms (i.e. those arising from gluon branching to a pair of gluons) with
the leading-order result eq. (3.1), which will lead to the recovery of the running coupling
in the physical scheme [42, 86, 89], in the soft limit. Beyond the soft limit the picture
that emerges remains simple to interpret and motivates a z dependent extension of the soft
limit result. Taking the θ2

g distribution as an explicit example we combine the order αs
and order α2

s results eqs. (3.1), (3.10), (3.11) to define:(
θ2
g

σ0

d2σ

dθ2
gdz

)tot.

=
θ2
g

σ0

d2σ(1)

dθ2
g dz

+
(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)CFTRnf
+
(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)nab.

(3.35)

which gives (recall that we have fixed µR = E, the energy of the initial quark)(
θ2
g

σ0

d2σ

dθ2
gdz

)tot.

=CF

(
1+z2

1−z

)[
αs
(
E2)

2π +
(
αs
2π

)2(
−b0 ln

(
(1−z)2θ2

g

)
+K

)
(3.36)

−
(
αs
2π

)2
b0 lnz

]
+CF b0

(
αs
2π

)2
(1−z)+

(
αs
2π

)2
Rnab.(z).

We have written the result above in a form which helps to emphasise some of its
main features. Firstly the two terms on the top line of eq. (3.36) combine to produce
αCMW
s

(
E2(1− z)2θ2

g

)
i.e.:

αCMW
s

(
E2(1− z)2θ2

g

)
2π ≡ αs

(
E2)

2π +
(
αs
2π

)2 (
−b0 ln

(
(1− z)2θ2

g

)
+K

)
, (3.37)

8The following identities are useful to simplify the expression: Li2(1−z) =
(
π2

6 − ln z ln(1− z)− Li2(z)
)

and Li2
(
z−1
z

)
+ Li2(1− z) = − 1

2 ln2 z, with 0 < z < 1.
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where we have also implicitly included terms of order α3
s and beyond via our change of

scale for the coupling.
This agrees with the expected result in the soft limit, z → 1, since the scale of the

coupling is E2(1−z)2θ2
g i.e. the familiar transverse momentum squared of the soft emission

w.r.t. the emitting parton and we recover the CMW prescription. On the second line
we note that there are two terms proportional to the beta function coefficient b0. The
presence of a b0 ln z term is suggestive of a redefinition of the scale of the coupling in
the hard collinear region to the scale E2z(1 − z)2θ2

g . On the other hand the b0(1 − z)
term is universal and originates purely in the virtual corrections, implying that it can
also be absorbed into the definition of the coupling via a z dependent extension of the
CMW scheme. Such a redefinition of the coupling scale and scheme would imply that the
QED-like nf piece of the result is fully incorporated into the definition of the coupling,
consistent with suggestions made in the past literature [90, 91]. One may also expect the
step of defining a collinear-improved coupling to be useful from the viewpoint of inclusion
of higher order (NNLL) ingredients, related to triple-collinear splitting kernels, in parton
shower algorithms.9 We shall postpone detailed discussions and definite proposals along
these lines to forthcoming work [92].

The function Rnab.(z) reads

Rnab.(z) =CFCA

[(
1+z2

1−z

)(
ln2 z+Li2

(
z−1
z

)
+2Li2(1−z)

)
+ 3

2
z2 lnz
1−z + 1

2(2z−1)
]
,

(3.38)
which is the remainder of the cross section solely with a CFCA term. The above function is
not soft enhanced, as the combination of terms in parenthesis multiplying pqq(z), vanishes
as 1 − z in the z → 1 limit. The Rnab.(z) term can be viewed as a higher-order splitting
function of pure collinear origin.

