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1 Introduction

The standard model of cosmology (ΛCDM plus inflation) is currently one of the most accurate
descriptions of the physics of the early Universe [1–9]. In particular, inflation was proposed
to solve the problems with the original big bang cosmology, such as the flatness, horizon,
entropy, and relic (monopole) problems (see [10] for a review). Besides that, it also provides
a quantum dynamical explanation for the fluctuations in the temperature of the cosmic
microwave background radiation (CMBR) and fits the current experimental data [11].

Despite its successes, there are reasons to think that inflation alone may not be sufficient
to explain all the phenomena in the early Universe and its evolution. For instance, inflation is
a semiclassical theory, meaning that although the inflaton field is quantized, the background
spacetime remains classical. On the other hand, quantum effects in gravity become important
at small scales, of the order of the Planck length. This suggests that we should view inflation
as an effective low-energy description of some more complete theory of quantum gravity.
Furthermore, there are theoretical aspects of inflation that remain unsatisfactory, such as
the trans-Planckian problem [12, 13] (see also [14–16] for a critical review of inflation and
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its problems; for the problems with the existence of de Sitter in quantum gravity see the
conjecture [17], and for trans-Planckian issues related to the conjectures see [18–20]).

On the other hand, there are several attempts to apply the holographic dictionary of
AdS/CFT, or more generally gauge/gravity dualities, to cosmology. The idea that quantum
gravity is holographic was initially developed in [21, 22], but became concrete in the AdS/CFT
correspondence [23] (see the books [24, 25] for more information). The applications of
holography to cosmology were started by [26–29], and the fact that the usual weakly coupled
inflation can be described through holography via a strongly coupled QFT was developed, for
instance, in [30–49]. Holography in cosmology, however, sometimes meant different things, for
instance in [27, 28, 50–52]. In the ones that hope to replace inflation by a strongly coupled
gravity phase, the objective is to describe cosmological observables in terms of quantum field
theory variables in one dimension less, without gravity. But our Universe is not AdS or even
dS, and we do not have a formal top-down construction of a “dS/CFT” correspondence from
string theory or other theories of quantum gravity.

The alternative is to use phenomenological models, notably the one proposed by McFadden
and Skenderis [53, 54], which we will refer to just as holographic cosmology. These models
and their implications were developed in [53–60], using methods from [29, 61–63]. One
replaces inflation with a phase of strongly-coupled gravity, dual to a weakly-coupled (1+2)-
dimensional field theory with a generalized conformal structure. The phenomenological
action for this model includes a gauge field, scalars, and fermions, all transforming in the
adjoint representation of SU(N), in the large N limit. Holographic cosmology can solve
all the pre-inflationary problems with Big Bang cosmology [64, 65], provides an accurate
fit to the CMBR data using the same number of free parameters as inflation [66–68], and
it is equivalent to the ‘Wavefunction of the Universe’ approach proposed by Maldacena to
describe de-Sitter inflation [29].

The solution to the monopole (and to all pre-inflationary problems) in holographic
cosmology was first presented in [64], and a detailed discussion can be found in [65, 69].
The general strategy involves selecting a particular toy model, within the general class of
holographic cosmology models, with global SO(3) symmetry to match the SO(3) gauge
symmetry responsible for the production of monopoles in cosmology through the Kibble
mechanism. Then one calculates the 2-point function ⟨jµ(p)jν(−p)⟩ of the SO(3) Noether
current to extract its anomalous dimension and finds that the electric current is a marginally
irrelevant operator. Due to the electric-magnetic duality, this implies that the magnetic current
(which couples to the monopole field Ãµ in gauge/gravity duality) is a marginally relevant
operator. In holographic cosmology, the cosmological time evolution is mapped to the inverse
of the RG flow in the dual field theory (from the IR to the UV). This explains the dilution of
monopoles at late times (the monopole problem), similarly to the solution to the flatness
problem in holographic cosmology, where one shows that the energy-momentum tensor Tµν

(which couples with the deviation from the flat metric hµν) is a marginally relevant operator.
In this paper, we further explore the properties of the current operator in holographic

cosmology by computing its 3-point function, ⟨ja
µ(p1)jb

ν(p2)jc
ρ(p3)⟩, in momentum space, at one-

loop. The 3-point function for the energy-momentum tensor ⟨TµνTρσTλξ⟩ in momentum space
already exists in the literature and gives information about non-Gaussianities in holographic
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cosmology [57]. Similarly, the 3-point function of currents will give non-Gaussianities for the
monopole distribution via the same holographic cosmology, though one can also consider
it as a new calculation in 3-dimensional quantum field theory.

In addition to its application to holographic cosmology, the techniques we use to solve
tensorial Feynman integrals are interesting on their own. We check that the final result satisfies
the transverse Ward identity at 1-loop and it is IR and UV finite. Two particular cases are
also considered in this respect: with one and two external light-like momenta. We regularize
the IR divergences in these cases using mass regularization, and check the Ward identities. For
the application to cosmology, we consider the relevant case of general (non-lightlike) momenta,
which can be Wick rotated to the Euclidean case, and specialize for the k1 ≪ k2, k3 case. In
the end, we also comment on the two-loop result, to be calculated explicitly in the future,
but we already find that it is independent on the form of the quartic scalar potential, so is
universal within the phenomenological models, for such theories that admit vortex solutions.

This paper is organized as follows. We begin by reviewing the holographic cosmology
approach in section 2, with particular attention to the solution to the monopole problem
considering the same three-dimensional toy model used in the rest of this paper. In section 3,
we compute the 3-point function for the current operator first for two particular cases:
with one and two light-like external momenta, with details of the calculation given in the
appendices. Then we compute the final expression for the 3-point function, without any
assumption about the external momenta, as is most relevant for cosmology. We discuss the
(in)dependence of the two-loop result on the form of the potential in section 4. Finally, we
conclude in section 5 and provide prospects for future work.

2 Review: holographic cosmology, toy models, and the solution to the
monopole problem

We review the main results of holographic cosmology in this section — one can find the
details in [53, 54, 57, 64–67, 69].

The starting point is the one-to-one correspondence between d = 1+3 FLRW cosmologies
and d = 4 Euclidean domain-wall spacetime, called domain-wall/cosmology correspondence.
We can write the metric for both systems as

ds2 = ηdz2 + a(z)dx⃗2, (2.1)

where, for η = +1 and η = −1 we have the domain-wall and FLRW solutions, respectively.
For the first, z represents the holographic radial coordinate, while for the latter, z is a
time parameter in cosmology. The connection between these two solutions at metric level
is the analytical continuation

t→ it. (2.2)

For a single scalar field ϕ(z) minimally coupled to gravity, we write the action

S = η

2κ2

∫
d4x
√
−g

[
−R+ ∂µϕ∂

µϕ+ 2κ2V (ϕ)
]
, (2.3)
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where κ is the Newton’s constant, R is the Ricci scalar, and V (ϕ) is the scalar potential. The
equations of motion reveal that for every FLRW solution with potential +V (ϕ), we have a
domain-wall solution with potential −V (ϕ). This is true also at the perturbative level, once
we perform the analitical continuation in momentum space,

q̄ = −iq. (2.4)

From now on, the quantities with a bar are the domain-wall variables. The choice of
η = ±1 is equivalent to the analytical continuation of Newton’s constant, κ̄2 = −κ2. In the
field theory side of the holographic duality, this corresponds to N̄2 = −N2, with N̄ (N) being
the rank of the gauge group of the field theory dual to the domain-wall (cosmology), since
κ̄2 ∼ (N̄)−2. Since z is a holographic coordinate, under gauge/gravity duality, time evolution
in cosmology is mapped to the (inverse) RG flow of the field theory dual to the domain-wall.

We can consider the holographic description of domain-walls for two cases: asymptotically
AdS domain-wall and power-law domain-walls, corresponding to a(z) ∼ ez and a(z) ∼ zn, for
z →∞, respectively. The goal is to compute observables when gravity is strongly coupled
and cannot be geometrically described by general relativity. This corresponds to study the
field theory dual to the domain-wall in the weakly coupled regime, making the computations,
and then going back to Lorentzian signature to obtain the results dual to cosmology. In
particular, one can calculate the scalar and tensor power spectrum of primordial fluctuations
that leave a measurable imprint in the CMBR. Under gauge/gravity duality, the metric in
the bulk (gravity side) couples to the energy-momentum tensor in the boundary theory (QFT
side). Explicitly, this allows us to write the scalar and tensor power spectrum in terms of
the 2-point function of the energy-momentum tensor of the dual field theory,

∆2
S(q) = −

q3

16π2 ImB(−iq) , ∆2
T (q) = −

2q3

π2 ImA(−iq) , (2.5)

where A(−iq) = A(q̄) and B(−iq) = B(q̄) are the coefficients of the decomposition of the
energy-momentum tensor into Lorentz structures

⟨Tij(q̄)Tkl(−q̄)⟩ = A(q̄)Πijkl +B(q̄)πijπkl, (2.6)

with
Πijkl = πi(kπl)j −

1
2πijπkl, πij = δij −

q̄iq̄j

q̄2 . (2.7)

The last step is to write the action for the dual field theory. Since we do not have a
top-down construction providing the action for the field theory dual to cosmology as for
the case of AdS/CFT, we adopt the phenomenological approach, writing the most general
three-dimensional field theory with generalized conformal structure and gauge group SU(N̄),
in the large N̄ limit,

SQFT = 1
g2

Y M

∫
d3xTr

[1
2FijF

ij + δM1M2DiΦM1DiΦM2 + 2δL1L2ψ̄
L1γiDiψ

L2

+
√
2µML1L2ΦM ψ̄L1ψL2 + 1

6λM1...M4ΦM1 . . .ΦM4

]
. (2.8)
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Pertubatively, the coefficients A and B are given by

A(q) = q3N2fT 0
[
1− fT 1g

2
eff log

(
g2

eff

)
+ fT 2g

2
eff +O

(
g4

eff

)]
, (2.9)

B(q) = 1
4q

3N2f0
[
1− f1g

2
eff log

(
g2

eff

)
+ f2g

2
eff +O

(
g4

eff

)]
, (2.10)

where the one-loop contribution from ⟨TijTkl⟩ gives f0 and fT 0, and the two-loop contribution
gives f1, f2, fT 1, and fT 2. The effective coupling is given by

g2
eff = g2N

q
. (2.11)

By defining new variables

gq⋆ = f1g
2
YMN, ln 1

β
= f2
f1

+ ln |f1|, (2.12)

we obtain the following parameterization for the scalar power spectrum in cosmology:

∆2
S(q) =

(
∆(0)

S

)2

1 +
(
g q⋆

q

)
ln
∣∣∣ q

βgq∗

∣∣∣+O (g q∗
q

)2 , (∆(0)
S )2 = 1

4π2N2f0
, (2.13)

where q⋆ is a pivot scale identified with the renormalization scale of the dual quantum field
theory. This result has a different functional form than the power-law form obtained in
inflation, though the experimental data is consistent with both, by expanding the power law
qn for n ≪ 1 as 1 + n log q. Then, as discussed in [67], holographic cosmology is found to
be as good as inflation in terms of the fit to the CMBR data.

2.1 Solution to the monopole problem in holographic cosmology

We still have to discuss how holographic cosmology also solves the pre-inflationary problems.
A complete discussion is given in [64, 65]; in this section we will just review the solution
to the monopole problem.

Ideally, we should consider ’t Hooft-Polyakov monopoles in cosmology. These are produced
in GUT phase transitions in the early Universe, when a SO(3) gauge symmetry inside the
full gauge group is spontaneously broken, and the vaccum state is invariant under U(1)
symmetry [70, 71]. Under gauge/gravity duality, the SO(3) gauge symmetry on the gravity
side is mapped to a SO(3) global symmetry on the QFT side. The monopole configuration
Aµ is dual to a magnetic current j̃µ in the QFT side, which is a vortex current in three
dimensions. The dilution of monopoles at late times occurs if the current j̃µ is a relevant
operator, meaning the corresponding monopole field configuration Aµ in cosmology goes to
zero in the UV (late-times in cosmology). A summary of this dictionary is presented in table 1.

To check whether j̃µ is a relevant operator we have to compute the 2-point function
⟨j̃µ(p)j̃ν(−p)⟩ and extract the anomalous dimension of the magnetic current operator. Instead
of working with the vortex current, however, we can calculate the 2-point function of the
SO(3) Noether current jµ, and by the electric-magnetic duality [72, 73], relate the anomalous
dimension of both operators:

δ(j) = −δ(j̃). (2.14)

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
0
5
6

Bulk (cosmology) Boundary (QFT)
SO(3) gauge symmetry ←→ SO(3) global symmetry

Monopole field Aµ ←→ Global current j̃µ
Magnetic monopole ←→ Vortex solution

Dilution of monopoles ←→ j̃µ is a relevant operator

Table 1. A summary of the holographic dictionary to solve the monopole problem.

More precisely, the two-point function in a conformal field theory (and therefore also in
a theory with generalized conformal invariance, since the functional form only depends on
this invariance) was found to be, by Witten in the Abelian case [72] and in the non-Abelian
case a generalization of that in [74],

⟨ja
µ(p)jb

ν(−p)⟩ =
t

2πpδ
ab
(
δµν −

pµpν

p2

)
+ w

2πδ
abϵµνρp

ρ , (2.15)

where t and w are scalar functions of the couplings and parameters.
Then the action of the Sl(2,Z) duality element S (S-duality) on the 2-point function

is the usual one, acting only on t and w as

t→ t

t2 + w2 , w → w

t2 + w2 , (2.16)

so that in the parity-invariant case with w = 0, the dual 2-point function of magnetic currents
is found by just inverting t → 1/t, as

⟨j̃a
µ(p)j̃b

ν(−p)⟩ =
1
2πtpδ

ab
(
δµν −

pµpν

p2

)
. (2.17)

Then, if at two-loop we have t ≃ t0p
δ ≃ t0(1 + δ ln p), going to the magnetic currents

amounts to just δ → δ̃ = −δ. If the Noether current is irrelevant, then the vortex current
is relevant, diluting monopoles as time goes forward in cosmology (inverse RG flow in field
theory), and thus solving the monopole problem in holographic cosmology.

