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In recent years, interesting investigations of the nonperturbative renormalization group equations for 
tensorial group field theories have been performed in the truncation method, while completely discarding 
the Ward identities from their analysis. In this letter, in continuation of our recent series of papers, we 
present a new framework of the investigation, namely, the effective vertex expansion, allowing us to 
consider infinite sectors rather than finite-dimensional subspaces of the full theory space. We focus on 
the ultraviolet behavior and provide a new and complete description of the renormalization group flow 
constrained with Ward identities.
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1. Introduction

Applying the Functional renormalization group (FRG) to tensor 
models (TM) and group field theory (GFT) has been the subject 
of intense works in recent years because of its close relation-
ship with the fluctuation problem in quantum gravity phenomena 
[1–19]. Despite the difficulties related to the nonlocal behavior of 
the interactions and combinatorics, several classes of new tech-
niques have helped to think about using the FRG for tensorial 
group field theory (TGFT) [1–4,13]. First insights have been gained 
from the nonperturbative Wetterich equation, in particular, by an 
investigation of the melonic leading order interactions with a new 
method called effective vertex expansion (EVE) [1–4]. EVE is a new 
approach to the FRG by improving the truncation and by appro-
priately choosing a regulator. As such, it will certainly become a 
promising way of investigating the nonperturbative field theory. 
Many phase transitions which are identified near the fixed points 
are shown to be non-physical due to the violation of the Ward 
identities (WI) [2]. The WI is an additional constraint on the flow 
and therefore should not be overlooked in the study of the renor-
malization group. In the symmetric phase, we discovered, even 
though no physical fixed point may be observed, the possible ex-
istence of first-order phase transition in the reduced subspace of 
theory space (see [1]). The complete definition of this new phase 
transition remains to be rigorously probed.
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A very useful concept for the study of the FRG and, in partic-
ular, for the phase transitions, is the coarse-grained free energy 
or effective average action �k . The k dependence of this quan-
tity is due to the regulator rk where k ranges from IR to UV. The 
nontrivial form of the Ward identity for the TGFT with nontriv-
ial propagator in the functional actions is not just a consequence 
of the regulator rk but rather is due to the violation of the ki-
netic term under U(N) symmetry. Let us remark that for standard 
gauge-invariant theories like QED see [22] the regulator generally 
breaks the explicit invariance of the kinetic term and leads to a 
new nontrivial Ward identity that depends on the regulator rk , 
which becomes trivial in the IR. This is not the case for TGFT 
models for which the kinetic term intrinsically violates the U(N)

symmetry. Therefore the appearance of the regulator generalizes 
the definition of the theory but does not add any new information 
concerning the shape of Ward’s identities. To be more precise, in 
the deep IR – in which the influence of the regulator disappears –, 
the Ward identities are still nontrivial due to the nontrivial propa-
gator of the theory. Finally, the WI appears, like the flow equations 
themselves, as a formal consequence of the quantum model, and 
has to be taken into account on the same footing as the flow 
equations. As the Wetterich equation describes the k variation of 
�k , the Ward identity describes the momentum dependence of the 
same quantity. Ignoring these new dynamics related to the Ward 
identity would be a serious lack in the study of the FRG.

In this present letter, the FRG is studied with a new alterna-
tive way by considering together both dynamical aspects of the 
average effective action. The first is dictated by the Wetterich flow 
equation [20,21] and the second by the Ward identity [1]. The fun-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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damental effort in this work is to pool these two dynamics in a 
system of flow equation inside the constrained subspace. We mean 
by constrained subspace the theory space on which these two dy-
namics are compatible and we denote this space by EC . We derive 
the melonic constraint flow by merging these two dynamics equa-
tions in the physical subspace EC of theory space. Note that the 
study of phase transitions is deeply related to the classification of 
all possible universality classes of the exact overlap of the criti-
cal exponents. This universality is broken by the Ward constraint 
driven by the EVE in the same way by the truncation method, such 
that the method proposed in this article may be used for the gen-
eralization to any other interaction of higher rank.

The paper is organized as follows. In section 2 we provide in 
detail useful ingredients for the description of the FRG to TGFT. 
In section 3, the EVE is derived to provide the FRG with a new 
alternative way without crude truncation. Note that the expres-
sion “without crude truncation” does not mean that we have not made 
an approximation in our approach. The originality of the EVE method, 
in contrast to the other ones used in TFTs, is to keep the entire sector 
with infinite dimension rather than finite-dimensional domains of the 
full theory space. The corresponding flow equations which improve 
the truncation method are given. Section 4 describes our new pro-
posal to merge the Wetterich equation and the Ward identity in 
the physical melonic phase space EC of theory space. In the last 
section 5 we give our conclusion.