We close this subsection by reminding the reader of a key property of the result
eq. (3.36). Although eq. (3.36) represents the distribution in z and θ2

g , it is straight-
forward to obtain the distribution in the mass ρ by integrating eq. (3.36) over θ2

g with the
constraint δ(ρ − z(1 − z)θ2

g) exactly as one would do in a leading-order calculation. The
same holds for the distribution in any observable v defined in terms of the parent gluon
kinematical variables (z, θ2

g and mass m2). The fact that one can obtain one parent gluon
kinematical distribution from the other at order α2

s, by using a relationship valid in the
limit of a massless gluon, implies that the effect of the gluon virtuality has effectively been
absorbed into the structure of eq. (3.36). This is reminiscent of the fact that in the soft
limit and to NLL accuracy for global observables one can replace the emission of a massive
gluon by a massless gluon, with the effect of the gluon branching included in the argument
of the coupling and the CMW factor K. Therefore we may think of eq. (3.36) as an ex-
tension of the web concept beyond the soft limit and into the hard-collinear region, via an
extension of the CMW coupling and a higher-order splitting function.

9We thank Gavin Salam for several discussions related to a potential collinear improved coupling.
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3.6 C2
F abelian piece

Next we examine the pure C2
F piece, i.e. the abelian q → qgg contribution. This channel is

somewhat different from the gluon decay contributions we have studied thus far. Here there
is no association of the results to the running coupling scale or scheme and no b0X terms
that accompany the DGLAP endpoint contribution. Accordingly in this channel one can
focus purely on illustrating the extraction of Bq,(ab.)2 (z), the abelian gluon emission piece.

In ref. [73] we arrived at Bq
2 as part of the NNLL structure10 for the mMDT jet mass

distribution ρ
σ0

dσ
dρ , by performing an order α2

s calculation in the small ρ limit. For two
real emissions, this involved considering two configurations. The first, called Fpass(z, ρ) in
ref. [73], had a relatively energetic large-angle emission that passes a condition 1− zcut >
z > zcut, with a smaller-angle emission with no constraint on its energy. Together the
emissions set a value ρ for the normalised jet mass squared, and taking ρ � zcut ensures
that both emissions are collinear though not necessarily strongly ordered in angle. This
configuration falls entirely within the jurisdiction of the triple-collinear splitting functions.
The second configuration, called F fail(zp, ρ), involves a situation where the larger-angle
emission is relatively soft and fails the zcut condition.11 This emission is then “groomed
away” and does not contribute to the jet mass ρ which is then set by the smaller angle
emission. The emission that is groomed away can be at any angle and its treatment
requires going beyond collinear calculations. Only the Fpass(z, ρ) term is directly related
to Bq,(ab.)

2 , while the F fail(z, ρ) is a necessary part of recovering the full mMDT jet mass
result including its leading-logarithmic terms.

Similarly for virtual corrections we needed to consider two distinct terms: firstly there
is the standard one-loop correction to the Born process (qq̄ production) and secondly there
is the one-loop correction to a 1 → 2 collinear splitting. Again, it is only the latter
contribution that is relevant to Bq,(ab.)

2 , while the former is needed as part of obtaining
the full NNLL result for the mMDT ρ distribution. Performing the order α2

s calculation
and subtracting the NLL result, which arises entirely from the approximation of emissions
strongly-ordered in angle, we obtained the relevant contribution to Bq

2, alongside NNLL
“clustering” corrections. Upon combining with the C2

F term from the CF (CF − CA/2)
channel we recovered,

B
q,(ab.)
2 = −γ(2,C2

F )
q = C2

F

(
−3

8 + π2

2 − 6ζ(3)
)
, (3.39)

though we did not study its z dependence.
In this article we demonstrate more directly, by studying a simpler example, how

the Bq,(ab.)2 (z) contribution may be extracted as a difference between the triple-collinear
and strongly-ordered in angle regimes, which more clearly exposes its physical origin. A
key point of difference from the correlated emission calculations we have presented thus
far is that when considering the decays of a parent gluon emission, requiring the parent

10We remind the reader that leading double logarithmic contributions are absent for the mMDT so that
the logarithmic hierarchy starts with NLL single-logarithmic terms.

11Note that F fail(zp, ρ) is a function of the splitting variable zp, shown in figure 3.
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emission to be collinear to the emitter is sufficient to constrain all three final partons to
be collinear.12 However in the C2

F channel requiring, for instance, a small jet mass does
not necessarily fix all partons to be collinear , in particular, allowing for soft wide-angle
emissions unrelated to collinear physics, as already alluded to above when discussing the
F fail(z, ρ) contribution to the mMDT jet mass.

