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1 Introduction

The conundrum of quantum gravity (QG) originally arose as a fundamental incompatibil-
ity between renormalizability and unitarity in the perturbative quantization of Einstein-
Hilbert [1–4] and quadratic gravity [5]. Subsequent attempts to reconcile unitarity and
renormalizability resulted in a proliferation of different approaches to the problem of QG.

The formulation of the Standard Model of particle physics was crucially driven by the
interplay between theoretical ideas and experimental tests: inputs from the theory drove
the experiments, and the experiments constrained the models and tested their assumptions.
QG lives in a different universe: quantum gravitational effects may be too tiny to be
directly detected in experiments. Discriminating between different proposals based on
observations appears currently out of reach. Lacking experiments, theoretical investigations
of the quantum aspects of gravity grope in the dark. Consistency, which is far from being
trivial in the realm of QG, becomes a key requirement to guide theoretical studies.

First of all, a fundamental quantum theory of gravity ought to be predictive, delivering
(finite) observables parametrized by a few free parameters only. Within the framework of
quantum field theory (QFT), predictivity is guaranteed by renormalizability. Specifically, in
the modern understanding of renormalization [6], the renormalization group (RG) trajectory
of a renormalizable QFT ends up in a (free or interacting) fixed point in the ultraviolet (UV),
and the number of free parameters of the theory is dictated by the codimension of its critical
hypersurface. Power counting suggests that Einstein gravity cannot be asymptotically free,
due to the negative mass dimension of the Newton coupling. Nonetheless, the existence of
an “asymptotically safe” (i.e., interacting) fixed point for gravity [7]—whether fundamental
or stemming from string theory [8, 9]—remains a compelling possibility [10–13], which can
be investigated using, e.g., lattice techniques [14, 15] or the Functional Renormalization
Group (FRG) [16].1 Alternatively, if the framework of QFT breaks down at some energy
scale, leaving the stage to a more fundamental description of Nature, General Relativity
would not need to be UV complete; rather, it could be regarded as an effective field theory
(EFT) valid up to a certain energy scale.

The FRG has proven useful in several approaches to QG, including asymptotically
safe gravity [20–52], unimodular quantum gravity [53–56], Hořava–Lifshitz gravity [57, 58],
Lorentz-symmetry-violating models [59, 60], matrix and tensor models [61–64], group field
theory [65–69] and string theory [8, 9, 70–73]. Crucially, the FRG can be used as an
alternative to the path integral to compute the quantum effective action [50, 74–78]. In turn,
the quantum effective action can be exploited to connect first-principle computations in QG
with experiments and observations, e.g., to explore quantum corrections to cosmological and
black-hole spacetimes (see [79–103] for some simple models and [104, 105] for reviews), and
to compute scattering amplitudes [106–110]. Finally, the knowledge of the quantum effective
action is paramount to establish whether the theory satisfies all known consistency criteria.

Indeed, beyond renormalizability (which will be neither required nor assumed throughout
the manuscript), a consistent and fundamental theory of QG ought to preserve at least some

1In an RG setup, the bare action is not guessed, rather, it is derived as an UV fixed point of the RG flow
(modulo reconstruction problem [17–19]).
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of the properties of (local) QFTs, such as causality, unitarity and stability. In the context
of EFT, these conditions have been translated in strong and very precise bounds on the
Wilson coefficients [111–125]. Yet, their non-perturbative realization beyond an EFT setup
requires accounting for the momentum dependence of couplings (aka, the form factors [76])
in the quantum effective action. Logarithmic form factors stemming from perturbative
computations at one-loop order are the simplest realization of this momentum dependence,
and their presence already brings important consequences for unitarity, causality and
stability [126–129]. Going beyond one-loop order, the form factors can be much more
complicated and ultimately ought to be derived by integrating out all quantum gravitational
fluctuations, e.g., at the level of the path integral or using the FRG. In particular assessing
unitarity, as well as causality and stability, requires investigating the effective action beyond
a polynomial expansion in momenta [50, 51, 78, 106, 130, 131], since such truncations can
potentially generate fictitious poles [131, 132].

The goal of the present work is to determine conditions for the non-perturbative
realization of causality, unitarity and stability, in particular at the level of the dressed
graviton propagator, and to introduce models satisfying all of them while allowing for an
analytic Wick rotation. To this end, we first revisit various aspects of (non-perturbative)
unitarity, causality and stability, we examine some of their caveats and subtle details, and
discuss their applicability to QG. Specifically, in section 2 we argue why (non-perturbative)
unitarity is generally best studied at the level of the effective action. Approximations to the
effective action based on truncated derivative expansions naturally lead to the appearance
of fictitious poles in the dressed propagator. The resulting fake ghosts decouple dynamically
when a sufficiently high number of operators is considered, in that the modulus of their
initially-negative residue decreases and vanishes in the limit where no approximation is
employed [131]. We discuss this residue decoupling mechanism in section 3, and we provide
further numerical evidence of its validity in the case of effective actions constructed with
various entire and non-entire form factors. Next, in section 4 we collect and analyze various
notions and definitions of causality that have appeared in the literature, and attempt to
clarify their relation. We also discuss tachyonic and vacuum (in)stabilities, differentiating
between the way they arise classically and at the quantum level. In this course, we
also highlight that the tachyonic case comes with several ambiguities, and that tachyonic
instabilities are not necessarily problematic, since in some cases they can be cured by
the interaction terms in the quantum effective action. We show this by providing some
arguments and also by constructing an explicit example for a scalar model. In the context
of causality, we pick the definition of microscopic causality discussed in [128], which is based
on the structure of the Fourier modes of the propagator, and we generalize the analysis from
the case of unstable ghosts studied in [128] to the case of a general propagator. The types of
poles and their implications for unitarity, causality and stability are summarized in table 2.
Our analysis indicates that to avoid acausalities and (tachyonic and vacuum) instabilities,
the dressed propagator should be free from complex-conjugate poles and poles with negative
width. In addition, to allow for an analytic Wick rotation no essential singularities should
occur. In section 5, we highlight that logarithmic quantum corrections that naturally arise
at the level of the gravitational effective action can only alleviate some problems, but are
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not enough to retain unitarity, causality and stability. This motivates our study in section 6,
where we construct models where causality, unitarity, stability and analytic continuation
can all be preserved. Interestingly, the common feature of these models is the presence of
branch cuts. We summarize our findings in section 7.

2 Non-perturbative unitarity, effective actions, and the RG

In this section we review some basic concepts intertwined with unitarity, that will be useful
throughout the manuscript, including the notion of unstable particle and how it is related
to quantum effects, the optical theorem and its non-perturbative character, and the role of
quantum effective actions.

2.1 Non-perturbative character of the optical theorem and spectral density

In the context of QFT the condition that the S-matrix is unitary, S†S = I, implies the
optical theorem: for any initial state |i〉 and final state |f〉, the transfer matrix T – defined
by S = I + iT – satisfies the relation

i〈f |T † − T |i〉 = 〈f |T †T |i〉 . (2.1)

For a unitary theory the right-hand side of this equation has to be positive for any initial
and final state.

While one could use perturbation theory to expand the left- and right-hand sides of
the optical theorem (provided that this perturbative expansion does not break down at any
scale) and verify unitarity order by order, this is not necessary if the quantum effective
action Γ0 is known. In fact, any scattering amplitude can be computed from the functional
derivatives of the effective action according to

〈f |S|i〉 ∝ 〈Ω|T {φ(x1) . . . φ(xn)} |Ω〉(c) =
[

δnΓ0[φ]
δφ(x1) . . . δφ(xn)

]
φ=0

, (2.2)

where φ(xi) are interacting quantum fields and |Ω〉 is the vacuum of the fully-interacting
theory. Therefore, the optical theorem does not need perturbation theory, rather it can be
seen as a set of non-perturbative relations between scattering amplitudes and cross sections.
In particular, if the effective action is known, one could in principle use it to evaluate
〈f |T †T |i〉 and verify that it is positive for any initial and final states.

On the right-hand side of eq. (2.1), one can insert an identity operator to express
〈f |T †T |i〉 as a sum over all possible intermediate states

Tif − T †fi = i
∑
n

T †fnTin . (2.3)

The unitarity condition thus holds if there are no negative-norm states (ghosts) in the set
of all possible asymptotic states. Indeed, if ghosts exist in the spectrum of the theory,
the space of asymptotic states is no longer complete, i.e., it is no longer a Fock space. In
this case the “identity” would carry some minus signs that would also enter the sum in
eq. (2.3). Unitarity thus has to do with the field content of the theory. In the context
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of QFT, this information is encoded in (the pole structure of) the dressed propagator
∆(q2) = ∑

i ∆i(q2)ti, where ti denotes a tensorial structure and ∆i(q2) ≡ iDi(q2) is the
correspondent scalar part. For a unitary theory the corresponding spectral density,

ρ
(
q2
)

= − lim
ε→0

[
π−1Im

(
D
(
q2 + iε

))]
, (2.4)

has to be real and positive definite (at least for asymptotic states, see the discussion
in section 2.4). Indeed, for |i〉 = |f〉 the optical theorem yields relations of the form
|M|2 = 2ImM, where M is the transition amplitude |i〉 → |f〉. Specializing to the case
where |i〉 = |f〉 is a one-particle state, one finds that (i) the optical theorem entails a
non-trivial relation between the spectral density ρ and the vertices of the theory, and that
(ii) the unitarity condition implies the positivity of ρ ∝ |M1→1|2.

A dressed propagator can in principle feature multiple poles, each one corresponding to
a degree of freedom of the theory. Assuming that each of these poles has multiplicity one,
the contribution of each pole and/or branch singularity to the propagator can be isolated
with the aid of the Cauchy integral formula. The propagator can thus be written as a sum
of single-pole propagators and, possibly, a continuum part. In what follows we will work in
Lorentzian signature, using the mostly negative convention (+ - - -), and we will assume
that D(q2) has no essential singularities invalidating the use of the Cauchy formula. For a
scalar propagator with a single branch cut on the real axis2

∆
(
q2
)

= iD
(
q2
)

= i

{
1

2πi

∮
Γ

D
(
µ2)

µ2 − q2dµ
2
}

= i

{∑
n

Rn
q2 −m2

n

+
∑
n

(
R̃n

q2 − (m̃2
n) + R̃∗n

q2 − (m̃2
n)∗

)
+
∫ ∞
m2
th

σ
(
µ2)

q2 − µ2dµ
2
}
,

(2.5)

where mn are renormalized masses, and σ(q2) = Im{i∆(q2)} for q2 > m2
th, with mth

being a threshold mass for the production of a resonance or a multi-particle state. The
integration contour Γ = CR ∪ γi is shown in figure 1. Eq. (2.5) is the most general form
of a dressed propagator. There can be contributions from stable particles (ghosts) and
possibly bound states, characterized by isolated poles with positive (negative) residues.
Pairs of complex-conjugate poles would appear in the form of isolated pairs of poles coming
with complex-conjugate masses and residues. The residues of the complex-conjugate poles
must be complex conjugates themselves to preserve the reflection-positivity condition of the
propagator, D∗(z) = D(z∗). Finally, unstable particles or multi-particle states correspond
to branch cut singularities above or below a threshold mass mth.

The total spectral density reads

ρ
(
q2
)

= − lim
ε→0

[
π−1Im

(
D
(
q2 + iε

))]
=
∑
n

Rnδ
(
q2 −m2

n

)
+ σ

(
q2
)
θ
(
q2 −m2

th

)
.

(2.6)
2Let us remark that, in principle, there could be multiple branch cuts, and they do not generally lie on

the real axis. An example of this situation will be presented in section 6.
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Figure 1. Integration contour for eq. (2.5).

The contribution of complex-conjugate poles to the spectral density cancels out, implying
that they do not affect unitarity. Stable particles/ghosts contribute with Dirac deltas in
the expression of the spectral density. Unstable particles/ghosts contribute instead with a
continuum part σ(q2). Unitarity thus holds if

Rn ≥ 0 ∀n and σ
(
q2
)
≥ 0 , (2.7)

namely, if there are no stable ghosts, and if unstable ghosts come in the form of Merlin
modes [127, 128]. These conditions guarantee that the spectral density is positive. Moreover,
the spectral density must be real and the normalization condition∫ ∞

0
ρ
(
µ2
)
dµ2 =

∑
n

Rn +
∫ ∞

0
σ
(
µ2
)
dµ2 = 1 (2.8)

is to be imposed.
The Källen-Lehmann spectral representation of the (dressed) propagator [133, 134],

from which eq. (2.4) follows, is very general and does not rely on any perturbative expansion.
It encodes all-order, non-perturbative information on the dressed propagator, and thereby
on the degrees of freedom of the full theory. The spectral density can be derived from
the dressed propagator, which in turn can be computed from the effective action Γ0. This
makes the quantum effective action Γ0 crucial to establish unitarity in non-perturbative
QFTs, and a useful tool in the case of QFTs which are perturbative at all scales.

2.2 Effective actions and the renormalization group

The effective action Γ0 is obtained by integrating out all quantum fluctuations at the level
of the functional integral. One possible way to obtain Γ0 is via the FRG equation [135–138]

k∂kΓk = 1
2STr

{(
Γ(2)
k +Rk

)−1
k∂kRk

}
. (2.9)

– 5 –
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Here Γk is the so-called effective average action. At the level of the path integral, it
can be thought of as the effective action obtained by the integration of fluctuations with
momenta p2 & k2. Its variation with respect to the RG scale k is induced by the variation of
the infrared regulator Rk and by the corresponding RG-scale dependent inverse propagator.
The supertrace Str stands for both a sum over discrete indices and an integral over
continuum variables, i.e., either momenta or spacetime coordinates. The RG flow of Γk
connects smoothly the UV regime, where Γk approaches a bare (fixed point) action S, and
the infrared limit k → 0, where all fluctuations are integrated out. In the latter limit, Γk
reduces to the quantum effective action Γ0. It is worth noting that even if a theory is
not UV complete, or in case QFT breaks down at a certain energy scale, the FRG may
be used to compute the RG flow of the theory in its region of validity. In this case, the
starting point of the flow is not necessarily a fixed point, rather, it could be a low-energy
approximation of a more fundamental theory beyond the framework of QFT, see [8, 9, 70]
for examples of how this mechanism could work in practice.

The effective average action Γk contains all invariants according to the underlying
symmetries. In the infrared limit k → 0, as a result of the integration of fluctuations along
all momentum scales, the quantum effective action is expected to be non-local. This is
the case even at the one-loop level, where the integration of fluctuating modes give rise to
logarithmic corrections to the classical action.