The phenomenological field theory action for holographic cosmology doesn’t have generi-
cally any global symmetry, so we must consider special cases to do calculations. The toy model
proposed in [64, 65] to perform the calculation of the 2-point function ⟨jµ(p)jν(−p)⟩ has action

S =
∫
d3xTr

−1
2FµνF

µν − 2
∑

i=1,2
|DµΦ⃗i|2 − 4λ

∣∣∣Φ⃗1 × Φ⃗2
∣∣∣2
 , (2.18)

where Φ⃗i is an SO(3) vector, in the following written explicitly as ϕa
i , a ∈ SO(3). The

potential allows the existence of vortex solutions of the type

ϕa
1 = ϕ1(r)faeiα, (2.19)
ϕa

2 = ϕ2(r)faeiα, (2.20)

where fa is a vector in the internal space of SO(3). The Noether current is given by

ja
µ = iϵabc

∑
i=1,2

[(
∂µϕ

∗b
i

)
ϕc

i +
(
∂µϕ

b
i

)
ϕ∗c

i + igAµ

(
ϕ∗b

i ϕ
c
i − ϕb

iϕ
∗c
i

)]
, (2.21)

from which we derive the following Feynman rules:
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- for the external current insertion:

a, µ

b, i

c, j

k1

k2

= ϵabcδij(k1 − k2)µ,
a, µ

b, i

c, j

µ

k1

k2

= −2gϵabcδijηµν .

- for the interactions:

b, i c, j

µ

k1 k2

k3

= gδabδij (k1 − k2)µ (2π)3 δ3(k1 + k2 + k3),

b, i c, j

µ ν

k1

k2

k3

k4
= −2g2δijδ

abηµν (2π)3 δ3(k1 + k2 + k3 + k4),

a, 1 c, 1

b, 2 d, 2

k1

k3

k2

k4
= −λϵecdϵeab(2π)3δ3(k1 + k2 + k3 + k4).

- for the propagators:

a, i b, j
k

= δijδ
ab

k2 ,

µ ν
k

= ηµν

k2 .

After writing all possible diagrams contributing to the 2-point function at two-loops
and performing the calculations, we find

⟨ja
µ(p)ja

ν (−p)⟩ = N2 p

4δ
abπµν

[
1− 64δab g

2N

p

(
2J0 −

34
J0

+ B2
0p

2

2

)]
, (2.22)

where J0 has divergences. Using dimensional regularization with d = 3 + ϵ, we find

J0 ≃ −
2πp2ϵ

(4π)3

(1
ϵ
+ finite

)
. (2.23)
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Dropping terms of the type 1/ϵ, the renormalized result after expanding around small ϵ is

⟨ja
µ(p)ja

ν (−p)⟩ = N2 p

4δ
abπµν

(
1 + δab 16

π2
g2N

p
ln p+ finite

)
, (2.24)

which gives the anomalous dimension of the SO(3) Noether current, such that the (two-loop)
correction changes p → p1+δ in the one-loop result, as

δ = 8
π2
g2N

p
. (2.25)

Since δ > 0, we conclude that ja
µ is an irrelevant operator and, as a consequence of

equation (2.14), j̃a
µ is a relevant operator, thus solving the monopole problem. As highlighted

in [69], this result is independent of the explicit form of the potential since all Feynman
diagrams containing the quartic vertex are zero in dimensional regularization. Therefore,
the solution to the monopole problem within this toy model can be extended to the whole
phenomenological class of models with only bosons and a potential that allows the existence
of vortex solutions.

3 Calculation of the 3-point function for the current operator in
momentum space

Now we want to go even further and compute the 3-point function of the Noether current,
using the same toy model (2.18). This will be relevant to the non-Gaussianities in the
cosmological monopole distribution, just as the scalar 3-point function gives non-Gaussianities
in the CMBR.

There is only one diagram contributing to ⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ at one loop,

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ = a, µ

b, ν

c, ρ

q + p2

q

q − p3

, (3.1)

where the momentum p1 is flowing in the diagram from the left and the momentum p2 + p3
is flowing out on the right-hand side. Conservation of the total momentum implies that

p1µ = p2µ + p3µ. (3.2)

Using the Feynman rules, we find the integral expression

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩=2N2ϵabc {8Iµνρ+4[(p2µ−p3µ)Iνρ+p2νIµρ−p3ρIµν ]

+2[(p2µ−p3µ)(p2νIρ−p3ρIν)−p2νp3ρIµ]+(p3µp2νp3ρ−p2µp2νp3ρ)I0 } ,
(3.3)

where

I0 =
∫

ddq

(2π)d

1
q2(q + p2)2(q − p3)2 , Iµ =

∫
ddq

(2π)d

qµ

q2(q + p2)2(q − p3)2 , (3.4)

Iµν =
∫

ddq

(2π)d

qµqν

q2(q + p2)2(q − p3)2 , Iµνρ =
∫

ddq

(2π)d

qµqνqρ

q2(q + p2)2(q − p3)2 . (3.5)
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These tensorial integrals can be reduced into scalar integrals by using the Feynman
parametrization

1
ABC

= 2
∫ 1

0
dx

∫ 1−x

0
dy

1
[Ax+By + C(1− x− y)]3

. (3.6)

Choosing A = q2, B = (q + p2)2, and C = (q − p3)2, we have

I0 =
∫

ddq

(2π)d

1
q2(q + p2)2(q − p3)2

= 2
∫ 1

0
dx

∫ 1−x

0
dy

∫
ddq

(2π)d

1[
q2 + 2q · [2yp2 − (1− x− y)p3] + yp2

2 + (1− x− y)p2
3
]3 ,
(3.7)

and changing the integration variable as

qµ → qµ − yp2µ + (1− x− y)p3µ, (3.8)

we get

I0 = 2
∫ 1

0
dx

∫ 1−x

0
dy

∫
ddq

(2π)d

1
(q2 +∆2)3 , (3.9)

where
∆2 = xyp2

2 + (1− x− y)(xp2
3 + yp2

1). (3.10)

We can use the general result in dimension regularization for integrals of this type,
∫

ddq

(2π)d

1
(q2 +m2)n

= Γ(n− d/2)
(4π)d/2Γ(n)

(∆2)d/2−n, (3.11)

such that, after defining the notation

I(a,b,c) =
∫ 1

0
dx

∫ 1−x

0
dy

xayb

(∆2)c , (3.12)

and setting d = 3 (there are no divergences for d = 3 in the Gamma functions), we find

I0 = 1
16πI

(0,0,3/2). (3.13)

We can do the same for the remaining integrals, after the decomposition in terms of
Lorentz tensors (see appendix A for details)

Iµ = 1
16πfµ, Iµν = 1

16π
(
fµν + δµνI

(0,0,1/2)
)
, (3.14)

Iµνρ = 1
16π

(
δµνf

′
ρ + δµρf

′
ν + δνρf

′
µ + fµνρ

)
, (3.15)
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where

fµ(p1, p2, p3) = p3µ

(
I(0,0,3/2) − I(1,0,3/2)

)
− p1µI

(0,1,3/2),

fµν(p1, p2, p3) =
(
I(0,0,3/2) − 2I(1,0,3/2) + I(2,0,3/2)

)
p3µp3ν

+
(
I(1,1,3/2) − I(0,1,3/2)

)
(p3µp1ν + p1µp3ν) + I(0,2,3/2)p1µp1ν ,

f ′µ(p1, p2, p3) = p3µ

(
I(0,0,1/2) − I(1,0,1/2)

)
− p1µI

(0,1,1/2),

fµνρ(p1, p2, p3) =
(
I(0,0,3/2) − 3I(1,0,3/2) + 3I(2,0,3/2) − I(3,0,3/2)

)
p3µp3νp3ρ

−
(
I(0,1,3/2) + I(2,1,3/2) − 2I(1,1,3/2)

)
(p3µp3νp1ρ + p3µp1νp3ρ + p1µp3νp3ρ)

+
(
I(0,2,3/2) − I(1,2,3/2)

)
(p3µp1νp1ρ + p1µp3νp1ρ + p1µp1νp3ρ)

− I(0,3,3/2)p1µp1νp1ρ. (3.16)

It is convenient to write these integrals in terms of the absolute value of the external
four-momenta, p1, p2, p3. In the end, we will use momentum conservation to eliminate the
dependence on p1ν and p1ρ, keeping explicitly only p1µ, only in order to check the Ward
identities (otherwise we could eliminate it in terms of p2µ, p3,µ as well, to get an unambiguous
result. The problem of computing the ⟨ja

µ(p1)jb
ν(−p2)jc

ρ(−p3)⟩ correlation function reduces to
the computation of thirteen scalar integrals in the remaining Feynman parameters.

I(0,0,3/2) =
∫ 1

0
dx

∫ 1−x

0
dy

1
(∆2)3/2 , I(1,0,3/2) =

∫ 1

0
dx

∫ 1−x

0
dy

x

(∆2)3/2 ,

I(2,0,3/2) =
∫ 1

0
dx

∫ 1−x

0
dy

x2

(∆2)3/2 , I(3,0,3/2) =
∫ 1

0
dx

∫ 1−x

0
dy

x3

(∆2)3/2 ,

I(0,1,3/2) =
∫ 1

0
dx

∫ 1−x

0
dy

y

(∆2)3/2 , I(0,2,3/2) =
∫ 1

0
dx

∫ 1−x

0
dy

y2

(∆2)3/2 ,

I(0,3,3/2) =
∫ 1

0
dx

∫ 1−x

0
dy

y3

(∆2)3/2 , I(1,1,3/2) =
∫ 1

0
dx

∫ 1−x

0
dy

xy

(∆2)3/2

I(1,2,3/2) =
∫ 1

0
dx

∫ 1−x

0
dy

xy2

(∆2)3/2 , I(2,1,3/2) =
∫ 1

0
dx

∫ 1−x

0
dy

x2y

(∆2)3/2

I(0,0,1/2) =
∫ 1

0
dx

∫ 1−x

0
dy

1
(∆2)1/2 , I(1,0,1/2) =

∫ 1

0
dx

∫ 1−x

0
dy

x

(∆2)1/2 ,

I(0,1,1/2) =
∫ 1

0
dx

∫ 1−x

0
dy

y

(∆2)1/2 . (3.17)

This set of integrals is not completely independent, since

I(a,b,c)(p1, p2, p3) = I(b,a,c)(p3, p2, p1) (3.18)

as demonstrated in appendix B.
As we will see, the 1-loop result is finite in the IR and UV, meaning that the integrals (3.17)

are finite in the domain 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 − x.
We will first solve these integrals for two particular cases: (i) p2

1 = p2
3 = 0 and (ii) p2

1 = 0.
This choice of external light-like momenta will induce infrared divergences, which we can
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regularize by adding a mass term in the Lagrangian and then taking the massless limit at the
end of the calculation. This amounts to adding a mass in the scalar propagator,

1
k2 →

1
k2 +m2 . (3.19)

Of course, while the UV divergences belong to the theory, the IR divergences are not
physical, and arise due to not calculating something experimentally measurable; once we
do so, by summing up with other n-point function(s), the measurable result should always
be IR divergence free. But the IR finiteness of the n-point functions in the 3-dimensional
QFTs relevant for holographic cosmology was only conjectured until recently, when it was
proven in [75, 76].

Note that these special cases with lightlike external momenta are only relevant in the
Minkowski signature, for the case of quantum field theory applications, whereas for the
application to holographic cosmology we need to Wick rotate to Euclidean space, since the
3-dimensional momenta become spatial momenta in cosmology. In that case, p2

i > 0 for the
external momenta (in practice, what is measured is the correlation function in 3-dimensional
x-space, and one can do a Fourier transform to p space). But we will use p2

i = 0 as a testing
ground for our formulas, as the formulas are simpler in these special cases.

As a check, we will also show that the full 3-point function satisfies the transverse Ward
identities even in these cases, with a small caveat for the first case, which will be explained.
The details are provided in appendix B.

After we deal with these two cases, we present the full computation of the 3-point
function, without any assumption about the external momenta, and we show that the result
is finite and satisfies the Ward identities as well.

Finally, we will apply our full result to holographic cosmology.

3.1 Two external light-like momenta (”on-shell”, p2
1 = p2

3 = 0)

In the present case, the denominator (3.10) (with a mass term) becomes

∆2
m = xyp2

2 +m2, (3.20)

and the integrals will depend only on p2
2. After taking the massless limit, we find the following

results for the integrals (3.17):

I(0,0,3/2)(p2,m) = 2
p2

2
lim

m→0

1
m

log p2
2

4m2 , (3.21)

I(1,0,3/2)(p2,m) = I(0,1,3/2)(p2,m) = 2
p2

2
lim

m→0

1
m
− 2π
p3

2
, (3.22)

I(2,0,3/2)(p2,m) = I(0,2,3/2)(p2,m) = 1
p2

2
lim

m→0

1
m
− π

p3
2
, (3.23)

I(3,0,3/2)(p2,m) = I(0,3,3/2)(p2,m) = 2
3p2

2
lim

m→0

1
m
− 3π

4p3
2
, (3.24)

I(1,1,3/2)(p2,m) = π

p3
2
, (3.25)

I(2,1,3/2)(p2,m) = I(1,2,3/2)(p2,m) = π

4p3
2
, (3.26)
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I(0,0,1/2)(p2,m) = π

p2
, (3.27)

I(1,0,1/2)(p2,m) = I(0,1,1/2)(p2,m) = π

4p2
, (3.28)

which gives for the finite part of the 3-point function

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩finite =

N2 ϵ
abc

4p3
2

{
2p3µ (p2νp2ρ+2p3νp2ρ+5p2νp3ρ+10p3νp3ρ)+p2µ (p2νp2ρ+2p3νp2ρ+8p2νp3ρ+16p3νp3ρ)

+p2
2 [p2µδνρ+(p2ν+2p3ν)δµρ−p2ρδµν ]

}
,

(3.29)
where we have written the result only in terms of the independent variables pµ

2 , p
µ
3 , in

particular using

pµ
1 = pµ

2 + pµ
3 , p2

1 = p2
3 = 0 ⇒ p2 · p3 = −p

2
2
2 . (3.30)

This form is therefore unambiguous. But we can also write it in an (ambiguous) form
with some pµ

1 terms emphasized, that will be of use later on, as

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩finite =

N2 ϵ
abc

4p3
2

{
p1µ [p2νp2ρ + 4p3νp3ρ + 2 (p2νp3ρ − p3νp2ρ)] + 2p2µ [2p3νp2ρ + 3(p2ν + 2p3ν)p3ρ]

+ p3µ [(p2ν + 6p3ν)p2ρ + 8(p2ν + 2p3ν)p3ρ] + p2
2 [p2µδνρ − p2ρδµν + (p2ν + 2p3ν) δµρ]

}
.