We shall therefore consider a collinear gluon emission (labeled 1) with a fixed z1 = 1−z
and angle θ = θ13 � 1 w.r.t. the final emitted quark (see figure 3). This emission will set
the collinearity in the same way as the parent emission for the correlated emission channels.
We shall then examine the role of more collinear real emissions by integrating over a second
emission such that θ23 < θ, but without imposing any other constraints. Integrating over
the smaller angle emission produces divergences and accompanying finite corrections. We
will then combine this calculation with the one-loop corrections to a 1 → 2 collinear
splitting. It is important to note here that the above mentioned angular restriction on
the secondary emission is the sole reason prohibiting an analytic calculation. Essentially,
the azimuthal integral is rendered incomplete due to the angular restriction, and thus we
could not provide an analytic result. Finally, we will perform the exact same calculation
but using strongly-ordered dynamics with factorised 1 → 2 splitting functions and phase
space. We anticipate that the difference between the full triple-collinear limit calculation
(including the one-loop correction to a 1→ 2 splitting) and the same calculation using the
iterated 1→ 2 kernel and phase space will suffice to directly yield Bq,(ab.)2 (z).

Integrating the triple-collinear splitting function 〈P̂ (ab)
g1,g2,q3〉 over the region θ23 < θ13 =

θ we obtain the following result in 4− 2ε dimensions:(
θ2

σ0

d2σ

dzdθ2

)d-r

=
(
CFαs

2π

)2 (Hsoft-coll.(z, θ2, ε)
ε2

+Hcoll.(z, θ2, ε)
ε

+Hsoft(z, θ2, ε)
ε

+Hfin.(z)
)
,

(3.40)
with

Hsoft-coll.(z, θ2, ε) = pqq(z, ε)z−4ε(1− z)−2εθ−4ε
(

1− π2

6 ε
2 +O(ε3)

)
,

Hcoll.(z, θ2, ε) = pqq(z, ε)z−4ε(1− z)−2εθ−4ε
(

3
2 + 13

2 ε−
2π2

3 ε+O(ε2)
)
,

Hsoft(z, θ2, ε) = 0 ,

(3.41)

where the label d-r denotes the double real contribution, pqq(z, ε) = 1+z2

1−z − ε(1 − z), the
different pole terms are labelled according to the origin of the divergence i.e. whether it
comes from when the second emission is soft and collinear, pure collinear or pure soft. The
contribution Hfin.(z) is a finite correction that we obtain via numerical integration in four
dimensions.

It is to be noted that the above result is precisely the same as the Fpass(z, ρ) term we
obtained for the case of fixed jet mass ρ in ref. [73] with the substitution ρ → z(1 − z)θ2.

12Recall that the correlated emission contribution vanishes exponentially in the rapidity separation of the
offspring partons, which kills large angular separations between gluon offspring.
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Figure 4. Figure showing the dependence of Hfin.(z) on z.

This relationship is just the single emission relation between ρ and θ and hence exact in
the divergent limits i.e. when the second emission is vanishingly soft (z2 → 0) or exactly
collinear (θ23 → 0) to the final quark. The finite contribution Hfin.(z) is identical to
the mMDT jet mass case. This structure for the answer again reflects the point made
previously (for the gluon decay channels), that once divergent contributions have been
removed from the triple-collinear splitting functions, the remaining finite contribution
originating from relatively energetic partons, with commensurate emission angles, is
independent of the observable. Accordingly one should also expect that to obtain the
analogous result, from the region θ23 < θ13, for other IRC safe observables v , which
constrain all 3 emissions, one can use eqs. (3.40), (3.41) and simply replace θ by its one
gluon form in terms of the observable v and z.