One of the challenges of the FRG approach to QG is the impossibility to solve eq. (2.9)
exactly. In order to obtain an approximate solution to this equation and investigate the
UV completion of the theory, one has to resort to “truncations” of the theory space: an
ansatz for Γk is chosen, that includes a manageable number of operators. The effective
average action Γk is expanded using, e.g., a derivative expansion, and then this expansion
is truncated to a finite truncation order N to make the computation of the beta functions
feasible. On the one hand, this method is useful to determine some key features of the
RG flow of Γk, such as its fixed points and universality properties. On the other hand,
this method does not allow to infer the unitarity of the theory. In fact, if a derivative
expansion of Γk is truncated at a finite order, the corresponding propagator derived in
the limit k → 0 displays a finite number of unphysical poles [131]. As we will explain in
detail in the next section, reinforcing the arguments in [131], establishing unitarity in QFT
requires the knowledge of the full effective action, as truncations of its derivative expansion
would lead to the appearance of unphysical poles.

2.3 Absorptive part of the dressed propagator and unstable particles

We have argued that the full spectral density is to be computed using the dressed propagator,
which in turn can be derived from the effective action Γ0.

Beyond being convenient, in some cases using fully-dressed quantities (aka, resumming
all quantum effects) is crucial to count the degrees of freedom of a theory correctly [139].
Quantum effects can for instance make a particle appearing in the bare theory unstable [128,
139], thus removing it from the spectrum of asymptotic states [140]. In what follows we
review this mechanism using a simple example.

– 6 –
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Starting from the bare theory of a single scalar particle with bare mass m0, resumming
quantum effects would generally lead to a dressed propagator of the form

∆
(
q2
)

= i

q2 −m2
0 + Σ (q2) . (2.10)

Here Σ(q2) is the self-energy generated by vacuum polarization. The (bare) Feynman
propagator has a pole at q2 = m2

0. Turning interactions on, if Σ(k2) does not lead to extra
poles other than the one present in the bare theory, quantum effects can renormalize the
mass m0 and can also make the particle unstable. This happens when the self-energy Σ(q2)
has an imaginary part, as it gives the particle a non-zero decay width. The renormalized
mass is defined by the condition m2 − m2

0 + Re{Σ(m2)} = 0, while the imaginary part
of Σ(q2) is related to the total decay rate of the particle. Let us assume that Σ(q2) does
not add extra poles. In this case, the sum over all cuts on the right-hand side of the optical
theorem reads

2Im
[
i∆
(
q2 + iε

)
θ (q0)

]
=

= iθ (q0)
q2 −m2

0 + Re {Σ}+ iIm {Σ}+ iε
− iθ (q0)
q2 −m2

0 + Re {Σ} − iIm {Σ} − iε

= (+i) (2ε+ 2Im {Σ}) θ (q0) (−i)(
q2 −m2

0 + Re {Σ}+ iIm {Σ}+ iε
) (
q2 −m2

0 + Re {Σ} − iIm {Σ} − iε
)

= 2ε θ (q0)(
q2 −m2

0 + Re {Σ}
)2 + (Im {Σ}+ ε)2 + 2

{
∆
(
q2 + iε

)
Im {Σ} ∆∗(q2 + iε)

}
θ(q0) ,

(2.11)
where we have omitted the dependence of Σ(q2) on q2 for shortness. The sum above defines
the absorptive part of the propagator and, for a theory with one single pole, the result
depends on whether Im{Σ(q2)} vanishes or not. In particular

lim
ε→0

2Im
[
i∆
(
q2+iε

)
θ (q0)

]
=

2πRδ
(
q2−m2)θ (q0) if Im

{
Σ
(
q2)}= 0

2
{
∆
(
q2) Im

{
Σ
(
q2)}∆∗

(
q2)}θ (q0) if Im

{
Σ(q2)

}
6= 0

,

(2.12)

R being the residue at the corresponding pole. In the case Im{Σ(q2)} = 0, provided that
m2 > 0, the absorptive part of the propagator corresponds to an intermediate (stable)
one-particle state with mass m. In the case Im{Σ(q2)} 6= 0, quantum effects have made the
particle of mass m unstable, so that the first term in the absorptive part of the propagator
vanishes. The spectral density, which is proportional to the absorptive part of the propagator,
thus depends crucially on the form of the self-energy Σ(q2).

Since unstable particles are not part of the space of asymptotic states [140], they
do not contribute to the sum in eq. (2.3). Consequently, determining which degrees of
freedom enter the sum over intermediate states in the optical theorem requires resumming
quantum fluctuations first. Note that perturbative expansions break down in the branch
cut regions, so that describing unstable particles requires all-order, non-perturbative effects.
This motivates further the use of dressed quantities to assess the unitarity of QFTs.

– 7 –
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2.4 Discussion and assumptions

Let us end this section with some words of caution.
The arguments reviewed in this section are well understood in the context of QFTs of

matter, but generally get more involved in the context of gauge theories. In particular, it
is not yet clear whether and under which conditions the spectral density of a gauge field
has to be positive. For instance, QCD is expected to be unitary, but the spectral density
arising from the gluon propagator is not positive definite [141, 142]. Similarly, in gravity
the conformal mode is a ghost, at least classically. These examples highlight that the
question of unitarity and its relation with the positivity of the spectral density are crucially
intertwined with the spectrum of asymptotic states: the only dangerous “minus signs”
that can enter the optical theorem are those associated with negative-norm asymptotic
states—those contributing to the sum in eq. (2.3). Going back to the question of QCD, due
to confinement the gluon ought not to be part of the Fock space, and this could make the
negativity of the gluon spectral density irrelevant for unitarity in QCD. Likewise, for QG
the conformal mode is not an on-shell mode.

On top of this, in the context of QG one might even fail to find a suitable definition of
unitarity [131]. For instance, if gravity is interacting in the UV, the standard concept of an
asymptotic state would cease to make sense. In addition, the definition of asymptotic states
requires the knowledge of the (true) vacuum of the theory and determining it is expected
to be highly non-trivial [143]. Finally, if fluctuations of the spacetime signature can take
place, unitarity itself would become meaningless.

Addressing these issues goes well beyond the scope of this work, and we will refrain
from discussing them again in the remainder of this paper. In the following we will limit
ourselves to a discussion of the constraints on the transverse-traceless (TT) part of the
graviton propagator, assuming that its poles define the asymptotic states of the theory.

Based on the considerations of this section, (non-perturbative) unitarity is better
studied at the level of the effective action. To preserve unitarity the dressed
(graviton) propagator should not have real poles with negative residue.

3 Fictitious ghosts in “truncated” field theories and the residue
conjecture

In this section we show that truncating the derivative expansion of an effective action
to a finite order generally produces fake ghosts, i.e., ghosts that are artifacts of the
approximations and that do not appear in the full theory. The fake ghosts decouple
dynamically for sufficiently large truncations, as their residues vanish.

As a toy model for the effective action, we shall consider a non-local effective action
interpolating between QED and Lee-Wick QED. The reason is twofold: first, unitarity in
QED is better under control than in QG, where even the precise definition of unitarity is
unclear. Second, as we shall see explicitly in section 5, the propagators of Lee-Wick QED
and one-loop QG share very similar properties (cf. figure 15).

– 8 –
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3.1 A toy model for QED and Lee-Wick QED

Starting from the classical QED action

Sc = −1
4

∫
d4xFµνF

µν , (3.1)

and integrating out one or more massive degrees of freedom, one typically obtains a non-local
effective action whose quadratic part reads

ΓQED [Aµ] = −1
4

∫
d4x {FµνP (�)Fµν} , (3.2)

with � ≡ ∂µ∂µ. The latter has to be complemented with a gauge fixing term,

Sgf = − 1
2ξ

∫
d4x {∂µAµQ (�) ∂νAν} , (3.3)

and the resulting propagator on Minkowski spacetime reads

∆αβ

(
q2
)

= − i

q2P (q2)

{
ηαβ −

(
1− ξP

(
q2)

Q (q2)

)
qαqβ
q2

}
. (3.4)

In what follows we shall fix ξ = 0. Following [144–146], in the one-loop approximation, the
function P (q2) for QED can be obtained by integrating out a scalar or fermionic degree of
freedom, and it reads [144]

P (q2) = 1− α

3π log
(
−q2 + 4m2

4m2

)
, (3.5)

where α is the fine structure constant and m is the mass of the degree of freedom which
has been integrated out. In the case of Lee-Wick QED, the form of the function P (q2) is
instead [126, 147]

P (q2) = 1− α

3π log
(
m2
th − q2

m2
th

)
− q2

M2 , (3.6)

where m2
th = 2m2 corresponds to the threshold of production of a fermion-antifermion pair

(or a pair of scalars) and M is a cutoff scale. The momentum-space propagator can be
written as3

∆αβ

(
q2
)

= − i

q2 − α
3π q

2 log
∣∣∣∣−q2+m2

th

m2
th

∣∣∣∣− q4

M2 + q2 iα
3 θ(q2 −m2

th)

{
ηαβ −

qαqβ
q2

}
. (3.7)

The absorptive part of the scalar part of the propagator thus reads

2Im
[
i∆
(
q2
)
θ (q0)

]
= 2π δ

(
q2
)
θ (q0) + ∆

(
q2
)(2α

3 q2 θ
(
q2 −m2

th

))
∆∗
(
q2
)
, (3.8)

3A detailed explanation of the origin of this equation and its regime of validity are reported in section 5,
where we study logarithmic interactions of the Lee-Wick and one-loop quantum-gravity type, cf. eq. (5.19).
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with
∆
(
q2
)
≡ −i

(q2 + iε)
(

1− α
3π log

∣∣∣∣−q2+m2
th

m2
th

∣∣∣∣− q2

M2 + iα
3 θ
(
q2 −m2

th

)) (3.9)

Its structure is similar to that in eqs. (2.11)-(2.12). The first term corresponds to the
standard photon propagator, the second describes the propagation of an unstable ghost,
includes fermionic/scalar loops, and contributes when q2 > m2

th. Diagrammatically

For a dressed propagator with one single pole, only one of the two terms on the right-hand
side is realized. The first term arises in the case of a theory with one single, stable degree
of freedom, the second one describes an unstable degree of freedom. We note here that if
the dressed propagator is computed from a one-loop effective action, the gray bubble in the
right-hand-side is the sum of all possible processes involving one loop of the integrated-out
degrees of freedom. For theories with multiple poles both types of terms on the right-hand
side could arise.

In the following we shall employ the generalized propagator

DQED
(
q2
)

= q−2
(

1− α

3π log
(
−q

2 −m2
th

m2
th

)
− β q2

M2

)−1

, (3.10)

which reproduces the propagator of one-loop QED for β = 0 and the case of Lee-Wick QED
for β = 1 (cf. table 1). The one-loop QED propagator has no poles beyond the massless
one for small q2. The branch cut along q2 > m2

th is related to the threshold of production
of lighter particles. However, there is also a tachyonic ghost pole at q2 ' 10280m2

th (the
Landau pole), beyond which the theory breaks down. In the case of Lee-Wick QED, as
explained in section 5, there is an unstable ghost pole, whose real part lies in the branch
cut region, and a pair of complex-conjugate poles. The pole structure is thus very similar
to that of one-loop QG, cf. section 5. Finally, if α is taken to be negative, the ghost pole is
shifted out of the branch cut region, where the logarithmic propagator is real. This makes
the ghost stable, and entails a violation of unitarity. The spectral densities corresponding
to these three cases are depicted in figure 2.

Taking (3.2) as a toy model for the effective action, with

P
(
q2
)

= 1− α

3π log
(
−q2 +m2

th

m2
th

)
− β q2

M2 , (3.11)

the propagator in eq. (3.10) provides us with a toy model for the fully dressed photon
propagator. Along the lines of [131], in the next subsection we will study the pole structure of
this propagator varying the truncation order of the effective action in a derivative expansion.
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Theory Couplings Real poles

One-loop QED α > 0, β = 0 Landau pole [144]
Standard Lee-Wick QED α > 0, β = 1 Unstable ghost [126, 147]
Lee-Wick QED, non-standard sign α < 0, β = 1 Stable ghost

Table 1. The table summarizes the existence and type of (real) massive poles for the generalized
QED propagator in eq. (3.10). The values and positivity of the couplings α and β determine the
specific theory, and the corresponding massive pole.

Figure 2. Spectral densities for the models summarized in table 1, for ε = 0.01. In the case of
QED (top panel), the spectral density is positive-definite, within the regime of validity of the theory.
At the level of the spectral density, the branch cut in the propagator generates a continuum part,
corresponding to a multi-particle state. In the case of Lee-Wick QED (bottom-left panel), the
branch cut is associated with a ghost resonance, characterized by a negative width. This makes the
spectral density positive-definite. If α < 0 (bottom-right panel), the propagator in eq. (3.10) has
a pole within its principal branch, corresponding to a stable ghost pole. In this case the spectral
density can also be negative and unitarity is violated.
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3.2 Polology of the expanded one-loop effective action

Truncating the derivative expansion of the effective action (3.2), one obtains a “truncated”
inverse propagator of the form (3.4), with

P (z)→ PN (z) = 1− βz + α

3π

N∑
n=1

zn

n
, (3.12)

z being defined as z ≡ q2/m2
th. Such an expansion of the effective action cannot reproduce

all features of the “full theory” (3.2) since some physical effects, including the possibility of
making a particle unstable, rely on non-perturbative features of the theory. In particular,
although the function P (q2) in eq. (3.11) has at most one real massive zero (cf. table 1),
its truncated version PN (z) can have several. The scalar part of the truncated propagator,

iDN (z) = i

z PN (z) , (3.13)

thus generally has a number of real and complex-conjugate poles (plots in the left column
of figure 3). These poles are generated by the convergence properties of the derivative
expansion of P (z) (plots in the right column of figure 3). This can be seen by studying
the sequence of approximated functions PN (z) for increasing values of N . For large and
negative z, the behavior of PN (z) is dominated by the term cNz

N . Depending on the sign
of the coefficient cN and on whether N is even or odd, PN can either diverge negatively or
positively as z →∞. Specifically, due to the structure of the function P (z), in the region
z < 0 the function PN alternates between positive and negative signature divergences, with
a certain periodicity in N (see plots in the right column of figure 3). The convergence
properties of P (z) can thus lead to accidental zeros for z < 0, and the corresponding
truncated propagator DN develops a number of fictitious complex-conjugate and real poles.
The disappearance of these fictitious zeros of PN (z) can only be achieved in the limit
N →∞. Since the function PN (z) truncated to order N is polynomial, and

1(
q2 −m2

0
) (
q2 −m2

1
)
. . .
(
q2 −m2

N

) =
N∑
i=1

 N∏
j=1

1
m2
i −m2

j

 1
q2 −m2

i

, (3.14)

some of the aforementioned fictitious degrees of freedom must be ghosts. Specifically, in
the cases at hand, the truncated derivative expansion generates several complex-conjugate
poles and one single fake (tachyonic) ghost. As is apparent from figure 3 (left column), the
corresponding zero is generated at large negative q2 for low-order truncations, but moves
towards Re(z) = −1 for increasing values of N . In other words, it seems that fictitious
zeros move towards and accumulate on the boundary of the domain of convergence of P (q2).
It is worth noticing that if the resummation of quantum fluctuations yields a non-local
effective action with P (z) given by an entire function, the radius of convergence is infinity
and fictitious ghost poles are expected to approach infinity for increasing values of N . We
will come back to this point in the next subsection.