2. Preliminaries

A group field ϕ is a field, complex or real, defined over d–copies 
of a group manifold G rather than on spacetime:

ϕ : Gd →R,C . (1)

Standard choices (to make contact with physics) are SU(2) and 
SO(4) [10–12]. In this paper, we focus only on the non-local as-
pects of the interactions, and consider the Abelian version of the 
theory, setting G = U(1). For this choice, the field may be equiv-
alently described on the Fourier dual group Zd by a tensor field
T : Zd → C. We consider a theory for two complex fields ϕ and 
ϕ̄ , requiring two complex tensors fields T and T̄ . The allowed 
configurations are then constrained by the choice of the action, 
completing the definition of the GFT. At the classical level, for free 
fields, we choose the familiar form:

Skin[T , T̄ ] :=
∑
�p∈Zd

T̄ p1···pd

(
�p 2 + m2

)
T p1···pd , (2)

with the standard notation �p 2 := ∑
i p2

i , �p := (p1, · · · , pd). For 
the rest of this paper, we use the short notation T �p ≡ T p1···pd . 
The equation (2) defines the bare propagator C−1(�p ) := �p 2 + m2. 
Among the natural transformations that we can consider for a pair 
of complex tensor fields, the unitary transformations play an im-
portant role. They provide the principle that allows to build the 
interactions, which are chosen to be invariant under such a trans-
formation. Denoting by N the size of the tensor field, restricting the 
domain of the indices pi into the window �−N, N �, we require in-
variance with respect to independent transformations along each 
of the d indices of the tensors:

T ′
p1···pd

=
∑
�q∈Zd

[
d∏

i=1

U (i)
piqi

]
Tq1···qd , (3)

with U (i)(U (i))† = id. Define U(N) as the set of unitary symme-
tries of size N , a transformation for tensors is then a set of d
independent elements of U(N), U := (U1, · · · , Ud) ∈ U(N)d , one 
per index of the tensor fields. The unitary symmetries admitting 
an inductive limit for arbitrary large N , we will implicitly con-
sider the limit N → ∞ in the rest of this paper. We call bubble
all the invariant interactions which cannot be factorized into two 
or more smaller bubbles. Observe that, because the transforma-
tions are independent, the bubbles are not local in the usual sense 
over the group manifold Gd . However, locality does not make sense 
without physical content. In standard field theory, for instance, 
or in physics in general, locality is defined by the way accord-
ing to which the fields or particles interact together and, as for 
tensors, this choice reflects invariance with respect to some trans-
formations like translations and rotations. With this respect, the 
transformation rule (3) defines both the nature of the field (a ten-
sor) and the corresponding locality principle. To summarize:

Definition 1. Any interaction bubble is said to be local. By exten-
sion, any function expanded as a sum of bubbles will be local.

This locality principle called traciality in the literature has some 
good properties of the usual ones. In particular, it allows to define 
local counter-terms and to follow the standard renormalization 
procedure for interacting quantum fields with UV divergences. In 
this paper, we focus on the quartic melonic model in rank d = 5, 
described by the classical interaction:

S int[T , T̄ ] = g
d∑

i=1

, (4)

g denoting the coupling constant and where we adopted the stan-
dard graphical convention [23] to picture the interaction bubble 
as d-colored bipartite regular connected graphs. The black (resp. 
white) nodes corresponding to T (resp. T̄ ) fields, and the colored 
edges fixing the contractions of their indices. Note that, because 
we contract indices of the same color between T and T̄ fields, 
the unitary symmetry is ensured by construction. The model that 
we consider has been shown to be just renormalizable is the usual 
sense, that is to say, all the UV divergences can be subtracted with 
a finite set of counter-terms for mass, coupling and field strength. 
From now, we will consider m2 and g as the bare couplings and 
their counter-terms δm2, δg , and we introduce explicitly the wave 
function renormalization Z replacing the propagator C−1 by

C−1(�p ) = Z �p 2 + m2 . (5)

The equations (2) and (4) define the classical model, without fluc-
tuations. We quantize it using the path integral formulation, and 
define the partition function by integrating over all configurations, 
weighted by e−S :

Z( J , J̄ ) :=
∫

dT dT̄ e−S[T ,T̄ ]+〈 J̄ ,T 〉+〈T̄ , J 〉 , (6)

the sources being tensor fields themselves i.e. J , J̄ : Zd → C and 
〈 J̄ , T 〉 := ∑

�p J̄ �p T �p . Note that the quantization procedure provides 
a canonical definition of UV and IR regimes. The UV theory cor-
responding to the classical action S = Skin + S int whereas the IR 
theory corresponds to the standard effective action defined as the 
Legendre transform of the free energy W := ln(Z( J , J̄)).

