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Abstract: The effect of an external electric field on the quark matter is an important
question due to the presence of strong electric fields in heavy ion collisions. In the lattice
QCD approach, the case of a real electric field suffers from the ‘sign problem’, and a clas-
sical electric field is often used similar as the case of chemical potential. Interestingly, in
axial gauge a uniform classical electric field actually can correspond to an inhomogeneous
imaginary chemical potential that varies with coordinate. On the other hand, with imagi-
nary chemical potential, Roberge-Weiss (R-W) phase transition occurs. In this work, the
case of a uniform classical electric field is studied by using lattice QCD approach, with the
emphasis on the properties of the R-W phase. Novel phenomena show up at high temper-
atures. It is found that, the chiral condensation oscillates with z at high temperatures,
and so is the absolute value of the Polyakov loop. It is verified that the charge density also
oscillates with z at high temperatures. The Polyakov loop can be described by an ansatz
Ap +∑

q=u,dCq exp (LτQqiazeEz), where Ap is a complex number and Cd > 0, Cu ≥ 0 are
real numbers that are fitted for different temperatures and electric field strengths. As a
consequence, the behavior of the phase of Polyakov loop is different depending on whether
the Polyakov loop encloses the origin, which implies a possible phase transition.
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1 Introduction

The study of Quantum Chromodynamics (QCD) matter is essential for a deeper under-
standing of the nature of strong interactions. In recent years, the effects of electromagnetic
fields have also become a hot topic due to the strong electromagnetic fields that can be
generated in heavy ion collision experiments [1–6]. The effect of electromagnetic field on
chiral condensation has been investigated by using various low-energy effective models [7–
11], which shows that the magnetic field may induces magnetic catalysis. However, inverse
catalysis is observed around pseudo critical temperature [12] in the lattice calculation, and
then the presence of an external magnetic field is investigated intensively in both lattice
approach [5, 13–19, 19, 20] and using effective models [21–31]. By now the community has
developed a good understanding of inverse magnetic catalysis, but there is still no theory
that can explain all the phenomena observed in lattice simulations at one time, for ex-
ample the phenomena with respect to diamagnetism, paramagnetism, meson mass, meson
condensation, etc.

Not only magnetic fields but also strong electric fields are generated in non-central
high-energy heavy ion collisions [32–34], which can reach as large as about 10m2

π, where
mπ is the pion mass. In the electric field case, it has been shown that, the external electric
field restores the chiral symmetry [7, 35–40]. In the lattice QCD approach, the case of an
external real (Minkowski) electric field suffers from the notorious ‘sign problem’, except for
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the case of isospin electric charges [41]. Similar as the case of chemical potential [42, 43],
the analytical extension is often used to study the external electric field, which is also
known as Euclidean electric field, or classical electric field [44–46]. In the previous studies
on hadron electromagnetic polarizabilities [47–49], lattice QCD with an external electric
field has been shown to be a reliable tool. The electric susceptibility is also studied with
the presence an external classical electric field [50], and it is found that a non-constant
charge distribution is required to maintain equilibrium [51].

Another interesting phenomena connecting the case of external classical electric field
and the case of imaginary chemical potential is the presence of Roberge-Weiss (R-W)
transition [52], which has been investigated by using lattice QCD approach [53]. In fact,
except for the boundary, a uniform (homogeneous) static external classical electric field
in axial gauge is equivalent to an inhomogeneous imaginary chemical potential. Since the
case of a homogeneous imaginary chemical potential and the corresponding R-W transition
has been verified in the lattice QCD approach, and a uniform external classical electric
field corresponds to the case of imaginary chemical potential which varies according to
coordinates linearly, the presence of the R-W transition is also expected in the case of
external classical electric field. A phase transition similar to the R-W transition in the
presence of fermionic fields coupled to magnetic backgrounds is studied [54].

In this work, the effect of a strong external uniform classical electric field is studied
by using the lattice QCD approach, with the emphasis on the R-W phase caused by the
external electric field. The case of Nf = 1 + 1 Kogut-Susskind staggered fermions with
the same bare mass and different electric charges are investigated. The chiral condensation
and charge distribution are also investigated.

The remained of this paper is organized as follows. In section 2, the model with a
uniform external electric field is presented, and the connection between the electric field
and imaginary chemical potential is discussed. The numerical results are established in
section 3. Section 4 is a summary.

2 External electric field

Considering an external electric field at z direction, E = (0, 0, Ez), in the axial gauge AEM
z =

0, the gauge field can be written as AEM
µ = (−Ezz, 0, 0, 0) such that E = (FEM

tx , FEM
ty , FEM

tz )
where FEM

µν = ∂µA
EM
ν −∂νAEM

µ , the superscript ‘EM’ is added to distinguish with the QCD
gauge field. The Lagrangian with one massless fermion is

Lq = ψ̄q /∂µψq + ψ̄qi /Aψq − iQqeEzzψ̄qγ0ψq, (2.1)

where Aµ = g
∑
a T

aAaµ is the QCD gauge field, Qq is the electric charge of the fermion.
A Wick rotation is performed to put the Lagrangian into a Euclidean space which

applies a substation that t→ −iτ , ∂t → i∂τ , A0 → iA4 and AEM
0 → iAEM

4 , so that

∫
d4xLq → Sq =

∫
d4xE

ψ̄ 4∑
j=1

γEj ∂jψ +
4∑
j=1

ψ̄igγEj Ajψ − iQqeEzzψ̄γE4 ψ

 , (2.2)
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Figure 1. A Sketch of the phase diagram of R-W transition.

where γj=1,2,3 = iγEj and γE4 = γ0. The tangent space Wick rotation [55] also yields the
same result.