The domain of convergence and branch cut region of P (z) are shown in figure 4. Fake
degrees of freedom live outside the domain of convergence of the P -function, but appear in
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Figure 3. Pole structure of the truncated propagator (3.13) as function of the truncation order N
(figures in the left column) and corresponding truncated P -functions PN (z) (figures in the right
column) for various N (colorful lines) and in the limiting case N →∞ (black line). The figures refer
to the cases of QED (top panel), Lee-Wick QED (center) and Lee-Wick QED with non-standard
coupling (bottom panel). Complex-conjugate poles of the truncated propagator are depicted as small
red dots. Blue dots denote real fictitious poles and, in the specific cases analyzed, are generated
whenever the corresponding PN -function diverges negatively and crosses the z-axis. In the case of
Lee-Wick QED with non-standard coupling (bottom panel) there is an additional real pole (black
dot) corresponding to the true (non-fictitious) ghost of the theory. The corresponding (untruncated)
P (z)-function has indeed a zero at z > 0 in this case.
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Figure 4. Branch cut (red line) and domain of convergence (blue region) of the truncated
propagator (3.13). Unstable ghosts of the full theory can only live in the branch cut region and
cannot be detected within truncated derivative expansions of the effective action. Genuine and fake
(stable) ghosts live in the principal branch of the logarithm, i.e., in the region Re q2 < m2

th. The
former stay inside the domain of convergence of the logarithm and are visible within truncations.
The latter can only be generated outside of the domain of convergence, are only present within
truncations, and they move towards and accumulate on the boundary of the domain of convergence
of the form factor characterizing the full theory.

the principal branch of the logarithmic interaction, and approach its boundary for increasing
values of N . Possible unstable ghosts in the full theory can only live in the branch cut region.
The latter region cannot overlap with the domain of converge of the full P -function by
construction. Thus, unstable ghosts (or particles) cannot be captured using the truncated
expansion (3.12) of the inverse propagator (see figure 5). More precisely, the radius of
convergence is finite due to the breakdown of perturbation theory near the mass of an
unstable particle [140]. Indeed, this is because the truncated propagator is a finite sum of
single-pole propagators, and the corresponding spectral density is thereby a sum of Dirac
deltas only. Consequently, the spectral function computed from a truncated version of the
theory (cf. figure 5), beyond not being positive due to the presence of fake ghosts, does not
have the continuum part associated with the resonance.

Due to their negative residues, the fake degrees of freedom contribute to the truncated
spectral function with negative-diverging Dirac deltas. However, since the fake ghosts
are not part of the set of asymptotic states of the full theory, they must dynamically
decouple by increasing the truncation order N . As argued in [131], it might be possible
to determine the nature of a ghost in a truncated theory by studying the behavior of
the corresponding residue with N . In fact, the residue associated with fake ghosts seems
to vanish for sufficiently large N , at least in the case of QED and Lee-Wick QED with
non-standard sign [131], while the residue of a ghost appearing in the full theory is negative
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Figure 5. Although Lee-Wick QED is unitary, and thus characterized by a positive spectral
density ρ(z+ iε), its truncated versions have several unphysical ghosts and its spectral density is not
positive. The figure on the right panel (obtained by setting ε = 0.01) shows the spectral density ρ(z)
induced by the function P (z) (black line) and by its truncated versions PN (z) (colorful lines). In
the central peak zone, corresponding to the massless pole, all colorful lines overlap, and are hidden
behind the black line. The shape of the PN (z)-functions are shown for comparison in the left panel.
While the complete spectral function is positive and characterized by a continuum part, its truncated
versions ρN (z) display several negative-diverging Dirac deltas associated with the fictitious zeros
of PN (z), i.e., with the fake poles of the truncated propagator. Moreover, the truncated spectral
function cannot describe the continuum part of P (z), since the resonance necessarily arises as an
all-order effect.

and remains negative for any N (cf. figure 6). In the cases at hand, the contribution of
fictitious ghost poles to the propagator (and thus to the optical theorem) becomes small
for sufficiently large N and vanishes for N →∞, so that fake ghosts decouple in the limit
where no approximation is employed. In what follows we will refer to this as the residue
decoupling mechanism of fake ghosts.

Since quadratic gravity [5] can be viewed as a truncation of a full diffeomorphism-
invariant theory of QG, e.g., within the framework of asymptotically safe gravity, the
massive ghost of quadratic gravity could be a fake degree of freedom, rather than a problem
of the theory. In particular, if the residue decoupling mechanism holds, it can be used to
investigate this hypothesis. This provides an important motivation to further explore the
validity of the residue decoupling mechanism.

3.3 Residue decoupling mechanism of fake poles: further numerical evidence

In the case of logarithmic effective actions, the (absolute value of the) residue of fictitious
ghosts decreases as the truncation order is increased, while for genuine ghosts the residue is
negative and quickly converges to a finite (negative) value. It is both instructive and useful
to investigate the validity of this statement in the case of other form factors P (z).

Our numerical results are summarized in figure 7 for a sample of P -functions. The
residue mechanism holds in all these examples, which include both entire and non-entire
functions. In the case of entire functions, however, the convergence of the sequence of
residues is slower than in the case of non-entire functions. It is straightforward to apply the
same analysis to other P -functions, such as trigonometric, periodic, hyperbolic and various
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Figure 6. Residues of the truncated propagator (3.13) at its poles as a function of the truncation
order N , for the case of QED (top panel), Lee Wick QED (bottom left panel) and Lee-Wick QED
with non-standard coupling (bottom right panel). As in figure 3, blue dots refer to fictitious poles
while the black dots describe the true ghost. The residues associated with the fake ghosts tend to
zero as N →∞. The residue of the real ghost is always negative instead.

exponential functions, leading to the tentative conclusion that the residue mechanism
holds under very general assumptions. In particular, our numerical studies suggest that its
applicability does not depend on the existence of branch cuts and the periodicity properties
of the P -function, is not limited to even/odd functions, and is influenced neither by the
number of zeros of P nor by its divergences.

Summarizing, the numerical results extracted from a sample of functions P seem to
point towards the following conclusions:

• A stable ghost in the full theory appears in the truncated effective action as a pole
in the principal branch of P (z). By increasing the order N of the truncation, the
corresponding residue is negative and remains negative for any truncation order N .
A fake ghost appears in the truncated action for all N , but it does not appear in the
fully quantum action.

• If the non-local interactions in the effective action are characterized by branch cuts,
the fictitious zeros of PN (z) (corresponding to the fake ghost poles) move towards and
accumulate on the boundary of the domain of convergence of P (q2), and disappear
only in the limit N →∞. The absolute value of the corresponding residues decreases
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Figure 7. Evolution of real poles (plots in the left column) and residues (plots in the right column)
of truncations of the three test functions: P (z) = 1 + ez (top panel), P (z) = 1 + e−z2 (central panel)
and P (z) = (1− z)1/2 (bottom panel). The first function, P (z) = 1 + ez, is entire. Its truncated
version PN (z) has one single real zero, which moves to infinity as N is increased. At the same
time, the corresponding residue approaches zero. The second (entire) function, P (z) = 1 + e−z2 , is
very similar to the first one, but in this case its truncated version has two real zeros, that evolve
symmetrically. The corresponding residues are identical (every blue dot in the figure in the right
panel is actually the overlap of two blue dots, corresponding to the residues of each pole). The third
test function, P (z) = (1 − z)1/2, has a finite radius of convergence and the single fictitious pole
generated by truncations moves towards the boundary of the domain of convergence, |z| ≤ 1, while
the corresponding residue approaches zero, as expected.
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with N and vanishes in the limit N →∞. The ghost degrees of freedom associated
with these fictitious zeros are “fake”, as they are truncation artifacts and not a feature
of the theory.

• If a form factor in the effective action is an entire function, its radius of convergence
is infinity. There is a single principal branch, and the function is analytic everywhere.
By increasing the truncation order N , the locations of the fictitious zeros of PN (z)
approach infinity, while their residues tend to zero. The corresponding ghost degrees of
freedom are fake, as in the preceding case, and decouple from the theory for sufficiently
large N .

A proof of the residue decoupling mechanism of fictitious ghosts will be presented else-
where [148].

This concludes our discussion on non-perturbative unitarity and the role of truncations.
In the next section we will discuss other two fundamental properties of consistent QFTs:
causality and stability.

Based on the considerations of this section, when discussing unitarity, one should
not trust truncated versions of the dressed propagator, since fictitious ghosts that are
not present in the full theory are unavoidably generated. The resulting fake ghosts
decouple for sufficiently large truncations via the residue decoupling mechanism
described in this section.

4 Complex poles, notions of causality, and (in)stabilities

In this section we discuss constraints on the pole structure of the dressed propagator that
are to be imposed to preserve unitarity, avoid acausalities and dangerous (tachyonic and
vacuum) instabilities, and allow for an analytic Wick rotation. The types of poles and their
implications for unitarity, causality and stability are summarized in table 2 at the end of
this section.

Before starting, we have to clarify what “causality” means in this context. Several
different notions of causality exist across the literature, from vague definitions that apply
in many contexts, to more solid conditions that only hold in specific cases. Given the
multiplicity of definitions of causality in relativity and in QFT, a quantum-relativistic
theory could be causal in one sense, but not necessarily in another. Therefore, before
deriving conditions on the propagator of causal field theories, in section 4.1 we will review
various notions and definitions of causality and attempt to clarify their mutual relation.
In section 4.2 we will highlight analogies and differences between tachyonic and vacuum
instabilities, both at the classical and quantum level. This will also be key for the discussion
in section 4.3, where we shall investigate the relations between violation of causality,
instabilities, position of the poles of the propagator in the complex q2- and q0-planes, and
the possibility of performing an analytic Wick rotation.

In the case of field theories with a single massless or massive pole this relation is clear.
Specifically, the construction of propagators in QFT is based on the Feynman prescription
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that, via the replacement q2 → q2 + iε, moves the real poles of a Green’s function off the
real axis and towards the second and fourth quadrants of the q0-complex plane. Similar
arguments imply that causality can only be preserved if no complex poles are present in the
first and third quadrants of the complex q0-plane. As a key example, unstable ghosts having
a (small) negative width – Merlin modes – entail a violation of causality on microscopic
scales [127, 128]. This can be seen by studying the Fourier modes of the propagator. In
section 4.3 we generalize the arguments of [127, 128] to the case of generic complex poles
with arbitrarily large width, complex-conjugate poles and tachyonic modes. This is key to
understand the general conditions under which causality is violated (or preserved), and
determine what type of degrees of freedom are compatible with causality, unitarity and
stability. We shall conclude this section highlighting a relation between causality and Wick
rotation in QFT, and some more caveats about the coexistence of unitarity, causality, and
(vacuum and tachyonic) stability at the quantum level.

4.1 Avatars of causality and their hierarchy

An in-depth understanding of the many facets of causality is distinctly important for the
construction of field theories that are free from paradoxes. This is even more crucial in the
view of QG, where spacetime and its causal structure become dynamical and fluctuating.

In the literature, many distinct notions of causality have been introduced. Here we list
them and discuss their mutual relations, starting from the most general one:

• Causality as “no backward propagation”. A rigorous definition of causality that applies
to all limiting cases (non-relativistic, ultra-relativistic, field theory, S-matrix, etc.)
is to our best knowledge lacking. While naïve, defining causality as the condition
that information can only propagate forward in time (for all inertial observers) seems
useful to conceptually understand and relate more specific and rigorous notions of
causality which apply to particular cases only (e.g., classical limit, axiomatic QFT,
scattering amplitudes). As such, it makes their mutual relations and hierarchy clearer.
In practical terms, it can be stated as the condition that if a source is activated at a
time t, then a two-point correlation function G(t′ − t, |~x′ − ~x|) should vanish at any
t′ < t for all inertial observers (a signal cannot be detected before it is produced by a
source). As we will comment in the following, this very minimal condition reduces
to the classical notion of causality in the non-relativistic limit, in special relativity it
matches Einstein’s locality, and in the quantum theory it implies both microcausality
(more precisely, microcausality follows from Einstein’s locality) and that positive
energies must flow forward in time.

• Causal structure and Lorentz invariance. The spacetime is endowed with a Lorentzian
structure defined by non-degenerate (the speed of light c is finite and non-vanishing)
light cones; Lagrangians are written in terms of scalars with respect to Lorentz
transformations; the type of spacetime interval (space-, time-, light-like) is preserved
under Lorentz transformations.
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• Causality in Lorentz-invariant theories: Einstein’s locality (this notion of locality is
not be confused with locality of bare Lagrangian densities). There is no action at
a distance and all signals propagate subluminally,4 i.e., along time-like or light-like
directions (within the future light cone of the source). Equivalently, spacetime events
(in particular, results of measurements) cannot be correlated if separated by space-like
intervals. Note that “causality” (in the sense of forward propagation as introduced
above) and Einstein’s locality (in the sense of propagation within the light-cone) are
equivalent in Lorentz-invariant theories. In fact, propagation via space-like distances
can appear to some inertial observers as a propagation backward in time. Thus,
forbidding space-like propagation is equivalent to forbidding backward propagation.
The violation of causality on macroscopic scales or, equivalently, the violation of
Einstein’s locality would lead to causal paradoxes due to the appearance of closed
time-like curves [150–156].

• Causality in Lorentz-invariant relativistic quantum theories: local commutativity
or microcausality [157]. Microcausality can be regarded as a direct implication of
Einstein’s locality in QFT, since “observables” (results of measurements) arise as
expectation values of Heisenberg operators. It states that all space-like separated
operators must commute,

[O(x),O(y)] = 0, ∀(x− y)2 < 0 , (4.1)

i.e., an event occurring at x can only influence events belonging to its future light
cone. Microcausality thus requires the excitations of a field to propagate subluminally
(note however that the group velocity of a field can be superluminal, as it happens
in the case of tachyonic fields [158]) and a violation of this property on macroscopic
scales would lead to paradoxes, since in this case faster-than-light propagation and
closed time-like curves would be allowed [150–156].

• Classical (non-relativistic) causality. In the non-relativistic limit, c→∞, all geodesics
belong to the future “light”-cone (which is degenerate in this limit), i.e., they are
all time-like or null. Thus Einstein’s locality and local commutativity reduce to
the naïve, classically emergent notion of causality – that we can call non-relativistic
causality – that “effects come after their cause”: due to the degeneracy of the light
cone, a causal non-relativistic amplitude comes with a universal θ(t − t0) (instead
of a time-ordered product combined with a decay of the amplitude outside of the
light cone), t0 being the time where a source is turned on. Both microcausality and
non-relativistic causality are thus compatible with the definition of causality (no
backward propagation) given above.

• Bogoliubov-Efimov macrocausality of the S-matrix in axiomatic QFT [159–161] and
bounds on scattering amplitudes. Causal ordering realized at the level of scattering

4On curved spacetimes the propagation could be “mildly superluminal” but this would not lead to a
violation of causality or Lorentz invariance [149].

