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In a class of two-component Ginzburg–Landau models (TCGL) with a U(1) × U(1) symmetric potential, 
vortices with a condensate at their core may have significantly lower energies than the Abrikosov–
Nielsen–Olesen (ANO) ones. On the example of liquid metallic hydrogen (LMH) above the critical 
temperature for protons we show that the ANO vortices become unstable against core-condensation, 
while condensate-core (CC) vortices are stable. For LMH the ratio of the masses of the two types of 
condensates, M = m2/m1 is large, and then as a consequence the energy per flux quantum of the vortices, 
En/n becomes a non-monotonous function of the number of flux quanta, n. This leads to yet another 
manifestation of neither type 1 nor type 2, (type 1.5) superconductivity: superconducting and normal 
domains coexist while various “giant” vortices form. We note that LMH provides a particularly clean 
example of type 1.5 state as the interband coupling between electronic and protonic Cooper-pairs is 
forbidden.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Multi-component Ginzburg–Landau models have received much 
attention recently [1–6] as they provide reasonably good phe-
nomenological description of various multi-band superconductors, 
such as the celebrated magnesium diboride (MgB2). Importantly 
it has been shown in Refs. [1,7,8] that two-component Ginzburg–
Landau models (TCGL) do provide an effective description of su-
perconductors with two order parameters starting with the micro-
scopic theory. The TCGL description is also very useful for more 
exotic matter, when pairings of different particles occur, a promi-
nent example being liquid metallic hydrogen (LMH) [9–15]. LMH 
is expected to be created under sufficiently high pressure, when 
electron, resp. proton pairing would take place below two distinct 
critical temperatures. For the state of the experimental search for 
LMH, see Refs. [16,17], and Refs. [18,19] for computer simulation 
results. Moreover the multicomponent GL theory is also of rele-
vance for the description of neutron star interiors when pairings 
of different particle species are also expected to occur [20]. As the 
magnetic properties of superconductors are determined to a large 
extent by its vortices and the interactions between them [21,22,15,
23], they are of utmost importance.
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TCGL models generically possess a U(1) × U(1) symmetric po-
tential for the two scalar fields (order parameters), with two dif-
ferent correlation lengths. In such theories the physics of vortices 
is richer than that of the Abrikosov–Nielsen–Olesen vortices in the 
GL model [21,24]. For example when the value of the magnetic 
penetration depth falls between the two correlation lengths, inter-
vortex forces are in general attractive for small vortex-separations 
while being repulsive for larger ones, see Refs. [3,25,26] where 
quite remarkable multi-vortex states have been observed. The non-
monotonous nature of the inter-vortex forces is associated with 
what has been dubbed as type 1.5 superconductivity [27,3]. More-
over vortices in TCGL can carry fractional magnetic flux [2]. In 
most superconductors the two order parameters are coupled due 
to interband interactions, and there is a single critical temperature. 
Then below the critical temperature both condensates are super-
conducting, i.e., both order parameters have a non-zero vacuum 
expectation value (VEV). Previous studies have mostly concentrated 
on this 2VEV case.

In the high-energy physics context, flux-tube or string solutions 
of the relativistic version of TCGL coupled to another gauge field – 
a U(1) × U(1) Higgs model – interpreted as superconducting cos-
mic string has been shown to be of great interest [28]. The SU (2)

symmetric version of the (relativistic) TCGL theory, known as the 
SU(2)-semilocal model in the literature [29] corresponds to the 
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limit of the bosonic sector of the standard model, when the Wein-
berg mixing-angle, θW → π/2. In the semilocal model because of 
the global SU(2) symmetry one can always achieve that only one 
of the order parameters takes on a VEV. Semilocal vortices exhibit 
a number of remarkable features, e.g. there exists a 1-parameter 
family of stable vortex solution at the border between type 1 and 
type 2 cases (Bogomolny point) corresponding to a deformation of 
the embedded ANO vortex, with a condensate at its core [29–32]. 
Condensate core (CC) vortices have been considered in the semilo-
cal model away from the Bogomolny point in Refs. [33,34], and 
for an overview for the case of a general U(1) × U(1) symmet-
ric potential we refer to Ref. [35]. More recently CC vortices have 
been investigated in Ref. [26] with a special, U (1) × U (1) × Z2
symmetric potential, when both vortices and domain walls coex-
ist, and even a hybrid vortex-domain wall type of excitation may 
appear.