Renormalization in standard field theory allows us to subtract 
divergences, and it has been shown that quantum GFT can be 
renormalized in the usual sense [24,25]. Concerning the quanti-
zation procedure, moreover, the renormalization group allows de-
scribing quantum effects scale by scale, through more and more 
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effective models, defining a path from UV to IR by integrating out 
fluctuations of increasing size.

Recognizing this path from UV to IR as an element of the quan-
tization procedure itself, we substitute to the global quantum de-
scription (6) a set of models {Zk} indexed by a referent scale k. 
This scale defines what is UV, and integrated out and what is IR, 
and frozen out from the long distance physics. The set of scales 
may be discrete or continuous, and in this paper we choose a con-
tinuous description k ∈ [0, �] for some fundamental UV cut-off �. 
There are several ways to build what we call functional renormal-
ization group. We focus on the Wetterich-Morris approach [20,21], 
Zk( J , J̄) being defined as:

Zk( J , J̄ ) :=
∫

dT dT̄ e−Sk[T ,T̄ ]+〈 J̄ ,T 〉+〈T̄ , J 〉 , (7)

with: Sk[T , T̄ ] := S[T , T̄ ] + ∑
�p T̄ �p rk(�p 2)T �p . The momentum-

dependent mass term rk(�p 2) called regulator vanishes for UV fluc-
tuations �p 2 � k2 and becomes very large for the IR ones �p 2 � k2. 
Some additional properties for rk(�p 2) may be found in standard 
references [29,30]. Without explicit mentions, we focus on the 
Litim’s modified regulator:

rk(�p 2) := Z(k)(k2 − �p 2)θ(k2 − �p 2) , (8)

where θ designates the Heaviside step function and Z(k) is the 
running wave function strength. The renormalization group flow 
equation, describing the trajectory of the RG flow into the full the-
ory space is the so called Wetterich equation [20,21], which for 
our model reads:
∂

∂k
�k =

∑
�p

∂rk

∂k
(�p )

(
�

(2)

k + rk

)−1

�p �p , (9)

where (�
(2)

k )�p �p ′ is the second derivative of the average effective 
action �k with respect to the classical fields M and M̄:(
�

(2)

k

)
�p �p ′ = ∂2�k

∂M �p ∂ M̄ �p ′
, (10)

where M �p = ∂Wk/∂ J̄ �p , M̄ �p = ∂Wk/∂ J �p and:

�k[M, M̄] +
∑

�p
M̄ �p rk(�p 2)M �p := 〈M̄, J 〉 + 〈 J̄ , M〉

−Wk(M, M̄) , (11)

with Wk = ln(Zk).
The flow equation (9) is a consequence of the variation of the 

propagator, indeed

∂rk

∂k
= ∂C−1

k

∂k
, (12)

for the effective covariance C−1
k := C−1 + rk . But the propagator has 

other source of variability. In particular, it is not invariant with re-
spect to the unitary symmetry of the classical interactions (4). Fo-
cusing on an infinitesimal transformation: δ1 := (id + ε, id, · · · , id)

acting non-trivially only on the color 1 for some infinitesimal anti-
hermitian transformations ε , the transformation rule for the prop-
agator follows the Lie bracket:

Lδ1 C−1
k = [C−1

k , ε] . (13)

The source terms are non invariant as well. However, due to the 
translation invariance of the Lebesgue measure dT dT̄ involved in 
the path integral (7), we must have Lδ1Zk = 0. Translating this 
invariance at the first order in ε provides a non-trivial Ward-
Takahashi identity for the quantum model:
Theorem 1. (Ward identity.) The non-invariance of the kinetic action 
with respect to unitary symmetry induces non-trivial relations between 
�(n) and �(n+2) for all n, summarized as:

∑
�p⊥,�p′⊥

′{[
C−1

k (�p) − C−1
k (�p ′)

][
∂2Wk

∂ J̄ �p ′ ∂ J �p
+ M̄ �p M �p ′

]

− J̄ �p M �p ′ + J �p ′ M̄ �p
}

= 0 . (14)

where 
∑′

�p⊥,�p′⊥
:= ∑

�p⊥,�p′⊥ δ�p �p′⊥ .