– 20 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
7

amplitudes derives from the Bogoliubov conditions, and requires the S-matrix to satisfy

∂

∂φ(x)

(
∂S

∂φ(y)S
−1
)

= 0 , ∀(x− y)2 < 0 , (4.2)

for any field φ. Alternatively, this can also be stated in terms of the analyticity
properties of the S-matrix. In local field theories microcausality implies Lorentz
invariance of Green’s functions and analyticity of all scattering amplitudes in the
upper half-plane [157]. Note that this is just a sufficient condition. Finally, the latter
conditions on the analyticity of the amplitudes, together with the positivity properties
of their absorptive parts, imply a number of bounds on scattering amplitudes [106, 162–
164] and the condition of cluster decomposition [163].

• Lorentz invariance of the S-matrix [165]. The S-matrix can be constructed as sum of
integrals of time-ordered products. Time-ordering only makes sense for time-like (or
light-like) separated spacetime points since if (x− y)2 is spacelike, the time-ordering
of the corresponding events is not Lorentz invariant. Thus, if a Lagrangian is Lorentz
invariant and microcausality holds, then the S-matrix is manifestly Lorentz invariant.
Microcausality in particular is needed to ensure that the time-ordering defining S-
matrix elements is Lorentz invariant. This is guaranteed if commutation relations of
fields at space-like separated points vanish. Thus, Lorentz invariance (and analyticity)
of scattering amplitudes are sufficient conditions for microcausality to hold.

• Arrow of causality [127, 166]. Microcausality does not account for the direction of the
arrow of causality, which is instead defined by the propagation of the positive-energy
flow of stable particles [127]. Microscopic violations of causality (in the sense of
forward propagation) can thus arise in the presence of modes propagating against the
macroscopic arrow of causality defined by the stable modes of the theory [127, 167].
This concept is a microscopic realization of causality in the sense of forward propagation
of signals, and is strictly related to one of the axioms of QFT: two-point functions
have to be analytic in the cut q2-complex-plane (singularities are allowed on the time-
like real axis only). Violating this condition typically implies a breakdown of local
commutativity [168, 169], while causality of the S-matrix can still be preserved [167].

Not all these conditions are equivalent, but a violation of at least one of them ought to imply
that Einstein’s locality is violated in at least some regimes, aka, the theory is not causal.
In particular, the conditions on causality of the S-matrix are only sufficient, so that their
validity does not imply that a theory be causal in the sense of forward propagation and/or
in the sense of Einstein’s locality (which would imply local commutativity). Importantly,
causality (no backward propagation) of a QFT on microscopic scales (not to be confused
with microcausality) is the condition described in [127] that modes with positive energies
flow forward in time. We shall study the latter in more detail in the next sections.

It is important to remark that causality violations might not constitute a serious
problem, as long as the violation is confined to short distances and no paradoxes are realized
macroscopically. Lee-Wick theories constitute an emblematic example of theories which

– 21 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
7

violate causality (backward propagation and microcausality) on microscopic scales [170–172],
but produce causal scattering amplitudes (Bogoliubov conditions and causality bounds) [167]
and cause no paradoxes on macroscopic distances.

A microscopic violation of causality occurs, for instance, in 2→ 2 scattering amplitudes
of the large-N Lee-Wick O(N) model due to the acausal propagation of virtual Lee-Wick
particles [167, 171, 172]. More generally, in these causality-violating theories scattering
processes can involve outgoing particles being created before the particles in the initial
state interact [167, 173], possibly leading to observable signatures such as wrong vertex
displacements [174], outgoing wave packets emerging before the actual collision of the
incoming signal [167, 171], reversed Wigner resonance time delay due to the backward
propagation [127], or “strange” interference effects [171, 175, 176]. The latter is subject of a
line of research in the context of QCD, aimed at assessing whether the gluon propagator could
display pair(s) of complex-conjugate poles [177], potentially explaining confinement [141, 178,
179] (in this case reflection positivity of the euclidean theory would be violated [141, 142])
or the negativity of the spectral density [141, 142].

We conclude this subsection with a word of caution. In addition to the possibility of
defining causality in a plethora of different inequivalent ways, turning gravity on makes the
concept of causality even more subtle: the propagation on a curved spacetime can be “mildly
superluminal” [149], and the causal structure can display some uncertainties—even at low
energies, rendering the concept of a lightcone ill-defined [129]. Moreover, causality of the
S-matrix can only be shown to follow from microcausality and Lorentz invariance in the case
of local theories defined on flat spacetimes, especially since the concept of microcausality is
based on the definition of local operators. Finally, in the context of gravitational effective
field theories causality constraints may be even more stringent thanks to considerations
stemming from black-hole physics [180]. As this work focuses on the properties of the
(dressed) graviton propagator on a Minkowski background, we will not further discuss
these points.

4.2 Classical and quantum (in)stabilities: ghosts vs tachyons

Unitarity, stability and causality are subtly related, both at the classical and at the quantum
level. Similarly to the case of causality, “stability” can refer to different concepts, and in
particular ghost and tachyonic instabilities have distinct causes and features. The notions
of tachyonic and ghost instabilities, their differences, as well as their relation with unitarity
and causality will enter our discussion on the Fourier modes of the propagator. In this
section we review these concepts and their relation.

4.2.1 Classical (in)stabilities

It is convenient to start from a classical scalar field theory with the Lagrangian

L = −cgh
1
2ϕ
(
�+ cthm

2
)
ϕ , (4.3)
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where cgh = −1 in the case of ghosts and, keeping m2 > 0, cth = −1 in the case of tachyons.
The corresponding field equation reads(

�+ cthm
2
)
ϕ =

(
−q2 + cthm

2
)
ϕ = 0 , (4.4)

and, if the field ϕ does not interact with other fields, it is independent of cgh. The real-space
solutions to the field equation at a fixed ~x read

ϕ (t, ~q) = c1e
−iω~qt + c2e

iω~qt , (4.5)

and are characterized by a frequency ω~q =
√
|~q|2 + cthm2. The fact that the solutions are

independent of the sign of cgh implies that a non-interacting ghost behaves as a standard
particle and no instability arises (see top panels of figure 8). In particular, the modes of a
non-interacting ghost are oscillatory, while the modes of a non-interacting tachyon in the
regime where ω~q is imaginary are non-oscillatory and exponentially growing (see central
panel of figure 8). If one instead couples the degree of freedom in eq. (4.4) with a standard
(cgh = cth = 1) field,

L = −1
2φ
(
�+m2

)
φ− cgh

1
2ϕ
(
�+ cthm

2
)
ϕ+ LI (φ, ϕ) , (4.6)

φ being the field of a standard particle, the ghost-particle interaction would trigger an
instability of the type shown in the bottom-left panel of figure 8. As for the case of
particle-tachyon couplings, the tachyonic instability would also induce an instability in the
other sectors of the theory, as shown in the bottom-right panel of figure 8.

Summarizing:

• Classical tachyonic instability is characterized by non-oscillating exponentially growing
modes due to an imaginary energy spectrum, and is a problem on its own.

• Classical ghost instability is provoked by the energy spectrum being unbounded from
below. This is problematic only when the ghost is coupled with non-ghost degrees
of freedom. Indeed, in the case of non-interacting ghosts one could unambiguously
flip the sign of the Lagrangian, making their Hamiltonian bounded from below. In
fact in this case the energy of the two degrees of freedom is not separately conserved
and thus the two fields can carry arbitrarily large energies. As a result, the field
configurations display oscillating exponentially growing modes. At variance with the
tachyonic instability, which is generated by the interaction “potential” (e.g., the mass
term in the case of a free tachyon), the ghost instability is a kinetic instability.

4.2.2 Canonical quantization, ambiguities in the tachyonic case, and
quantum (in)stabilities

Following the standard quantization procedure for (4.3) results in the modified commutation
relations [ak, a†p] = cgh(2π)3δ3(~p − ~k). Some more algebra yields the following free-field
expansion for ϕ

ϕ (~x, t) =
∫

d3q

(2π)3
1√2ω~q

{
a~q e

i
(
~p·~x−

√
ω2
~q
t
)

+ a†~q e
−i
(
~q·~x−

√
ω2
~q
t
)}

, (4.7)
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Figure 8. Comparison of classical ghost and tachyonic instabilities in the solutions ϕ(t) ≡ ϕ(t, ~q = 0)
to the field equations. The green, blue, and orange lines depict the Fourier modes of particle, ghost
and tachyonic fields, respectively. Non-interacting particles and ghosts (top-left and top-right panel,
respectively) do not show exponentially growing modes, rather their fields oscillate periodically in
time with constant amplitudes. In the case of free tachyons, there exist regimes (shown in the central
panel) where the characteristic frequency ω~q is imaginary and the fields modes are exponentially
growing. The figures on the bottom refer to the case of a standard particle-field φ coupled with a
ghost (left-bottom panel) and with a tachyon (right-bottom panel) via the Lagrangian (4.6). The
plots have been obtained using a quartic interaction, LI = −(φ+ ϕ)4. Turning the ghost-particle
interaction on triggers the ghost instability, resulting in oscillatory and exponentially growing Fourier
modes for both the particle and the ghost fields. Similarly, a tachyonic instability propagates into
other sectors of the theory.
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where
√
ω2
~q = |ω~q| only if ω2

~q > 0. For standard particles, the classical statement that
the energy spectrum is bounded from below translates in the condition that a~q|0〉 = 0.
Many-particle states are instead created using the creation operator a†~q and they carry
positive energy E = +ω~q.

The case of tachyons requires more attention, as several ambiguities can emerge in
the quantization procedure. First, let us distinguish two different types of tachyons:
superluminal tachyons (or simply tachyons [181]) – faster-than-light particles with a real
energy spectrum – and subluminal tachyons (dubbed bradyons [182, 183]), characterized by
an imaginary energy spectrum. This difference can be straightforwardly seen by inspecting
the relativistic expression of the energy and momentum of free tachyons

E~q =
√
cthm2
√

1− v2
= m√

v2 − 1
, |~q| = m|~v|√

v2 − 1
, (4.8)

in natural units, where c = 1. For subluminal tachyons v2 < 1, |~q| ∈ [0,∞], and the
energy spectrum is imaginary, since E2

~q < 0. On the other hand, for superluminal tachyons
|~q| ∈ [m,∞], so that E2

~q > 0 for all momenta. The case of tachyons offers a clear example
for the inequivalence of subluminality, causality, and stability [158].

A comprehensive review of problems and solutions attached with the quantization of
tachyons is reported in [184]. Here we want to focus on two particular aspects that will be
crucial in the following discussions.

An important difference between the tachyonic and non-tachyonic case arises from the
dispersion relation E2 − ~q2 = cthm

2. For cth = 1 the mass-shell relation is a double-sheeted
hyperboloid of revolution, one corresponding to E ≥ m, and one to E ≤ −m. In the
quantization procedure the corresponding two sets of plane-wave solutions with positive
and negative energy are associated with creation and annihilation operators, respectively.
Importantly, any proper Lorentz transformation cannot change the sign of the energy. The
situation is very different in the case of tachyons, since the mass-shell relation describes
a one-sheeted hyperboloid, and the sign of q0 = E is no longer Lorentz-invariant, since
a Lorentz transformation can connect different points of the single-surface hyperboloid
with energies of opposite signs [185–187]. Hence, in the case of tachyons the plane-wave
expansion (4.7) cannot be used, as there is no clear distinction between negative- and
positive-energy solutions, and no corresponding unambiguous assignment of a branch with
creation or annihilation operators. This is crucial, since if one would naively use eq. (4.7)
and replace |E~q| =

√
−m2 + ~q2 in the regime E2

~q < 0, one would conclude that, even at a
quantum level, tachyons lead to exponentially growing modes. This might still be the case,
at least in principle, but such a conclusion cannot be drawn directly from the free-field
expansion (4.7), since it must be modified in the case of tachyons [185, 186].5 On the other
hand, from a path-integral perspective, once all quantum fluctuations are integrated out, one
is left with a fully quantum action, i.e., the effective action Γ0 discussed in section 2.2. The
quantum solutions are obtained by solving the corresponding field equations. If these field

5Let us remark that the “reinterpretation principle” advocated in [185] and attached with the different
free-field expansion for tachyons seems to solve the paradoxes typically associated with tachyons [188], e.g.,
the Toolman, Bohm, and Pirani paradoxes [184].
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equations look like the classical ones in eq. (4.4), with cth = −1, then exponentially growing
modes of the type encountered in the classical case are expected to arise. Notwithstanding
quantum fluctuations are expected to correct the simple classical Lagrangian (4.4) by many
more interaction operators, and this can lead to the appearance of additional vacua, with
respect to which the theory can be stable. This will be the topic of the next subsection,
section 4.2.3.

We can now proceed by summarizing how ghost and tachyonic instabilities can occur
at the quantum level:

• Quantum tachyonic instability: In the case of tachyons the quantum instability arises
because in some regions of the momentum space ω2

~q is imaginary. In these regions the
field ϕ can potentially display non-oscillating runaway solutions, in analogy to the
classical case, even though this cannot be directly inferred from eq. (4.7), as explained
above. In addition, the energy spectrum is complex and the states of the theory
have vanishing norm. However, one could cure the instability by choosing a more
appropriate vacuum, if it exists.6 This will be discussed in more detail in the next
subsection.

• Quantum ghost instability: In the case of ghosts, the classical instability turns into
either a problem of unitarity or vacuum stability: if one imposes the energy spectrum
to be bounded from below, with a ground state identified by the condition a~q|0〉 = 0,
the norm of one-particle states 〈~q|~p〉 = 2E~pcgh(2π)3δ3(~p−~q) is negative. Alternatively,
one could exchange the role of the creation and annihilation operators, using a~q to
define multi-particle states and a~q to define the vacuum, a†~q|0〉. In this case one
would have states with positive norm, but the one-particle states would carry negative
energies, E = −E~q, rendering the combined particle-ghost vacuum unstable.

This is a choice that one also encounters using Feynman quantization: if a ghost is present
and the standard Feynman prescription q2 → q2 + iε is used, the theory is not unitary, in
the sense that there are negative-norm states and the probabilistic interpretation of the
quantum theory ceases to make sense. But one could also trade non-unitarity with vacuum
instability by quantizing the theory with an opposite Feynman prescription q2 → q2 − iε.7
This makes the theory unitary (no negative-norm states) but the spectrum is no longer
bounded from below and the vacuum is unstable [166, 189]. As we shall see in the next
section, this possibility is also accompanied by a microscopic violation of causality in the
sense of backward propagation.8

6Note that this is not possible in the case of a free tachyon, since the potential is a concave parabola and
thus one cannot tunnel from one vacuum (the unstable one) to another one (the true vacuum). In other
words, there is no available vacuum with respect to which the theory would be stable.

7Let us remark that this type of vacuum instability is not strictly related to ghosts, since in principle one
could quantize other degrees of freedom having cgh = 1 with the inverted Feynman prescription. In this case
one would obtain a theory that has both negative-norm states (violation of unitarity) and vacuum instability.