The aim of this paper, is to present the some interesting physi-
cal phenomena due to CC vortices in TCGL models with U(1)×U(1) 
symmetric potentials. We shall concentrate on the case when only 
a single scalar field has a non-zero value in the minimum of 
the potential, i.e., when there is a single VEV. In condensed mat-
ter systems the scalar potential can be of this 1VEV-type, when 
there is no Josephson coupling between the two order parame-
ters, a prominent example being LMH. In LMH pairings between 
electrons and between protons are possible, when the temperature 
of the system is between the electronic and the protonic critical 
temperature, since the two type of Cooper pairs have a different 
charge forbidding interband coupling. ANO vortices can be embed-
ded in TCGL models when only one of the fields takes on a VEV, 
by setting the VEV-less field to zero. We demonstrate that the CC 
vortices (with a condensate at their core) are stable, as opposed 
to the embedded ANO ones which are unstable. In CC vortices the 
field with 0 VEV takes on a non-zero value in the vortex core, low-
ering the energy of the vortex, and stabilising it. Depending on the 
value of the parameters, the energy of CC vortices can be signif-
icantly lower than that of the corresponding ANO ones. We find 
that there are significant physical implications of the second or-
der parameter in the case when the ratio of the masses of the two 
types of condensates, M = m2/m1, is large. For LMH this ratio can 
be considered to be large, M ≈ mproton/melectron ≈ 1836. When M
is large the energy per flux quantum of the vortices, En/n becomes 
a non-monotonous function of the number of flux quanta, n. What 
happens is that for a given value of M the energy/flux, En/n de-
creases, so “giant” vortices (with a large flux) with a considerable 
amount of flux quanta may form, however, there is always max-
imal value of n for which the binding energy becomes zero. This 
is a rather neat manifestation of type 1.5 behaviour. The magnetic 
properties of such a superconductor do not fall into the classifi-
cation of either type 1 or type 2: although vortices tend to stick 
together to form “giant” vortices, various normal and supercon-
ducting domains coexist.

The simple two component Abelian model can be applied in 
the context of Higgs-portals [36,37]. In that case the scalar field 
with 0 VEV is neutral under the U(1) and it couples only through 
the symmetry breaking field to ordinary matter. In this context we 
have a simplified model of CC cosmic strings when dark matter is 
bound to the cosmic string core. The model considered is a simpli-
fied version of the scalar phantom (or Higgs portal) model of dark 
matter [36,37].

1. The two component Ginzburg–Landau theory

In its nondimensionalised form, the energy density of a two-
component Ginzburg–Landau (TCGL) model is
E =
∫

d3xE , E =
2∑

a=1

|Dφa|2 + |B|2
2

+ V (φa, φ
∗
a ) , (1)

where Dφa = (∇ − eaA)φa , with ea being the charge of the con-
densate φa , a = 1, 2 and B = ∇ × A. The most general fourth-order 
potential with U (1) × U (1) symmetry is [28]

V = β1

2

(
|φ1|2 − 1

)2 + β2

2
φ4

2 − α|φ2|2 + β ′|φ1|2|φ2|2 . (2)

The parametrisation of the potential was chosen in a way most 
suitable for the study of the 1VEV state, with φ1 having a non-zero 
VEV. The parameters β1,2, β ′ and α can be expressed in terms 
of the microscopic parameters in the superconductor setting (see 
Section 3).

For the stability of the potential,

β1,2 > 0, β ′ > −√
β1β2 (3)

must hold. Depending on the parameters of the potential, the min-
imum is either at |φ1| = η1, φ2 = η2, η1,2 �= 0 (2VEV case), at 
|φ1| = 1 φ2 = 0 or at φ1 = 0, φ2 = η2 (1VEV cases). In the present 
paper, we consider vortices in the first component 1VEV case, for 
which

β1β2 > β ′ 2 , and β ′ > α, (4)

or

β1β2 < β ′ 2 , and
√

β1β2 > α (5)

must hold.
Previous studies have focused on the 2VEV case, either in a 

condensed matter [2,3,5,4,38,39,7,8], holographic [42,43] or high 
energy physics [28,40,41] setting; global 1VEV vortices were con-
sidered in Ref. [44]. The SU (2) symmetric model, called semilocal 
has been considered in Refs. [29–34,45–47].