In ref. [73] we evaluated the integral of Hfin.(z),
∫ 1

0 H
fin.(z)dz ≈ 0.933 · · · , which is

consistent with the analytical form 4ζ(3)− 31
8 .13 The z dependence of this function, which

we have only been able to obtain numerically is shown in figure 4. It shows that as
z → 0 the result tends to a constant, while the steep z → 1 behaviour appears consistent
with the presence of a ln z ln(1−z)

1−z term. We believe, on the basis of carrying out some
analytical investigation, that indeed the ln z ln(1−z)

1−z behaviour is present in the answer, but
nevertheless, there might be additional terms, e.g. pure ln(1 − z), that also contribute to
the diverging behaviour as z → 1.

In order to obtain Bq,(ab.)2 (z) we will also eventually need to add to our calculation in
eqs. (3.40), (3.41) the one-real, one-virtual contribution involving the one-loop correction
to the collinear 1→ 2 splitting given by [94]

(
θ2

σ0

d2σ

dzdθ2

)r-v

=
(
CFαs

2π

)2 [
pqq(z, ε) (z(1− z))−3ε θ−4ε

(2
ε

ln z + 2Li2
(
z − 1
z

))
− 1

]
.

(3.42)

13In ref. [73] we noted that in order to recover the analytic result for Bq2 we needed to identify the
numerically computed value with the aforementioned analytical form. With the help of a precise numerical
evaluation and the PSLQ algorithm [93] it has been possible to analytically reconstruct this answer. We
thank Pier Monni for his work to verify this.
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Figure 5. Figure showing the dependence of Bq,(ab.)
2 (z) on z.

We now compute the strongly-ordered version of the double-real emission term, which
we shall use as a subtraction term to generate Bq,(ab.)2 (z). This is given simply by considering
a factorised product of splitting functions and applying a factor of the single collinear
emission phase-space for each emission in 4− 2ε dimensions [95]:(

θ2

σ0

d2σ

dzdθ2

)s-o

=
(
CFαs

2π

)2
(

1− π2

6 ε
2
)
pqq(z, ε)

(
z(1− z)θ2

)−2ε

×
∫ θ2

dθ2
23

θ
2(1+ε)
23

(zp(1− zp))−2εpqq(zp, ε)dzp , (3.43)

=
(
CFαs

2π

)2
pqq(z, ε)

(
z(1− z)θ2

)−2ε
(

1
ε2

+ 3
2ε + 13

2 −
5π2

6

)
. (3.44)

in writing which we have expressed the result in terms of the renormalised MS coupling
(with µR = E).

We observe immediately that eq. (3.44) gives an identical structure to that of the pole
functions in the full triple-collinear result, eqs. (3.40) (3.41), except that the prefactor
multiplying the double and single poles involves a factor z−2ε rather than z−4ε and there is
no Hfin.(z) term. Therefore on subtracting the strongly-ordered term from the full result
we obtain:(

θ2

σ0

d2σ

dzdθ2

)d-r

−
(
θ2

σ0

d2σ

dzdθ2

)s-o

=
(
CFαs

2π

)2 (
pqq(z, ε)θ−4ε(1− z)−2ε

(
z−4ε − z−2ε

)( 1
ε2

+ 3
2ε

)
+Hfin.(z)

)
. (3.45)

Adding in the virtual correction we arrive at the result

Bq,(ab.)2 (z) =
(
θ2

σ0

d2σ

dzdθ2

)d-r

−
(
θ2

σ0

d2σ

dzdθ2

)s-o

+
(
θ2

σ0

d2σ

dzdθ2

)r-v

(3.46)

=
(
CFαs

2π

)2
(

1+z2

1−z

(
−3lnz+2Li2

(
z−1
z

)
−2lnz ln(1−z)

)
−1+Hfin.(z)

)
.

(3.47)
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The functional dependence of Bq,(ab.)2 (z) on z is shown in figure 5. In addition to the
steep behaviour as z → 1, also seen for Hfin.(z) we also note the presence of a small z
divergence which comes from the small z approximation of Li2

(
z−1
z

)
≈ −1

2 ln2 z − π2

6 .

