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Understanding the role of charge density wave (CDW) in high-temperature superconductivity is a
longstanding challenge in condensed matter physics. We construct a holographic superconductor model in
which the Uð1Þ symmetry is spontaneously broken only due to the presence of CDWs, rather than
previously known free charges with constant density. Below the critical temperature of superconductivity,
CDW phase and superconducting phase coexist, which is also justified by the numerical results of optical
conductivity. The competitive and cooperative relations between CDW phase and superconducting phase
are observed. This work supports the opinion that the appearance of pseudo-gap in CDW phase promotes
the prepairing of electrons as well as holes such that the formation of superconductivity benefits from the
presence of CDW.

DOI: 10.1103/PhysRevD.102.126013

I. INTRODUCTION

In the past decade, AdS/CMT duality [1–3] has been
becoming a powerful tool for understanding the funda-
mental problems in strongly coupled system since the
seminal work of holographic superconductor [4,5].
Considerable efforts have been triggered to understand
the mechanism of high-temperature superconductivity from
the holographic point of view. The key insight in this
approach is that the AdS background may become unstable
due to the presence of negative mass terms such that the
Uð1Þ gauge symmetry is spontaneously broken below the
critical temperature. A charged scalar condensates and
works as the order parameter to characterize the super-
conducting phase in the boundary theory, following the
standard holographic dictionary. In parallel, holographic
models of charge density waves (CDWs) have been
constructed by spontaneously breaking the translational
symmetry in the bulk [6] and its fundamental features as a
metal-insulator transition have been observed in [7]. The
strongly coupled nature of the above systems has been
signaled by the energy gap or pseudo-gap in the optical

conductivity which are much larger than that predicted by
BCS theory [5,7].
High-temperature superconductor exhibits very abun-

dant phase structure, which involves the interplay between
CDW phase and superconducting phase. Disclosing their
relation is crucial for understanding the mechanism of high-
temperature superconductivity. For cuprate oxides that is
usually treated as a doped Mott insulator, the interplay
between the CDW phase, also known as the pseudogap
phase, and the superconducting phase has been under
debate for decades (For instance, see [8] for review).
The coexistence and the competition between the CDW
phases and the superconducting phases are well known
[9–15]. Specifically, the competitive relation is signaled
by the suppression of Tc by the CDW phase [16,17], and
the competition of their order parameters [18,19].
Superconducting phase can grab charge carriers from
CDW phases [19]. On the other hand, recent experiments
reveal a novel cooperative relationship between them as
well. This is signaled by the positive correlation between
their critical temperatures [20–22]. The CDW assists
the superconductivity through phonons which serve as a
“glue” between electrons to form a Cooper pair [22].
Moreover, the CDW is argued to cause the superconduc-
tivity under certain conditions [23,24]. Nonetheless, at
present a complete theoretical interpretation on their
relations has not been emerged in condensed matter
physics. One challenge comes from the strongly coupled
nature of the high temperature superconductivity and the
CDW phases (Recent experiments suggest that the mecha-
nism of CDW phase in superconductors may involve
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strongly correlated physics [25–27]). This fact renders
holographic duality theory an effective weapon for attack-
ing them.
High temperature superconductivity is related to both free

charge carriers and CDW that usually come from doping a
Mott insulator. To reveal the role of CDW solely in high
temperature superconductivity, one good strategy is to sep-
arate it from free carriers in the compound. This is a hard task
because typical high temperature superconductors are pro-
duced in thepresenceofboth free charge carriers andCDW. In
this paper, we construct a holographic superconductor model
in the presence of CDWs only. Previously, all the holographic
superconductor models are built in the presence of free
chargeswith constant density [28,29], including somemodels
with CDW [30,31].1 For the first time, our model demon-
strates that the superconductivity may form from the preexit-
ing CDW phase by a first order phase transition. This may
provide a direct evidence to the argument that the CDW
state or the pseudo-gap state, is the precursor to the super-
conducting states [32–36], which has also been verified by
the experiment on Nernst effect [37]. Moreover, below the
transition temperature, our model is characterized by the
coexistence of the CDW phase and superconducting phase,
which has been observed in many superconducting materials
as discovered in [9–12]. Furthermore, in our model the CDW
phase can not only compete with superconducting phase, but
also cooperate with superconducting phase under certain
conditions, similar to the phenomena observed in [22].
Specifically, the competitive relation is manifestly disclosed
by the order parameters. Above the critical temperature Tc of
superconductivity, the CDW order parameter increases with
the decrease of the temperature. However, when the temper-
ature drops below Tc, the order parameter of CDW decreases
while that of superconductivity increases, which exactly
coincides with the phenomena observed in [18,19]. On the
other hand, the positive correlation between their critical
temperatures above a critical momentum mode suggests a
cooperative relationship between them, which also coincides
with experiment [22]. In addition, the system in our model is
neutral in the sense that the average value of charge density
over a period vanishes, implying that the charge excitations
consist of both electron pairs and hole pairs. The hole
superconductivity as a promising candidate for high temper-
ature superconductivity was previously investigated in
[38–40].