2. Properties of vortices with condensate in their cores

We seek vortex solutions with the help of the rotationally sym-
metric Ansatz,

φ1(r,ϑ, z) = f1(r)einϑ ,

φ2(r,ϑ, z) = f2(r)eimϑ ,
Aϑ(r,ϑ, z) = na(r) , (6)

with A0 = A3 = 0, Ar = 0, where r, ϑ, z are cylindrical coordinates, 
and the vortex line is aligned with the z axis. The Ansatz (6) can 
be obtained via a standard symmetry reduction [48]. The compat-
ibility of the Ansatz (6) with the Euler–Lagrange equations of the 
variational problem corresponding to the energy density (1) has
also been verified by direct computation.

In what follows, we shall consider solutions with m = 0, which 
are expected to be of lower energy than those with m > 0 because 
of the following considerations. If β ′ > 0, both the derivative and 
the interaction terms in the energy density, Eq. (1) favour m = 0, 
and if β ′ < 0, the only 1VEV case possible is β ′ > α [see Eqs. (4)
and (5)], and then, due to β ′ < 0, the formation of a condensate of 
φ2 is disfavoured in a false vacuum.

In the 1VEV case, solutions of the standard GL theory can be 
trivially embedded in the two-component theory with φ1 = φ, 
φ2 = 0. The embedded ANO vortex, depending on the parameters 
of the potential, may be stable or unstable. The case, where the po-
tential was SU (2) symmetric, has been considered in Refs. [29–32]. 
In the SU (2) symmetric case, the embedded Abrikosov vortex is 
unstable if the GL parameter is β > 1. We have similarly linearised 
the field equations in φ2. We have found, that the ANO vortex 
is unstable for a wide range of the parameters, e.g., close to the 
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Table 1
Energy per unit flux, En/(2πn) of CC vortices for (a) β1,2 = α = 2, β ′ = 2.1, (b) 
β1 = 2, β2 = 8, β ′ = 4.2, α = 4 and (c) β1 = 2, β2 = 3872, β ′ = 87.4, α = 83 com-
pared to ANO β = 2.

n (a) (b) (c) ANO

1 1.152 1.008 0.78 1.157
2 1.121 0.913 0.75 1.210
3 1.107 0.882 0.72 1.239

SU (2) symmetric case, or for β1 > 1 and β2 large, with β ′ and α
chosen appropriately in between.

Vortex solutions were computed by numerically solving the ra-
dial equations obtained by plugging the Ansatz (6) in the energy 
density (1), using code from Ref. [49]. We have found, that if the 
ANO vortices are unstable and if β ′ > α, there exists a solution 
for which φ2 does not vanish in the vortex core. These vortices 
also exist in the case, when β ′ = α (the boundary between the 
1VEV and 2VEV cases), if β1β2 �= β ′ 2, however, not exponentially 
localised in this case. Continued into the range α > β ′ (2VEV), 
these vortices become the fractional flux vortices of Refs. [2,3]. 
If β1β2 = α2 (the boundary between first and second component 
1VEV), solutions with the first and the second component having 
a non-zero VEV exist. For more details, see also Ref. [35]. For the 
special case of U (1) × U (1) × Z2 symmetry, see Ref. [26]. The do-
main structure observed there is a consequence of the high degree 
of symmetry of their potential.

The CC vortices have significantly lower energy than ANO ones (see 
Table 1). They are also stable at the linear level: we have repeated 
the stability analysis of Ref. [46] (with the methods of Ref. [50]), 
and found that for CC vortices, the perturbation equations have no 
negative eigenvalues.

Interestingly, for e2 = 0, we have found an analytical approxi-
mation for the energies and radii of CC vortices in the large flux 
limit. In this case, the vortex can be approximated to leading order 
in n as a false vacuum bag filled with a constant second con-
densate. The radius of the bag is RC ∼ √

2n(β1 − α2/β2)
−1/4, and 

the corresponding energy value is EC ∼ 2πn
√

β1 − α2/β2. This is 
a generalisation of the analogous results for ANO vortices, with 
radius R A ∼ √

2nβ−1/4 and energy E A ∼ 2πn
√

β [51,52]. To the 
e2 = 1 case, we shall return in Section 3.