Performing the integral over z of Bq,(ab.)2 (z), and combining with the C2
F term of the

CF (CF − CA/2) identical particle contribution in eq. (3.22), we recover the expected result:

B
q,(ab.)
2 =

(2π
αs

)2 ∫ 1

0
Bq,ab.2 (z) dz = π2 − 8ζ(3)− 29

8 , (3.48)

B
q,(ab.)
2 +B

q,(id.),C2
F

2 = −γ(2,C2
F )

q , (3.49)

where Bq,(id.),C2
F

2 is the C2
F term of the identical particle contribution to B2 and we have

used the assumed analytic form, rather than the numerical value, for the integral of Hfin.(z).
A few comments on the result in the abelian gluon emission channel are in order.

As stated before, given the absence of any relationship to the definition of αs, the result
obtained for Bq,(ab.)2 (z) can be entirely viewed as an effective higher-order splitting function.
While in the gluon decay channels we could relate the z dependent functions we obtained to
the timelike NLO non-singlet splitting kernels, our result in the present channel cannot be
directly related to the C2

F term of P V (1)
qq (z). Indeed, in our current work, for all channels we

have obtained the result differential in the kinematics of the first emission, i.e the emission
setting the collinearity. For the abelian gluon emission case our z variable thus refers to
the intermediate quark resulting from that first emission, rather than the final quark after
all splittings which defines the argument of P V (1)

qq (z). Moreover we have worked with a
fixed first emission and imposed a constraint on the second emission to be more collinear,
which crucially impacts the structure of the result we obtain and potentially modifies the
calculation relative to the one needed for P V (1)

qq (z).

4 Conclusions

In this paper we have studied collinear parton splittings at order α2
s and NNLL accuracy, for

splittings of a final-state quark. At our accuracy, i.e. to study NNLL collinear terms, the
relevant limits of the QCD matrix-elements are given by the well-known triple-collinear
splitting kernels. We have performed calculations for all relevant channels at order α2

s,
involving both the decay of a massive gluon emitted from the initiating quark (i.e. correlated
emission terms), as well as the purely abelian term with successive gluon emissions off the
initiating quark.

For the gluon decay contributions, involving CFTRnf , CFCA and CF (CF − CA/2)
colour channels, we have computed the distribution differential in ρ and z, which are re-
spectively the normalised invariant mass squared of the triple-collinear parton system and
the energy fraction of the quark after emission of the massive gluon. We have also studied
the distribution in θ2

g and z, where θ2
g refers to the angle made by the parent massive gluon

with the final quark. In the abelian C2
F channel we have again fixed the energy fraction

and angle of an initial gluon emission and then examined the role of a more collinear real
emission together with the one-loop virtual correction to the initial collinear splitting.
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The distributions we have derived give us several pieces of information that ought to
be valuable when considering ingredients needed for an NNLL parton shower, and also
of general theoretical interest. Firstly, for the gluon decay channels, in the soft limit
z → 1, we noted that our results produced terms that reconstruct the correct scale of
the coupling in the soft limit as well as giving the CMW coefficient K [86]. Further, after
removal of the soft and higher logarithmic order terms we obtain a pure hard-collinear term
Bq2(z), a differential in z version of the coefficient Bq

2 that governs the intensity of collinear
radiation at order α2

s. Upon integration of Bq2(z) over z, we recovered the standard form for
Bq

2 including the δ(1− z) endpoint contributions of the timelike NLO non-singlet splitting
kernels accompanied by terms of the form b0X, with b0 the first perturbative coefficient of
the QCD β function. The value of X is dependent on the quantity whose distribution we
are considering. We were additionally able to relate the z dependent functions that emerge
from our calculations to the timelike NLO non-singlet splitting kernels, after removal of
terms that give rise to the b0X contributions.

We also discussed how our results suggest a possible extension of the scale and scheme
for the soft limit CMW coupling. In particular, from our results for the θ2

g distribution,
we identified a b0 ln z term that, when combining with the leading-order result, can be
absorbed in a change of scale of the coupling, thereby modifying it relative to the known
soft limit result. A further term proportional to b0(1−z) can be considered as an extension
of the CMW scheme beyond the soft limit, and doing so, alongside modifying the scale as
just mentioned, completely absorbs the nf dependent pieces into the definition of the
coupling. Terms that are left over are devoid of an nf term and may be viewed as effective
higher-order splitting functions. We shall leave a more detailed justification and concrete
proposals for the coupling scale and scheme to forthcoming work [92].