Note that, the substitution AEM
0 → iAEM

4 corresponds to an imaginary electric field,
or Euclidean electric field, which can also be viewed as an analytical extension.

On the other hand, the action with imaginary chemical potential can be written as

Lq = ψ̄q /∂µψq + ψ̄qi /Aψq − iµψ̄qγ0ψq. (2.3)

A simple observation is that the case of the presence of an external electric field can be
viewed as a stacking of volumes with different imaginary chemical potentials µ = QqeEzz

extending the z-axis. The Lagrangian in eq. (2.3) has been studied and an R-W transition
is predicted and verified by lattice simulations. The definition feature of the R-W transition
is the presence of imaginary part of the Polyakov loop. The sketch of the phase diagram
of R-W transition is shown in figure 1. At high temperatures, there is a first order phase
transition that the phase of the Polyakov loop is 2nπ/3, when (2n − 1)π/3 < µ/T <

(2n+ 1)π/3, where n are integers. For the case of Euclidean electric field, some questions
arise. Is there also R-W transition induced by an external uniform electric field? Is it
appropriate to study the case of external electric field as a stacking of volumes with different
imaginary chemical potentials? To answer those questions, the R-W phase induced by the
external electric field is studied using the lattice approach.

By using the staggered fermion [56, 57], the action can be discretized as

SG = β

Nc

∑
n

∑
µ>ν

Retr [1− Uµν(n)] ,

Sq =
∑
n

∑
µ

∑
δ=±µ

χ̄(n)Uδ(n)Vδ(n)ηδ(n)χ(n+ δ) + 2amχ̄χ

 , (2.4)

where a is the lattice spacing, SG is the Wilson gauge action [57, 58] where β = 2Nc/g
2
YM

with gYM the coupling strength of the gauge fields to the quarks, m is the fermion mass,
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β r0/a a−1 (MeV) β r0/a a−1 (MeV)
5.30 3.079(30) 1215(12) 5.48 4.906(46) 1936(18)
5.32 3.277(42) 1293(16) 5.50 5.189(36) 2048(14)
5.34 3.484(50) 1375(20) 5.52 5.435(60) 2145(24)
5.36 3.677(31) 1451(12) 5.54 5.579(51) 2202(20)
5.38 3.924(45) 1549(18) 5.56 5.829(31) 2300(12)
5.40 4.113(40) 1623(16) 5.58 6.133(47) 2420(19)
5.42 4.382(58) 1730(23) 5.60 6.386(46) 2520(18)
5.44 4.561(30) 1800(12) 5.62 6.545(39) 2583(15)
5.46 4.808(61) 1898(24) 5.64 6.957(55) 2746(22)

Table 1. The coupling constant β and the lattice spacing matched by using r0 = 0.5 fb.

Uµ = eiaAµ , Vµ = eiaeA
EM
µ , ηµ(n) = (−1)

∑
ν<µ

nν and U−µ(n) = U †µ(n − µ), V−µ(n) =
V ∗µ (n − µ), η−µ = −ηµ(n − µ). A twisted boundary condition is applied to ensure gauge
invariance [46, 59–61], therefore we use

f = Qqa
2F = 2kπ

LµLν
, k ∈ Z,

Vν = eifnµ , Vµ(nµ = Lµ) = e−ifLµnν .

(2.5)

where Lµ is the extent at direction µ.
In lattice simulations, the origin of the axis is set to be the middle of the spatial

volume and at nτ = 1. With twisted boundary condition, Sq is U(1) gauge invariant, i.e.
free of gauge choice (but different gauge choice will result in different twisted boundary
conditions), and therefore the results do not depend on the gauge choice. For E at the
z-direction and for axial gauge, Vµ(n) = 1 except for

Vτ (n) = e−iaQqeEzz, Vz(a−1z = Lz/2− 1) = eiaQqeEzLzτ , (2.6)

with quantized electric field a2Ez = 6kπ/LτLz so that f satisfies 2kπ/LτLz with |Qq| =
1/3. In the simulation, we use Lx × Ly × Lz × Lτ = 12 × 12 × 12 × 6, therefore a−1z =
−6,−5, . . . , 5, a−1τ = 0, 1, . . . , 5 and a2Ez = k×π/12. In this work, we use k = 0, 1, . . . , 12.
The case of k = 12 + n is equivalent as k = 12 − n with an electric field on the opposite
direction, where n are integers. Note that, for a2eEz ∼ O(1) or larger, the results suffer
from strong discretization errors. In this case, the lattice action can no longer approximate
the presence of external electric field well. Therefore, in sections. 3.2.3, 3.2.4 and 3.3.3 which
are closely related to physical phenomena, we only consider the results with 0 ≤ k ≤ 4.