In this statement, we introduced the notations �p⊥ :=
(p2, · · · , pd) ∈ Zd−1 and δ�p �p′⊥ = ∏

j �=1 δp j p′
j
. Equations (9) and 

(14) are two formal consequences of the path integral (7), coming 
both from the non-trivial variations of the propagator. Therefore, 
there are no reason to treat these two equations separately. This 
formal proximity is highlighted in their expanded forms, compar-
ing equations (23)–(24) and (29)–(30). Instead of a set of partition 
functions, the quantum model may be alternatively defined as an 
(infinite) set of effective vertices Zk ∼ {�(n)

k } =: hk . RG equations 
dictate how to move from hk →

RG
hk+δk whereas Ward identities 

dictate how to move in the momentum space, along hk .

3. Effective vertex expansion

This section essentially summarizes the state of the art in [1–4]. 
The exact RG equation cannot be solved except for very special 
cases. The main difficulty is that the Wetterich equation (9) splits 
as an infinite hierarchical system, the derivative of �(n) involving 
�(n+2) , and so one. Appropriate approximation schemes are then 
required to extract information on the exact solutions. The effec-
tive vertex expansion (EVE) is a recent technique allowing to build 
an approximation considering infinite sectors rather than crude 
truncations on the full theory space. We focus on the melonic sec-
tor, which takes into account all the divergences of the model and 
then dominate the flow in the UV. One should remember that mel-
onic diagrams are defined as diagrams with an optimal degree of 
divergence. Fixing some fundamental cut-off �, we consider the 
domain 1 � k � �, equally far from the deep UV and the deep IR 
regime. At this place, the flow is dominated by the renormalized 
couplings, which have positive or zero flow dimension (see [3]). We 
recall that the flow dimension reflects the behavior of the RG flow 
of the corresponding quantity, and discriminates between relevant, 
marginal and irrelevant couplings just like standard dimension in 
quantum field theory.1 Because our theory is just-renormalizable, 
one has necessarily [m2] = 2 and [g] = 0, denoting as [X] the flow 
dimension of X .

The basic strategy of the EVE is to close the hierarchical sys-
tem coming from (9) using the analytic properties of the effective 
vertex functions2 and the rigid structure of the melonic diagrams. 
More precisely, the EVE expresses all the melonic effective vertices 
�(n) having negative flow dimension (that is for n > 4) in terms of 
effective vertices with positive or null flow dimension, that is �(2)

and �(4) , and their flow is entirely driven by just-renormalizable 
couplings. As recalled, in this way we keep the entirety of the 
melonic sector and the full momentum dependence of the effec-
tive vertices.

1 For ordinary quantum field theory, the dimension is fixed by the background 
itself. Without background, this is the behavior of the RG flow which fixes the 
canonical dimension.

2 Melonic diagrams may be easily counted as “trees”, and the (renormalized) mel-
onic perturbation series is easy to sum.
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We work in the symmetric phase, i.e. in the interior of the do-
main where the vacuum M = M̄ = 0 makes sense. This condition 
ensures that effective vertices with an odd number of external 
points, or not the same number of black and white external nodes 
are discarded from the analysis. These ones being called assorted 
functions. Moreover, due to the momentum conservation along the 
boundaries of faces, �(2)

k must be diagonal:

�
(2)

k, �p �q = �
(2)

k (�p )δ�p �q . (15)

We denote as Gk the effective 2-point function G−1
k := �

(2)

k + rk .
The main assumption of the EVE approach is the existence of 

a finite analyticity domain for the leading order effective vertex 
functions, in which they may be identified with the resumed per-
turbative series. For the melonic vertex function, the existence 
of such an analytic domain is ensured, melons can be mapped 
as trees and easily summed. Moreover, these resumed functions 
satisfy the Ward-Takahashi identities, written without additional 
assumption than the cancellation of odd and assorted effective ver-
tices. Then we will restrict ourselves in the symmetric phase i.e. 
Then we will restrict ourselves in the symmetric phase i.e. the 
case where the entire cover the perturbative domain. The symmet-
ric phase corresponds to the case where the two-point correlation 
functions are symmetric i.e. G �p�q ∝ δ�p�q .