For the abelian C2
F channel we demonstrated how Bq2(z) can be extracted by thinking

of it as an NNLL correction that emerges naturally from the difference between the triple-
collinear limit calculation (including also the one-loop correction to a 1→ 2 splitting) and
the same calculation performed using NLL dynamics, i.e. with factorised splitting functions
and phase-space. In the case of the abelian C2

F piece our results gave rise to a function
which we could compute only partially analytically, while we obtained the remaining part
of the result through a numerical evaluation. Again, after integrating over z we recovered
the known result for Bq

2, also in this channel.

In conclusion, as stated before, we anticipate that the findings of this paper will
be of value in incorporating the NNLL hard collinear corrections, corresponding to
inclusion of Bq

2, in future higher accuracy parton showers. Prior to doing so it would be
necessary to extend these results to take into account collinear splittings for gluon jets and
similarly account for splittings of initial state partons, which we also leave to forthcoming
work. Exploring how best to match the calculations performed here to existing shower
frameworks, such as the PanScales showers [50–52], would also still require significant
further thought and effort. Nevertheless we believe that the calculations performed here
and the insights we have obtained are sufficiently general so as to constitute a key step
relevant to any such future work.
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A Computational details

This appendix contains essential details about the computations presented in the
manuscript. Given that the algebra is quite tedious, we restrict ourselves to present the
core of the steps needed for the interested reader to reproduce the results. All intermediate
steps of the computation, therefore, will be omitted.

A.1 Recap of the web parametrization of phase space

The web variables have been introduced in ref. [73] to enable the analytic computation
of the distribution of the CFTRnf piece, cf. eq. (3.2). This parametrization of phase
space appears naturally in the definition of the web function, i.e. the integrand of the soft
function [42], which is an essential ingredient in soft-gluon resummation. The extension of
such parametrization in the triple-collinear limit appeared for the first time in [73].

The interested reader can consult ref. [73] for details. Here, we just collect the main
result. The phase space reads:

dΦweb
3 = (4π)2ε

256π4
2z1−2εdz

1− z
1

Γ(1− ε)
d2−2εk⊥
Ω2−2ε

ds12
(s12)ε

dzp
(zp(1− zp))ε

1
Γ(1− ε)

dΩ2−2ε
Ω2−2ε

. (A.1)

In the above, k⊥ is the total transverse momentum of the parent gluon with respect to the
final state quark. The energy variables, z and zp, are those of figures 2 and 1, while s12
is the invariant mass of the secondary branching, i.e. the off-shellness of the parent gluon.
To explain the meaning of the solid angle dΩ2−2ε, we first define the transverse vector

q⊥ = k⊥1
zp
− k⊥2

1− zp
(A.2)

and the solid angle is that of q⊥, aligning k⊥ along a reference axis in the transverse plane.
We notice the nice feature of eq. (A.1) that the double-soft limit, z → 1, immediately
recovers the double-soft phase space [96].
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A.2 CFTRnf : θ2
g distribution

As we explained in the text, the fixed invariant-mass distribution has been presented in
ref. [73]. Here, we give the details of the similar computation that yields eq. (3.6). The
triple-collinear splitting function reads

〈
P̂q̄′1q′2q3

〉
= 1

2 CFTR
s123
s12

[
−

t212,3
s12s123

+ 4z3 + (z1 − z2)2

z1 + z2
+ (1− 2ε)

(
z1 + z2 −

s12
s123

)]
.

(A.3)
Therefore, after carrying out the azimuthal average we find
(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)CFTRnf
= CFTRnf

(
αµ2ε

2π

)2 (
E z(1− z)θ2

g

)−2ε ∫ 1

0

dzp
(zp(1− zp))ε

∫ ∞
0

ds12
sε12

× z

s12 + z(1− z)2θ2
g

[ 1
s12

( 4z
1− z −

8zzp(1− zp)
(1− z)(1− ε) + (1− z)(1− 2zp)2 + (1− 2ε)(1− z)

)

+ 1− z
s12 + z(1− z)2θ2

g

(
8zzp(1− zp)

(1− z)2 − (1 + z)2(1− 2zp)2

(1− z)2 − 1
)]

.