3. Vortices in superconducting LMH

In the superconductor setting, the parameters of the potential 
(2) can be expressed with the microscopic parameters of the ma-
terial,

β1 = 4λ1m2
1/(h̄

2e2μ0) ,

β ′ = 4λ′m1m2/(h̄
2e2μ0) ,

β2 = 4λ2m2
2/(h̄

2e2μ0) ,

α = 4ν2m1m2/(h̄
2e2μ0η

2
1) ,

(7)

where λ1,2, λ′ and ν1,2 are the expansion coefficients of the 
Ginzburg–Landau free energy, μ0 is the vacuum permeability. For 
the condensate φa (a = 1, 2), ma is the effective mass of its Cooper 
pairs, and ea their charge measured in units of e, an arbitrary 
charge unit (conveniently e = 2eelectron). The penetration length 
depth is λL =

√
m1/(μ0e2

1e2η1) [which is scaled to 
√

2 to obtain 
the form in Eq. (2)].

In the case of LMH, e1 = −e2 = 1, and the mass ratio, M =
m2/m1 ≈ 1836. We have found, that for large values of the mass 
ratio M , there is a remarkable limiting behaviour of solutions of 
the Ginzburg–Landau equations. Therefore, we consider here the 
M 
 1 limit, and, as suggested by Eqs. (7), rescale the parameters 
as

β2 = M2β̃2 , β ′ = Mβ̃ ′ , α = Mα̃ . (8)
Fig. 1. Energy of vortices per unit flux, β1 = 2, β2 = M2β̃2, β ′ = Mβ̃ ′ , α = Mα̃, β̃2 =
9.68, β̃ ′ = 4.37, α̃ = 4.15. Energy values for different values of M are compared to 
Abrikosov (ANO) vortex energies. The arrows mark the minima of the energy per 
flux.

In Fig. 1, we have plotted the energy of vortices vs. the number 
of their flux quanta, for M = 20 and M = 100. Note first, that there 
is quite a large difference between the energies of CC and ANO 
vortices. The second important feature of the results is that En/n
has a minimum, which is shifted to higher number of flux quanta, 
n, with higher mass ratio M . As a consequence, single flux vor-
tices attract each other (similarly to type I SCs), however, for very 
large n, there is a repulsive interaction (similarly to the case of 
type II SCs). In between, there is a vortex which has the strongest 
binding. The magnetic behaviour of the material is thus different 
from both type I and type II superconductors: in an external mag-
netic field, instead of an Abrikosov lattice of unit flux vortices, 
vortices with quite large (several hundred) flux quanta form, many 
close to the minimum of En/n, but some significantly larger (pos-
sibly a few thousand flux quanta). However, the latter do not unite 
to form normal domains. For M = 1000, we have used an approx-
imate configuration to obtain the minimum, at n ≈ 350, and the 
last bound vortex at n ≈ 6600. For lower values of M, we have nu-
merical data, e.g., for β1 = 2, β̃2 = 9.68, β̃ ′ = 4.37 and α̃ = 4.15
for M = 20 the minimum is at n = 13, E1/(2π) = 0.7762, and 
E13/(26π) = 0.6549. The maximum bound vortex, i.e., where En/n
reaches E1 is n = 78. For M = 100, E1/(2π) = 0.7646 and the min-
imum is at n = 37, and E37/(74π) = 0.5814, and the last bound 
vortex is around n = 380.

The behaviour when n and M are both large can be also under-
stood with the help of a configuration. Let f1 be zero in the core, 
and f2 approximately 

√
α/β2 there. Between (1 − δ)R and R , f1 is 

linear, and reaches 1 at R , and f2 also linear, and reaches 0. For 
r < R , a = (r/R)2, and for r > R , f1 = 1, f2 = 0 and a = 1. An ap-
proximate minimisation yields δ ≈ (5/2)1/4((α/β2 + M)/n2/(M −
3e2

2α/β2))
1/4, R ≈ √

2n(β1 − α2/β2)
1/4 and

E ≈ e2
2πα̃

2β̃2M
n2 + 2π

√
β1 − α̃2

β̃2
n + 8π

√
n

3

(
2

5

)1/4

. (9)

For e2 = 1, at a given n, this approximation yields larger energies 
than the Bolognesi bag [51,52], i.e., for n → ∞, this variational 
Ansatz breaks down, and the vortex energy approaches the same 
asymptotic form as the ANO energy, 2πn

√
β1. For moderate val-

ues of n, formula (9) describes the energy of numerical solutions 
qualitatively well.