3 Numerical results

3.1 Matching

The lattice simulation is performed with the help of Bridge++ package [62]. To study
the effect of external electric field, the simulation is carried out with Nf = 1 + 1, where
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Figure 2. χq,disc/T
2 as a function of T .

u and d quarks carrying different electric charges. The bare mass is chosen as mq =
0.1a−1 for both fermion fields where a is lattice spacing, when the electric field is not
presented, the two fermion fields degenerate and Nf = 2. The coupling constant of gauge
field β, and the corresponding a are listed in table 1. The lattice spacing is matched
by measuring static quark potential V (r) [63–65] and matching the ‘Sommer scale’ r0 to
r0 = 0.5 fm [66–68] at low temperature (at Lτ = 48). Throughout this paper, the statistical
error is estimated as σ = σjk

√
2τind [57], where σjk is statistical error calculated using

‘jackknife’ method, and 2τind is the separation of molecular dynamics time units (T.U.)
such that the two configurations can be regarded as independent, which is calculated by
using ‘autocorrelation’ with S = 1.5 [69] on the bare chiral condensation of quark (u quark
in the case of Nf = 1 + 1). When matching, we use 200 trajectories as thermalization, and
1000 configurations are measured for each β. In the following, for each β, 200 + 3000× 13
trajectories are simulated. The first 200 trajectories are discarded for thermalization, then
3000 × 13 trajectories are simulated with sequentially growing a2eEz = kπ/12 for k =
0, 1, 2, . . . , 12. The first 100 trajectories of the 3000 are discarded for thermalization and
2900 configurations are measured for each β.

The pseudo critical temperature is determined at Ez = 0 by using disconnected sus-
ceptibility of chiral condensation defined as [70]

χq,disc =
N2
f

16L3
xLτ

(
〈tr
[
D−1
q

]2
〉 − 〈tr

[
D−1
q

]
〉2
)
, (3.1)

which is depicted in figure 2. It can be found that βc = 5.34 and Tc = 229 MeV. Note
that, for different β, mq is different.
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Figure 3. cu(z) (the left panel) and cd(z) (the right panel) at β = 5.3.

3.2 Chiral condensation

Since the bare mass mq is different for different lattice spacing, we directly use cq =
〈ψ̄qψq〉/V where V is volume. Such a definition has the problem of renormalization and
is not suitable for comparison between different temperatures (there would have been dif-
ficulties to compare between different temperatures since mq is different at different tem-
peratures in our simulations), but can show the pattern of cq with different Ez. Other
quantities of interest are charge density defined as c4

q = 〈ψ̄qγ4ψq〉/V , and current density
c3
q = 〈ψ̄qγ3ψq〉/V . In terms of staggered fermion field, they are

cq = 1
4LxLyLzLτ

2
a3 〈

∑
n

χ̄(n)χ(n)〉,

cµq = 1
4LxLyLzLτ

1
a3 〈

∑
n

ηµ(n)
∑
δ=±µ

χ̄(n)Uδ(n)Vδ(n)χ(n+ δ)〉.
(3.2)

In order to study the influence of the chemical potential as the coordinate z changes, we also
define cq(z), as cq(z) = 〈∑nz=z ψ̄q(n)ψq(n)〉/ (LxLyLτ ), which is the chiral condensation
of a z-slice. c3,4

q (z) are defined similarly. In the following, cq and c3
q are treated as real

numbers, and c4
q is treated as complex.

3.2.1 The Z distribution of chiral condensation

As introduced, one of our main concerns is whether the imaginary chemical potential,
which varies with coordinate z, brings about a distribution that varies with z or whether
it brings about an overall change. We find that the results depend on the temperature at
which the quark matter is located. For β = 5.3 and β = 5.64, cq(z) are shown in figures 3
and 4. As can be seen, the chiral condensation rises as the electric field strength increases.
The difference is that for lower temperatures, the chiral condensation does not appear to
vary with the coordinate z. For high temperatures, it is clearly an oscillatory function of
z. The shape of the function is consistent with a trigonometric function.

As a signature of whether the chiral condensation varies with z, we borrow the def-
inition of standard deviation and define the magnitude of the oscillation of the chiral
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Figure 4. Same as figure 3 but for β = 5.64.

Figure 5. εu (the left panel) and εd (the left panel) as functions of temperature T and Ez.

condensation over z, as

εq(T,Ez) =

√√√√ 1
Lz − 1

∑
z

(
cT,Ezq (z)− 1

Lz

∑
z′

cT,Ezq (z′)
)2

, (3.3)

where cT,Ezq (z) is cq(z) at temperature T and electric field strength Ez. When Ez = 0, there
is no imaginary chemical potential that varies with z, therefore εq(T, 0) are set as baselines,
and we define εq(T,Ez) = εq(T,Ez) − εq(T, 0). εq are shown in figure 5. Generally, the
amplitude of oscillation grows with temperature. It can also be observed that, for the case
of d quark whose electric charge is −1/3, the oscillation disappears at a2eEz = π, for the
case of u quark whose electric charge is 2/3, the oscillation disappears at a2eEz = π/2 and
a2eEz = π. This can be explained when the frequency of the oscillation is investigated.