Notice that the integral over the invariant mass, s12 is convergent from above and thus can
be safely extanded to infinity. In the presence of an observable, such as the jet mass ρ, the
upper limit would be dictated by the observable, e.g. max.{s12} = E2(1− z)ρ. Performing
the remaining integrals, and imposing charge renormalization, yields

(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)CFTRnf
= CFTRnf

(
αs
2π

)2
z−3ε

(
(1− z)2θ2

g

)−2ε

×
(
− 2

3εpqq(z, ε)−
10
9 pqq(z)− 2

3(1− z)
)
.

Adding in the virtual corrections, i.e. eq. (3.5), one immediately recovers eq. (3.6).

A.3 The azimuthal average

Similar to the CFTRnf result first derived in ref. [73], the web variables are essential to
compute eqs. (3.7) and (3.8). The added complexity of the latter case arises from the
azimuthal averages required in 4− 2ε dimensions. Here, we only give the core components
of the calculation for any reader interested to obtain the answer themselves. We avoid any
tedious, yet straightforward, steps.

The azimuthal averages we need are those of the following squared transverse vectors:

q⊥1 = k⊥1
zp

, q⊥2 = k⊥2
1− zp

. (A.4)

Thus we have:

〈 1
q2
⊥1
〉 = Ω1−2ε

Ω2−2ε

∫ π

0
dφ

(sinφ)−2ε

k2
t + (1− zp)2q2 + 2(1− zp)q kt cosφ , (A.5)
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where q is defined in eq. (A.2). Likewise, the result for 〈1/q2
⊥2〉 is simply obtained by

replacing zp → 1− zp. Using the simple substitution χ = (1 + cosφ)/2 we find:

〈 1
q2
⊥1
〉 =

2F1
(
1, 1

2 − ε, 1− 2ε; −2x
1−x

)
(
k2
t + (1− zp)2q2) (1− x) , x = 2(1− zp)kt q

k2
t + (1− zp)2q2 . (A.6)

Finally, one can use few basic identities of the hypergeometric function to obtain the final
form:

〈 1
q2
⊥1
〉 = zp

[ Θ
(
zp − s12

s12+k2
t

)
(
1− (1−zp)s12

zp k2
t

)2ε
2F1

(
−ε,−2ε, 1− ε; (1−zp)s12

zp k2
t

)
zp k2

t − (1− zp)s12

+
Θ
(

s12
s12+k2

t
− zp

)
(
1− zp k2

t
(1−zp)s12

)2ε
2F1

(
−ε,−2ε, 1− ε; zp k2

t
(1−zp)s12

)
(1− zp)s12 − zp k2

t

]
. (A.7)

A.4 CFCA: ρ distribution

The starting integral we need reads:(
ρ

σ0

d2σ(2)

dρ dz

)CFCA
=
∫

dΦweb
3

(
8παµ2ε)2
s2

123
〈P̂ (nab.)

g1g2q3〉 ρ δ
(
ρ− s123

E2

)
, (A.8)

where

〈P̂ (nab)
g1g2q3〉 =

{
(1− ε)

(
t212,3
4s2

12
+ 1

4 −
ε

2

)
+ s2

123
2s12s13

[
(1− z3)2(1− ε) + 2z3

z2

+ z2
2(1− ε) + 2(1− z2)

1− z3

]
− s2

123
4s13s23

z3

[
(1− z3)2(1− ε) + 2z3

z1z2
+ ε(1− ε)

]

+ s123
2s12

[
(1− ε)z1(2− 2z1 + z2

1)− z2(6− 6z2 + z2
2)

z2(1− z3) + 2εz3(z1 − 2z2)− z2
z2(1− z3)

]

+ s123
2s13

[
(1− ε)(1− z2)3 + z2

3 − z2
z2(1− z3) − ε

(2(1− z2)(z2 − z3)
z2(1− z3) − z1 + z2

)

− z3(1− z1) + (1− z2)3

z1z2
+ ε(1− z2)

(
z2

1 + z2
2

z1z2
− ε
)]}

+ (1↔ 2) .