Among the properties of the melonic diagrams, we recall the 
following statement:

Proposition 1. Let GN be a 2N-point 1PI melonic diagrams built with 
more than one vertex for a purely quartic melonic model. We call external 
vertices the vertices hooked to at least one external edge of GN has :

• Two external edges per external vertices, sharing d −1 external faces 
of length one.

• N external faces of the same color running through the interior of 
the diagram.

Due to this proposition, the melonic effective vertices �(n)

k de-

compose as d functions �(n),i
k , labeled with a color index i:

�
(n)

k, �p1,··· ,�pn
=

d∑
i=1

�
(n),i
k, �p1,··· ,�pn

. (16)

The Feynman diagrams contributing to the perturbative expansion 
of �(n,i)

k, �p1,··· ,�pn
fix the relations between the different indices. For 

n = 4 for instance, we get, from Proposition 1:

�
(4),i
�p1,�p2,�p3,�p4

= + , (17)

where the half dotted edges correspond to the amputated external 
propagators, and the reduced vertex functions π(i)

2 : Z2 → R de-
notes the sum of the interiors of the graphs, excluding the external 
nodes and the colored edges hooked to them. In the same way, 
we expect that the melonic effective vertex �(6),i

melo �p1,�p2,�p3,�p4,�p5,�p6
is 

completely determined by a reduced effective vertex π(i)
3 :Z3 →R

hooked to a boundary configuration such as:
Fig. 1. Internal structure of the 1PI 6-points graphs.

�
(6),i
�p1,�p2,�p3,�p4,�p5,�p6

= + perm , (18)

and so one for �
(n),i
k, �p1,··· ,�pn

, involving the reduced vertex π
(i)
n :

Zn → R. In the last expression, perm denote the permutation of 
the external edges like in (17). The reduced vertices π(i)

2 can be 
formally resumed as a geometric series [1–3]:

π
(1)
2,pp = 2

(
g − 2g2A2,p + 4g3(A2,p)2 − · · ·

)
= 2g

1 + 2gA2,p
, (19)

where π(1)
2,pp is the diagonal element of the matrix π(1)

2 and :

An,p :=
∑

�p
Gn

k(�p)δp p1 . (20)

The reduced vertex π(1)
2,pp depends implicitly on k, and the renor-

malization conditions defining the renormalized coupling gr are 
such that:

π
(i)
2,00|k=0 =: 2gr . (21)

For arbitrary k, the zero-momentum value of the reduced vertex 
defines the effective coupling for the local quartic melonic inter-
action: π

(i)
2,00 =: 2g(k). The explicit expression for π

(1)
3 may be 

investigated from the Proposition 1. The constraint over the bound-
aries and the recursive definition of melonic diagram enforce the 
internal structure pictured on Fig. 1 [see Lahoche-Samary]. Explic-
itly:

π
(i)
3,ppp = (π

(i)
2,pp)3 A3,p . (22)

The two orientations of the external effective vertices being taken 
into account in the definition of π(i)

2,pp . Expanding the exact flow 
equation (9) and keeping only the relevant contraction for large k, 
one gets the following relevant contributions for �̇(2)

k and �̇(4)

k :

�̇
(2)

k = −
d∑

i=1

(23)

�̇
(4),i
k = −2 + 8 (24)
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where Ẋ := k∂ X/∂k. The computation requires the explicit expres-
sion of �(2)

k . In the melonic sector, the self-energy obeys a closed 
equation, reputed difficult to solve. We approximate the exact solu-
tion by considering only the first term in the derivative expansion 
in the interior of the windows of momenta allowed by ṙk:

�
(2)

k (�p ) := Z(k)�p 2 + m2(k) , (25)

where Z(k) := ∂�
(2)

k /∂ p2
1(

�0 ) and m2(k) := �
(2)

k (�0 ) are both renor-
malized and effective field strength and mass. From the definition 
(8), and with some calculation (see [3]), we obtain the following 
statement:

Proposition 2. In the UV domain 1 � k � � and in the symmetric 
phase, the leading order flow equations for relevant and marginal local 
couplings are given by:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βm = −(2 + η)m̄2 − 10ḡ π2

(1+m̄2)2

(
1 + η

6

)
,

βg = −2η ḡ + 4ḡ2 π2

(1+m̄2)3

(
1 + η

6

) [
1

− 1
2π2 ḡ

(
1

(1+m̄2)2 +
(

1 + 1
1+m̄2

))]
.