(3.31)

The divergent part, after taking m → 0, is given by

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩divergent =

N2 ϵabc

12πmp2
2

[
−2p2ρ (p2µ+p3µ)(p2ν+p3ν)−14(p2µ+p3µ)p2νp3ρ+2(13p2µ+14p3µ)p3νp3ρ

+3(p2µ+p3µ)(p2ν+2p3ν)p3ρ log
(
p2

2
4m2

)]
.

(3.32)
Again, we can write it in an (ambiguous) form with some pµ

1 terms emphasized as

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩divergent = −N2 ϵabc

6πmp2
2
{p1µ [p1νp1ρ + 6p1νp3ρ + 6p3νp3ρ

+3
2(p1ν + p3ν)p3ρ log

(
p2

2
4m2

)]
+ p3µp3νp3ρ

}
. (3.33)

The full 3-point function is the sum of both finite and divergent parts,

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ = ⟨ja

µ(p1)jb
ν(−p2)jc

ρ(−p3)⟩finite + ⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩divergent.

(3.34)
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The IR divergence regularized by the divergent term ∼ 1/m is a consequence of the choice
p2

3 = 0. To make this statement clear, we will compute the Ward identity. Contracting (3.34)
with pµ

1 = pµ
2 + pµ

3 and using (3.30), we find for the finite part

(p2 + p3)µ⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩finite = N2 ϵ

abc

8 p2

(
δνρ −

p2νp2ρ

p2
2

)
= N2 ϵ

adc

8 p2

(
δνρ −

p2νp2ρ

p2
2

)
δdb

= 1
2ϵ

adc⟨jd
ν (p2)jb

ρ(−p2)⟩ , (3.35)

while the divergent part gives

(p2 + p3)µ⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩divergent = N2 ϵ

abc

12π lim
m→0

p3νp3ρ

m
. (3.36)

Therefore, the Ward identity for the full correlation function is

(p2 + p3)µ⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ =

1
2ϵ

adc⟨jd
ν (p2)jb

ρ(−p2)⟩+N2 ϵ
adc

12π lim
m→0

p3νp3ρ

m
δdb. (3.37)

Note that the Ward identity is not satisfied in this case. The second term, however, is just
a consequence of taking the on-shell p2

3 → 0 limit in the term proportional to ⟨j(p3)j(−p3)⟩
in the Ward identity,

⟨jd
ν (p3)jb

ρ(−p3)⟩ ∼
p3νp3ρ

p3
, (3.38)

with m being the regulator. In the next section we will show that the Ward identity is
satisfied for p2

3 ̸= 0 without divergences.
We can also check the other Ward identities. Contracting (3.34) with pρ

3 gives for the
finite part

pρ
3⟨j

a
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩finite = N2 ϵ

abc

8 p2

(
δµν −

p2µp2ν

p2
2

)
= 1

2ϵ
adcp2⟨jd

ν (p2)jb
µ(−p2)⟩ , (3.39)

while for the divergent part, we get

pρ
3⟨j

a
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩divergent = −N2 ϵ

abc

12π lim
m→0

p1µp1ν

m
, (3.40)

so in total

pρ
3⟨j

a
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ =

1
2ϵ

adc⟨jd
ν (p2)jb

µ(−p2)⟩ −N2 ϵ
adc

12π lim
m→0

p1µp1ν

m
. (3.41)

As expected, this gives the same result as if exchanging p1µ ↔ p3ρ and p2 ↔ −p2 in the
first Ward identity, which is indeed a symmetry of the 3-point function.

The last Ward identity is obtained by contracting (3.34) with pν
2 , which gives for the

finite part

pν
2⟨ja

µ(p1)jb
ν(−p2)jc

ρ(−p3)⟩finite = 0 , (3.42)
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while for the divergent part it gives

pν
2⟨ja

µ(p1)jb
ν(−p2)jc

ρ(−p3)⟩divergent = −N2 ϵ
abc

12π

(
p1µp1ρ

m
− p3µp3ρ

m

)
(3.43)

which again, as expected from symmetry, is invariant under the exchange p1µ ↔ p3ρ and
p2 ↔ −p2. This time, this would be understood from the Ward identity only if one would
take all the momenta to be off-shell (p2

1 ̸= 0, p2
2 ̸= 0, p2

3 ̸= 0), otherwise there would be
vanishing numerators 1/p2

1, 1/p2
2, 1/p2

3. The fact that the finite part of this Ward identity
vanishes is simply due to the fact that now there is no p2ν (the index was contracted) available
to make the 2-point function with momentum p2.

3.2 One external light-like momenta (”on-shell”, p2
1 = 0)

For p2
1 = 0, the denominator with the mass regulator is

∆2
m = x (1− x− y) p2

3 + xyp2
2 +m2. (3.44)

The result of the integrals (3.17), in this case, is

I(0,0,3/2) = 2
(p2

2 − p2
3)

log
(
p2

2
p2

3

)
lim

m→0

1
m
, I(1,0,3/2) = 2π

p2p3(p2 + p3)
, (3.45)

I(2,0,3/2) = π

p2p3(p2 + p3)
, I(3,0,3/2) = 3π

4p2p3(p2 + p3)
, (3.46)

I(0,1,3/2) = − 2π
p2 (p2 + p3)2 + 2(

p2
2 − p2

3
) [1− p2

3(
p2

2 − p2
3
) log(p2

2
p2

3

)]
lim

m→0

1
m
, (3.47)

I(0,2,3/2) = − p2 + 3p3

p2 (p2 + p3)3π

+ 1(
p2

2 − p2
3
)3
[
p4

2 − 4p2
2p

2
3 + 3p4

3 + 2p4
3 log

(
p2

2
p3

2

)]
lim

m→0

1
m
, (3.48)

I(0,3,3/2) = −3π
(
p2

2 + 4p2p3 + 5p2
3
)

4p2 (p2 + p3)4

+ 2p6
2 − 9p4

2p
2
3 + 18p2

2p
4
3 − 11p6

3 − 6p2
3 log

(
p2

2/p
2
3
)

3
(
p2

2 − p2
3
)4 lim

m→0

1
m
, (3.49)

I(1,1,3/2) = π

p2 (p2 + p3)2 , I(1,2,3/2) = p2 + 3p3

4p2 (p2 + p3)3π, (3.50)

I(2,1,3/2) = π

4p2 (p2 + p3)2 , I(0,0,1/2) = π

p2 + p3
, (3.51)

I(1,0,1/2) = π

4 (p2 + p3)
, I(0,1,1/2) = p2 + 2p3

4 (p2 + p3)2π. (3.52)
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Now, the result for the 3-point function is too extensive to write in a single expression.
Instead of that, we decompose the 3-point function as

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩=N2ϵabcc0 [p1µ (c1p2νp2ρ+c2p3νp3ρ+c3p3νp2ρ+c4p3ρp2ν)

+p2µ (c5p2νp2ρ+c6p3νp3ρ+c7p3νp2ρ+c8p3ρp2ν)
+p3µ (c9p2νp2ρ+c10p3νp3ρ+c11p3νp2ρ+c12p3ρp2ν)
+δνρ (c13p1µ+c14p2µ+c15p3µ)
+δµρ (c16p2ν+c17p3ν)+δµν (c18p2ρ+c19p3ρ)] , (3.53)

and after splitting the coefficients into a finite piece and a divergent piece

ci = cfinite
i + cdivergent

i , (3.54)

we find, for the finite part of the 3-point function,

cfinite
0 = 1

4p2p3 (p2 + p3)4 ,

cfinite
1 = p3

(
p2

2 + 4p3p2 + 9p2
3

)
, cfinite

2 = 2p2 (2p2 − p3) p3,

cfinite
3 = −2p2p3 (p2 + 4p3) , cfinite

4 = 2p3
(
p2

2 + 2p2
3

)
,

cfinite
5 = −4p2

3 (p2 + p3) , cfinite
6 = −4p2

2 (p2 + p3) ,

cfinite
7 = 4p2p3 (p2 + p3) , cfinite

8 = −2 (p2 + p3)
(
p2

2 + p2
3

)
,

cfinite
9 = p3 (p2 − 5p3) (p2 + p3) , cfinite

10 = −p2 (5p2 − p3) (p2 + p3) ,

cfinite
11 = 6p2p3 (p2 + p3) , cfinite

12 = −2
(
p3

2 + p3
3

)
,

cfinite
13 = −p2p3 (p2 + 2p3) (p2 + p3)2 , cfinite

14 = 2p2p3 (p2 + p3)3 ,

cfinite
15 = p2p3 (p2 + p3)3 , cfinite

16 = p2
2p3 (p2 + p3)2 ,

cfinite
17 = p2p3 (2p2 + p3) (p2 + p3)2 , cfinite

18 = −p2p3 (p2 + 2p3) (p2 + p3)2 ,

cfinite
19 = −p2p

2
3 (p2 + p3)2 (3.55)

while for the divergent part, we find

cdiv
0 = 1

12π
(
p2

2 − p2
3
) 4 lim

m→0

1
m
,

cdiv
1 = −2p6

2 + 6p2
3p

4
2

[
log

(
p2

2
p2

3

)
− 1

]
+ 6p4

3p
2
2

[
2 log

(
p2

2
p2

3

)
− 1

]
+ 2p6

3

[
3 log

(
p2

2
p2

3

)
+ 7

]
,

cdiv
2 = 2

{
p6

3 + p6
2

[
3 log

(
p2

2
p2

3

)
− 7

]
+ 3p2

3p
4
2

[
2 log

(
p2

2
p2

3

)
+ 1

]
+ 3p4

3p
2
2

[
log

(
p2

2
p2

3

)
+ 1

]}
,

cdiv
3 = 2

{
−p6

2 + p6
3 + 3p2

3p
4
2

[
2 log

(
p2

2
p2

3

)
− 3

]
+ 3p4

3p
2
2

[
2 log

(
p2

2
p2

3

)
+ 3

]}
,

cdiv
4 = p6

2

[
3 log

(
p2

2
p2

3

)
− 8

]
+ 9p2

3p
4
2 log

(
p2

2
p2

3

)
+ 9p4

3p
2
2 log

(
p2

2
p2

3

)
+ p6

3

[
3 log

(
p2

2
p2

3

)
+ 8

]
.

(3.56)

and
cdiv

i = 0, for i = 5, . . . 19. (3.57)
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3.2.1 Ward identity

Let us check that the finite part of ⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ satisfies the transverse Ward

identity. Contracting (3.53) with pµ
1 and using the conservation of momentum p1µ = p2µ +p3µ

to write, for p2
1 = 0,

p2 · p3 = −1
2(p

2
2 + p2

3) , (3.58)

we find

pµ
1 ⟨j

a
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ =

N2

2 c0ϵ
abc
{
p3νp3ρ

[
2(c17 + c19)−

(
p2

2 − p2
3

)
(c10 − c6)

]
+ p2νp2ρ

[
2(c16 + c18) +

(
p2

2 − p2
3

)
(c5 − c9)

]
+ p2νp3ρ

[
2(c16 + c19)−

(
p2

2 − p2
3

)
(c12 − c8)

]
+ p3νp2ρ

[
2(c17 + c18)−

(
p2

2 − p2
3

)
(c11 − c7)

]
+δνρ(c14 − c15)

(
p2

2 − p2
3

)}
, (3.59)

which after substituting the coefficients (3.55), gives

pµ
1 ⟨j

a
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩finite = N2 ϵ

abc

8

[(
δνρ −

p2νp2ρ

p2
2

)
p2 −

(
δνρ −

p3νp3ρ

p2
3

)
p3

]
= N2 ϵ

adc

8

(
δνρ −

p2νp2ρ

p2
2

)
p2δ

db − ϵabd

8

(
δνρ −

p3νp3ρ

p2
3

)
p3δ

dc

= 1
2ϵ

adc⟨jd
ν (p2)jb

ρ(−p2)⟩ −
1
2ϵ

abd⟨jd
ν (p3)jc

ρ(−p3)⟩. (3.60)

For the divergent part, however, we note that all coefficients besides the ones multiplying
p1µ are zero, and since p2

1 = 0, the divergent part gives

pµ
1 ⟨j

a
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩divergent = 0 , (3.61)

as we anticipate. All in all, the full 3-point function satisfies

pµ
1 ⟨j

a
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ =

1
2ϵ

adc⟨jd
ν (p2)jb

ρ(−p2)⟩ −
1
2ϵ

abd⟨jd
ν (p3)jc

ρ(−p3)⟩, (3.62)

which is the transverse Ward identity.

3.2.2 Application to cosmology

In holographic cosmology, as we mentioned, one interesting case (see for instance Maldacena’s
non-Gaussianity paper [29]) is when k1 ≪ k2, k3, where ki = |⃗ki| are 3-dimensional Euclidean
momenta, corresponding in cosmology to spatial momenta. So with respect to our calculation,
we need to make the Wick rotation to Euclidean space, and then take the above limit.

Since we have chosen pµ
1 = pµ

2 + pµ
3 , we will work with

p2
1 ≪ p2

2 ≃ p2
3 ≡ p2 , pµ ≡ pµ

2 ≃ −p
µ
3 , pµ

1 ≃ 0. (3.63)
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Under this approximation, we see that we can already consider the results in this
subsection, and apply directly the approximation above. This gives

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ ≃ N2ϵabcc0 [pµpνpρ ((c5 + c6 − c7 − c8)− (c9 + c10 − c11 − c12))

+δνρpµ (c14 − c15) + δµρpν (c16 − c17) + δµνpρ (c18 − c19)] .
(3.64)

We find for the finite parts

cfinite
0 = 1

64p6 +O(p1)

(c5 + c6 − c7 − c8)finite = −16p3 +O(p1) ,
(c9 + c10 − c11 − c12)finite = −24p3 +O(p1)

(c14 − c15)finite = 8p5 +O(p1) ,
(c16 − c17)finite = −8p5 +O(p1) ,
(c18 − c19)finite = −8p5 +O(p1) , (3.65)

so that

⟨jµ(p1)jν(−p2)jρ(−p3)⟩ ≃ N2ϵabc 1
8p

[
−
(
δµν −

pµpν

p2

)
+
(
δνρ −

pνpρ

p2

)
−
(
δµρ −

pµpρ

p2

)]
,

(3.66)
neglecting the divergent terms. The divergent terms are now

cdiv
i ≃ 0 +O(p1) , i = 1, . . . , 4 , (3.67)

but
cdiv

0 = 1
12π(2p1 · p3)4 lim

m→0

1
m
∼ 1
mp4

1
, (3.68)

so one would actually need to expand to a high order in p1 the cdiv
i ’s to say something decisive.