II. THE HOLOGRAPHIC SETUP

In this section, we build the holographic model in the
framework of Einstein-Maxwell-Dilaton theory. The action
reads as,

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R −
1

2
ð∇ΦÞ2 − VðΦÞ

−
1

4
ZAðΦÞF2 −

1

4
ZBðΦÞG2 −

1

2
ZABðΦÞFG

− jð∇ − ieBÞΨj2 −m2
vΨΨ��; ð1Þ

where F ¼ dA, G ¼ dB, ZAðΦÞ ¼ 1 − β
2
L2Φ2,

ZBðΦÞ ¼ 1, ZABðΦÞ ¼ γffiffi
2

p LΦ, VðΦÞ ¼ − 1
L2 þ 1

2
m2

sΦ2. A

and B are both Uð1Þ gauge fields, among which we treat B
as the Maxwell field dual to the electrical currents. For
clarity, we denote the symmetry groups related to A and B
fields as UAð1Þ and UBð1Þ, respectively. The real dilaton
field Φ is viewed as the order parameter of translational
symmetry breaking, while the other complex field Ψ,
charged only under the field B, is viewed as the order
parameter of UBð1Þ gauge symmetry breaking. This two
gauge field formalism, dual to a two-current system that
ubiquitously exist in nature [41], is proposed for two-fold
reasons. First, the doping is crucial for the emergence of
the CDW, while in holographic theories, the CDW can
emerge in the presence of an additional gauge field [6,7].
Therefore, we introduce the additional gauge field A to
bring to the system the doping effect. Note that the CDW
can also exist with only a single gauge field, such as the
Einstein-Maxwell-dilaton model or a class of models [6]
containing Chern-Simons terms [42]. It has been suggested
in [43] that A can be dual to a conserved spin current.
Second, the formalism with multiple gauge fields emerges
in the high-order correction of the gravity theory, and is
naturally introduced in this holographic model. We also
stress that ZABðΦÞ plays a vital role in making the AdS-RN
black hole become unstable to form spatially modulated
modes[6,7].
In the absence of the complex field Ψ, the holographic

CDWas well as its optical conductivity has previously been
obtained within the above framework in [7]. After the
spontaneous breaking of translational symmetry, the back-
ground with CDW becomes spatially modulated. Without
loss of generality, throughout this paper we set the AdS
radius l2 ¼ 6L2 ¼ 1=4, the masses of the dilaton and the
condensation m2

s ¼ m2
v ¼ −2=l2 ¼ −8, the coupling con-

stant β ¼ −130 and γ ¼ 16.6, then the maximal critical
temperature for translational symmetry breaking is TCDW ≈
0.071μA with the critical momentum mode kc ≈ 0.335μA,
as illustrated in Fig. 1, where μA, the boundary value of
time component of the gauge field A, is the chemical
potential of doping charge of the dual field theory that is
adopted as the scaling unit of the system [43]. In addition,
the large N limit of holographic duality requires that
l2

κ2
≫ 1.
The charge density can be read off from the near

boundary expansion Bt ¼ −ρðxÞzþOðz2Þ with

1Even in the probe limit where the background is Schwarzs-
child-AdS black hole, accompanying the condensation of scalar
field, free charges with constant density are perturbatively
generated as well.

YI LING, PENG LIU, and MENG-HE WU PHYS. REV. D 102, 126013 (2020)

126013-2



ρðxÞ ¼ ρ0 þ ρ1 cosðkcxÞ þ � � � :þ ρn cosðnkcxÞ ð2Þ

One remarkable feature of this model is that all the even-
order coefficients of the charge density vanish, namely,
ρðxÞ ¼ ρ1 cosðkcxÞ þ ρ3 cosð3kcxÞ þ � � �, which has been
justified by numerical analysis in [7]. It means that the dual
boundary theory contains only CDWs, without free
charges, namely, ρ0 ¼ 0. Thanks to this feature, the
Peierls phase transition as a typical metal-insulator tran-
sition can be manifestly observed [7]. This advantage
persists even after the superconducting phase transition,
as we will describe below.