8The effect of the inverted Feynman prescription on ghosts is very similar to that of a negative width
with the standard Feynman quantization, since the negative width would flip the sign of the imaginary part
of the inverse propagator. Thus, the inverted arrow of causality described in [127] is strictly related to the
vacuum instability discussed in [166].
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4.2.3 Path integral quantization, effective actions, and tachyons:
are tachyons really a problem?

In the last subsection we discussed how tachyonic and ghost instabilities can emerge at a
quantum level.

The problem of ghosts is related to the “kinetic part” of the action, and therefore
its cure is to be sought in the momentum dependence of the propagator arising from the
physical flow in the quadratic part of the action. The tachyonic instability is instead due to
the “potential part” of the action, and thus its resolution relies on the interactions generated
at the level of the effective action.

In this subsection we provide an explicit example of how interaction terms (or, the
field dependence) in the effective action can cure tachyonic instabilities. The way a non-
trivial momentum dependence can cure ghost instabilities will instead be the focus of
section 5 and 6.

In the case of a free tachyon cthm
2 < 0, the potential is a convex parabola (orange

line in the top panel of figure 9) and the solutions ϕ(t) ≡ ϕ(t, ~q = 0) to the field equations
display non-oscillatory exponentially growing modes (orange lines in the bottom panel of
figure 9). Integrating out quantum fluctuations typically generates a plethora of terms
at the level of the effective action and, as anticipated, this might yield a globally stable
potential. To illustrate this idea, we can consider a toy model where

Veff(φ) = cthm
2ϕ2 + ϕ6/6 . (4.9)

As depicted in the top panel of figure 9, the interaction term ϕ6/6 renders the effective
potential Veff (blue line) bounded from below. At this point one can solve the field equations
with different initial conditions. Two examples of such solutions are plotted in the bottom
panel of figure 9 (blue lines). As one can easily realize, interaction in this case has removed
all tachyonic instabilities, as the solutions to the field equations are oscillating and bounded
both from below and above.

Summarizing, since free tachyons cannot exist in nature—barring miraculous cancel-
lation that eliminate all interactions in the effective action—tachyons are not necessarily
fatal for the theory, and a full analysis in the presence of interactions is in order to establish
whether the theory is sick.

4.3 Fourier modes of the propagator: conditions for microscopic violations
of causality and relation with (in)stability

Although in the quantum theory it is more natural to work in momentum-space, causality
and microcausality cannot be directly examined at the level of momentum-space two-point
Green’s functions (since they involve four-momenta, and thus cannot be localized in space
and time). The causality condition (no backward propagation) is to be spelled out and
studied at the level of position-space propagators [140]. Indeed, it would not make sense to
talk about causality of the momentum-space propagator of an on-shell photon or graviton,
since the corresponding amplitude is simply a Dirac delta function; nonetheless, one would
wish electromagnetic (or gravitational) waves in real space to propagate forward in time.
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Figure 9. Effective potential (top panel) and solutions to the field equations (bottom panel) in the
case of a free tachyon (orange lines) and a tachyonic field interacting via a toy model for the effective
potential, Veff(φ) = cthm

2ϕ2 +ϕ6/6 (blue lines). The parameters m2 = 2GeV2 and cth = 1 are used
to generate the plots. Two straight gray lines at ϕ = ±

√
2 are drawn to facilitate identifying the

position of the two minima in all plots. The solution ϕ(t) in the bottom-left panel is obtained by
using the initial conditions ϕ(0) = 0 and ϕ′(0) = 0.1, while the one on the right panel is generated
for ϕ(0) = 1 and ϕ′(0) = 0. The motion starts close to the unstable configuration associated with
the tachyonic modes, and moves away from it. In the case of a free tachyonic field the potential
is unbounded from below, since cthm

2 < 0, and this generates the non-oscillating exponentially
growing modes discussed in the previous section. Once an interaction is turned on, the potential
becomes bounded from below. Correspondingly, the motion is oscillatory, and bounded both from
above and from below, similarly to the case of standard particles. Specifically, the figure on the
bottom-left panel describes the situation where the field’s kinetic energy overcomes the potential
energy, and the field oscillates between the two stable vacua. In the second case, depicted in the
bottom-right figure, the field oscillates about one of the two possible stable vacua, yielding an
oscillatory motion very similar to that of stable particles.
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In this section we determine relations between the poles of the propagator, unitarity,
stability and microscopic violation of causality, quantifying the time-scale of the causality
violation in terms of the distance of a pole from the real q0-axis. In what follows we will
assume that the inverse (dressed) propagator has no essential singularities at infinity (this
is not the case for exponential form factors such as those studied in the context of non-local
gravity [190–193], in which case one has to apply the procedure outlined in [194]), and
that each of its poles has multiplicity one, such that one can “close the contour” and apply
the Cauchy integral formula (2.5) (which in the case of polynomial inverse propagators
gives the same result as the partial fraction decomposition). Under this assumption, the
full propagator can be decomposed into a sum of single-pole propagators, and it is thus
sufficient to study the Fourier modes of a propagator associated with a single degree of
freedom (i.e., an isolated pole). Its most general form reads

iD
(
q2

0

)
= cghR̃

i

q2 − cthm2 + iγ + iε
, (4.10)

where R = cghR̃ is the residue of the complete propagator at the corresponding pole, R̃
being real and positive for real poles and complex in the case of complex-conjugate poles.
As before, cgh = cth = 1 for particles, cgh = −cth = −1 for ghosts, cgh = −cth = 1 for
tachyons, and cgh = cth = −1 for tachyonic ghosts. The physical mass is defined by the
real part of m2, as this is the only quantity that can be measured, while γ is related to the
decay width of the particle. In particular, if γ � |m| and m 6= 0 one can approximate

qpole = ±
√
m2 − iγ ' ±

(
|m| − i γ

2|m|

)
⇒ 1

q2 −m2 − iγ
' 1

q2 −
(
|m| − i γ

2|m|

)2 ,

(4.11)
and realize that the corresponding spectral density resembles a Breit-Wigner distribution
for a resonance with mass m and decay width

Γ ≡ γ

|m|
. (4.12)

In the case of massless particles the above derivation fails, as it is no longer possible to
expand about γ = 0. If the inverse propagator is of the form (q2 ± iγ), then the massless
complex poles will be located at

qpole = ±
√
∓iγ = ±

√
|γ|e∓iπ/2 = ±

√
|γ|e∓iπ/4 = ±

√
|γ|1∓ i√

2
. (4.13)

Thus, the inverse propagator can be written as

q2 ± iγ = q2 −

√ |γ|
2 ∓ i

√
|γ|
2

2

, (4.14)

and one can identify the resonance width with

Γ ≡ ±
√

2|γ| . (4.15)
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Therefore Γ is finite even when m = 0. Starting from eq. (4.12) and taking a naïve limit
m→ 0 would instead lead to the misleading conclusion that massless complex poles have
infinite decay width (or, vanishing lifetime), and thus that they do not violate causality on
any relevant time scale.

Finally, it is important to notice that assuming R̃ is real,9 the contribution of the
single-pole propagator in eq. (4.10) to the full spectral density is

ρ = R̃

π

cghγtot

(q2 − cth Re (m2))2 + γ2
tot

, (4.16)

where γtot = ε+ γ + cth Im(m2) and, since R̃ is positive by assumption, the positivity of
the spectral density requires cghγtot > 0. This means that unitarity can only be preserved
if ghosts are quantized according to a different Feynman prescription, where one replaces
ε → −ε [166, 189], or if they are unstable and come with negative decay width [11]. In
what follows we will neglect the constant R̃, since its specific value only affects the Fourier
modes of the propagator by an unimportant, constant multiplicative factor.

Having closed these digressions, we can proceed with the determination of the Fourier
modes of the simple propagator (4.10). In the q2

0-complex plane, the poles are located at

q2
0,pole =

(
~q2 + cth Re

(
m2
))

︸ ︷︷ ︸
E2
q

−i
(
ε+ γ + cth Im

(
m2
))

︸ ︷︷ ︸
γtot

. (4.17)

Therefore:

• Standard particles or tachyons (Im(m2) = 0, γ ≥ 0) correspond to poles of the
propagator which lie in the fourth quadrant of the q2

0-complex plane.

• Poles representing unstable particles or unstable tachyons with negative decay width
(Im(m2) = 0, γ < 0) lie in the first quadrant of the q2

0-complex plane.

• Complex-conjugate degrees of freedom (Im(m2) 6= 0, γ = 0) lie in the first and fourth
quadrant of the q2

0-complex plane.

In the q0-complex plane, the poles are located at

q±0,pole = ±
√
E2
~q − iγtot . (4.18)

When γtot � 1 one can expand about γtot = 0. Here we study the general case where γtot
can take any value and we examine where the poles are located in the complex plane, and
the corresponding physical consequences.

In the case of tachyons propagating with E2
~q > 0, particles, and ghosts (i.e., for E2

~q > 0
and for any γtot), or in the case of unstable particles propagating with any energy (i.e., for

9A complex R̃ only arises in the case of complex-conjugate poles, and the contribution of the pair to the
spectral density is zero. Thus, it is sufficient for this argument to assume R̃ to be real.
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any sign of E2
~q and for γtot 6= 0), the poles q±0 can be written as

q±0,pole = ±
(
E4
~q + γ2

tot

)1/4
{

cos
[1

2 arg
(
E2
~q − iγtot

)]
+ i sin

[1
2 arg

(
E2
~q − iγtot

)]}
= ±

(
E4
~q + γ2

tot

)1/4
{ 1− iW√

1 +W2

}
,

(4.19)

where
W = γtot(

E4
~q + γ2

tot

)1/2
+ E2

~q

∈ R (4.20)

has the same sign as γtot. Therefore, in this case (which excludes the case of stable tachyons
propagating with E2

~q < 0, see below), it is the sign of γtot = ε+ γ+ Im(m2) that determines
the position of the poles in the q0-complex plane, independently of its origin (iε-prescription,
width of the unstable degree of freedom, imaginary part of the mass square m2 of a complex
pole coming with a complex-conjugate partner). In particular:

• γtot ≥ 0 implies that q+
0,pole lies in the forth quadrant and q−0,pole in the second quadrant

of the q0-complex plane. This is the case of stable particles/tachyons, or standard
resonances.

• γtot < 0 implies that q+
0,pole lies in the first quadrant and q−0,pole in the third quadrant

of the q0-complex plane. Since ε � 1, (γ + Im(m2)) should dominate over ε and
determines the sign of γtot. Therefore, this is the case of unstable degrees of freedom
characterized by a negative decay width.

• In the case of one pair complex-conjugate poles, one of the two poles will have γtot > 0,
while its complex-conjugate partner will have γtot < 0. Thus, there will be four poles
distributed in all quadrants of the q0-complex plane.

At this point, the Fourier modes of the propagator can be computed using:

D (x) = lim
ε→0

∫
d3q

(2π)3 e
−i~q·~x

∫ +∞

−∞

dq0
2π D

(
q2

0 − ~q2 + iε
)
eitq0 =

∫
d3q

(2π)3 e
−i~q·~xχ (t) ,

(4.21)
where

χ (t) ≡ i
∑
j∈C+

R
[
D
(
q2

0,j

)
eitq0,j

]
θ (+t)− i

∑
j∈C−

R
[
D
(
q2

0,j

)
eitq0,j

]
θ(−t) . (4.22)

Here C+ and C− denote the standard integration contours closed in the upper- and lower-half
parts of the complex plane, respectively, the sums run over the poles j inside C+ and C−,
and R[·] is the residue of the integrand function evaluated at the pole j. Note that the above
derivation can only be straightforwardly applied when D(q2) has no essential singularities
at infinity (as we assumed). Owed to the previous result, and after some manipulation, in
the case γtot ≥ 0 one finds

χ(t) = −icgh
2
√
E2
~q − iγtot

(
e
−i
√
E2
~q
−iγtot |t|

)
= −icghe

−i

√
|E2
~q
−iγtot|√

1+W2 |t|

2
√
E2
~q − iγtot

e
−|t|

√
|E2
~q
−iγtot|√

1+W2 W
,

(4.23)
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while in the case γtot < 0, it is the pole at negative energy that contributes for t > 0, and
the propagator in coordinate space is determined by

χ(t) = (icgh)

e
−i

√
|E2
~q
−iγtot|√

1+W2 t

2
√
E2
~q − iγtot

θ(−t) + e
+i

√
|E2
~q
−iγtot|√

1+W2 t

2
√
E2
~q − iγtot

θ(t)

 e+|t|

√
|E2
~q
−iγtot|√

1+W2 W
. (4.24)

The function χ(t) is shown in figure 10 for various values of γtot.
This result is reminiscent of the way the Feynman prescription is constructed. The

position-space Feynman propagator, describing the causal propagation of a particle between
two different space points, can be decomposed into a forward- and backward-(on shell)
propagating parts. The first is associated with the flow of positive energy, the former that
of negative energy. In the case γtot < 0, modes with negative energies are propagating
forward in time, thus entailing a violation of causality on microscopic scales [127, 128, 166].

The causality violation occurs at energies E~q ≥ m and on time scales comparable with
the lifetime of the degree of freedom inducing the violation

∆t−1
acaus ' τ−1 =

√
|E2

~q − iγtot|
√

1 +W2
W ≡ Γ

2 . (4.25)

The relation between the scale of acausality and the distance γtot of a complex pole from
the real axis is shown in figure 11. In particular, when γtot � m2, our result reduces to
that in [127, 128, 166]. In fact, expanding about γtot = 0 yields

∆t−1
acaus ' τ−1 ' γtot

2E~q
, (4.26)

which, in the rest frame of a massive particle, reduces to the approximate formula
(cf. eq. (4.12))

τ−1 ' γtot
2|m| ≡

Γ
2 . (4.27)

These results are independent of the signs of cgh (which would only flip the sign of the
corresponding χ(t)-function) and cth, and only rely on the sign of γtot.

Let us now analyze the case of stable (γ = 0) tachyons propagating with E2
~q < 0

(subluminal tachyons). Since the poles do not lie on the real axis, no Feynman prescription
is needed in this case and thus γtot = 0 for stable tachyons.10 Therefore, the argument
function in eq. (4.19) would simply be π in the case E2

~q < 0 and thus the first line of
eq. (4.19) yields the poles q±0,pole = ±i|E~q|. The corresponding χ(t) reads

χ(t) = 1
2|E~q|

(
e+|E~q |tθ(−t) + e−|E~q |tθ(t)

)
, (4.28)

Thus, accounting for all expressions of χ(t) above and their validity ranges, we conclude
that the behavior of tachyons propagating with E2

~q > 0 is oscillatory as in the case of
standard particles (as expected), while in regimes where tachyons propagate with E2

~q < 0,
10Utilizing the iε-prescription and following the standard procedure above would not change the final result.