Instead, we will get a better handle on this case from the next subsection, when all p2
i ̸= 0.

3.3 General case

Finally, we perform the full calculation without any assumption about the external momenta.
All integrals in the Feynman parameters are finite, both in the UV and in the IR, hence
there is no need to add a mass parameter in the propagators. We again provide the details
in appendix B, and obtain

I(0,0,3/2)(p1, p2, p3) =
2π

p1p2p3
(3.69)

I(1,0,3/2)(p1, p2, p3) =
2π

p2p3 (p1 + p2 + p3)
(3.70)

I(2,0,3/2)(p1, p2, p3) =
2p1 + p2 + p3

p2p3 (p1 + p2 + p3)2π (3.71)

I(3,0,3/2)(p1, p2, p3) =
8p2

1 + 9 (p2 + p3) p1 + 3 (p2 + p3)2

4p2p3 (p1 + p2 + p3)3 π (3.72)
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I(0,1,3/2)(p1, p2, p3) = I(1,0,3/2)(p3, p2, p1) =
2π

p1p2 (p1 + p2 + p3)
(3.73)

I(0,2,3/2)(p1, p2, p3) = I(2,0,3/2)(p3, p2, p1) =
p1 + p2 + 2p3

p1p2 (p1 + p2 + p3)2π (3.74)

I(0,3,3/2)(p1, p2, p3) = I(3,0,3/2)(p3, p2, p1) =
8p2

3 + 9p3 (p1 + p2) + 3 (p1 + p2)2

4p1p2 (p1 + p2 + p3)3 π (3.75)

I(1,1,3/2)(p1, p2, p3) =
π

p2 (p1 + p2 + p3)2 (3.76)

I(2,1,3/2)(p1, p2, p3) =
3p1 + p2 + p3

4p2 (p1 + p2 + p3)3π (3.77)

I(1,2,3/2)(p1, p2, p3) = I(2,1,3/2)(p3, p2, p1) =
p1 + p2 + 3p3

4p2 (p1 + p2 + p3)3π (3.78)

I(0,0,1/2)(p1, p2, p3) =
π

p1 + p2 + p3
(3.79)

I(1,0,1/2)(p1, p2, p3) =
2p1 + p2 + p3

4 (p1 + p2 + p3)2π (3.80)

I(0,1,1/2)(p1, p2, p3) = I(1,0,1/2)(p3, p2, p1) =
p1 + p2 + 2p3

4 (p1 + p2 + p3)2π (3.81)

We again decompose the 3-point function as in (3.53), but now the coefficients are given by

c0 =
1

4p1p2p3 (p1+p2+p3)3

c1 =−p3
[
4p2

3+(p1+p2)2+3p3 (p1+p2)
]
, c2 = p2p3 (p1−p2+p3) ,

c3 = p2p3 (p1+p2+3p3) , c4 =−p3
[
2p2

3+(2p1+p2)p3+p2 (p1+p2)
]

c5 =2p2
3 (p1+p2+p3) , c6 =2p2

2 (p1+p2+p3)

c7 =−2p2p3 (p1+p2+p3) . c8 =−(p1+p2+p3)
(
p2

1−p2
2−p2

3

)
c9 = p3

[
p2

1+(p2+p3)p1+2p3 (p2+p3)
]
, c10 = p2

[
p2

1+(p2+p3)p1+2p2 (p2+p3)
]

c11 =−2p2p3 (p2+p3) , c12 = p3
1+(p2+p3)

[
p2

1+p2
2+p2

3+(p2+p3)p1
]

c13 =−p1p2p3 (p1+p2+p3)(p1+p2+2p3) , c14 =2p1p2p3 (p1+p2+p3)2

c15 = p1p2p3 (p2+p3)(p1+p2+p3) , c16 = p1p2 (p1+p2)p3 (p1+p2+p3)

c17 = p1p2p3 (p1+p2+p3)(p1+2p2+p3) , c18 =−p1p2p3 (p1+p2+p3)(p1+p2+2p3)

c19 =−p1p2p3 (p1+p3)(p1+p2+p3) (3.82)

Thus the 3-point function is completely IR finite, which translates in holographic cosmology
to the fact that there is no cosmological singularity (corresponding to the IR of the quantum
field theory) for the 3-point function.
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3.3.1 Ward identity

To check if this result satisfies the transverse Ward identity, we multiply the 3-point function
by pµ

1 . Conservation of momentum implies the kinematic constraint

p2 · p3 = 1
2(p

2
1 − p2

2 − p2
3). (3.83)

After all simplifications, we find the following expression in terms of the coefficients ci:

pµ
1 ⟨jµ(p1)jν(p2)jρ(p3)⟩=

N2

2 c0ϵ
abc
{
p2νp2ρ

[
2(c16+c18)+p2

1+(2c1+c5+c9)+
(
p2

2−p2
3
)
(c5−c9)

]
+p3νp3ρ

[
2(c16+c18)+p2

1(2c1+c5+c9)+
(
p2

2−p2
3
)
(c5−c9)

]
+p2νp3ρ

[
2(c16+c19)+p2

1(c12+2c4+c8)−
(
p2

2−p2
3
)
(c12−c8)

]
+p3νp2ρ

[
2(c17+c18)+p2

1(c11+2c3+c7)−
(
p2

2−p2
3
)
(c11−c7)

]
+δνρ

[
p2

1(2c13+c14+c15)+
(
p2

2−p2
3
)
(c14−c15)

]}
. (3.84)

Substituting (3.82) into (3.84), we are left with

pµ
1 ⟨jµ(p1)jν(p2)jρ(p3)⟩ =

1
2ϵ

adc⟨jd
ν (p2)jb

ρ(−p2)⟩ −
1
2ϵ

abd⟨jd
ν (p3)jc

ρ(−p3)⟩ , (3.85)

which again shows that our result satisfies the transverse Ward identity.
At this point, we note that the general result for the 3-point function in (3.53) and (3.82)

is consistent with previous results about the possible tensor structures of the 3-point function
allowed by Bose symmetry and the transverse Ward identity found in [77] and [78].1 Then
instead of the 19 coefficients c1 − c19 we have only 2 scalar coefficients that are independent.
The check of the match, for which one needs to take into account that [78] use the different sign
convention for momenta, with p1 = −p2−p3, instead of our p1 = p2+p3, is done in appendix C.

3.4 Special case applied for cosmology

Now we consider the case of the approximation (3.63), relevant to cosmology non-Gaussianities
for holographic cosmology. Applying it directly to the general case gives more relevant
information (and no divergent terms). We obtain for the coefficients

c0 = 1
32p1p5 +O(1)

(c5 + c6 − c7 − c8) = 8p3 +O(p1) ,
(c9 + c10 − c11 − c12) = 8p3 +O(p1)

(c14 − c15) = 0 +O(p2
1) ,

(c16 − c17) = −4p1p
4 +O(p2

1) ,
(c18 − c19) = −4p1p

4 +O(p2
1) , (3.86)

and the terms of order p2
1 in the first two lines are harder to calculate, but for invariance we

must have the difference of the first two lines to be 8p1p
2 + O(p2

1), such that

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ ≃ ϵabcN

2

8p

[
−
(
δµρ −

pµpρ

p2

)
pν −

(
δµν −

pµpν

p2

)
pρ

]
≃ 1

2ϵ
abd⟨jd

µ(p2)jc
ν(−p2)⟩p3ρ −

1
2ϵ

adc⟨jd
µ(p3)jb

ρ(−p3)⟩p2ν . (3.87)

1We thank the anonymous referee for pointing out these references, of which we were previously unaware,
and this consistency.
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This is what replaces the (inflationary) expectation [29] in the case of the scalar 3-point
function in the same limit,

⟨ζp1ζ−p2ζ−p3⟩ ∼ ns⟨ζp1ζ−p1⟩⟨ζp2ζp3⟩ , (3.88)

for the case of the holographic 3-point function of currents.
But actually we see that we can put the result in a form that closely mimics the one

above for scalars. Indeed, for a two-point function that, at least in the perturbative regime
is of the type

⟨ja
µ(p)jb

ν(−b)⟩ = Kδabpnm

(
δµν −

pµpν

p2

)
≡ t

2πδ
abp

(
δµν −

pµpν

p2

)
, (3.89)

with nm ∈ R a real power (which in perturbation theory is such that |nm − 1| ≪ 1) and
K = N2/4, and t ≡ 2πKpnm−1, we can easily see that we have

∂

∂pµ
⟨ja

µ(p)jb
ν(−p)⟩ ≃ −Kδabpnm(d− 1)pν

p2 , (3.90)

so that we can put the 3-point function in the form

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ ≃ −

1
2ϵ

ade⟨jd
µ(p2)jb

ν(−p2)⟩
1

K(d− 1)pnm−2
3

∂

∂p3σ
⟨je

σ(p3)jc
ρ(−p3)⟩

+ 1
2ϵ

ade⟨je
µ(p3)jc

ρ(−p3)⟩
1

K(d− 1)pnm−2
2

∂

∂p2σ
⟨jd

σ(p2)jb
ν(−p2)⟩.

(3.91)

In the physical case, K = N2/4, nm ≃ 1, d = 3 so the overall coefficient is ≃ 1/(4K) =
1/N2.

In order to go to the magnetic currents, we need again to apply the Sl(2,Z) S-duality,
which, in the absence of a parity violating term, w = 0 for the 2-point function, amounted
to t → 1/t and ja

µ → j̃a
µ, so we obtain

⟨j̃a
µ(p1)j̃b

ν(−p2)j̃c
ρ(−p3)⟩≃−

1
2ϵ

ade⟨j̃d
µ(p2)j̃b

ν(−p2)⟩
4π2Kpnm

3
(d−1)

∂

∂p3σ
⟨j̃e

σ(p3)j̃c
ρ(−p3)⟩

+1
2ϵ

ade⟨j̃e
µ(p3)j̃c

ρ(−p3)⟩
4π2Kpnm

2
(d−1)

∂

∂p2σ
⟨j̃d

σ(p2)j̃b
ν(−p2)⟩. (3.92)

This would be the 3-point function giving, through the holographic map, the cosmological
monopole distribution, and its non-Gaussianity, and in principle, if monopoles would be
discovered in the universe, this could be measured. As we said, its IR finiteness corresponds
to the fact that it does not have any cosmological singularity (since the IR of the quantum
field theory corresponds to the early times in cosmology), although this fact is better tested
at two-loop.

4 Discussion of the two-loop result

The 2-loop contribution would give anomalous dimensions, like in the 2-point function case
and, more generally, would give nontrivial momentum dependence through dimensional
transmutation. The 2-loop calculation would, among other things, verify if the equation (3.91)
still holds at 2-loop, when nm is nontrivial (different than one), just like in the scalar case.
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(a) I1 (b) I2 (c) I ′2

(d) I3 (e) I4 (f) I5

(g) I6

(h) I7a (i) I7b

(j) I8

Figure 1. Two-loop diagrams contributing to ⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩.

In this paper we do not compute the two-loop contribution. However, in this section
we will show that all two-loop diagrams with the quartic vertex are zero in dimensional
regularization, meaning that the final result is completely independent of the explicit form of
the potential. This is also true for the 2-point function of the current operator, as described
in [69]. This means that the results obtained in this toy model are actually universal in the
set of the phenomenological actions, as long as they admit vortex solutions (corresponding
to monopoles in 4 dimensions).

All possible diagrams contributing to the 3-point function at two loops are presented
in figure 1.

The only diagrams containing the quartic vertex

Tr− 4λ |Φ1 × Φ2|2 (4.1)
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are I1 and I2. For the first, the integral over the momenta running in the first loop factorizes,

I1 =

p1 + k

k

∼
∫

d3k

(2π)3
(2k + p1)µ

k2(k + p1)2

∫
d3q

(2π)3
(2q + p2)ν(2q − p3)ρ

q2(q + p2)2(q − p3)2 , (4.2)

where by Lorentz invariance, we have∫
d3k

(2π)3
(2k + p1)µ

k2(k + p1)2 = 2
∫

d3k

(2π)3
kµ

k2(k + p1)2 + p1µ

∫
d3k

(2π)3
1

k2(k + p1)2

= 2
(
−p1µ

2

∫
d3k

(2π)3
1

k2(k + p1)2

)
+ p1µ

∫
d3k

(2π)3
1

k2(k + p1)2

= 0. (4.3)

The integral for I2 do not contribute, since the integral over the momentum running in
the loop also factorize and vanishes in dimensional regularization,

I2 =
k

k

∼
∫
d3k

1
k2 = 0. (4.4)

Therefore, all diagrams containing the quartic interaction vanish in dimensional regular-
ization, and the two-loop result is independent of the explicit form of the potential. This
means that the general results obtained using the toy model (2.18) can be generalized to
any class of phenomenological models (2.8) with only bosonic fields. The quartic potential is
only necessary to have vortex solutions to solve the monopole problem.

The same argument is valid for I2′ and I4: both vanish in dimensional regularization.
The diagram I6 is the counterterm-diagram, but since the 3-point function is one-loop finite,
it can be set to zero. The non-zero diagrams are I3, I5, I7, and I8. The integral expression
for these diagrams are given below for future reference.

- I3

(I3)abc
µνρ = a,µ

b,ν

c,ρ

λ1

λ2

q+p2

r+p2

r

r−p3

q−p3

q−r

=2g2ϵabc

∫
ddq

(2π)d

∫
ddr

(2π)d

(2q−p3+p2)µ (2r+p2)ν (2r−p3)ρ (2p2+q+r)λ1
δλ1λ2 (−2p3+q+r)λ2

(q+p2)2 (r+p2)2 r2 (r−p3)2 (q−p3)2 (q−r)2 .