(26)

With:

η = 4ḡπ2 (1 + m̄2)2 − 1
2 ḡπ2(2 + m̄2)

(1 + m̄2)2�(ḡ,m̄2) + (2+m̄2)
3 ḡ2π4

, (27)

and

�(m̄2, ḡ) := (m̄2 + 1)2 − π2 ḡ . (28)

In this proposition, βg := ˙̄g , βm := ˙̄m2 and the effective-
renormalized mass and couplings are defined as: ḡ := Z−2(k)g(k)

and m̄2 := Z−1(k)k−2m2(k). For the computation, note that we 
made use of the approximation (25) only for absolutely conver-
gent quantities, and into the windows of momenta allowed by ṙk . 
As pointed out in [1–3], taking into account the full momentum-
dependence of the effective vertex π(i)

2 in (19) drastically modifies 
the expression of the anomalous dimension η with respect to 
crude truncations. In particular, the singularity line discussed in 
[2] disappears below the singularity m̄2 = −1. Moreover, because 
all the effective melonic vertices only depend on m̄2 and ḡ , any 
fixed point for the system (26) is a global fixed point for the 
melonic sector. The system (26) admits a fixed point given by 
p := (ḡ∗; m̄2∗) ≈ (0.003; −0.55).

4. The melonic constrained flow

To close the hierarchical system derived from (9) and to obtain 
the autonomous set (26), we made use of the explicit expressions 
(19) and (22). In this derivation, we mentioned the Ward identity 
but they do not contribute explicitly. In this section, we take into 
account their contribution and show that they introduce a strong 
constraint over the RG trajectories.

Deriving successively the Ward identity (14) with respect to 
external sources, and setting J = J̄ = 0 at the end of the compu-
tation, we get the two following relations involving �(4)

k and �(6)

k
(see [2])

π
(1)
2,00 L2,k = − ∂

∂ p2
1

(
�

(2)

k (�p ) − Z �p 2
) ∣∣�p=�0 , (29)

2
(
π

(1)
3,00 L2,k − (π

(1)
2,00)

2 L3,k

)
= − d

dp2
1

π
(1)
2,p1 p1

∣∣
p1=0 , (30)

where:
Ln,k :=
∑
�p⊥

(
Z + ∂rk

∂ p2
1

(�p⊥)

)
Gn

k(�p⊥) . (31)

It can be easily checked that the structure equations (19) and (22)
satisfy the second Ward identity (30) see [1–3] and also [26–28]. 
In the same way, the first Ward identity (29) has been checked 
to be compatible with the equation (19) and the melonic closed 
equation for the 2-point function. However, the last condition does 
not exhaust the information contained in (19). Indeed, with the 
same level of approximation as for the computation of the flow 
equations (26), the first Ward identity can be translated locally as 
a constraint between beta functions (see [3]):

C := βg + η ḡ
�(ḡ,m̄2)

(1 + m̄2)2
− 2π2 ḡ2

(1 + m̄2)3
βm = 0 . (32)

Generally, the solutions of the system (26) do not satisfy the con-
straint C = 0. We call physical melonic phase space and denote as 
EC the subspace of the melonic theory space satisfying C = 0. An 
attempt to describe this space has been provided in [1]. In partic-
ular, we showed that there are no global fixed point of (26) which 
satisfy the constraint C = 0.

In the description of the physical flow over EC provided in [1], 
we substituted the explicit expressions of βg , βm and η, translat-
ing the relations between velocities as a complicated constraint 
on the couplings ḡ and m̄2. Solving this constraint, we build a 
systematic projection of the RG trajectories. Beyond the fact that 
this strategy is difficult to extend for renormalized models involv-
ing higher-order interactions, even for the quartic melonic model 
some difficulties appear, as multi-branch phenomenon [1]. In this 
section, we provide an alternative description that simplifies the 
description of EC and which can be easily extended for a model 
with higher-order interactions. Substituting the flow equations (26)
into the constraint (32), we implicitly impose the conservation of 
the relation (22) between π(i)

2 and π(i)
3 on EC . We propose to re-

lax this constraint, fixing π(i)
3 by the flow itself. Our procedure is 

the following.