Let us consider some special cases here: the boundary be-
tween the parameter ranges corresponding to 1VEV and 2VEV is at 
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α = β ′ , while there is a boundary between first and second com-
ponent 1VEV at α = √

β1β2, if β ′ > α remains valid.
Close to the former one, α = β ′ , the second condensate in the 

vortex core expands, and its radial falloff, ∼ exp(−√
β ′ − αr) be-

comes slower. When the characteristic length scale of the falloff 
reaches the sample size, these vortices become indistinguishable 
from the fractional flux vortices of Refs. [2,3] in the 2VEV case. 
For α > β ′ , vortices with winding in the second component also 
appear.

Close to α = √
β1β2, the potential energy in the core becomes 

small, the vortices become large, and their flux is localised closer 
to the outer end of their cores. At the same time, the minimum 
of En/n is shifted to larger values of n, and at α = √

β1β2, En ∝ n
for large n. Here, ANO vortices in the second component become 
also allowed. In this case, it is possible to exchange the role of the 
2 components, with the rescaling φa → η2φa , x → x/η2, A → η2 A, 
where η2

2 = α/β2. In this way, we get the same expression (1)–(2)
for the energy of the vortices with an overall multiplier α/β2. With 
the same configuration as above, the estimated energy of these 
vortices is E = 2π(4α/β2 + α/

√
3β2), which is M0 asymptotically. 

However, using the large-β asymptotics of Abrikosov vortex en-
ergy [23], we get E ∼ 2π α

β2
log

√
β2, i.e., ∼ (log M)/M , telling us 

that at the transition, it is energetically favourable for the vortices 
to break up into n = 1 second component Abrikosov vortices. Lin-
earising the equations in the other component shows, that these 
vortices are then stable against the formation of a condensate in 
their core. This can be seen as follows: the large-β asymptotic 
form of the vortex profile is a small core with size proportional to 
1/

√
β2 ∝ 1/M . The linearised equation is of the form of an eigen-

value equation, and we have verified numerically, that it has no 
bound modes, and therefore if α >

√
β1β2, there is ordinary su-

perconductivity.

4. Implications for electroweak strings

In the semilocal model, β1 = β2 = β ′ = α ≡ β , embedded ANO 
strings are unstable for β > 1 [53–55,29–31,56,32,57,58]. The ef-
fect of an additional scalar field on the stability of vortices has 
been considered in Ref. [59] for β2 = 0. The resulting model is 
the one considered here with the field φ1 promoted to a two-
component field �1. Extending the study to β2 > 0, it is found 
that the range of stability of the vortices is considerably extended. 
A candidate for the role of the second scalar field would be the 
scalar phantom of Refs. [36,37], a dark matter candidate, however, 
the parameter range where stabilisation occurs, is phenomenolog-
ically disfavoured [60–62]. With the added stabilising effects of 
dark scalars, and possibly other fields, such as the dilaton [63] or a 
dark U (1) with gauge kinetic mixing [64,65], the question of find-
ing stable semilocal or electroweak strings remains open.

5. Conclusions

In type II SCs (β > 1), inter-vortex forces are repulsive, implying 
E2 > 2E1. In the two-component system, depending on the param-
eters, e.g., in the M 
 1 limit, for a range of n, En < nE1, which 
implies now, that there is a range of distances, where inter-vortex 
forces are attractive, i.e., the addition of the second component 
leads to a drastically changed and richer physics, similar to that 
of type 1.5 SCs.

Depending on relative magnitude of the parameters 
√

β1β2, α, 
and β ′ , there are different adjacent states in the systems: 1VEV 
and 2VEV or first and second component 1VEV. In the latter case, 
at the transition, CC vortices become large, the second condensate 
pushes out the flux into a wall for large n vortices, and then this 
wall breaks up into Abrikosov vortices in the second condensate, 
having significantly lower energy in the new phase, and being sta-
ble against condensate formation in their core.

If 
√

β1β2 > β ′ , there is a 1VEV to 2VEV transition, and a sec-
ond critical temperature, below which both condensates are active. 
At the second critical temperature, the new vortices expel some of 
their flux, and approach the fractional flux vortices put forward by 
Refs. [2,3]. At the critical temperature, the radial decay of the sec-
ond component becomes slow, and our vortices approach the frac-
tional flux vortices of Refs. [2,3]. As the transition is approached, 
vortex interaction becomes attractive and large flux vortices are 
expected to form. After the transition, there are non-trivial multi-
vortex structures for large n [25].
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