III. THE INSTABILITY AND THE
CRITICAL TEMPERATURE OF

SUPERCONDUCTIVITY

In this section, we examine the instability of striped
black brane with CDWand evaluate the critical temperature
Tc for the condensation of Ψ. At this stage we may set Ψ as
ηeiθ. The UBð1Þ symmetry breaking we considered is
global, therefore θ could be an arbitrary constant. Here
we set θ ¼ 0 for simplicity.
As pointed out in [44,45], whether the background is

stable or not can be treated as a positive self-adjoint
eigenvalue problem for e2. Thus we rewrite the equation
of motion for η as,

ð∇2 −m2
vÞη ¼ e2B2η: ð3Þ

The key condition for a nonzero η solution is that
B2 ¼ gttBtBt ≠ 0. In all the previous holographic models,
this condition is guaranteed by the presence of nonzero
charge density ρ0. Here, only CDW presents and wewonder
if it would induce the instability of the background. The
affirmative answer can be obtained by numerics. We search
for non-zero solutions of η by changing the value of charge e
(See Appendix B). Here we plot the phase diagram in Fig. 1

with e ¼ 4.2 First, the superconducting phase can only exist
in the presence of CDW. This shows that CDW plays a
crucial role in the formation of the superconducting phase.
Another important phenomenon is the correlation between
the critical temperature of CDWphase and superconducting
phase. For k < kc, TCDW is negatively correlated with Tc
(competitive relation); while for k > kc, TCDW is positively
correlated with Tc (cooperative relation). This relation is
similar to results of very recent experiments [22].

IV. NUMERICAL SOLUTIONS FOR
BACKGROUND WITH SUPERCONDUCTIVITY

Next, we numerically solve the full holographic system.
Adopting the ansatz in Appendix B, the resultant equations
of motion consist of nine partial differential equations with
respect to x and z, which can be numerically solved with
Einstein-DeTurck method [46,47]. Especially, the near
boundary expansion of η is,

η ¼ zη1ðxÞ þ z2η2ðxÞ þOðz3Þ: ð4Þ

According to the holographic dictionary, each one of the
expansion coefficients η1ðxÞ; η2ðxÞ can be regarded as the
source, and the other one is regarded as the expected value.
Here, we treat η1ðxÞ; η2ðxÞ as the source and the expect-
ation, respectively. The UBð1Þ symmetry is expected to be
broken spontaneously, hence we set η1ðxÞ ¼ 0. Below Tc, a
nontrivial solution of the condensation term η2ðxÞ can be
expanded as,

η2ðxÞ ¼ ηð0Þ2 þ ηð1Þ2 cosðkcxÞ þ � � � þ ηðnÞ2 cosðnkcxÞ: ð5Þ

Numerically, we find that only even orders survive.3 In

Fig. 2, we plot the constant term ηð0Þ2 of the condensation vs
T at k ¼ kc. The condensation saturates in low temperature
region, while in the vicinity of critical temperature, the
condensation becomes a multivalue function of the temper-
ature. This feature clearly indicates a first-order phase
transition, which can also be justified with the analysis of
the free energy. We found that, the branch of solution with
higher condensation has lower free energy, that is favored
by thermodynamics.
Next, we study the behavior of charge density and

CDW with temperature after the superconducting
phase transition. Surprisingly, we find that all the even
orders of the charge density in Fourier expansion still
vanish after condensation. Namely, it takes the form as

FIG. 1. The phase diagram in the plane of ðT=μA; k=μAÞ. The
blue curve denotes the critical temperature of CDW namely TCDW
and the orange curve denotes the critical temperature of super-
conductivity, namely Tc. The inset zooms in the critical point of
the CDW curve.

2For other values of e, the phase diagram is qualitatively the
same, except that the coexisting region becomes larger or smaller,
which can also be justified in Appendix B.