Since the linearly changed imaginary chemical potential leads to a periodic change in
the partition function, it can be speculated that the chiral condensation that oscillates
periodically with the z-direction is a reflection of the linearly varying imaginary chemical
potential. That is, at high temperatures, the whole system looks more inclined to be
a simple combination of z-slices corresponding to different imaginary chemical potentials
that reach equilibrium independently and then come together. This implies that the chiral
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condensation located at a certain place does not feel the imaginary chemical potential far
away perhaps due to some screening effect and the effect of imaginary chemical potential
is therefore a short-range effect on the chiral condensation. On the contrary, when the
oscillation disappears, the whole system must be considered as a whole, so that when
equilibrium is reached, the chiral condensation located at a certain place can feel the overall
distribution of the imaginary chemical potential, and the effect of imaginary chemical
potential is therefore a long-range effect on the chiral condensation.

3.2.2 The fitting of chiral condensation

It has been shown , when oscillating, cT,Ezq (z) is approximately a trigonometric function.
We find that, cT,Ezq (z) can be fitted as

cT,Ezq (z) = AT,Ezq +BT,Ez
q cos(afczQqeEz), (3.4)

where AT,Ezq can be viewed as an overall change of the chiral condensation, BT,Ez
q is the

amplitude of oscillation, fc is the frequency of the oscillation.
cT,Ezq (z) is fitted according to the ansatz in eq. (3.4) using the following steps.

1. For a fixed temperature (a fixed β), choose an initial value for fc.

2. Find AEzq and BEz
q which minimizes the error∑z δ

2(q, k, z) where δ(q, k, z) = AE
(k)
z

q +
BE

(k)
z

q cos(afczQqeE(k)
z )− cE

(k)
z

q (z), and E(k)
z = kπ/12a−2.

3. For AEzq and BEz
q obtained in step 2, find fc which minimize the error∑q,k,z δ

2(q, k, z).

4. Repeat step 2 and 3 until fc converges.

5. Apply step 2 for the last time and finish the fit.

The results of the fit depend on the initial value chosen for fc, therefore, we fit the case
of a2Ez = π/12 for u quark according to the ansatz in eq. (3.4) first to set the initial value
for fc. To ensure reliability, cu(z) at a2eEz = π/2 and a2eEz = π, cd(z) at a2eEz = π are
excluded in the fit.

Taking the case of β = 5.64 for example, cEzq (z) and fitted cEzq (z) are shown in figures 6
and 7. Note that the dashed and solid lines are only shown for visual guidance, but not
the images of cq(z). In this paper, we use χ2/d.o.f. to estimate the goodness of fits, which
is defined as

χ2/d.o.f. = 1
M −N

M∑
i

(f(xi, ~α)− yi)2

σ2
i

, (3.5)

where M is the number of points (xi, yi) participated in the fit, f(xi, ~α) is the result of
fit with ~α = (α1, α2, . . . , αN ) representing the N fit parameters, σi is the statistical error
for yi.

To ensure reliability, we only fit cq(z) in the regions with strong oscillations. Starting
from β = 5.46, εT,Ezq at a2eEz = π/12 are one order of magnitude larger than the statis-
tical errors of εT,Ezq . In the case β ≥ 5.46, we find χ2/d.o.f. = 0.48 ∼ 1.07 for different
temperatures.
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Figure 7. Same as figure 6 but for cd(z) at β = 5.64.
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Figure 8. Aq and Bq as functions of temperature and Ez.
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Figure 9. fc as a function of temperature T .
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Figure 10. cT,Ez
u and cT,Ez

u fitted using eq. (3.6) (the left panel) and analytical extension of fitted
cT,Ez

u (the right panel).

AT,Ezq and BT,Ez
q are shown in figure 8, fc are shown in figure 9. It can be observed

that, Aq grows with Ez and decrease with temperature. The overall effect of the electric
field on the chiral condensation will be investigated later. Meanwhile, Bq is consistent with
εq in figure 5. The amplitude of oscillation grows with the temperature and decreases with
the electric field strength.

Another interesting and noteworthy conclusion is that fc ≈ 6 is a constant integer for
different flavors at different temperatures and different electric field strengths. This also
explained the phenomena that the oscillation disappears for cu(z) at a2eEz = π/2 and
a2eEz = π, for cd(z) at a2eEz = π. Since a2fcQueEz = 2π for a2eEz = π/2 and 4π for
a2eEz = π, a2fcQdEz = −2π for a2eEz = π.

The frequency fc actually responds to the U(1) gauge field in eq. (2.6). When k = 1
and f = 6π/(LzLτ ) = π/12, the flux through the z − τ plane is 6π, and for quarks, the
periods of oscillations along the z coordinate are exactly Qq × 6π. Thus, the frequency
along z coordinate is actually fc = Lτ = 6.

It should be pointed out that, so far it is not able to exclude other cases, for example,
fc may not be Lτ , but 2Nc, or −2/Qd, as well as possibly Lz/2. It will be necessary to use
other simulations to finally verify fc = Lτ . But we prefer fc to be Lτ , and in the following,
we use Lτ directly instead of fc to denote the frequency.