– 32 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
7

Figure 10. Fourier modes of the propagator (function χ(t) in eq. (4.22)) in the case cgh = 1 and
cth = 1, for various signs of γtot. For tachyons, the plots are the same, provided that E2

~q > 0 (see
figure 12 for the case E2

~q < 0). For ghosts, all curves are mirrored with respect to the time axis and
no instabilities arise at the level of the propagator.
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Figure 11. Time scale of acausality ∆tacaus (measured in GeV−1) in the presence of a complex
poles q2

0,pole = E2
~q − iγtot as a function of |γtot| (in units of GeV2) for various energies E~q.

the Fourier modes of the propagator are exponentially decaying (cf. figure 12). Note
that using the plane-wave expansion (4.7) to construct the propagator as a time-ordered
product would yield, in the case of stable tachyons, a quite different result: the signs of the
exponentials in eq. (4.28) would have been swapped and the propagator would have been
an exponentially growing function of time. Once again, this apparent inconsistency comes
from the ambiguity in the quantization procedure of tachyons (cf. section 4.2.2) and the
fact that the free field expansion (4.7) cannot be applied in this case. Regardless of the
resolution of the ambiguities in the (canonical) quantization procedure of tachyons, which
to our best knowledge is an open problem, our result (4.28) only relies on the assumption
that free tachyons propagate with a standard (q2 + cthm

2)−1 propagator, which seems to
be plausible. Note that here the iε-prescription does not play a role, since in the case
of stable tachyons with E2

~q < 0 the poles are located at q±0,pole ' i|E~q| ∓ ε/2|E~q|, with
|E~q| > 0. Thus, ε can only shift the poles “horizontally”, and its sign cannot change which
pole contributes to eq. (4.22) when closing the contour for t > 0 or t < 0. The absence of
exponentially growing modes in the propagator of a free tachyon with E2

~q < 0 should not
be surprising: even if exponentially growing modes appear in the solutions to the quantum
field equations, due to exponentials like eat and e−at with a > 0, the time ordering in the
definition of the Feynman propagator enforces the appearance of theta functions such that
only the combinations θ(±t)e∓at can arise in its Fourier modes. This does not imply that
the instabilities are removed from the theory.

Summarizing, no tachyonic instability (exponentially growing modes) arises at the level
of the propagators (cf. figure 10), no matter what the signs of cgh, cth and γtot are. Such
instabilities may only arise at the level of the solutions to the quantum field equations
stemming from the corresponding effective action. Some final remarks and observations are
in order:

• Causality and Wick rotation: Since violations of causality arise any time complex poles
appear in the first and/or third quadrants of the q0-complex plane, causality could
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Figure 12. Fourier modes of the propagator (function χ(t) in eq. (4.22)) in the case cgh = 1,
cth = −1, and E2

~q < 0, for various signs of γtot.

also be related to the possibility of performing an analytic Wick rotation connecting
the Euclidean and Lorentzian theories. However, while a violation of causality implies
the impossibility of defining an analytic continuation, the absence of complex poles is
not enough to guarantee an analytic Wick rotation. In order to perform an analytic
continuation, no essential singularities should occur at infinity.

• Field redefinitions: Since complex-conjugate poles can only appear in loops (in
principle they do not contribute to the spectral density, even though a modified Källen-
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Lehmann representation accounting for complex-conjugate poles could change this
conclusion [141, 142]) one could think of performing a field redefinition to remove them,
indicating that the theory be consistent and causal. However, to ensure invariance of
scattering amplitudes according to the equivalence theorem, field redefinitions should
not change the number of complex and real poles of the propagator [140, 195, 196].
Moreover, as we mentioned already, violations of microcausality due to the exchange
of virtual particles could potentially leave detectable signatures, indicating that these
poles are physical, even if they do not correspond to asymptotic states.

• Tachyonic modes with γtot < 0: Tachyons with negative width can potentially violate
all physical principles on the market. There could be a violation of unitarity, since
cghγtot < 0. There would be a (microscopic) violation of causality and vacuum
instabilities might occur, because γtot < 0. And there would be a tachyonic instability,
as cth < 0. However, the latter instability might not be a serious problem, as we
comment on in the next point.

• Tachyonic modes with γtot ≥ 0, causality and tachyonic instability: Tachyonic ex-
citations can propagate subluminally, even if the group velocity can be superlumi-
nal [152, 181]. Thus, tachyons can be compatible with Einsten’s locality and thereby
with microcausality [158]. In particular, the standard commutation relations between
space-like-separated events are not affected by the sign of cthm2. As we have seen
in this section, as long as γtot ≥ 0, tachyons are also compatible with causality, in
the sense of forward propagation at the level of the propagator, and with (vacuum)
stability. The only problem related to the existence of tachyons is the (tachyonic)
instability occurring for E2

~q < 0: even if no instability arises at the level of the prop-
agator (which is actually decaying), exponentially growing modes could potentially
arise in the solutions to the quantum field equations (cf. section 4.2). However, the
negative mass square, cthm2 < 0 that generates the instability could indicate that the
theory is quantized on a wrong, unstable vacuum (a maximum instead of a minimum)
and that this configuration is unstable. Interactions and non-perturbative effects
could trigger a tachyonic condensation, e.g., a spontaneous symmetry breaking [197],
as it happens in the case of the Higgs field. Therefore, the existence of tachyonic
instabilities could be cured by a suitable condensation mechanism occurring fast
enough to counterbalance the instability, provided that a stable vacuum exists in
the theory. In turn, the existence of such a stable vacuum is tied to the presence of
interaction terms in the effective action, cf. section 4.2.3.

• Causality violation and vacuum instability in the case γtot < 0: While the propagation
does not display any tachyonic instability and the microscopic violation of causality
might still be compatible with observations, the fact that the forward-propagating
degrees of freedom with γtot < 0 carry negative energy, implies that the vacuum is
unstable [189]: the decay of the vacuum in modes carrying opposite energies (and
opposite signs of γtot) is entropically favored, unless a microscopic breaking of locality
or Lorentz invariance takes place [166]. However in this latter case a careful fine-tuning
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Pole Width Causality Unitarity Vacuum
Stability

Tachyonic
Stability

Particle
(cgh = 1, cth = 1)

Stab. γtot = 0 X X X X

Unst. γtot > 0 X X X X
γtot < 0 × × × X

Ghost
(cgh = −1, cth = 1)

Stab. γtot = 0 X × X X

Unst. γtot > 0 X × X X
γtot < 0 × X × X

Tachyon
(cgh = 1, cth = −1)

Stab. γtot = 0 X X X ×

Unst. γtot > 0 X X X ×
γtot < 0 × × × ×

Tachyonic Ghost
(cgh = −1, cth = −1)

Stab. γtot = 0 X × X ×

Unst. γtot > 0 X × X ×
γtot < 0 × X × ×

Complex-conjugate poles
(cgh = 1, cth = 1)

γtot > 0
γtot < 0 × X × X

Table 2. Summary of poles of the dressed propagator satisfying (X) or violating (×) the conditions
of causality (no backward propagation of modes with positive energies), unitarity (no negative-norm
states), vacuum stability (no modes with negative energy coupled with modes with positive energies),
and tachyonic stability (no runaways in the free-field expansion).

of the Lorentz breaking at high energies would be required to avoid incompatibility
with observations [60, 198]. It is worth mentioning that unstable particles with negative
width and complex-conjugate poles are not part of the spectrum of asymptotic states,
and would decay after a certain lifetime, eq. (4.25). Nonetheless, conservation of
energy would require the decay products (the type of allowed decay products depend
on the interaction vertices of the full theory, and can be either stable or unstable) to
have negative energies. This could potentially lead to a cascade of decays involving
degrees of freedom with both positive and negative energies, and it is not clear whether
a stabilization mechanism exists. In the absence of this mechanism, we will exclude
poles with a negative width and complex-conjugate poles from the set of acceptable
poles of a physical propagator.

Thus, summarizing: preserving unitarity requires cghγtot > 0, avoiding tachyonic instabilities
(no runaway solutions) requires cth > 0, preserving causality (in the sense of forward
propagation) and vacuum stability requires γtot ≥ 0. Table 2 summarizes what type of
poles satisfy these conditions.

Based on the considerations of this section, to preserve unitarity, causality along
all scales and avoid vacuum instabilities, the dressed (graviton) propagator should
not have complex poles with negative width. Additionally, avoiding runaways at
the level of the free-field expansion requires the absence of tachyonic poles.
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5 Unitarity, causality, and stability: logarithmic interactions

In this section we shall investigate the pole structure of propagators constructed with
logarithmic interactions. This class of propagators plays an important role in QFT, as
logarithmic form factors generally arise as one-loop corrections to the tree-level action.
Examples of such propagators are those derived from Lee-Wick QED [172] and one-loop
QG [145, 146]. Their scalar part read

DLW−QED
(
q2
)

= q−2
(

1− α

3π log
(

1− q2

m2
th

)
− q2

M2

)−1

, (5.1)

DQG

(
q2
)

= q−2
(

1− q2G

π
log

(
1− q2

m2
th

)
− q2

M2

)−1

. (5.2)

In both cases there is a massless pole, q2
pole = 0, describing the photon and the graviton,

respectively. Note that in the argument of the logarithm the constant term is zero in many
physically-relevant models; nonetheless, we will keep it non-zero to render the analysis more
general. One can easily check that our conclusions remain unchanged.

In what follows we shall study the existence of additional real or complex poles for this
class of propagators. This boils down to studying the zeros of the P -functions

PLW−QED (z) = 1− a log (1− z)− bz , (5.3)

PQG (z) = 1− a z log (1− z)− bz , (5.4)

with z = q2/m2
th ≡ x + iy, in terms of the parameters a and b. The physical cases of

Lee-Wick QED and one-loop QG are obtained by restricting to

b = m2
th

M2 ≤ 1 , (5.5)

and fixing
aLW−QED = α

3π � 1 , (5.6)

aQG = GNm
2
th

π
= m2

th

πM2
Pl

� 1 , (5.7)

in accordance with the corresponding perturbative computations [145, 146, 172]. We will
show that, beyond the massless pole at q2 = 0, propagators of the type above (with the
full, analytically-continued, complex logarithm) have either additional real poles (describing
stable, possibly tachyonic, degrees of freedom) or a pair of complex-conjugate poles (leading
at least to a violation of causality). Moreover, an unstable ghost appears due to the presence
of a branch cut singularity.

5.1 Pole structure: the case of Lee-Wick QED

To study the zeros of the P -functions under consideration, we first note that the principal
branch of the complex logarithm can be conveniently expanded as

log (1− x− iy) = log
[(

(1− x)2 + y2
)1/2

]
+ i atan2(1− x− iy) . (5.8)

– 38 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
7

This expression comes from the use of the representation w = |w|eiArg(w), with w = 1−x−iy.
The single-valued function Arg(w) : C→ (−π, π] is the principal argument of the complex
number w and can be written as

Arg(w) = −i log
(
x+ iy

|x+ iy|

)
≡ atan2(x+ iy) =



arctan
( y
x

)
, if x > 0 ,

arctan
( y
x

)
+ π , if x < 0 and y ≥ 0 ,

arctan
( y
x

)
− π , if x < 0 and y < 0 ,

+π/2 , if x = 0 and y > 0 ,
−π/2 , if x = 0 and y < 0 ,
undefined , if x = y = 0 .

(5.9)

It is important to notice that this function is odd with respect to y, while for any x < 0 it
is discontinuous in y = 0. The function Arg(w) thus has a branch cut along the negative
real axis, i.e., at y = 0 and x < 0.11 Crossing the branch cut, its value jumps from −π
(excluded, as it belongs to another branch) to π. Note that the existences of a zero on one
Riemann sheet of a multi-valued function also implies the presence of “shadow zeros” on all
other sheets below the one where the zero occurs for the first time.

Using eq. (5.9), the real and imaginary parts of the function PQED(z) in eq. (5.3) can
be written as

Re [PLW−QED] = 1− bx− a

2 log
(
(1− x)2 + y2

)
,

Im [PLW−QED] = −by − a atan2 (1− x− iy) . (5.10)

Since the function atan2 is odd with respect to y, it follows that

• A(x, y) = Re [PLW−QED] is even with respect to y, and

• B(x, y) = Im [PLW−QED] is odd with respect to y.

Therefore, if z = (x0, y0) is a solution to PQED = 0 (making A = B = 0), also its complex
conjugate z̄ = (x0,−y0) is a solution. This observation is at the core of the complex
conjugate root theorem. The theorem states that if f(x) is a polynomial function with
real number coefficients and z is a complex zero of f , then so is its complex conjugate z̄.
Roughly, the theorem comes from the fact that replacing z = x+ iy into f(z), its real and
imaginary part are either even or odd in y.

Let us now determine explicitly the zeros of PQED, since this gives us information on
the additional degrees of freedom of the theory beyond the massless one. The real part of
PQED is zero for

y0 = ±
√

exp
(
−2(b x0 − 1)

a

)
− 1 + 2x0 − x2

0 . (5.11)

11The location of the branch cut is strictly related to the convention that Arg(w) : C→ (−π, π]. This can
however be changed, as we show in section 6.
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Figure 13. Pole structure of the Lee-Wick P -function in eq. (5.3) as a function of a, and for b = 1.
The figure shows the real (magenta dots) and imaginary (blue dots) part of the zeros of PLW−QED.
Beyond the massless pole, the propagator has a stable ghost for a < 0, while for a > e there are two
tachyonic ghosts. For 0 < a < e, the massive real pole splits into a pair of complex-conjugate poles.
Since aLW−QED � 1, in Lee-Wick QED there is a pair of complex-conjugate poles.

We first look for real solutions, setting y0 = 0. In the case b = 1, i.e., when M2 = m2
th,

these solutions can be found analytically. The condition Im [PQED] = 0 is compatible with
the expression of y0 if a = 0 or x0 < 1. Real zeros of PLW−QED are thus found solving√

exp
(
−2 (x0 − 1)

a

)
− 1 + 2x0 − x2

0 = 0 x0 < 1 . (5.12)

This gives the solutions:

x0 =

1 + bProductLog[−1/a] if b < 0 || a ≥ e ,
1 + bProductLog[−1,−1/a] if a ≥ e ,

(5.13)

where “e” is Euler’s number. In addition, one can easily verify that for 0 ≤ b < e there is
a pair of complex-conjugate zeros. Therefore, for b = 1 the LW-QED propagator has the
following additional poles

one stable ghost for a < 0 ,
one pair of complex-conjugate poles for 0 ≤ a < e ,

two stable tachyonic degrees of freedom for a ≥ e .

(5.14)

The pole structure of the propagator with the P -function given by eq. (5.3) is shown in
figure 13 for the case b = 1. The case b 6= 1 can be studied numerically, and it can be seen
that the pole structure is qualitatively the same. The value of b only changes the upper
bound of the region [0, e) where PLW−QED has a pair of complex-conjugate zeros.