(4.5)
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The integral expression for the variations of this diagram (obtained by connecting different
propagators with a gauge propagator) can be obtained by just rotating this diagram and
relabeling the momenta in each propagator. We will follow this approach for the next
non-zero diagrams, writing just the integral for the first variation, since all the other
possibilities can be easily obtained by rotations and reflections of the diagrams.

- I5

(I5)abc
µνρ = a,µ

b,ν

c,ρ

q+p2

q+p2

q

q−p3

q+r+p2

r

=2ϵabc

∫
ddq

(2π)d

∫
ddr

(2π)d

(2q+p2−p3)µ (2q+p2)ν (2q−p3)ρ (2q+2p2+r)λ1
(2q+2p2+r)λ2

(q+p2)4 (q−p3)2 (p2+q+r)2
q2

.

(4.6)

- I7a

(I7a)abc
µνρ = a, µ

b, ν

c, ρ

q + r + p2

q + p2

q

q − p3

r

= −4g2ϵabc
∫

ddq

(2π)d

∫
ddr

(2π)d

ηµλ1δλ1λ2 (2q + 2p2 + r)λ2
(2q + p2)ν (2q − p3)ρ

(q + p2 + r)2 (q + p2)2 (q − p3)2 q2r2
.

(4.7)

- I7b

(I7b)abc
µνρ = a, µ

b, ν

c, ρ

q + p2

q + p2 − r

q − r

q − p3

r

= −4g2ϵabc
∫

ddq

(2π)d

∫
ddr

(2π)d

(2q + p2 − p3)µ (2q − 2r + p2)ν (2q + 2p2 − r)ρ

(q + p2)2 (q + p2 + r)2 (q − r)2 (q − p3)2 r2
.

(4.8)
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- I8

(I8)abc
µνρ a, µ

b, ν

c, ρ

q + r + p2

q

q − p3

r

= 8g22ϵabcηµν

∫
ddq

(2π)d

∫
ddr

(2π)d

(2q − p3)ρ

(q + p2 + r)2 (q − p3)2 q2r2
.

(4.9)

5 Discussion and conclusion

In this paper we have computed the one-loop 3-point function for the current operator in a
toy model with global SO(3) symmetry for the phenomenological approach to holographic
cosmology. This toy model was used previously in order to solve the monopole problem
in holographic cosmology.

Since the result can be used for quantum field theory reasons as well, and as a test for our
understanding, we started with two particular cases, of two lightlike momenta (p2

1 = p2
3 = 0),

and one lightlike momentum (p2
1 = 0). In these cases, we have found IR divergences, which

were treated using mass regularization. The results were checked to satisfy the transverse
Ward identities. Finally, the calculation at generic external momenta was done and found to
be (UV and) IR finite, and also respect the transverse Ward identities.

When applying the result to holographic cosmology, applying an S-duality on the 3-point
function of SO(3) (electric) currents gives the 3-point function of magnetic currents, giving,
through the holographic map, the monopole distribution 3-point function, specifically its non-
Gaussianity. We took the special limit, previously used in inflation for scalar perturbations,
p2µ ≃ −p3µ, p2

2 ≃ p2
3 ≫ p2

1, and found that the 3-point function reduces to a combination
of the two-point functions and the anomalous dimension δ(j̃) = nm − 1, where nm is the
monopole analog of ns for scalar fluctuations in inflation. The IR finiteness of the quantum
field theory 3-point function is mapped to the absence of cosmological singularity for the
monopole 3-point function.

The two-loop contribution would be needed both to find a nontrivial nm ( ̸= 1) and to
better test the IR finiteness (absence of cosmological singularity). We left that for future
work, though we set up the problem. Moreover, by analyzing the two-loop diagrams, we
conclude that the two-loop result for the 3-point function is independent of the form of the
scalar potential since all diagrams with insertions of the quartic scalar interaction vertex
vanish in dimensional regularization. This was already true for the 2-point function, where
it led to the conclusion that the fact that the magnetic current operator is relevant was
generic, and not restricted to the toy model. We can now extend this finding to the 3-point
function and say that the 3-point monopole distribution profile, and the resulting monopole
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non-Gaussianity, is independent of the quartic scalar interaction, thus is generic, and not
restricted to the toy model.

For the future, it would be good to do the full calculation of the two-loop 3-point function,
as well as introduce fermions in the model, to make the result more general. The methods
used to calculate the Feynman diagram integrals in these 3-dimensional field theories are
interesting in their own right, and could be used in the future in other cases.

It will also be interesting to calculate the ⟨TJJ⟩,2 and the ⟨TTJ⟩ correlators. Since Tµν

couples both to scalar and tensor perturbations in cosmology, in practice this should give
a cross-correlation between primordial perturbations of the metric and monopoles, which
can be considerably larger than the ⟨JJJ⟩ correlator computed here.
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A Calculation of the 1-loop integrals in momentum space

In this appendix we present the details of the calculation of the integrals (3.4) and (3.5) in
dimensional regularization using the Feynman parametrization.

- Integral I0

I0 = 2
∫ 1

0
dx

∫ 1−x

0
dy

∫
ddq

(2π)d

1
D3 , (A.1)

where

D = xq2 + y(q + p2)2 + (1− x− y)(q − p3)2

= q2 + 2q · [yp2 − (1− x− y)p3] + yp2
2 + (1− x− y)p2

3. (A.2)

Changing variables:

q̄ = q + yp2 − (1− x− y)p3, (A.3)

we eliminate terms with q̄ · pi,

D = q̄2 + (1− x)xp2
3 + (p2 + p3) · (p2 + p3 − 2xp3)y − (p2 + p3)2y2, (A.4)

and using the conservation of momenta, we can simplify the denominator,

D = q̄2 + (1− x)xp2
3 + p1 · (p1 − 2xp3)y − p2

1y
2

= q̄2 + (1− x)xp2
3 + p2

1y − p2
1y

2 − 2xyp1 · p3

= q̄2 + xyp2
2 + (1− x− y)(xp2

3 + yp2
1)

= q̄2 +∆2, (A.5)
2See also the previous calculation of a ⟨T JJ⟩ correlator, though not within this particular context, in [77–79].
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where
∆2 ≡ xyp2

2 + (1− x− y)(xp2
3 + yp2

1). (A.6)

Now we can use the general result in dimensional regularization∫
ddq

(2π)d

1
(q2 +∆2)n

= Γ(n− d/2)
(4π)d/2Γ(n)

(∆2)d/2−n (A.7)

to write

I0 = Γ(3− d/2)
(4π)d/2Γ(3)

2
∫ 1

0
dx

∫ 1−x

0
dy
[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]d/2−3

, (A.8)

and since there are no poles in the gamma function for d = 3, we can set d = 3 everywhere,

I0 = 2 Γ(3− 3/2)
(4π)3/2Γ(3)

∫ 1

0
dx

∫ 1−x

0
dy
[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]3/2−3

= 1
(4π)3/2

√
π

2

∫ 1

0
dx

∫ 1−x

0
dy

1[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]3/2

= 1
16πI

(0,0,3/2)(p1,p2, p3), (A.9)

where

I(0,0,3/2)(p1,p2, p3) ≡
∫ 1

0
dx

∫ 1−x

0
dy

1[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]3/2 . (A.10)

- Integral Iµ

Iµ =
∫

ddq

(2π)d

qµ

q2(q + p2)2(q − p3)2

= 2
∫ 1

0
dx

∫ 1−x

0
dy

∫
ddq

(2π)d

qµ

[xq2 + y(q + p2)2 + (1− x− y)(q − p3)2]3

= 2
∫ 1

0
dx

∫ 1−x

0
dy

∫
ddq̄

(2π)d

q̄µ + (1− x)p3µ − yp1µ

[q̄2 +∆2]3

= 2
∫ 1

0
dx

∫ 1−x

0
dy

[∫
ddq̄

(2π)d

q̄µ

[q̄2 +∆2]3
+ [p3µ(1− x)− yp1µ]

∫
ddq̄

(2π)d

1
[q̄2 +∆2]3

]

= 2 Γ(3− d/2)
(4π)d/2Γ(3)

∫ 1

0
dx

∫ 1−x

0
dy

p3µ(1− x)− yp1µ[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]3−d/2

= 1
16πfµ(p1, p2, p3), (A.11)

where ∫
ddq̄

(2pi)d

q̄µ

(q̄2 +∆2)3 = 0 (A.12)

by Lorentz invariance, and

fµ(p1, p2, p3) ≡
∫ 1

0
dx

∫ 1−x

0
dy

p3µ(1− x)− yp1µ[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]3/2 . (A.13)

– 26 –



J
H
E
P
0
5
(
2
0
2
4
)
0
5
6

- Integral Iµν

Iµν =
∫

ddq

(2π)d

qµqν

q2(q + p2)2(q − p3)2

= 2
∫ 1

0
dx

∫ 1−x

0
dy

∫
ddq

(2π)d

qµqν

[xq2 + y(q + p2)2 + (1− x− y)(q − p3)2]3

= 2
∫ 1

0
dx

∫ 1−x

0
dy

∫
ddq̄

(2π)d

[q̄ − yp2 + (1− x− y)p3]µ [q̄ − yp2 + (1− x− y)p3]ν
(q̄2 +∆2)3 .

(A.14)

Expanding the numerator,

[q̄µ − yp2µ + (1− x− y)p3µ] [q̄ν − yp2ν + (1− x− y)p3ν ] =
= q̄µq̄ν + q̄µ [(1− x− y)p3ν − yp2ν ] + q̄ν [(1− x− y)p3µ − yp2µ]
+ [(1− x− y)p3µ − yp2µ] [(1− x− y)p3ν − yp2ν ] . (A.15)

But since terms with only one q̄ vanish, we can already drop them from the calculation,

Iµν = 2
∫ 1

0
dx

∫ 1−x

0
dy
{[

(1− x− y)2p3µp3ν + y2p2µp2ν − y(1− x− y) (p3µp2ν + p2µp3ν)
]

×
∫

ddq̄

(2π)d

1
(q̄2 +∆2)3 +

∫
ddq̄

(2π)d

q̄µq̄ν

(q̄2 +∆2)3

}

= 2
∫ 1

0
dx

∫ 1−x

0
dy{

Γ(3− d/2)
(4π)d/2Γ(3)

(1− x− y)2p3µp3ν + y2p2µp2ν − y(1− x− y) (p3µp2ν + p2µp3ν)[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]3−d/2

+
∫

ddq̄

(2π)d

q̄µq̄ν

(q̄2 +∆2)3

}
. (A.16)

By Lorentz invariance, the last integral is
∫

ddq̄

(2π)d

q̄µq̄ν

(q̄2 +∆2)3 = δµν

2(4− d)
Γ(3− d/2)
(4π)d/2

(
∆2
)d/2−2

, (A.17)

and we have

Iµν = 2
∫ 1

0
dx

∫ 1−x

0
dy

×
{

Γ(3− d/2)
(4π)d/2Γ(3)

(1− x− y)2p3µp3ν + y2p2µp2ν − y(1− x− y) (p3µp2ν + p2µp3ν)[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]3−d/2

+ Γ(3− d/2)
(4π)d/2Γ(3)

Γ(3)
2(4− d)

δµν[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]2−d/2

}

= 1
16π

[
fµν(p1, p2, p3) + δµνf

′
0(p1, p2, p3)

]
, (A.18)
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where

fµν(p1, p2, p3) ≡
∫ 1

0
dx

∫ 1−x

0
dy

[(1− x)p3µ − yp1µ] [(1− x)p3ν − yp1ν ][
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]3/2 , (A.19)

f ′0(p1, p2, p3) ≡
∫ 1

0
dx

∫ 1−x

0
dy

1[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]1/2 . (A.20)

- Integral Iµνρ

Iµνρ =
∫

ddq

(2π)d

qµqνqρ

q2(q + p2)2(q − p3)2

= 2
∫ 1

0
dx

∫ 1−x

0
dy

∫
ddq

(2π)d

qµqνqρ

[xq2 + y(q + p2)2 + (1− x− y)(q − p3)2]3

= 2
∫ 1

0
dx

∫ 1−x

0
dy

∫
ddq̄

(2π)d

1
(q̄2 +∆2)3

× [q̄ − yp2 + (1− x− y)p3]µ [q̄ − yp2 + (1− x− y)p3]ν [q̄ − yp2 + (1− x− y)p3]ρ .
(A.21)

Expanding the numerator

[q̄ − yp2 + (1− x− y)p3]µ [q̄ − yp2 + (1− x− y)p3]ν [q̄ − yp2 + (1− x− y)p3]ρ
= q̄µq̄ν q̄ρ + q̄µq̄ν [(1− x− y)p3ρ − yp2ρ] + [(1− x− y)p3ν − yp2ν ] q̄µq̄ρ

+ q̄µ [(1− x− y)p3ν − yp2ν ] [(1− x− y)p3ρ − yp2ρ]
+ [(1− x− y)p3µ − yp2µ] q̄ν q̄ρ + q̄ν [(1− x− y)p3µ − yp2µ] [(1− x− y)p3ρ − yp2ρ]
+ [(1− x− y)p3µ − yp2µ] [(1− x− y)p3ν − yp2ν ] q̄ρ

+ [(1− x− y)p3µ − yp2µ] [(1− x− y)p3ν − yp2ν ] [(1− x− y)p3ρ − yp2ρ] . (A.22)

Again, terms with an odd number of q̄s will vanish by Lorentz invariance, so we just
drop them. Therefore

Iµνρ =2
∫ 1

0
dx

∫ 1−x

0
dy

{
[(1−x−y)p3ρ−yp2ρ]

∫
ddq̄

(2π)d

q̄µq̄ν

(q̄2+∆2)3

+[(1−x−y)p3ν−yp2ν ]
∫

ddq̄

(2π)d

q̄µq̄ρ

(q̄2+∆2)3 +[(1−x−y)p3µ−yp2µ]
∫

ddq̄

(2π)d

q̄ν q̄ρ

(q̄2+∆2)3

[(1−x−y)p3µ−yp2µ] [(1−x−y)p3ν−yp2ν ] [(1−x−y)p3ρ−yp2ρ]
∫

ddq̄

(2π)d

1
(q̄2+∆2)3

}
,

(A.23)
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and using again the result (A.17), we find

Iµνρ =2
∫ 1

0
dx

∫ 1−x

0
dy

{
[(1−x−y)p3ρ−yp2ρ]

δµνΓ(3)
2(4−d)

Γ(3−d/2)
(4π)d/2Γ(3)