3.2.3 The chiral condensation as a function of electric field strength

The relationship between chiral condensation and the electric field strength is one of the
questions of interest in this work. When the system is considered as a whole, cq as functions
of T and Ez is calculated. The results suffer from strong discretization errors at large Ez,
therefore only the results for 0 ≤ a2eEz ≤ π/3 are presented.

It needs to be kept in mind that the relationship between cq and temperature is not
simple, as the renormalization is not applied, it is affected by the relationship between
cq and lattice spacing a, in addition, as amq is a constant, it is also messed up by the
relationship between cq and mq at the same time. Apart from those, the electric field
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Figure 11. Same as figure 10 but for cT,Ez

d .

Figure 12. Same as figure 10 but fitted using eq. (3.7).

Figure 13. Same as figure 11 but fitted using eq. (3.7).
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Figure 14. ∆ = cu − cd as a function of T and eEz/T
2.

in physical units are different for different a, therefore in this subsection, the results are
present as functions of eEz/T 2 instead of a2eEz.

Although further verification is needed, it is useful to assume that chiral condensation
is still perturbable as the electric field strength varies. In other words, we assume cT,Ezq ≈
a0(T ) + a1(T )E2

z + a2(T )E4
z + . . .. With this assumption, analytical extension can be

applied to obtain the relationship between the chiral condensation and the real electric
field strength. The ansatz of cT,Ezq up to the order of E2

z and E4
z are

cT,Ezq =
(
a0 + a1T + a2T

2
)

+ (b0 + b1T )E2
z , (3.6)

cT,Ezq =
(
a0 + a1T + a2T

2
)

+ (b0 + b1T )E2
z + (c0 + c1T )E4

z . (3.7)

The results of cu and cd keeping up to E2
z are shown in the left panels of figures 10

and 11, respectively. The results of cu and cd keeping up to E4
z are shown in the left

panels of figures 12 and 13, respectively. The χ2/d.o.f. are 7.3 and 3.2 for cu and cd
keeping up to E2

z , 2.5 and 1.9 for cu and cd keeping up to E4
z . In our simulation, we use

an imaginary electric field strength. To obtain the relationship between cq and Ez, an
analytical extension is applied to rotate the electric field strength back to the real axis.
The results of cu and cd keeping up to E2

z after analytical extension are shown in the right
panels of figures 10 and 11, respectively. The results of cu and cd keeping up to E4

z after
analytical extension are shown in the right panels of figures 12 and 13, respectively. Both
the ansatz in eqs. (3.6) and (3.7) support the conclusion that the external electric field
restores the chiral symmetry as predicted by previous works.

Moreover, since |Qu| > |Qd|, the effect of the electric field is larger for cu than cd. The
difference defined as ∆ = cu − cd (∆ is also 〈ψ̄τ3ψ〉 where τ3 is the Pauli matrix) is also
calculated and depicted in figure 14. It can be seen that, a3∆ is insensitive to temperature.
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Figure 15. ε4d as a function of temperature T and eEz/T
2.

3.2.4 The charge distribution

It has been pointed out that, in equilibrium, the electric and diffusion forces acting on
quarks balance each other, which happens when there is a non-constant charge distribu-
tion [50, 51]. The charge density can be defined as Qqeq̄γ0q, which can be related with
c4
q defined in eq. (3.2). We find that, at high temperatures, the imaginary of c4

q shows
nontrivial dependence on z. As will be explained later, we concentrate on Im[c4

d]. To show
the oscillation of Im[c4

d], ε4d(T,Ez) is defined as same as εq(T,Ez) but with cT,Ezq replaced
by Im[c4

d]. ε4d is shown in figure 15. Starting from T ≈ 300 MeV, the imaginary of c4
q starts

to oscillate over z coordinate for π/12 ≤ a2eEz ≤ π/3.
We find that, the frequencies of the oscillation are as same as those of cq(z), i.e., the

Im[c4,T,Ez
q ] can be fitted with the ansatz,

Im
[
c4,T,Ez
q (z)

]
= A4,T,Ez

q sin(aLτzQqeEz). (3.8)

For β = 5.64, Im
[
c4
q(z)

]
are shown in figure 16. χ2/d.o.f. are found to be 0.086 ∼ 0.118.

For c4
u, the case of a2eEz = π/4 corresponds to no oscillation, that is the reason why ε4d is

used to show the oscillation. In all cases, A4
q < 0. We also find that |A4

d| decrease with Ez.
Another interesting quantity is c3

q . We find that, at high temperatures and at large
Ez (a2eEz = π/3), c3

u(z) also oscillates over z (c3
d(z) starts to oscillate at a larger Ez beyond

our scope due the large discretization errors). To verify that the oscillations of c3
u(z) along z

are not caused by not reaching the equilibrium, for β = 5.64 and a2eEz = π/3, additional
6000 trajectories are simulated starting from T.U. = 3000. The results are shown in
figure 17. Although c3

u(z) has a none trivial distribution, c3
u = 0. The none trivial c3

u(z)
may indicate a none trivial meson condensation caused by Schwinger mechanism [41]. Also,
since the case of a large Ez is affected by large discretization errors, it is possible that this
is a fake phenomenon from discretization errors.
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(a) Im(c4u) at a2eEz = π
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(b) Im(c4u) at a2eEz = π
6

-6 -4 -2 0 2 4

-3

-2

-1

0

1

2

3

4
10

-4

(c) Im(c4u) at a2eEz = π
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(d) Im(c4u) at a2eEz = π
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(e) Im(c4d) at a2eEz = π
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(f) Im(c4d) at a2eEz = π
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(g) Im(c4d) at a2eEz = π
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(h) Im(c4d) at a2eEz = π
3

Figure 16. Same as figure 6 but for Im
[
c4

q(z)
]
at β = 5.64.