(1) We keep βm and fix βg from the equation (32):⎧⎨
⎩

βm = −(2 + η)m̄2 − 10π2 ḡ
(1+m̄2)2

(
1 + η

6

)
,

βg = −η ḡ �(ḡ,m̄2)

(1+m̄2)2 + 2π2 ḡ2

(1+m̄2)3 βm .
(33)

(2) We fix π(i)
3,00 dynamically from the flow equation (24):

βg = −2η ḡ − 1

2
π̄

(1)
3

π2

(1 + m̄2)2

(
1 + η

6

)

+ 4ḡ2 π2

(1 + m̄2)3

(
1 + η

6

)
(34)

(3) We compute d
dp2

1
π

(i)
2,00 from equation (30), and finally deduce 

the anomalous dimension η. The computation requires the sums 
L2,k and L3,k . Following [1–3], L3,k may be computed using the 
approximation (25), but not L2,k which has a vanishing power 
counting. However, L2,k may be expressed in term of Z(k) and 
g(k) from equation (29). Indeed, setting k = 0 and fixing the renor-
malization condition such that Z(k = 0) = 1,3 we get that, in the 
continuum limit � → ∞, Z → 0. Consequently (29) reduces to 
−2g(k)L2,k = Z(k), and from (30):

3 This condition may be refined, see [3], but this point has no consequence on 
our discussion.
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d

dp2
1

π
(1)
2,00 =

(
Z(k)

π
(1)
3,00

g(k)
+ 2(π

(1)
2,00)

2 L3,k

)
. (35)

Computing L3,k , one gets straightforwardly, in the continuum 
limit:

L3,k = − 1

2Z 2(k)k2

π2

(1 + m̄2)3
. (36)

Then, from equations (35), (34) and from the flow equation (23), 
it is easy to get the explicit expression of η on EC , replacing the 
expression (27):

η = 4π2 ḡ
(1 + m̄2)3 + 9π2 ḡ

(1 + m̄2)5 − �′(ḡ,m̄2)
, (37)

with:

�′(ḡ,m̄2) := π2 ḡ(1 + m̄2)3
(

1 − 8

3(1 + m̄2)2

)
+ 6π4 ḡ2 (38)

Note that the two equations (30) and (32) are satisfied by con-
struction. Moreover, the hierarchy remains closed. Indeed, π(i)

3,00

being fixed, we may compute π̇ (i)
3,00 and to equal with the corre-

sponding flow equation provided by (9). Then it’s obvious that we 
fix π(i)

4,00.
The system (33) completed with the new anomalous dimension 

(37) both describe the physical RG flow over EC . Note that setting 
m̄2 → 0 and keeping only the first order contributions in ḡ , we 
get:

βg ≈ −η ḡ , βm ≈ −2m̄2 , η ≈ 4π2 ḡ , (39)

recovering the well known asymptotic freedom. As expected, the 
same result may be obtained from the unconstrained system (26), 
or from a direct perturbative computation. As a result, the phys-
ical space EC is connected to the Gaussian fixed point (ḡ, m̄2) =
(0, 0). The flow equation has essentially two sources of singu-
larities. The first one for m̄2 = −1 due to the symmetric phase 
restriction, and the second one due to the denominator of η, 
den(ḡ, m̄2) := (1 + m̄2)5 − �′ . From a direct inspection, the Gaus-
sian fixed point is into the region den > 0, and the relevant investi-
gated region have to satisfy m̄> − 1 and den > 0. Numerical inves-
tigations show that there are no global fixed points over EC for the 
global fixed point. Indeed, we get three non-Gaussian fixed points: 
p1 ≈ (1.25, −0.13), p2 ≈ (−9, 6.6) and p3 ≈ (−0.9, 0.0006). The 
two last ones are in the region den < 0, and therefore disconnected 
from the Gaussian fixed point. For p1 however den(p1) > 0. This 
fixed point has zero anomalous dimension η(p1) = 0 and two rele-
vant directions; with critical exponents (θ1, θ2) ≈ (−4.4, −0.3) and 
eigendirections :

v1 ≈ (−1,0;−0.1) , v2 ≈ (0.9,−0.2) . (40)

Figs. 2a and 2b describe respectively the behavior constrained RG 
flow for ḡ ≤ 0 and ḡ ≥ 0 from a numerical integration.