(
∆2
)d/2−2

+[(1−x−y)p3ν−yp2ν ]
δµρΓ(3)
2(4−d)

Γ(3−d/2)
(4π)d/2Γ(3)

(
∆2
)d/2−2

+[(1−x−y)p3µ−yp2µ]
δνρΓ(3)
2(4−d)

Γ(3−d/2)
(4π)d/2Γ(3)

(
∆2
)d/2−2

+[(1−x−y)p3µ−yp2µ] [(1−x−y)p3ν−yp2ν ] [(1−x−y)p3ρ−yp2ρ]

× Γ(3−d/2)
(4π)3/2Γ(3)

(∆2)d/2−3

= 1
16π

{
δµν

∫ 1

0
dx

∫ 1−x

0
dy

[(1−x−y)p3ρ−yp2ρ][
xyp2

2+(1−x−y)(xp2
3+yp2

1)
]1/2

+δµρ

∫ 1

0
dx

∫ 1−x

0
dy

[(1−x−y)p3ν−yp2ν ][
xyp2

2+(1−x−y)(xp2
3+yp2

1)
]1/2

+δνρ

∫ 1

0
dx

∫ 1−x

0
dy

[(1−x−y)p3µ−yp2µ][
xyp2

2+(1−x−y)(xp2
3+yp2

1)
]1/2

+
∫ 1

0
dx

∫ 1−x

0
dy

[(1−x−y)p3µ−yp2µ] [(1−x−y)p3ν−yp2ν ] [(1−x−y)p3ρ−yp2ρ][
xyp2

2+(1−x−y)(xp2
3+yp2

1)
]3/2

}

= 1
16π

[
δµνf

′
ρ(p1,p2,p3)+δµρf

′
ν(p1,p2,p3)+δνρf

′
µ(p1,p2,p3)+fµνρ(p1,p2,p3)

]
, (A.24)

where

f ′µ(p1,p2, p3) =
∫ 1

0
dx

∫ 1−x

0
dy

(1− x− y)p3µ − yp2µ[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]1/2 (A.25)

fµνρ(p1,p2, p3) =
∫ 1

0
dx

∫ 1−x

0
dy

1[
xyp2

2 + (1− x− y)(xp2
3 + yp2

1)
]3/2 ,

× [(1− x− y)p3µ − yp2µ] [(1− x− y)p3ν − yp2ν ] [(1− x− y)p3ρ − yp2ρ] .
(A.26)

All in all, using the notation (3.12), we find

fµ(p1, p2, p3) = p3µ

(
I(0,0,3/2) − I(1,0,3/2)

)
− p1µI

(0,1,3/2),

fµν(p1, p2, p3) =
(
f0 − 2I(1,0,3/2) + I(2,0,3/2)

)
p3µp3ν

+
(
I(1,1,3/2) − I(0,1,3/2)

)
(p3µp1ν + p1µp3ν) + I(0,2,3/2)p1µp1ν ,

f ′µ(p1, p2, p3) = p3µ

(
I(0,0,1/2) − I(1,0,1/2)

)
− p1µI

(0,1,1/2),

fµνρ(p1, p2, p3) =
(
f0 − 3I(1,0,3/2) + 3I(2,0,3/2) − I(3,0,3/2)

)
p3µp3νp3ρ

−
(
I(0,1,3/2) + I(2,1,3/2) − 2I(1,1,3/2)

)
(p3µp3νp1ρ + p3µp1νp3ρ + p1µp3νp3ρ)

+
(
I(0,2,3/2) − I(1,2,3/2)

)
(p3µp1νp1ρ + p1µp3νp1ρ + p1µp1νp3ρ)

− I(0,3,3/2)p1µp1νp1ρ.
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B Integrals in Feynman parameters

Now we present the details of the calculation of the integrals (3.17).

B.1 Useful formulas

All integrals we want to solve are of the form

I(a,b,c)(p1, p2, p3,m) =
∫ 1

0
dx

∫ 1−x

0
dy

xayb(
xyp2

2 + (1− x− y)(xp2
3 + yp2

1) +m2)c . (B.1)

First, we note that

I(a,b,c)(p1, p2, p3,m) = I(b,a,c)(p3, p2, p1,m). (B.2)

To prove this, we first exchange the order of integration on the left hand side. By doing
this, the domain of integration changes from

0 ≤ x ≤ 1, and 0 ≤ y ≤ 1− x, (B.3)

to
0 ≤ y ≤ 1, and 0 ≤ x ≤ 1− y, (B.4)

meaning that

I(a,b,c)(p1, p2, p3,m) =
∫ 1

0
dx

∫ 1−x

0
dy

xayb(
xyp2

2 + (1− x− y)(xp2
3 + yp2

1) +m2)c
=
∫ 1

0
dy

∫ 1−y

0
dx

xayb(
xyp2

2 + (1− x− y)(xp2
3 + yp2

1) +m2)c . (B.5)

Now, we just rename the variables of integration x ↔ y to obtain

I(a,b,c)(p1, p2, p3,m) =
∫ 1

0
dx

∫ 1−x

0
dy

yaxb(
yxp2

2 + (1− y − x)(yp2
3 + xp2

1) +m2)c
= I(b,a,c)(p3, p2, p1,m), (B.6)

as we wanted to show. We will use this relation to solve less integrals in some cases we
considered.

It will be useful to define

I(a,b,c)(p1, p2, p3,m) =
∫ 1

0
dxxaI(b,c)(p1, p2, p3,m)(x), (B.7)

where
I(b,c)(p1, p2, p3,m)(x) =

∫ 1−x

0

yb

(αy2 + β(x)y + γ(x))c
, (B.8)

α = −p2
1, β(x) = p2

1 + x(p2
2 − p2

1 − p2
3), γ(x) = m2 + (1− x)xp2

3. (B.9)

In order to solve the integrals (3.17), we will just need the solution of (B.8) for b = {0, 1},
and for c = {3/2, 1/2}.
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• b = 0 and c = 3/2∫ 1−x

0

1
(αy2 + βy + γ)3/2 = − 2(β + 2αy)

(β2 − 4αγ)
√
αy2 + βy + γ

∣∣∣∣∣
1−x

0

= 2
β2 − 4αγ

[
β
√
γ
− β + 2(1− x)α√

(1− x)2α+ (1− x)β + γ

]
, (B.10)

and after substituting the expressions (B.9), we find

I(0,3/2)(p1, p2, p3,m)(x) = 2
[
x(p2

2 − p2
3)
(√

(1− x)xp2
2 +m2 −

√
(1− x)xp2

3 +m2
)

+(1− x)p2
1

(√
(1− x)xp2

2 +m2 +
√
(1− x)xp2

3 +m2
)]

× 1√(
(1− x)xp2

2 +m2) ((1− x)xp2
3 +m2)

× 1
4m2p2

1 +
(
(1− x)p2

1 + x(p2
2 − p2

3)
) (

(1− x)p2
1 + x(p2

2 + p2
3)
) .

(B.11)

• b = 1 and c = 3/2∫ 1−x

0

y

(αy2+βy+γ)3/2 = 2(2γ+βy)
(β2−4αγ)

√
αy2+βy+γ

∣∣∣∣∣
1−x

0

=− 2
β2−4αγ

[
2√γ− (1−x)β+2γ√

(1−x)2α+(1−x)β+γ

]
, (B.12)

and after substituting (B.9), we find

I(1,3/2)(p1,p2,p3,m)(x)=

4m2+2(1−x)
(
(1−x)p2

1+x(p2
2+p2

3)
)√

(1−x)xp2
2+m2

−4
√
(1−x)xp2

3+m2


× 1
4m2p2

1+
(
(1−x)p2

1+x(p2
2−p2

3)
)(
(1−x)p2

1+x(p2
2+p2

3)
) . (B.13)

• b = 0 and c = 1/2∫ 1−x

0
dy

1
(αy2 + βy + γ)1/2 = 1

√
γ
log

(
2αy + 2

√
α(αy2 + βy + γ) + β

)∣∣∣∣∣
1−x

0

= 1√
α

[
log

(
2(1− x)α+ 2

√
α)αy2 + βy + γ) + β

)
− log (2√αγ + β)

]
, (B.14)

which gives

I(0,1/2)(p1, p2, p3,m)(x) = i

p1

[
log

(
(1− x)p2

1 + (p2
2 − p2

3)x+ 2p1

√
−m2 − (1− x)xp2

3

)
− log

(
−(1− x)p2

1 + (p2
2 − p2

3)x+ 2p1

√
−m2 − (1− x)xp2

2

)
.

(B.15)
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Note the presence of an overall complex number. We also have a complex number appearing
inside the argument of the logarithm as a consequence of the terms

√
−m2 − (1− x)xp2

2

and
√
−m2 − (1− x)xp2

2. After integration over x, these complex numbers will generate
inverse trigonometric functions, such that the final result is real.

• b = 1 and c = 1/2∫ 1−x

0
dy

y

(αy2+βy+γ)1/2 = 1
α

√
αy2+βy+γ− β

2α3/2 tanh
−1
(

2αy+β
2
√
α(αy2+βy+γ)

)∣∣∣∣∣
1−x

0

= 1
α

(√
α(1−x)2+β(1−x)+γ−√γ

)
− β

2α3/2

[
tanh−1

(
2α(1−x)+β

2
√
α(α(1−x)2+β(1−x)+γ)

)

−tanh−1
(

β

2√αγ

)]
,

(B.16)

which in terms of the external momenta gives

I(1,1/2)(p1, p2, p3,m)(x) = − 1
2p3

2

2p1

(√
(1− x)xp2

2 +m2 −
√
(1− x)xp2

3 +m2
)

+
(
(1− x)p2

1 + (p2
2 − p2

3)x
)cot−1

− 2p1
√
(1− x)xp2

2 +m2

(1− x)p2
1 − (p2

2 − p2
3)x


− cot−1

 2p1
√
(1− x)xp2

3 +m2

(1− x)p2
1 + (p2

2 + p2
3)x

 . (B.17)

These are all the y-integrals we will need in order to compute the eight independent
scalar integrals in the Feynman parameters. The last step before perform the x-integration is
to specialize the results above for the three cases we are interested in.

B.2 p2
1 = p2

3 = 0

In this case, the integrals (B.11), (B.13), (B.15), and (B.16) are

I(0,3/2)(0,p2,0,m)(x)= 2
p2

2x

 1
m
− 1√

(1−x)xp2
2+m2

 , (B.18)

I(1,3/2)(0,p2,0,m)(x)= 2
p4

2x
2

 (1−x)xp2
2+2m2√

(1−x)xp2
2+m2

−2m

 , (B.19)

I(0,1/2)(0,p2,0,m)(x)= 2
p2

2x

(√
(1−x)xp2

2+m2−m
)
, (B.20)

I(1,1/2)(0,p2,0,m)(x)= 2
3p4

2x
2

[
2m3+

√
(1−x)xp2

2+m2
(
(1−x)xp2

2−2m2
)]
. (B.21)

Now we are able to solve the x-integrals.
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• I(0,0,3/2)

I(0,0,3/2)(p2,m) =
∫ 1

0
dxI(0,3/2)(0, p2, 0,m)(x)

= 2
p2

2

 1
m

∫ 1

0
dx

1
x
−
∫ 1

0
dx

1
x
√
(1− x)xp2

2 +m2


= 2
mp2

2

log x+ 1
2 log

1 + 2m2 + p2
2x

2m
√
(1− x)xp2

2 +m2


−1
2 log

1− 2m2 + p2
2x

2m
√
(1− x)xp2

2 +m2

1

0

.

(B.22)

The the lower limit of integration is not trivial since log(0) = −∞. For x = 1 we have

log x+ 1
2 log

1 + 2m2 + p2
2x

2m
√
(1− x)xp2

2 +m2

− 1
2 log

1− 2m2 + p2
2x

2m
√
(1− x)xp2

2 +m2

∣∣∣∣∣∣
1

= 1
2 log

(
1 + p2

2
4m2

)
− 1

2 log
(
p2

2
4m2

)
− iπ

2 , (B.23)

while for x = 0, we expand around small x and obtain, after taking the x→ 0 limit,

log x+ 1
2 log

1 + 2m2 + p2
2x

2m
√
(1− x)xp2

2 +m2

− 1
2 log

1− 2m2 + p2
2x

2m
√
(1− x)xp2

2 +m2

∣∣∣∣∣∣
0

= −1
2 log p2

2
4m2 −

1
2 log

(
1 + p2

2
4m2

)
− 1

2 iπ. (B.24)

Hence, the integral is

I(0,0,3/2)(p2,m) = 2
mp2

2
log

(
1 + p2

2
4m2

)
. (B.25)

Expanding around small m and taking the limit m → 0, we find

I(0,0,3/2)(p2,m) = 2 lim
m→0

log
(
p2

2/4m2)
mp2

2
. (B.26)

This result is divergent as m → 0.