5.2 Pole structure: the case of one-loop QG

We now analyse the pole structure of the flat one-loop graviton propagator. Restricting again
to the principal branch of the complex logarithm, one can isolate the real and imaginary
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Figure 14. Pole structure of the one-loop graviton propagator as a function of a, and for b = 1.
When the coupling a is negative, the propagator displays one stable ghost pole and one stable
tachyonic ghost pole. The latter approaches infinity when a→ 0. The former splits into a pair of
complex-conjugate poles when a becomes positive.

parts of PQG(z), which read

Re [PQG] = 1− bx+ ay atan2 (1− x− iy)− ax

2 log
(
(1− x)2 + y2

)
,

Im [PQG] = −by − ax atan2 (1− x− iy)− ay

2 log
(
(1− x)2 + y2

)
. (5.15)

The real and imaginary parts of PQG(z) have the same key properties as those of PLW−QED(z):
A(x, y) = Re [PQG] is even with respect to y and B(x, y) = Im [PQG] is odd with respect
to y. Therefore, as can be explicitly checked, also in the case of one-loop QG the propagator
can have either real or complex-conjugate poles. In the case of QG, the additional q2-term
in front of the logarithm makes the propagator more involved and it is not possible to look
for its poles analytically. However, it is still possible to search the zeros of the PQG-function
numerically, by looking for points (x0, y0) ∈ C such that A(x0, y0) = B(x0, y0) = 0. In the
case b = 1, as shown in figure 14, one-loop QG is characterized bytwo stable degrees of freedom (one of them tachyonic) for a < 0 ,

one pair of complex-conjugate poles for a ≥ 0 .
(5.16)

As in QG the parameter a is a = aQG � 1, the one-loop dressed graviton propagator has a
pair of complex-conjugate poles on the first Riemann sheet (for the specific case a = aQG
this was already noted in [199–201]). Finally we remark that in Euclidean signature the
logarithm takes the form

log
(
1− q2

L/m
2
th

)
= log

(
1−

(
q2

0,L − ~q2
)
/m2

th

)
→

→ log
(
1−

(
−q2

0,E − ~q2
)
/m2

th

)
= log

(
1 + q2

E/m
2
th

)
,

(5.17)

with q2
E ∈ [0,+∞). Thus, provided that the mass mth results from the integration of non-

tachyonic fields, the Euclidean version of the propagator can only have real poles [199, 202].
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Figure 15. Pole structure of the propagator in the complex q2-plane, in the case of Lee-Wick QED
(left panel) and one-loop QG (right panel), for α = β = 1. As is evident from the plots, the two
theories share very similar features: they both develop complex-conjugate poles (entailing a violation
of causality) and a single branch cut, associated with an unstable ghost degree of freedom.

5.3 Complex poles, branch cut region and ghost resonance

We have seen that form factors involving sums of polynomial and logarithmic interactions
lead to dressed propagators having real or complex-conjugate poles. This result is expected
to hold more generally, based on the complex conjugate root theorem and the observation
that the Taylor expansion of combinations of real polynomial and logarithmic terms is still
a polynomial with real coefficients.

Whether there are additional real or complex-conjugate poles depends on the specific
values of the couplings. In the case of one-loop QG and “standard” Lee-Wick QED, the
coupling a is positive, with a � 1, and b ≤ 1. Therefore, in both cases there is a pair of
complex-conjugate poles. Moreover, the logarithmic propagators typically have at least one
branch cut singularity. The location of the branch cut and the complex-conjugate poles are
displayed in figure 15 for the case α = β = 1.

Using the Cauchy integral formula (2.5), the structure of both propagators is

D
(
q2
)

= Rs
q2 + iε

+ Rc
q2 −m2

c + iε
+ R∗c
q2 − (m2

c)
∗ + iε

+
∫ ∞
m2
th

σ
(
q2)

q2 − s+ iε
ds , (5.18)

where σ(q2) is the continuum part of the spectral density and is to be positive (for
asymptotic states, cf. section 2.4) in order to preserve unitarity. Its specific form determines
the physical interpretation of the branch cut, i.e., whether it describes a resonance or a
multi-particle state.

The physical sheet of the complex q2 plane is defined by applying the Feynman
prescription q2 → q2+iε. The latter plays a key role in determining the sign of the imaginary
part of the self-energy. Only after computations one can safely take the limit ε → 0+.
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Figure 16. Real and imaginary parts of the P -functions in eq. (5.3) and eq. (5.4) as functions of
x ≡ Re(q2). The plots are obtained for a = 0.1 and b = 1. Both real parts have a zero in the region
where the imaginary part is non zero. These zeros describe (unstable) ghost-like particles.

Restricting to x ∈ R and applying the Feynman prescription to the propagator yields

log(1− x) = lim
ε→0+

{log(|1− x− iε|) + iatan2(1− x− iε)} = log(|1− x− iε|)− iπ θ(x− 1) .
(5.19)

Note that if one does not use the Feynman prescription, the imaginary part of the logarithm
on the real axis comes with an opposite sign. The above equation, which holds for y ≡ ε� 1,
justifies the expression (3.7), where the imaginary part of the logarithm is approximated by
a Heaviside step function. Let us remark however that this approximation is only reliable
close to the real axis, while in general the complex logarithm should be treated as in the
previous two subsections.

All in all, when evaluated on the real axis, the P -functions read

PLW−QED(x) = 1− b x− a [log(|1− x|) + iπ θ(x− 1)] ,

PQG(x) = 1− b x− ax [log(|1− x|) + iπ θ(x− 1)] . (5.20)

These are the expressions to be used to determine the contribution of the branch cut
region to the scalar part of the propagator, i.e., to evaluate the integral in eq. (5.18). The
functions PLW−QED and PQG have no real zeros. On the other hand, the existence of zeros
at q2 ≥ m2

th for the real part of P (x) (cf. figure 16) tells us that in both cases there is an
unstable degree of freedom, specifically, a ghost. Unitarity thus crucially depends on the
positivity of σ. In turn, this is determined by the propagator D(q2) along the cut

D
(
q2
)
|cut = − 1

π

∫ ∞
m2
th

ImD (s+ iε)
q2 − s+ iε

ds . (5.21)

Here D(q2) can be written as

D
(
q2
)

= R
p2 −m2

0 − Σ (p2) , (5.22)

where R is a constant, Σ(q2) is the self-energy contribution to the propagator and the
(real) solution of m2 = m2

0 + ReΣ(m2) defines the mass of the resonance (if there is no real
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solution, the cut describes a multi-particle state). For instance, in the case of Lee-Wick
QED, the real part of the inverse propagator has a real zero, and

Σ
(
q2
)
|cut = (bq4 + a log

(
1− q2/m2

th

)
)|cut = bq4 + a log

(
|1− q2/m2

th|
)
− iaπ , (5.23)

so that ImΣ(q2)|cut = −aπ. Therefore, in this case the imaginary part of the self-energy is
small and negative (the same holds true in one-loop QG) and, additionally, it is constant
along the cut.

If the cut describes a resonance of mass m and if the interaction coupling that makes
this degree of freedom unstable is small, ImΣ(s)� m2 (as in the case of one-loop QG and
Lee-Wick QED, where a� 1), one can approximate

D
(
q2
)
|cut ' D

(
q2 ' m2

)
' ZR
p2 −m2 − i Z ImΣ (m2) '

ZR
p2 − (m2 − iΓ/2)2 , (5.24)

where the decay width is given by Γ ' Z
m ImΣ(m2) and Z is defined as

Z =
(
1− ∂m2ReΣ

(
m2
)
− i∂m2ImΣ

(
m2
))−1

. (5.25)

The corresponding spectral density is thus approximated by a Breit-Wigner distribution

σ
(
q2 ' m2

)
' − 1

π

RZ2 ImΣ
(
m2)

(q2 −m2)2 + (Z ImΣ (m2))2 . (5.26)

For an unstable ghost the constant R is negative and thus unitarity requires the decay
width Γ to be negative. As we already mentioned, this is the case in Lee-Wick QED and also
in one-loop QG [127, 128]. However, due to the negative decay width, the pole corresponding
to the unstable ghost lies on the first (physical) Riemann sheet [127, 128].12 As detailed
in section 4, preserving unitarity in this case comes at the expense of vacuum instabilities
and a violation of causality on time scales τ ' 1/Γ. In addition, the presence of the
complex-conjugate poles in the q2

0-complex plane, beyond bringing additional acausalities,
makes it impossible to Wick-rotate. In order to perform an analytical continuation, one
would need to resort to modified integration contours, such as those determined by the
Lee-Wick (LW) [172] or Cutkosky-Landshoff-Olive-Polkinghorne (CLOP) prescriptions [171],
to translate the Lorentzian description into the Euclidean one (and vice versa).

Summarizing, due to the complex conjugate root theorem, logarithmic quantum cor-
rections to bare higher-derivative theories typically yield dressed propagators displaying
additional real (possibly tachyonic and ghost-like) poles or complex-conjugate poles. In the
former case, one would loose unitarity (possibly gaining tachyonic instabilities), in the latter
the theory would be prone to acausalities (and eventually to vacuum instabilities) and it
would not be possible to perform an analytic Wick rotation. In both cases, the unstable
ghost associated with the branch cut would lead to acausalities.

Nonetheless, one-loop corrections are not the end of the story. Resumming all quantum
fluctuations is expected to result in non-local effective actions with more elaborate form

12This is to be contrasted with the case of standard resonances, which come with positive width and
appear in the second Riemann sheet only.
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factors. In the next section we will discuss some examples of propagators that are free from
additional poles and for which an analytic continuation can be performed.

In accordance with the literature, logarithmic quantum corrections to higher-
derivative theories can generally add complex-conjugate poles, tachyonic degrees
of freedom and unstable ghosts. Thus, preserving causality and unitarity while
avoiding instabilities requires more sophisticated non-local quantum corrections,
beyond the one-loop approximation.

6 Consistent graviton propagators: some examples

The integration of quantum gravitational fluctuations (or, more generally, massless fields) at
the level of the path integral is expected to yield a non-local effective action. In the one-loop
approximation, the form factors are logarithmic. As we discussed in the previous section,
logarithmic form factors are enough to make the theory unitary but typically introduce
acausalities and instabilities. This suggest that the coexistence of unitarity, causality and
stability in theories whose bare action has higher derivatives requires resumming all quantum
effects into a more sophisticated non-local effective action.

In this section we discuss and compare two examples of propagators–that proposed
in [131] and the one derived in [203–205]–compatible with all requirements of causality,
unitarity and stability discussed throughout the manuscript, including the possibility to
perform an analytic Wick rotation. We shall see that a common feature of these propagators
is the presence of two symmetric branch cuts. However, for the propagator in [203–205]
performing an analytic Wick rotation may require a specific prescription for the choice of
location of branch cuts. Finally, we will discuss and compare three classes of propagators
which might play a role in some approaches to QG (see also [206]), and which could
implement a certain form of dimensional reduction [207].

6.1 Wetterich propagators

In QFT, unitarity requires that no ghosts (at least, no stable ghosts) appear in the physical
spectrum of the theory. In the case of non-gauge theories, this is equivalent to saying that
the dressed propagator should not display additional real poles beyond the massless one
(cf. section 2). Causality and (vacuum) stability further restrict the pole structure of the
propagator: no complex poles should be located in the first or third quadrant of the physical
Riemann sheet of the q0-complex energy plane13 (cf. section 4). Analytic continuation
additionally requires the absence of essential singularities.

A propagator satisfying all these requirements has been proposed in [131]. Its scalar
part in Lorentzian signature reads

iD
(
q2
)

= i

q2
(
1 + α m2

q2 arctanh
[
− q2

m2

]) , α < 0 , (6.1)

13Standard (i.e., non-ghost) unstable particles are typically described by complex poles lying in the first
quadrant of the complex energy plane. However, since their decay width is positive, the corresponding poles
are located on the second Riemann sheet. Wick rotation is thereby not forbidden by the presence of this
type of complex poles.
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Figure 17. Poles of the propagator (6.1) as a function of α. For α < 0 there are no additional
poles, beyond the massless one. For 0 < α < 1 there are two stable ghost poles, and one of them is
a tachyonic ghost. Finally, for all α > 1 there is a pair of massless complex-conjugates poles.

where m2 is a mass scale. As detailed in [131], this propagator is endowed with two branch
cut singularities along the real q2 axis. If α < 0 no additional poles exist beyond the massless
one (cf. figure 17 and figure 18). Since the real part of the inverse propagator is always
positive, the branch cut singularities do not describe an unstable (ghost) degree of freedom,
but rather two symmetric multi-particle states. The spectral density is positive-definite
for α < 0, thus no violation of unitarity is expected in this case. Moreover, as shown in
figure 18, for α < 0 there are no complex poles and thus, based on the arguments we
discussed in section 4, no violation of causality ought to occur. Finally, the absence of
complex poles in the first and third quadrants of the q0-complex plane, together with the
absence of singularities at infinity, make it possible to connect the Euclidean and Lorentzian
versions of the theory via an analytic Wick rotation.

Let us now discuss the graviton propagator derived in [203–205] and compare it with
the one proposed in [131] and reviewed above. The scalar part of the propagator derived
in [203–205] reads

D−1 = m2

8ε

m2−M2−(Z+1)εq2−

√
(m2−M2−(Z−1)εq2)2−4ε q

2

m2 (m2−M2)2

 ,
(6.2)

where ε = −1 in the Lorentzian and ε = 1 in the Euclidean signature, m2,M2 > 0,
and Z is a parameter. In the following we will use the dimensionless momentum square
z = q2/m2

th with mth = m. In order to have a massless pole, one has to require m2 ≥M2.
One additional ghost pole at z = (−m2M2 + M4)/(m4Zε) appears under the signature-
independent condition

Z ≥ Zc = M2

m2 −M2 . (6.3)

In what follows, we shall restrict ourselves to the case Z < Zc and ε = −1. Due to the
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Figure 18. Pole structure of the function P (z) in eq. (6.1) in the complex q2-plane for three
different values of α, corresponding to the cases of complex-conjugate poles (α > 1), two real poles
(0 < α < 1) and no additional poles (α < 0). These are the only cases realized within the propagator
of eq. (6.1), as also shown in figure 17.

presence of the square root, there are branch cuts in the complex energy plane. The branch
points are

z±=− 1
m4 (Z−1)2

[
m2M2 (3+Z)−2M4−m4 (1+Z)±2

√
(m2−M2)3 (Zm2−M2)

]
,

(6.4)
and they are located along the positive real axis if Z > M2/m2. In contrast, in Euclidean
signature they would be located along the negative real axis. Finally, independent of the
signature, for Z < M2/m2 the branch points z± are complex conjugates and two branch
cuts appear parallel to the imaginary axis. It is also important to notice that Zc ≥M2/m2

if M2 ≥ m2, so that one can distinguish three cases:

• 0 < Z < M2/m2: The branch points z± are complex conjugates and two branch cuts
appear parallel to the imaginary axis. There are no additional ghost poles and the
spectral density is positive.

• M2/m2 < Z < Zc: Branch cuts appear along the real q2-axis, and the inverse
propagator develops an imaginary part (the spectral density thus has a continuum
part, corresponding to a multi-particle state). In this case there are no additional
ghost poles and Wick rotation is straighforward, as in [131]; however, for any Z in this
range, the P -function develops an imaginary part along Re(q2) where the spectral
density becomes negative.