In contrast with standard analysis based on truncation or un-
constrained FRG method like the EVE expansion, there is no global 
fixed point in the region 2b. Recalling that all the RG trajectories 
are oriented from IR to UV, we recognize the Gaussian fixed point 
as en UV attractor for ḡ(k) > 0, with a very clear large river effect. 
All the trajectories reach the mainstream corresponding to the red 
line and finally go to the Gaussian Fixed point. Reversing the ar-
rows, we see that all the trajectories split into two types: The ones 
going to a region with negative mass and the others, reaching a 
region with positive mass.
Fig. 2. The numerical renormalization group flow around the Gaussian fixed point, 
for ḡ(g) < 0 (a) and ḡ(k) > 0 (b). The blue point on both sides corresponds to 
the Gaussian fixed point, whereas the red point on (a) corresponds to the fixed 
point p1. The black line corresponds to the singularity den = 0, and the green line 
corresponds to eigendirections of the Gaussian fixed point. Regular trajectories are 
pictured in blue.

This splitting scenario uncontrolled by a fixed point (except the 
Gaussian one) is reminiscent of a first-order phase transition rather 
than a second-order one, as frequently suggested (see [1–19] and 
[31] about first-order phase transition). Note that there are the 
presence of the black singularity line on both sides (a) and (b). 
In the purely EVE expansion, this singularity has been avoidable, 
being displaced under the singularity m̄2 = −1 from its original 
position coming from truncations. The resurgence of this singu-
larity is understood as the mark of a significant limitation of our 
construction, focused on the symmetric phase. Going beyond the 
symmetric phase and other approximations like (25), and investi-
gating the nature of the transition are works in progress.

On the left hand side (Fig. 2b), for ḡ(k) < 0, the scenario is re-
peated. The non-Gaussian fixed point p1 behaves like an attractor, 
with very similar characteristics like the Gaussian fixed point. We 
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have the mainstream on both sides of the fixed points, and all the 
trajectories reach the stream before to go on p1. The integral curve 
of the Eigen directions for the Gaussian fixed point (in green) sep-
arates the flow. Any trajectory on the side ḡ(k) > cannot reach the 
region ḡ(k) < and so one. As a result, at least into the investigated 
region of the phase space, the two regions are disconnected from 
the RG flow. As a consequence, requiring the coupling to be posi-
tive, to ensure integrability of the partition function, it is tempting 
to view the region 2b as a formal artifact and to keep only the 
region 2b for physical investigation on the considered model.

5. Conclusion

In this paper, we provided a short presentation of an improved 
version of the standard EVE method, allowing to build an approx-
imation of the exact renormalization group flow sector by sector 
for a tensorial group field theory, and taking into account sys-
tematically the constraint coming from Ward identities along with 
the flow. The resulting effective equation has a single non-trivial 
fixed point with zero anomalous dimension, positive mass, nega-
tive effective coupling, and two purely attractive eigendirections. 
This fixed point, which has similar characteristics as the Gaussian 
one has been discarded, because it belongs to the region with neg-
ative coupling and any trajectories starting from the positive region 
can reach the negative one. In particular, the melonic constrained 
flow has no Wilson-Fisher type fixed points, following the results 
of our previous works [1–4], and therefore no second-order phase 
transition may be identified. Our final landscape is a Gaussian fixed 
point with a repulsive streamline in the IR.

Remark that the EVE method, in contrast with the truncation 
method, cuts “smoothly” into the full phase space and selects 
“sectors” (that is, infinite sets of observables) rather than a finite-
dimensional subset of interactions. The results of fixed points are 
similar to truncations in the melonic sector. However, the methods 
differ in their philosophy. With the EVE method, the phase space 
is built of an infinite set of interactions, parametrized with a fi-
nite set of couplings, and the full momentum dependence of the 
effective vertices is taken into account. Moreover, some singulari-
ties occurring in the truncation method disappear in the EVE. In 
that sense, EVE extends maximally the domain of investigation of 
the phase space. However, the formalism seems to be less flexible 
than truncations. In particular, it is less difficult to nest “sectors 
with sectors”. Remark also that, from the renormalization group, 
there is no legitimacy to focus only on the melonic sector because 
other non melonic renormalizable sectors exist. We have already 
discussed such sectors in a previous contribution [3], and showed 
how to nest different renormalizable sectors to increase the preci-
sion of the approximation. The melonic diagrams provide the first 
renormalizable interactions in the potential development of the 
field, and we can expect them to construct a relatively good ap-
proximation of the flow, not so far from the Gaussian fixed point. 
A more accurate approximation would require more work, which 
goes far beyond the scope of this letter.
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