• I(1,0,3/2):

I(1,0,3/2)(p2,m) =
∫ 1

0
dxxI(0,3/2)(0, p2, 0,m)(x)

= − 2
p2

2

∫ 1

0
dx

1√
(1− x)xp2

2 +m2
− 1
m


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= − 2
p2

2

[ 2
p2

cot−1
(2m
p2

)
− 1
m

]
= − 4

p3
2
cot−1

(2m
p2

)
+ 2
mp2

2
m→0= 2

p2
2
lim

m→0

1
m
− 2π
p3

2
. (B.27)

• I(2,0,3/2):

I(2,0,3/2)(p2,m) =
∫ 1

0
dxx2I(0,3/2)(0, p2, 0,m)(x)

= − 2
p2

2

∫ 1

0
dxx

 1√
(1− x)xp2

2 +m2
− 1
m


= − 2

p2
2

− 1
2m +

∫ 1

0
dx

x√
(1− x)xp2

2 +m2


= − 2

p3
2
cot−1

(2m
p

)
+ 1
mp2

2
m→0= 1

p2
2
lim

m→0

1
m
− π

p3
2
. (B.28)

• I(3,0,3/2):

I(3,0,3/2)(p2,m) =
∫ 1

0
dxx3I(0,3/2)(0, p2, 0,m)(x)

= − 2
p2

2


∫ 1

0
dx

x2√
(1− x)xp2

2 +m2
− 1

3m


= m

p4
2
−
(
4m2 + 3p2

2
)

2p5
2

cot−1
(2m
p2

)
+ 2

3mp2
2

m→0= 2
3p2

2
lim

m→0

1
m
− 3π

4p3
2
. (B.29)

• I(1,1,3/2):

I(1,1,3/2)(p2,m) =
∫ 1

0
dxxI(1,3/2)(0, p2, 0,m)(x)

= 2
p4

2

∫ 1

0
dx

(1− x)xp2
2 + 2m2

x
√
(1− x)xp2

2 +m2
+ 2m lim

x→0
log x


= 2
p3

2
cot−1

(2m
p2

)
− 4m

p4
2
log

(
1 + p2

2
4m2

)
m→0= π

p3
2
. (B.30)

• I(2,1,3/2):

I(2,1,3/2)(p2,m) =
∫ 1

0
dxx2I(1,3/2)(0, p2, 0,m)(x)

= 2
p4

2

∫ 1

0
dx

(1− x)xp2
2 + 2m2√

(1− x)xp2
2 +m2

− 2m


– 34 –
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= 2
p4

2

(
m

2 +
(
12m2 + p2) cot−1(2m/p)

4p2
− 2m

)

=
(
12m2 + p2

2
)

2p5
2

cot−1
(2m
p2

)
− 3m

p4
2

m→0= π

4p3
2
. (B.31)

• I(0,0,1/2), I(1,0,1/2):

These integrals are finite for m = 0 and are simpler to calculate. However, for com-
pleteness, we will give the solution for m ̸= 0,

I(0,0,1/2) = 2
p2

cot−1
(2m
p2

)
+ m

p2
2

[
log 16 + 2 log

(
m2

4m2 + p2

)]
, (B.32)

I(1,0,1/2) = −m
p2

2
+ 2m2

p3
2

cot−1
(2m
p2

)
+ 1

2p2
cot−1

(2m
p2

)
. (B.33)

Taking the massless limit,

I(0,0,1/2) = π

p2
, I(1,0,1/2) = π

4p2
. (B.34)

Finally, with these results in hand we note the following relations between these integrals,

I(1,0,3/2) = 2I(1,0,3/2), (B.35)

I(3,0,3/2) = 1
3
(
I(1,0,3/2) − I(2,1,3/2)

)
, (B.36)

I(1,1,3/2) = 4I(2,1,3/2) = 4
p2

2
I(1,0,1/2), (B.37)

I(0,0,1/2) = 4I(1,0,1/2) (B.38)

Using these relations together with (B.6) derived above, we find

fµ(p1, p2, p3) = I(0,0,3/2)p3µ − I(1,0,3/2) (p1µ + p3µ) , (B.39)

fµν(p1, p2, p3) =
(
I(0,0,3/2) − 3I(2,0,3/2)

)
p3µp3ν

+
(
I(1,1,3/2) − I(1,0,3/2)

)
(p3µp1ν + p1µp3ν) + I(2,0,3/2)p1µp1ν , (B.40)

f ′µ(p1, p2, p3) = I(0,0,1/2)p3µ − I(1,0,1/2) (p1µ + p3µ) , (B.41)

fµνρ(p1, p2, p3) =
(
I(0,0,3/2) − 3I(2,0,3/2) − I(3,0,3/2)

)
p3µp3νp3ρ − I(3,0,3/2)p1µp1νp1ρ

−
(
I(1,0,3/2) − 7I(2,1,3/2)

)
(p3µp3νp1ρ + p3µp1νp3ρ + p1µp3νp3ρ)

+
(
I(2,0,3/2) − I(2,1,3/2)

)
(p3µp1νp1ρ + p1µp3νp1ρ + p1µp1νp3ρ). (B.42)
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B.3 p2
1 = 0

For p2
1 = 0 but p2

3 ̸= 0, the integrals (B.11), (B.13), (B.15), and (B.16) are

I(0,3/2)(0,p2,p3,m)(x)= 2
(p2

2−p2
3)x

 1√
(1−x)xp2

3+m2
− 1√

(1−x)xp2
2+m2

 (B.43)

I(1,3/2)(0,p2,p3,m)(x)= 2(
p2

2−p2
3
) 1
x2

(1−x)x
(
p2

2+p2
3
)
+2m2√

(1−x)xp2
2+m2

−2
√
(1−x)xp2

3+m2

 (B.44)

I(0,1/2)(0,p2,p3,m)(x)= 2
(p2

2−p2
3)

1
x

(√
(1−x)xp2

2+m2−
√
(1−x)xp2

3+m2
)

(B.45)

I(1,1/2)(0,p2,p3,m)(x)=− 2
3
(
p2

2−p2
3
)2 ∫ 1

0
dx

[(
3p2

3−p2
2
)
(1−x)x+2m2]√(1−x)xp2

2+m2

x2

(B.46)

Now we use these results to solve the remaing integrals on x.

• I(0,0,3/2)

I(0,0,3/2)(0, p2, p3,m) =
∫ 1

0
dxI(0,3/2)(0, p2, p3,m)(x)

= − 2
(p2

2 − p2
3)

∫ 1

0
dx

1
x

 1√
(1− x)xp2

2 +m2
− 1√

(1− x)xp2
3 +m2


= 2
m(p2

2 − p2
3)

cot−1

2m
√
(1− x)xp2

2 +m2

p2
2x+ 2m2


cot−1

2m
√
(1− x)xp2

3 +m2

p2
3x+ 2m2

1

0

= 2
m(p2

2 − p2
3)

log
(
1− p2

2/4m2

1− p2
3/4m2

)
m→0= 2

(p2
2 − p2

3)
log

(
p2

2
p2

3

)
lim

m→0

1
m
. (B.47)

• I(1,0,3/2)

I(1,0,3/2)(0, p2, p3,m) =
∫ 1

0
dxxI(0,3/2)(0, p2, p3,m)(x)

= 2
(p2

2 − p2
3)

∫ 1

0
dx

 1√
(1− x)xp2

3 +m2
− 1√

(1− x)xp2
2 +m2


= 4

(p3
2p3 − p2p3

3)

[
cot−1

(2m
p3

)
− cot−1

(2m
p2

)]
m→0= 2π

p2
2p3 + p2p2

3
. (B.48)
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• I(2,0,3/2)

I(2,0,3/2)(0,p2,p3,m)=
∫ 1

0
dxx2I(0,3/2)(0,p2,p3,m)(x)

= 2
(p2

2−p2
3)

∫ 1

0
dx

(
x√

(1−x)xp2
3+m2

− x√
(1−x)xp2

2+m2

)

= 1
p2

2p
2
3(p2

2−p2
3)

[
2
(
p2

3

√
(1−x)xp2

2+m2−p2
2

√
(1−x)xp2

3+m2
)

+p2p
2
3 tan−1

(
p2 (1−2x)

2
√
(1−x)xp2

2+m2

)
−p3p

2
2 tan−1

(
p3 (1−2x)

2
√
(1−x)xp2

3+m2

)]1

0

= 2
(p3

2p3−p2p3
3)

[
cot−1

(
2m
p3

)
−cot−1

(
2m
p2

)]
m→0= π

p2
2p3+p2p2

3
. (B.49)

• I(3,0,3/2)

I(3,0,3/2) (0,p2,p3,m)=
∫ 1

0
dxx3I(0,3/2) (0,p2,p3,m)(x)

= 2
(p2

2−p2
3)

∫ 1

0
dx

(
x2√

(1−x)xp2
3+m2

− x2√
(1−x)xp2

2+m2

)

= 1
4p3

2p
3
3 (p2

2−p2
3)

[
2(3+2x)p2p3

(
p2

3

√
(1−x)xp2

2+m2−p2
2

√
(1−x)xp2

3+m2
)

+
(
4m2+3p2

2
)
p3

3 tan−1

(
p2 (1−2x)

2
√
(1−x)xp2

2+m2

)

−
(
4m2+3p2

3
)
p3

2 tan−1

(
p3 (1−2x)

2
√
(1−x)xp2

3+m2

)]1

0

=− 1
2p3

2p
3
3 (p2

2−p2
3)

[
2mp2p3

(
p2

2−p2
3
)
+
(
4m2+3p2

2
)
p3

3 cot−1
(
2m
p2

)

−
(
4m2+3p2

3
)
p3

2 cot−1
(
2m
p3

)]
m→0= 3π

4(p2
2p3+p2p2

3)
. (B.50)

• I(0,1,3/2)

I(0,1,3/2)(0,p2,p3,m)=∫ 1

0
dxI(1,3/2)(0,p2,p3,m)(x)

= 2(
p2

2−p2
3
) ∫ 1

0
dx

1
x2

(1−x)x
(
p2

2+p2
3
)
+2m2√

(1−x)xp2
2+m2

−2
√
(1−x)xp2

3+m2


= 1
mp2

(
p2

2−p2
3
)
x

2p2p
2
3x

coth−1

2m
√
(1−x)xp2

3+m2

p2
3x+2m2


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−coth−1

2m
√
(1−x)xp2

2+m2

p2
2x+2m2

−4mp2

(√
(1−x)xp2

2+m2−
√
(1−x)xp2

3+m2
)

+p3xtan−1

 p3 (1−2x)
2
√
(1−x)xp2

3+m2

+2m
(
p2

2+p2
3

)
xtan−1

 p2 (1−2x)
2
√
(1−x)xp2

2+m2

1

0

=− 2
mp2

(
p2

2−p2
3
) [2m(p2

2+p2
3

)
cot−1

(2m
p2

)

−p2

(
p2

2−p2
3+4mp3 cot−1

(2m
p3

)
+p2

3 log
(
1+p2

3/4m2

1+p2
2/4m2

))]
m→0= − 2π

p2 (p2+p3)2 +
2(

p2
2−p2

3
) [1− p2

3(
p2

2−p2
3
) log(p2

2
p2

3

)]
lim

m→0

1
m
. (B.51)

• I(0,2,3/2)

I(0,2,3/2)(0, p2, p3,m)

=
∫ 1

0
dx

∫ 1−x

0
dy

y2[
x(1− x− y)p2

3 + xyp2
2 +m2]3/2

= − 2
3
(
p2

2 − p2
3
) ∫ 1

0
dx

1
x3
√
(1− x)xp2

2 +m2

[
8m4 + 4m2

(
p2

2 + 3p2
3

)
(1− x)x

−
(
p4

2 − 4p2
2p

2
3 − 3p4

3

)
(1− x)2 x2 − 8

√
(1− x)xp2

2 +m2
(
(1− x)xp2

2 +m2
)3/2

]
m→0= − p2 + 3p3

p2 (p2 + p3)3π + 1(
p2

2 − p2
3
)3
[
p4

2 − 4p2
2p

2
3 + 3p4

3 + 2p4
3 log

(
p2

2
p3

2

)]
lim

m→0

1
m
.

(B.52)

• I(0,3,3/2)

I(0,3,3/2)(0, p2, p3,m) =
∫ 1

0
dx

∫ 1−x

0
dy

y3[
x(1− x− y)p2

3 + xyp2
2 +m2]3/2

m→0= −3π
(
p2

2 + 4p2p3 + 5p2
3
)

4p2 (p2 + p3)4

+ 2p6
2 − 9p4

2p
2
3 + 18p2

2p
4
3 − 11p6

3 − 6p2
3 log

(
p2

2/p
2
3
)

3
(
p2

2 − p2
3
)4 lim

m→0

1
m
.

(B.53)

• I(1,1,3/2)

I(1,1,3/2)(0,p2,p3,m)=
∫ 1

0
dxxI(1,3/2)(0,p2,p3,m)(x)

=
∫ 1

0
dx

∫ 1−x

0
dy

xy[
x(1−x−y)p2

3+xyp2
2+m2]3/2
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=− 2(
p2

2−p2
3
) ∫ 1

0
dx

 x(2x+y−2)p2
3−xyp2

2−2m2

x
√
x(1−x−y)p2

3+xyp2
2+m2

1−x

0

= 2(
p2

2−p2
3
) ∫ 1

0
dx

1
x

(1−x)x
(
p2

2+p2
3
)
+2m2√

(1−x)xp2
2+m2

−2
√
(1−x)xp2

3+m2


= 2
p2
(
p2

2−p2
3
) [(p2

2+p2
3

)
cot−1

(2m
p2

)
−2p2p3 cot−1

(2m
p3

)

−2mp2 log
(
1+p2/4m2

1+p2
3/4m2

)]
m→0= π

p2 (p2+p3)2 . (B.54)

• I(1,2,3/2)

I(1,2,3/2)(0,p2,p3,m)=
∫ 1

0
dx

∫ 1−x

0
dy

xy2

[x(1−x−y)p2
3+xyp2

2+m2]3/2

=− 2
3(p2

2−p2
3)

∫ 1

0
dx

1
x2
√
(1−x)xp2

2+m2

[
8m4+4m2 (p2

2+3p2
3
)
(1−x)x

−
(
p4

2−6p2
2p

2
3−3p4

3
)
(1−x)2

x2−8
√
(1−x)xp2

2+m2
(
(1−x)xp2

2+m2)3/2
]

m→0= p2+3p3

4p2 (p2+p3)3π. (B.55)

• I(2,1,3/2)

I(2,1,3/2)(0,p2,p3,m)=
∫ 1

0
dxx2I(1,3/2)(0,p2,p3,m)(x)

= 2(
p2

2−p2
3
)2 ∫ 1

0
dx

(1−x)x
(
p2

2+p2
3
)
+2m2√

(1−x)xp2
2+m2

−2
√
(1−x)xp2

3+m2


=− 1(

p2
2−p2

3
)2
[(

1− p
2
3
p2

2

)
m− 4m2 (3p2

2−p2
3
)
+p2

2
(
p2

2+p2
3
)

2p2
2

cot−1
(2m
p2

)

+4m2+p2
3

p3
cot−1

(2m
p3

)]
m→0= π

4p2 (p2+p3)2 . (B.56)

• I(0,0,1/2)

I(0,0,1/2)(0,p2,p3,m)=
∫ 1

0
dxI(0,1/2)(0,p2,p3,m)(x)

= 2
(p2

2−p2
3)

∫ 1

0
dx

1
x

(√
(1−x)xp2

2+m2−
√
(1−x)xp2

3+m2
)

= 2
m(p2

2−p2
3)