3.3 Polyakov loop

The signal of R-W transition can be observed by the phase of Polyakov loop, the latter is
defined as

P (n) =
∏
nτ

Uτ (n, nτ ), P (z) = 1
LxLy

∑
nx,ny

P (n = (nx, ny, a−1z)), P = 1
Lz

∑
z

P (z), (3.9)

where the product in the definition of P (n) is performed sequentially from nτ = 0 to
nτ = Lτ − 1, and P (z) is an average of P (n) over a z-slice, P is an average of P (n) over
the whole spatial volume.

For different β and a2eEz, |〈P 〉| and arg (〈P 〉) are shown in figure 18. The R-W
transition is clearly presented according to the none-zero arg (〈P 〉) at lower temperatures.

– 16 –



J
H
E
P
1
0
(
2
0
2
2
)
0
5
3

-6 -4 -2 0 2 4

-2

-1

0

1

2

3
10

-3

Figure 17. The oscillations of c3
u(z) along z measured using different configurations.

Figure 18. |〈P 〉| (the left panel) and arg (〈P 〉) (the right panel) as functions of T and Ez.

3.3.1 The properties of Polyakov loop

The phase of the Polyakov loop is important to study the R-W transition. It is observed
that the phase of the Polyakov loop is also oscillating with z, but quite different from the
case of chiral condensation, the phase of Polyakov loop is oscillating at lower temperatures.
Since a large Ez corresponds to a high frequency of oscillation and is not suitable for
presentation, we show P (z) only for a2eEz = π/12, in the complex plane, similar to ref. [54].
The case of β = 5.30 and β = 5.64 are shown in figure 19, 〈P (z)〉 in the complex plane
exhibits the shape of a pointed triangle for both low temperature and high temperature.
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Figure 19. 〈P (z)〉 at a2eEz = π/12 shown in the complex plane for β = 5.3 (the left panel) and
β = 5.64 (the right panel).

Figure 20. εarg as a function of T and Ez.

Similar as εq in eq. (3.3), we define

εarg(T,Ez) =

√√√√ 1
Lz − 1

∑
z

(
arg (〈P T,Ez(z)〉)− 1

Lz

∑
z′

arg (〈P T,Ez(z′)〉)
)2

. (3.10)

εarg is shown in figure 20. Note that, for high temperatures, there are cases that arg (〈P 〉) is
large while εarg is small. For a2eEz = π/2, εarg is small. Those properties will be explained
later.

For a lower temperature and a small external electric field, the phase of the Polyakov
loop is consistent with the R-W transition. The cases of β = 5.3 and β = 5.38 at a2eEz =
π/12 are shown in figure 21. It can be seen that there are plateaus in the arg (〈P (z)〉)
located at 2nπ/3 where n are integers.
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Figure 21. arg (〈P (z)〉) at a2eEz = π/12 for β = 5.3 (the left panel) and β = 5.38 (the right
panel).
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Figure 22. arg (〈P (z)〉) and fitted arg (〈P (z)〉) according to the ansatz in eq. (3.11) for β = 5.3 (the
left panel) and β = 5.38 (the right panel).

Since a2e∆Ez = π/12 is large, the widths of the plateaus are narrow. For larger a2eEz,
the widths of plateaus can be neglected, and arg (〈P (z)〉) tends to be a linear function of
zEz, therefore we assume

arg (〈P (z)〉) = afargzeEz. (3.11)

By adding integer times of 2π, arg (〈P (z)〉) is fitted according to eq. (3.11). The results of
the fit depend on the manually added 2nπ where n are integers, and to minimize the effect
of the manually added 2nπ, we fit only for the case of a2eEz ≤ π/3. Taking β = 5.3 and
β = 5.38 as examples, arg (〈P (z)〉) and fitted arg (〈P (z)〉) are shown in figure 22.

In the region 5.3 ≤ β ≤ 5.38, arg (〈P (z)〉) are fitted, and farg is shown in figure 23.
The χ2/d.o.f. = 6.54 ∼ 42.7 for different β, the worst case is β = 5.3. We find that
farg ≈ −2 which is a constant integer for different temperatures. This integer also explains
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Figure 23. farg in eq. (3.11) as a function of temperature.
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Figure 24. Same as figure 21 but for β = 5.4 (the left panel) and β = 5.64 (the right panel).

the phenomena arg (〈P (z)〉) = 0 and εarg = 0 for a2eEz = π. However, the case of
a2eEz = π/2 cannot be explained, and will be postponed to section. 3.3.2.