It is useful to pause and comment on the collinear structure of the splitting function.
Although it appears that there exists a collinear singularity in every angle, i.e. θij → 0, in
fact the only true singularity appears as θ12 → 0. The splitting function actually vanishes
when expanded around θ13 = 0 or θ23 = 0, as one can easily verify. This collinear structure
can be understood, from physics standpoint, as a consequence of colour coherence (angular
ordering).

Now to the computation. The first thing to realize is that the total invariant mass is
free from the azimuthal angle of the web phase space, in particular,

s123 = s12 + zk2
t

1− z , (A.9)
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and, therefore, the azimuthal average can be performed at the onset. The invariants s13
and s23 are given in terms of the squared transverse vectors, q2

⊥1 and q2
⊥2, namely

s13 = zzp
(1− z) q

2
⊥1, s23 = z(1− zp)

(1− z) q2
⊥2 . (A.10)

The full computation is somewhat tedious, so we will not proceed to give all details.
Yet, we explain the necessary steps for the interested reader. First, the ε expansion of
hypergeometric function can be performed on the integrand level and reads [97]

2F1 (−ε,−2ε, 1− ε; z) = 1 + ε2 Li2(z) +O
(
ε3
)
. (A.11)

Next, to simplify things we make full use of the collinear structure of the splitting function.
All terms which exhibit apparent poles in θ13 and θ23 are grouped together on the integrand
level.14 Once this is done, the remaining integrals over s12 and zp are readily performed.
The collinear pole appears as s12 → 0, while the soft pole appears as zp → 0 or zp → 1.
The final result reads, after charge renormalization,(

ρ

σ0

d2σ(2)

dρ dz

)CFCA
= CFCA

(
αs
2π

)2
z−ε(1− z)−2ερ−2ε (A.12)

×
[
pqq(z, ε)
ε2

+
(

11
6ε + ln z

ε
+ 1

2 ln2 z + Li2
(
z − 1
z

)
− π2

2

)
pqq(z)

+
(
z2 + 4z − 2

)
ln z

2(1− z) + 49z2 + 45z + 40
18(1− z)

]
.

The final ingredient is the virtual correction of the 1→ 2 splitting which reads [94](
ρ

σ0

d2σ
(2)
virt.

dρ dz

)CFCA
= CFCA

(
αs
2π

)2
z−ε(1− z)−ερ−2ε pqq(z, ε) (A.13)

×
[
− 1
ε2
− 11

6ε ρ
ε + ln(1− z)

ε
− ln z

ε
+ 2π2

3 + Li2
(

z

z − 1

)
− Li2

(
z − 1
z

)
+ 1− z

1 + z2

]
,

and the addition of which to eq. (A.12) immediately yields eq. (3.8).

A.5 CF (CF − CA/2): ρ distribution

Let us recall the expression of the splitting function:

〈P̂ (id)
q̄1q2q3〉 = CF

(
CF −

1
2CA

){
(1− ε)

(2s23
s12
− ε
)

(A.14)

+ s123
s12

[
1 + z2

1
1− z2

− 2z2
1− z3

− ε
(

(1− z3)2

1− z2
+ 1 + z1 −

2z2
1− z3

)
− ε2(1− z3)

]

− s2
123

s12s13

z1
2

[
1 + z2

1
(1− z2)(1− z3) − ε

(
1 + 21− z2

1− z3

)
− ε2

]}
+ (2↔ 3) .

14Post the azimuthal average, these apparent poles manifest as the denominators in eq. (A.7) tend to
zero.
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As mentioned in the text, this colour channel contains neither soft or collinear poles, and
thus one can set ε = 0 at the onset and perform the computation in 4 dimensions. The
azimuthal average is performed using eq. (A.7), setting ε = 0, followed by the s12 and zp
integrals. The final result is given in eq. (3.7).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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