[
cot−1

(
2m
√
(1−x)xp2

2+m2

p2
2x+2m2

)
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−cot−1

(
2m
√
(1−x)xp2

3+m2

p2
3x+2m2

)]1

0

= 2
p2

2−p2
3

[
p2 cot−1

(2m
p2

)
−p3 cot−1

(2m
p3

)]
− 2m
p2

2−p2
3
log
(1−p2

2/4m2

1−p2
3/4m2

)
m→0= π

p2+p3
. (B.57)

• I(1,0,1/2)

I(1,0,1/2)(0,p2,p3,m)=
∫ 1

0
dxxI(0,1/2)(0,p2,p3,m)(x)

= 2
(p2

2−p2
3)

∫ 1

0
dx

(√
(1−x)xp2

2+m2−
√
(1−x)xp2

3+m2
)

= 1
2(p3

2p3−p2p3
3)

[(
p2

2+4m2)p3 cot−1
(2m
p2

)
−
(
p2

3+4m2)p2 cot−1
(2m
p3

)]
m→0= π

4(p2+p3)
. (B.58)

• I(0,1,1/2)

I(0,1,1/2)(0,p2,p3,m)=
∫ 1

0
dxI(1,1/2)(0,p2,p3,m)(x)

=− 2

3
(

p2
2−p2

3
)2

∫ 1

0
dx

[(
3p2

3−p2
2
)

(1−x)x+2m2
]√

(1−x)xp2
2+m2

x2

= 1

2p2
(

p2
2−p2

3
)2

[(
p4

2−3p2
2p

2
3+4m2 (p2

2+p2
3
))
cot−1

(2m

p2

)
−2p2

(
4m2p3−p3

3
)
cot−1

(2m

p3

)
+m

(
p2

3−p2
2+2p2

3 log
(

1−p2
2/4m2

1−p2
3/4m2

))]
m→0= p2+2p3

4(p2+p3)2π. (B.59)

B.4 Third and final case

• I(0,0,3/2)

I(0,0,3/2)(p1, p2, p3) =
∫ 1

0
dxI(0,3/2)(p1, p2, p3)(x)

= 2 (p2 + p3)
p2p3

∫ 1

0
dx

1√
(1− x)x

[
p2

1(1− x) + (p2 + p3) 2x
]

= 4
p1p2p3

√
1− x

√
x− 1 tanh−1

(
p2 + p3
p1

√
x

x− 1

)∣∣∣∣1
0
. (B.60)

Evaluate the lower limit is easy since tanh−1(0) = 0. For the upper limit of integration,
however, the limit x→ 1 gives

lim
x→1

4
p1p2p3

√
1− x

√
x− 1 tanh−1

(
p2 + p3
p1

√
x

x− 1

)
= 2π
p1p2p3

. (B.61)

Hence, the integral is
I(0,0,3/2)(p1, p2, p3) =

2π
p1p2p3

. (B.62)
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• I(1,0,3/2)

I(1,0,3/2)(p1, p2, p3) =
∫ 1

0
dxxI(0,3/2)(p1, p2, p3)(x)

= 2 (p2 + p3)
p2p3

∫ 1

0
dx

x√
(1− x)x

[
p2

1(1− x) + (p2 + p3) 2x
]

= 4
√
x− 1

p2p3
[
(p2 + p3) 2 − p2

1
]√

1− x

[
(p2 + p3) sinh−1

(√
x− 1

)
−p1 tanh−1

(
p2 + p3
p1

√
x

x− 1

)]∣∣∣∣1
0
.

(B.63)

For x = 0, this gives

− 2π (p2 + p3)
p2p3

[
(p2 + p3)2 − p2

1

] , (B.64)

by direct substitution. For x = 1 we take the limit, obtaining

− 2πp1

p2p3
[
(p2 + p3)2 − p2

1

] , (B.65)

such that

I(1,0,3/2)(p1, p2, p3) = −
2πp1

p2p3
[
(p2 + p3)2 − p2

1

] + 2π (p2 + p3)
p2p3

[
(p2 + p3)2 − p2

1

]
= 2π
p2p3 (p1 + p2 + p3)

. (B.66)

• I(2,0,3/2)

I(2,0,3/2)(p1,p2,p3)=
∫ 1

0
dxx2I(0,3/2)(p1,p2,p3)(x)

= 2(p2+p3)
p2p3

∫ 1

0
dx

x2√
(1−x)x [p2

1(1−x)+(p2+p3)2x]

= 2

p2p3

[
(p2+p3)2−p2

1

]2

{
(p2+p3)p2

1

[√
(1−x)x−3sin−1 (√x)]

−(p2+p3)3
[√

(1−x)x−sin−1 (√x)]+2p3
1 tan−1

(
p2+p3

p1

√
x

1−x

)}∣∣∣∣1
0
.

(B.67)

The lower limit is zero, whereas for the upper limit we take x→ 1, obtaining

I(2,0,3/2)(p1, p2, p3) =
2p1 + p2 + p3

p2p3 (p1 + p2 + p3)2π. (B.68)
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• I(3,0,3/2)

I(3,0,3/2)(p1,p2,p3)=
∫ 1

0
dxx3I(0,3/2)(p1,p2,p3)(x)

= 2(p2+p3)
p2p3

∫ 1

0
dx

x3√
(1−x)x

[
p2

1(1−x)+(p2+p3)2x
]

= p2+p3

2p2p3
[
−p2

1+(p2+p3)2
]3
{
− 8p5

1
(p2+p3)

tan−1
(
p2+p3
p1

√
x

1−x

)

+
√
(1−x)x

[
p2

1(2x+7)−(p2+p3)2 (2x+3)
][
−p2

1+(p2+p3)2
]

+
(
15p4

1−10(p2+p3)2 p2
1+3(p2+p3)4

)
sin−1 (√x)} ∣∣∣∣1

0
. (B.69)

Again the lower limit is zero, and the upper limit gives

I(3,0,3/2)(p1, p2, p3) =
8p2

1 + 9 (p2 + p3) p1 + 3 (p2 + p3)2

4p2p3 (p1 + p2 + p3)3 π. (B.70)

• I(1,1,3/2)

I(1,1,3/2)(p1, p2, p3) =
∫ 1

0
dxxI(1,3/2)(p1, p2, p3)(x)

= 2
p2

∫ 1

0
dx

√
(1− x)x

p2
1(1− x) + (p2 + p3)2x

= 2

p2
[
−p2

1 + (p2 + p3)2
]2 {p2

1

[√
x (x− 1) + sinh−1

(√
x− 1

)]

− 2p1 (p2 + p3) tanh−1
(
p2 + p3
p1

√
x

x− 1

)
+(p2 + p3)2

[
sinh−1

(√
x− 1

)
−
√
x(x− 1)

]} ∣∣∣∣1
0
. (B.71)

The lower limit gives

− p2
1 + (p2 + p3)2

p2 (−p1 + p2 + p3)2 (p1 + p2 + p3)2π, (B.72)

whereas for the upper limit we find, after taking the limit x→ 1,

− 2πp1 (p2 + p3)
p2 (−p1 + p2 + p3)2 (p1 + p2 + p3)2 , (B.73)

such that
I(1,1,3/2)(p1, p2, p3) =

π

p2 (p1 + p2 + p3)2 . (B.74)
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• I(2,1,3/2)

I(2,1,3/2)(p1,p2,p3)=
∫ 1

0
dxx2I(1,3/2)(p1,p2,p3)(x)

= 2
p2

∫ 1

0
dx

x
√

(1−x)x
p2

1(1−x)+(p2+p3)2x

=−
√

x−1

2p2
[
−p2

1+(p2+p3)2
]3 √

1−x

{
p4

1

[
(2x+3)

√
x(x−1)+3sinh−1

(√
x−1

)]
−8p3

1 (p2+p3)tanh−1
(

p2+p3

p1

√
x

x−1

)
−2p2

1 (p2+p3)2
[√

x(x−1)(2x+1)−3sinh−1
(√

x−1
)]

+(p2+p3)4+
[√

x(x−1)(2x−1)−sinh−1
(√

x−1
)]}∣∣∣∣1

0
. (B.75)

For the lower limit we find

π
(
3p4

1 + 6 (p2 + p3)2 p2
1 − (p2 + p3)4

)
4p2 (−p1 + p2 + p3)3 (p1 + p2 + p3)3 , (B.76)

whereas for the upper limit, again we have to take the limit x→ 1 to obtain

2πp3
1 (p2 + p3)

p2 (−p1 + p2 + p3)3 (p1 + p2 + p3)3 , (B.77)

such that
I(2,1,3/2)(p1, p2, p3) =

3p1 + p2 + p3

4p2 (p1 + p2 + p3)3π. (B.78)

• I(0,0,1/2)

I(0,0,1/2)(p1, p2, p3) =
∫ 1

0
dxI(0,1/2)(p1, p2, p3)(x)

= i

p1

∫ 1

0
dx log

(
p2

1(1− x) + 2ip2p1
√
(1− x)x+

(
p2

3 − p2
2
)
x

−p2
1(1− x) + 2ip3p1

√
(1− x)x+

(
p2

3 − p2
2
)
x

)
= π

p1 + p2 + p3
. (B.79)

• I(1,0,1/2)

I(1,0,1/2)(p1, p2, p3) =
∫ 1

0
dxxI(0,1/2)(p1, p2, p3)(x)

= i

p1

∫ 1

0
dxx log

(
p2

1(1− x) + 2ip2p1
√
(1− x)x+

(
p2

3 − p2
2
)
x

−p2
1(1− x) + 2ip3p1

√
(1− x)x+

(
p2

3 − p2
2
)
x

)

= π (2p1 + p2 + p3)
4 (p1 + p2 + p3)2 . (B.80)
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C Match of our results to previous constraints on the 3-point function

Here we check the consistency of our results for the general one-loop 3-point function
with [77, 78].

In [78], it was shown that the full correlator can be written in terms of a longitudinal
part (containing the 2-point function ⟨JJ⟩) and a transverse-traceless part, which in turn
depends only on two form factors. The decomposition, using the notation in that paper, is

⟨⟨Jµ1a1(p1)Jµ2a2(p2)Jµ3a3(p3)⟩⟩

= ⟨⟨jµ1a1(p1)jµ2a2(p2)jµ3a3(p3)⟩⟩

+
([

pµ1
1
p2

1

(
gfa1ba3

〈〈
Jµ3b(p2)Jµ2a2(−p2)

〉〉
− gfa1a2b

〈〈
Jµ2b(p3)Jµ3a3(−p3)

〉〉)]
+ [(µ1, a1,p1)↔ (µ2, b2,p2)] + [(µ1, a1,p1)↔ (µ3, a3,p3)])

+
([

pµ1
1 pµ2

2
p2

1p
2
2
gfa1a2bp2α

〈〈
Jαb(p3)Jµ3a3(−p3)

〉〉]
+ [(µ1, a1,p1)↔ (µ3, a3,p3)] + [(µ2, a2,p2)↔ (µ3, a3,p3)]) , (C.1)

where the transverse-traceless part is given by

⟨⟨jµ1a1(p1)jµ2a2(p2)jµ3a3(p3)⟩⟩

= πµ1
α1 (p1)πµ2

α2 (p2)πµ3
α3 (p3) [Aa1a2a3

1 pα1
2 pα2

3 pα3
1

+Aa1a2a3
2 δα1α2pα3

1 +Aa3a1a2
2 (p3, p1, p2) δα1α3pα2

3 +Aa2a3a1
2 (p2, p3, p1) δα2α3pα1

2 ] .
(C.2)

Considering the different sign convention for momenta in [78], with p1 = −p2 − p3, but
again with cyclic p1 ↔ (µ, ρ), p2 ↔ (ν, µ), p3 ↔ (ρ, ν), we obtain the coefficient functions as

Aa1a2a3
1 = coefficient of pµ1

2 pµ2
3 pµ3

1

Aa1a2a3
2 = coefficient of δµ1µ2pµ3

1 , (C.3)

or in our convention

Aabc
1 = coefficient of p2µp3νp1ρ

Aabc
2 = coefficient of δµνp1ρ , (C.4)

leading to

Aabc
1 (p1, p2, P3) = N2ϵabcc0(c7 − c11) = −N2ϵabc 1

2(p1 + p2 + p3)3 (C.5)

Aabc
2 (p1, p2, P3) = N2ϵabcc0c8 = −N2ϵabc p1 + p2 + 2p3

4(p1 + p2 + p3)2 . (C.6)
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Finally, it remains to show consistency of our result with (C.1). We first rewrite (C.1)
in our notation of indices and momenta:

⟨ja
µ(p1)jb

ν(−p2)jc
ρ(−p3)⟩ = ⟨ja

µ(p1)jb
ν(p2)jc

ρ(p3)⟩transverse-traceless

+ p1µ

p2
1

[1
2ϵ

adc⟨jd
ρ(p2)jb

ν(−p2)⟩ −
1
2ϵ

abd⟨jd
ν (p3)jc

ρ(−p3)⟩
]

− p2ν

p2
2

[1
2ϵ

bdc⟨jd
ρ(p1)ja

µ(−p1)⟩ −
1
2ϵ

bad⟨jd
µ(p3)jc

ρ(−p3)⟩
]

− p3ρ

p2
3

[1
2ϵ

cda⟨jd
µ(p2)jb

ν(−p2)⟩ −
1
2ϵ

cbd⟨jd
ν (p1)ja

µ(−p1)⟩
]

+ p1µp2µ

p2
1p

2
2

(1
2ϵ

abdp2α⟨jd
α(p3)jc

ρ(−p3)⟩
)

− p3ρp2ν

p2
3p

2
2

(1
2ϵ

cbdp2α⟨jd
α(p1)ja

µ(−p1)⟩
)

+ p1µp2ν

p2
1p

2
3

(1
2ϵ

acdp3α⟨jd
α(p2)jb

ν(−p2)⟩
)

(C.7)

where

⟨ja
µ(p1)jb

ν(p2)jc
ρ(p3)⟩transverse-traceless =

πα
µ(p1)πβ

ν (p2)πγ
ρ (p3)

[
Aabc

1 (p1, p2, p3)p2αp3νp1ρ +Aabc
2 (p1, p2, p3)δαβp1γ

−Acab
2 (p3, p1, p2)δαγp3β −Abca

2 (p2, p3, p1)δβγp2α

]
, (C.8)

and then use the software MATHEMATICA together with the package “xAct” for tensorial
calculations, and find indeed consistency with [78], with the form factors (C.6).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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