• Z > Zc: In this case there are multi-particle states with negative spectral density and
additional ghost poles. Unitarity is thus violated.

The spectral density associated with these three cases is depicted in figure 19 for the case
m2 = 2 and M2 = 1 (in Planck units), while figure 20 compares the propagators in eqs. (6.1)
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Figure 19. Real part of the P function (left panel) and spectral density ρ(z) (right panel), with
z = q2m−2, associated with the graviton propagator (6.2) for three different values of Z, and for
m2 = 2 and M2 = 1 (in Planck units). These values are chosen to illustrate the three qualitatively-
different cases listed after eq. (6.4).

Figure 20. Comparison of the real and imaginary parts of the propagators in eq. (6.1) (case α < 0,
with α = −0.2 to produce the plot in [131], here in the left panel) and (6.2) (case Z < M2/m2, with
Z = 0.1 to produce the plot in the right panel). In both cases, the real part of P (x) = x−2D−1(x)
(purple line) is positive, while the imaginary part of D−1(x) (blue line) is non-zero only along the
branch cuts. Since for the case Z < M2/m2 the branch cuts are not along the real q2-axis, the
imaginary part of D−1(z) is zero for z ≡ x = Rez. The real part of the inverse propagator D−1(z)
(magenta line) has thereby one single massless pole.

and (6.2). Ghosts and a negative spectral density are avoided for Z < M2/m2. In the next
subsection we will explain how to perform an analytic continuation in this case.

6.1.1 Digression: Wick rotation via Sommerfeld branch cuts

We now focus on the possibility of performing an analytical Wick rotation in the presence
of branch cuts that are parallel to the imaginary axis. To this end, we note that in the
q0-plane, if Z > M2/m2 there are four symmetric branch points along the real axis in
Lorentzian, and along the imaginary axis in Euclidean signature. If instead Z < M2/m2,
the two branch points on the q2-plane translate in two pairs of complex-conjugate branch
points in the q0-complex plane, independently of the signature. Thus, in all these cases,
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Figure 21. Rotation of branch cuts of a simple test function, f = 1+log[(1+3q2/m2
th+ξ(q2/m2

th)2)],
for various angles θ ∈ [0, 2π), and in the case of one (top panels, case ξ = 0) and two (bottom panel,
case ξ = 1) branch cuts. The variation of the branch cut is implemented according to eq. (6.5).

the branch cuts of the propagator (6.2) cross all quadrants of the complex energy plane.
Wick rotation thus cannot be performed, at least not straightforwardly. In particular, since
the branch cuts are a continuum of singular points, one cannot use a modified contour à la
Lee-Wick to circumvent the problem. On the other hand, since the location of the branch
cuts depends on the convention on the domain of the principal argument, one can change
the location of the branch cuts while keeping the location of the branch points fixed. In
this procedure one has to make sure not to alter the values of the P -function along the
real axis, since the reality of the P -function along the real axis is related to the stability
properties of the given degrees of freedom. We thus use the replacement rule

Arg (z) −→ Arg
(
z ei(θ−π)

)
− (θ − π) , (6.5)

with θ ∈ [0, 2π). Specifically, the choice θ = π corresponds to the conventional case where
Arg(z) : C → [−π, π), while the choice θ = 0 reproduces in this case the Sommerfeld
(hyperbolic) branch cut. Examples of this implementation are shown in figure 21 for the
case of one and two branch points and cuts. In our case, the branch points are located in all
quadrants in the q0-complex plane and, as depicted in figure 22, after rotating the branch
cuts, one ends up with four “hooks” connecting the four branch points with ±∞ and ±i∞.
Next, by employing the iε-prescription, the branch points can be moved towards the second
and fourth quadrant of the complex energy plane. Therefore, combining an appropriate
rotation of the branch cuts with the Feynman iε-prescription one can remove them from
the first and third quadrants (cf. figure 22), thereby allowing for an analytic Wick rotation.
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Figure 22. Pole structure of the graviton propagator for Z < M2/m2 in the q2-plane (top panels)
q0-plane (center panels) and q0-plane with the iε-prescription implemented (bottom panels). The
figures in the left column are obtained with the “standard” prescription for the position of the
branch cuts. The figures on the right instead implement the rotation of branch cuts according to
eq. (6.5) with θ = π/30. This prescription, in combination with the iε-prescription, is used here
to move branch cuts and branch points suitably to allow for an analytic Wick rotation from the
Euclidean to the Lorentzian and vice versa. Indeed, when both iε-prescription and branch cut
rotations are applied, the first and third quadrants of the q0-plane are free from obstructions (figure
on the bottom-right panel) and an analytic continuation can be performed.
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6.2 Propagators mimicking dimensional reduction versus exponential form
factors

In the last subsection we examined two propagators satisfying all properties required by
unitarity, stability, and causality that we discussed throughout the manuscript. Despite
their nice features in this regard, these propagators cannot be compatible with a well-
defined UV completion within the framework of QFT, i.e., in terms of an UV fixed point
of the gravitational RG flow. The latter would indeed require a certain form of effective
dimensional reduction [207] and is a key requirement in approaches to QG which assume
the validity of QFT up to arbitrarily high energy scales.

In this final subsection we shall compare the features of the propagators stemming
from three different effective actions or derivations. We will work here with dimensionless
momenta q for shortness. Chronologically, the first is

D−1
1

(
q2
)

= q2eq
2
, (6.6)

and it comes from the simplest non-local gravity model [190–193]. As a caveat, within
non-local gravity the exponential form factor is assumed to arise at the level of the bare
action,14 and it is not clear whether its form is preserved along the RG flow, since there is
no known symmetry or mechanism preventing other non-exponential operators from being
generated by quantum fluctuations. This also means that some properties that seem to
be satisfied at a perturbative level w.r.t. the bare action could be spoiled by quantum
fluctuations (see, e.g., [208] for an example of this mechanism). To allow for a consistent
comparison with the other propagators we will introduce, we shall assume that quantum
fluctuations indeed preserve the structure of this exponential form factor at quadratic order,
and we shall thus re-interpret D1(q2) as (the scalar part of) a dressed propagator. The
second propagator we will consider is

D−1
2

(
q2
)

= q2
(
1 + q2 tanh q2

)
, (6.7)

and comes from the effective action proposed in [106]. The motivation behind the proposal
was to provide a proof of principle that effective actions can exist, that are compatible
with positivity and causality bounds (at the level of scattering amplitudes), as well as
with Weinberg’s asymptotic safety condition. Finally, we will analyze the properties of
the dressed graviton propagator numerically-derived in [51] using a spectral version of the
FRG [209] which also accounts for Lorentzian signature. The spectral density in this case
is analytically approximated by the interpolating function

ρ3
(
λ2
)

= δ
(
λ2
)

+ 1
π

(
8.4984λ1.04/2

2.5593 + 0.6668
√
λ2 + λ2

+ 3.5593
1 + 0.8170

√
λ2 + 0.9151λ2

)
,

(6.8)

14Note that despite its interpretation as a bare action, the corresponding action is not derived from
first-principle computations, e.g., as an RG fixed point of some theory. Moreover, since the bare action is
non-local, these theories violate locality at a fundamental level.
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and the corresponding scalar part of the propagator for the transverse-traceless is given by

D3
(
q2
)

=
∫ ∞

0
dλ2 ρ3

(
λ2)

q2 − λ2 + iε
. (6.9)

Note that in the expression above the iε-prescription is crucial to avoid unphysical singular-
ities at timelike momenta.

In what follows we shall compare these three propagators and some of their properties.
See also [206] for a complementary comparison of the first two form factors. For a given
propagator Di, a momentum-dependent version of the anomalous dimension ηi(q2) may be
implicitly defined by

Di

(
q2
)

= q−2(1−ηi(q2)/2) . (6.10)

Nonetheless, this map between Di and ηi is not bijective in q2 = 1 and therefore a naïve
inversion of this formula can result in unphysical divergences of ηi at finite momentum. A
definition avoiding this issue is

ηi
(
q2
)
≡ −q∂q log

(
q−2D−1

i

(
q2
))

, (6.11)

and we will employ the latter to determine the anomalous dimension associated with
each Di.

The properties of the three propagators are depicted in figure 23, which shows their pole
structure (top panel) and the momentum-dependent anomalous dimension (bottom panel).
Focusing on the propagator D1, the absence of additional poles beyond the massless one
indicates that causality and perturbative unitarity are preserved at the level of the two-point
function. Nonetheless, the presence of essential singularities at infinity forbids performing an
analytic Wick rotation (this problem could be alleviated employing a different prescription
for the analytic continuation [210]) and makes it difficult to generalize some results in QFT
whose derivation makes use of the Cauchy integral formula.15 A final important observation
is that the momentum-dependent anomalous dimension η1(q2) diverges to minus infinity in
the limit q2 →∞, potentially indicating that this type of exponential form factors might not
be compatible with a standard UV completion defined by an RG fixed-point action. This is
compatible with the findings in [19]: UV non-locality requires the presence of fundamental
scales in the fixed-point effective action, but such mass or length scales would explicitly
break the scale invariance required for the theory to be UV-completed by a standard RG
fixed point.

The behavior of the anomalous dimensions η2 and η3 is instead qualitatively similar.
The function η2 varies continuously in the range [0,−2), η∗ = −2 being the limiting
value for large momenta, and thus entails an effective dimensional reduction [207] from
four (small momenta) to two (large momenta) spacetime dimensions. The anomalous
dimension η3 instead varies in the range (0, 2), and approaches the value η∗ ' 1.04 as
q2 →∞. Both behaviors are compatible with the existence of a non-trivial fixed point in
the UV [31, 51, 106]. Despite these similarities, the propagators D2 and D3 have a very
different pole structure: aside from the massless pole located at the origin of the q2-complex

15See [211] for first steps towards overcoming this issue.
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Figure 23. Pole structure in the q2-complex plane (top panel) and anomalous dimension ηi for
the propagators D1 (figures on the left), D2 (figures in the center), and D3 (figures on the right).
Aside from the massless pole at q2 = 0, the propagator D1 does not have additional poles but has
an essential singularity at infinity. Its anomalous dimension varies from zero to negative infinity. In
contrast to the case of D1, the anomalous dimensions associated with the propagators D2 and D3
are bounded from above and from below. Yet, D2 and D3 display a very different pole structure: the
first has no branch cut singularities and is characterized by a tower of massless complex-conjugated
poles, while the second does not have poles beyond the massless one and has instead a branch cut
for q2 > 0.

plane, the former is characterized by an infinite number of massless complex-conjugate
poles, while the latter does not have any additional poles and only displays a branch cut
singularity for q2 > 0. The tower of massless complex-conjugate poles characterizing D2 is
key to satisfy both causality bounds and Weinberg’s asymptotic safety condition in [106].
Yet, according to the discussion in section 4, such complex-conjugate pairs entail a violation
of causality in terms of backward propagation of modes with positive energy (similarly
to Lee-Wick theories) and vacuum instabilities as defined in the same section (unless a
stabilizing mechanism exists16). The branch cut in D3 is instead expected, since at low
energies one should recover the one-loop logarithmic corrections to the classical action (cf.

16The question of whether a stabilizing mechanism exists in general is insofar unexplored. It is worth
mentioning that the case of [106] should be explored separately, since the interplay of infinitely many
complex-conjugate poles might give rise to non-trivial effects, and could differ from the case of a single pair
of complex-conjugate poles.
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section 5). Together with the absence of complex poles, this makes D3 fully consistent w.r.t.
all properties discussed throughout this manuscript and with standard EFT results. At
the same time, it is an open question whether scattering amplitudes determined using the
techniques in [51] will display the same desirable properties as those stemming from the
form factors studied in [106].

7 Discussion and conclusions

The perturbative quantization of General Relativity yields a theory that is perturbatively
non-renormalizable but unitary. Adding a finite number of higher derivatives improves the
ultraviolet behavior of gravity, but introduces ghosts.

In an attempt to reconcile renormalizability and unitarity, several theories of quantum
gravity have been advanced. Yet, independent of the specific ultraviolet completion of gravity,
it is a key question what the properties of the dressed graviton propagator should be, at
least ideally, and whether there exist propagators satisfying all these properties. Motivated
by these questions, in this work we have discussed various aspects of causality, unitarity
and stability, and their implications for the properties of the dressed (graviton) propagator.

First, we argued that unitarity of quantum field theories is best understood at the
level of the effective action, and that truncations of the latter based on both entire and
non-entire form factors lead to the appearance of fictitious ghosts. In particular, we provided
numerical evidence (see. Sect. 3) for the residue decoupling mechanism of fictitious ghosts
theorized in [131]. Second, we collected various inequivalent notions and definitions of
causality that appear in the literature, and we discussed their relations. We also provided a
detailed analysis of ghost and tachyonic instabilities, at the classical and quantum level,
showing that at the quantum level tachyonic instabilities can be less severe than the vacuum
instabilities provoked by unstable degrees of freedom with negative width and complex-
conjugate poles. In this course, we highlighted a key difference between quantum ghost
and tachyonic instabilities: the former is a “kinetic problem”, and its resolutions in a
non-perturbative setup is to be sought in the momentum dependence of the effective action.
The latter is a “potential problem” and its resolution lies in the field dependence of the
effective action. An explicit example of how interaction terms in the effective action can cure
tachyonic instabilities was provided in section 4.2.3. The relation between poles of a dressed
propagator, and some forms of causality, unitarity and stability is summarized in table 2.
An exact formula quantifying the causality violation is derived in section 4.3, cf. eq. (4.25),
and is depicted in figure 11. Third, we showed that logarithmic corrections to the classical
action (e.g., those characterizing Lee-Wick quantum electrodynamics or one-loop quadratic
gravity) are not sufficient to ameliorate the behavior of the theory, as the corresponding
propagator displays either complex-conjugate poles (implying a violation of causality and
vacuum instabilities) or stable tachyonic ghosts (implying a violation of unitarity, as well
as tachyonic instabilities). Accounting for the infinitely many derivatives at the level of
the effective action is crucial, but not sufficient. Thus, we discussed and compared some
examples of consistent field theories whose dynamics—encoded in the quantum effective
action—preserves causality, (vacuum and tachyonic) stability and unitarity at the level of
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the two-point function, and whose Euclidean theory is connected to the Lorentzian one via
an analytical Wick rotation. In particular, the propagator computed in [51] seems ideal
in this respect, it being compatible with all properties listed and analyzed here, as well as
with Weinberg’s asymptotic safety condition.

All in all, our work highlights several caveats and challenges in obtaining a consistent
and stable quantum theory of gravity, respecting all fundamental principles of quantum field
theory. The examples presented in section 6 yield a proof of principle that this might be
possible, either within or beyond the framework of quantum field theory. Yet, much more
effort is required to assess the consistency of quantum gravity theories, e.g., by accounting
for swampland criteria [71, 212] and observational constraints. We hope to come back to
these points in future work.
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