Such behavior fits when β < 5.4. Starting from β = 5.4, the behavior of the phase of
Polyakov loop becomes different. As examples, arg(〈P (z)〉) at β = 5.4 and β = 5.64 and
at a2eEz = π/12 are shown in figure 24. It can be seen that, the variation of arg(〈P (z)〉)
is much smaller than the case in figure 21.

On the other hand, with growing temperatures the pattern of the |〈P (z)〉| gradually
starts to become clear. Similar as εq, we define

εabs(T,Ez) =

√√√√ 1
Lz − 1

∑
z

(
|〈P T,Ez(z)〉| − 1

Lz

∑
z′

|〈P T,Ez(z′)〉|
)2

, (3.12)

and εabs(T,Ez) = εabs(T,Ez)− εabs(T,Ez = 0). εabs is shown in figure 25.
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Figure 25. εabs as a function of T and Ez.

For |〈P (z)〉|, we use the ansatz

|〈P (z)〉| = Aabs +Babs cos (afabszeEz) . (3.13)

Using the method to fit for the chiral condensation, and using eq. (3.13), |〈P (z)〉| is fitted.
As an example, the case for β = 5.64 is shown in figure 26, the χ2/d.o.f. = 0.73. It can
be seen that, except for the cases a2eEz = 5π/12 and a2eEz = 7π/12, eq. (3.13) roughly
describes the pattern of |〈P (z)〉|. Similar as the case of chiral condensation, the range of
5.46 ≤ β ≤ 5.64 is considered, and fabs is shown in figure 27. Again, we find fabs ≈ 2
which is a constant integer.

At smaller Ez, another noteworthy interesting phenomenon is that εu,d in figure 5, ε4d
in figure 15 and εabc in figure 25 decrease with Ez in the small Ez region. This behavior
implies that, the oscillation suddenly appears at a small none-zero Ez. It has been pointed
out in refs. [50, 51] that, physical observables exhibit a discontinuity between E = 0 and
any small E > 0. Our results can be seen as a support for the above conclusion.

3.3.2 An ansatz for the Polyakov loop

After combining the analysis of the phase of Polyakov and the absolute value of Polyakov
loop, we conclude that Polyakov loop is consistent with ansatz

〈P (z)〉 = Ap +
∑
q=u,d

Cq exp (LτQqiazeEz) , (3.14)

where Cq are real numbers (and Cd > 0, Cu ≥ 0 after fit) and Ap is a complex number
because there are cases that arg (〈P 〉) is large but εarg is small which corresponds to a
complex Ap and |Ap| � Cq.

The ansatz in eq. (3.14) counts both the effect from u and d quarks, and is able to
describe the following phenomena.
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Figure 26. Same as figure 6 but for |〈P (z)〉| at β = 5.64.
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Figure 27. fabs as a function of temperature.
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Figure 28. An example when |Ap| � Cq and Cu < Cd, the 〈P (z)〉 in ansatz eq. (3.14) depicted in
the complex plane (the left panel) and arg(P (z)) (the right panel).
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Figure 29. The difference patterns of the phase of the Polyakov loop when |Ap| < Cu + Cd (the
left panel) and |Ap| > Cu + Cd (the right panel).
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• As shown in the left panel of figure 28, for |Ap| � Cq and Cu < Cd the ansatz
describes 〈P (z)〉 in the complex plane in the left panel of figure 19. Similarly, when
|Ap| � Cq, the ansatz describes the right panel of figure 19.

• As shown in the right panel of figure 28, for |Ap| � Cq and Cu < Cd, eq. (3.14)
describes the phenomena in figure 21. With Cd > Cu, the effect of Cu term becomes
small plateaus. Ignoring the plateaus, farg = Lτ × Qd = −2, which explains the
phenomena in figures 22 and 23.

• As shown in figure 29, when |Ap| > Cq, the phase of the Polyakov loop ranges
in [−π, π), when |Ap| < Cq, the phase of the Polyakov loop ranges in (−π/2, π/2).
With the growth of temperature, |Ap| > Cq, the phase of Polyakov loop when β ≥ 5.4
in figure 24 can be explained.

• When |Ap| � Cq and Cu � Cd, eq. (3.14) describes the oscillation in figure 26 and
fabs = |Lτ × Qd| = 2 in figure 27 can be understood. A Cu term also explains the
discrepancy of the ansatz in eq. (3.13) at a2eEz = 5π/12 and a2eEz = 7π/12.

• Apart from that, eq. (3.14) also explains the reason that εarg is small and arg (〈P 〉) ≈ 0
at a2eEz = π/2. This can be attributed to a real Ap which is larger than Cu + Cd.

For β = 5.3 ∼ 5.64, the 〈P (z)〉 are fitted, and we find χ2/d.o.f. = 0.10 ∼ 1.88. To
compare with the ansatz in eqs. (3.11) and (3.13), using eq. (3.14), χ2/d.o.f. = 0.67 ∼ 1.88
for β = 5.3 ∼ 5.38, and χ2/d.o.f. = 0.24 for β = 5.64. Taking the case of β = 5.42 which
lies in the middle of the region 5.4 ≤ β ≤ 5.44 as an example (χ2/d.o.f. = 0.47), the results
are shown in figures 30 and 31. Eq. (3.14) is able to describe the pattern of 〈P (z)〉.

3.3.3 A criterion to distinguish the different behaviors of the Polyakov loop

In previous works, the susceptibility of the imaginary of the Polyakov loop is used to
find out the phase diagram of the R-W transition. However, in our study, we did not
see a clear signal of phase transition in this approach. This can be understood because
from the point of view of the R-W phase transition, the phase transition point is about
µ/T = π/3 which is aµ = π/(3Lt) = π/18. For our study, a2∆eEz = π/12, so the case
of the smallest electric field is already in the R-W phase. In terms of the chiral phase
transition due to the strong electric field, the phase transition point is about (500 MeV)2

magnitude in the previous study [36]. For the case of the smallest lattice spacing, which
is β = 5.3, ∆eEz ≈ (621.5 MeV)2, and the case of the smallest electric field is already in
chiral symmetry restored phase.

On the other hand, comparing the chiral condensation at high and low temperatures,
or the behavior of Polyakov loop, we can find clear differences. At high temperatures,
the chiral condensation and charge density oscillate with z coordinate. Another very clear
difference is that if the ansatz in eq. (3.14) is correct, then the size relationship between
|Ap| and Cq causes a significant difference in Polyakov loop phase behavior as shown in
figure 29.
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Figure 30. Same as figure 6 but for Re (〈P (z)〉) at β = 5.42.
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Figure 31. Same as figure 6 but for Im (〈P (z)〉) at β = 5.42.
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Figure 32. w as a function of T and eEz/T
2.
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Figure 33. A boundary to distinguish the different behaviors of the Polyakov loop.

We use the winding number to distinguish different behaviors of the phases of Polyakov
loops, which is defined as

w = − 1
2πi

∫ 2π

0

2iCu exp(2ix)− iCd exp(−ix)
Ap + Cd exp(−ix) + Cu exp(2ix)dx. (3.15)

w is shown in figure 32. The case of β = 5.38 and a2eEz = π/12 is special. The absolute
value of the phase of 〈P 〉 can exceed π/2 as shown in right panel of figure 21, not because
in the complex plane, 〈P 〉 encloses the origin, but because the two angles on the left side
of the pointed triangle poke into the half plane where Re[〈P 〉] < 0.

Using w 6= 0 as a criterion, the boundary of possible transition can be obtained, which
is shown in figure 33. Whether there is a phase transition needs more exploration. Note
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that, this boundary also coincides with the boundary that the charge density start to
oscillate as shown in figure 15.

4 Summary

The strong electric fields in heavy ion collisions provide a unique opportunity to study the
effect of an external electromagnetic field on the quark matter. The case of classical electric
field is considered which is free from the ‘sign problem’. In the case of E along z direction
and in axial gauge, and neglecting the boundary condition, the electric field is equivalent
as inhomogeneous imaginary chemical potential varies along the z coordinate.

In this paper, we investigate the properties of the R-W phase caused by an external
uniform classical electric field using lattice QCD with Nf = 1 + 1 staggered fermions. In
the simulation, amq = 0.1 is a constant, and β ranges from 5.3 to 5.64. The simulation is
carried out on a 123 × 6 lattice, a2eEz is chosen as a2eEz = kπ/12 where k is an integer
and 0 ≤ k ≤ 12.

It is found that, at high temperatures, chiral condensation oscillates over z coordinates.
Note that the action is actually translational invariant accompanied by a gauge transfor-
mation. The oscillation over z coordinates partially breaks the translational invariance.
cq at high temperatures can be well-fitted by the ansatz Ac + Bc cos (iLτaQqzeEz). The
analytical extension supports the conclusion that the chiral symmetry is restored by the
external electric field. The charge density also oscillate over z coordinates with a same
frequency. Apart from that, a weak signal of rho meson condensation is observed, but it is
also possible that this is a fake phenomenon from discretization errors.

The imaginary part of the Polyakov loop shows up as expected, which indicates the
presence of the R-W transition. At low temperatures and small electric field strength,
the phase of Polyakov loop has plateaus at 2nπ/3. When the widths of plateaus are
neglected, arg (〈P (z)〉) ≈ −2iazeEz. At high temperatures, the phase of the Polyakov loop
is restricted to (−π/2, π/2), and the absolute value of the phase decreases with the growth
of temperature. Meanwhile, the absolute value of the Polyakov loop starts to oscillate over
z coordinate.

It is verified that, the Polyakov loop can be described by ansatz Ap + ∑
q=u,dBq

exp (Lτ iaQqzeEz). From low temperature to high temperature, the size relation between
|Ap| and Cq changes, which results in different behavior of the Polyakov loop. The bound-
ary to distinguish whether the Polyakov loop enclose the origin is obtained and is found to
be close to the boundary that charge density starts to oscillate. Since the behavior of the
phase of Polyakov loop is very different based on whether the origin is enclosed, there is
a possible phase transition, at Ez much larger than the expected R-W transition or chiral
transition.
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