3Mathematically we also find the other branch of solutions
with odd orders only. But these solutions are not physical,
because η2, as the modulus of the condensation, must be
positive-definite.
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ρðxÞ ¼ ρ1 cosðkcxÞ þ ρ3 cosð3kcxÞ þ � � �. This means that
the superconducting phase forms from CDWs, not from
free charges.
The near boundary expansion of the CDW order param-

eter is Φ ¼ ϕ1ðxÞz2 þOðz3Þ, and we numerically find ϕ1

behaves as ϕð1Þ
1 cosðkcxÞ þ ϕð3Þ

1 cosð3kcxÞ þ � � �. In Fig. 3,

we plot ρ1 and ϕð1Þ
1 as functions of the temperature with

e ¼ 4. The left plot shows that after superconducting phase
transition, the charge density becomes larger in comparison
with that in the absence of superconducting phase transition.
While the right plot shows that the order parameter of CDW
is always smaller than that in the absence of superconducting
phases. This evidently indicates that the CDW is suppressed
by the presence of the superconductivity.
The physics behind these phenomena can be understood

as follows. First, during all the process, no free charges
involve in but only CDWs present in the charge density.
We conclude that the superconductivity is induced by
CDWs, rather than the free charge. This fact can also be
justified by Eq. (3). Moreover, the increase of charge
density after superconducting phase transition indicates
that the periodic charge density consists of both normal
carriers and superconducting carriers. Consequently, the
carrier pairs of superconducting phase must contain both
charge pairs and hole pairs, because the net charge is zero.
This unconventional mechanism of carrier pairing, such as
hole superconductivity, is a promising candidate for the
mechanism of high temperature superconductivity [38–40].

They beat the traditional BCS theory in explaining the high
frequency absorption behavior and high transition temper-
ature of superconductivity.

V. THE OPTICAL CONDUCTIVITY

To justify that the above condensation due to Uð1Þ
symmetry breaking gives rise to a superconducting state
indeed, we study the optical conductivity by linear perturba-
tions (see Appendix C). Here we only consider the linear
response ofB field along x direction, namely δBx. Expanding
δBx with δBx ¼ ð1þ jxðxÞzþ � � �Þe−iωt. According to
Ohm’s law, the optical conductivity can be read off as,

σðωÞ ¼ 4
jð0Þx

iω
; ð6Þ

where jð0Þx is the leading term of the Fourier expansion.
We plot the optical conductivity at temperatures close to

Tc in Fig. 4. Above Tc, the appearance of the pseudo-gap in
the real part shows that the system is in the insulating phase,
as revealed in [7], and the imaginary part of the conduc-
tivity converges to zero. We stress that the dc conductivity
here is finite and approaches to zero as the temperature goes
down from TCDW, which results from the vanishing average
charge density. No charge is coupled with the goldstone
modes in our model, hence no delta function in dc
conductivity, which is in contrast to the cases in [48–51]
where the goldstone modes carry nonzero charges.
However, below Tc, the imaginary part exhibits a power
law Imσ ∼ 1=ω in low frequency region, implying that a
delta function arises at ω ¼ 0 in the real part of the
conductivity by Kramers-Kronig relations. It indicates that
the system undergoes a phase transition from insulating
phase to superconducting phase indeed.
In low frequency region, we fit the optical conductivity

by adding a pole to the damped harmonic oscillators with
Lorentz resonance, namely

σðωÞ ¼ i
Ks

ω
þ K1τ1
1 − iωτð1 − ω2

01=ω
2Þ

þ K2τ2
1 − iωτð1 − ω2

02=ω
2Þ ; ð7Þ

FIG. 2. The condensation of the charged scalar field for
different values of e at k ¼ kc.

FIG. 3. The charge density ρ1 and order parameter ϕð1Þ
1 as

functions of the temperature during the course of condensation.
The vertical dotted line denotes the location of Tc ≈ 0.048μA.
Below Tc, the yellow curve is plotted with superconducting
condensation, while the dotted curve is plotted without super-
conducting condensation.

FIG. 4. The optical conductivity before and after the super-
conducting phase transition. The left plot is the real part of the
optical conductivity and the right plot is the imaginary part.
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where Ks is proportional to the number of superfluid
density, and Ki is proportional to the number density of
CDW, while τi is the relaxation time, and ω0i is the average
resonance frequency (i ¼ 1, 2). The last two terms in (7)
have been widely studied in the analysis of CDW optical
response experiments [52]. The fitted parameters are listed
in Table I. From this table, one can see that the superfluid
density becomes nonzero below the critical temperature Tc.
In the end, we remark that the energy gap of the super-

conductor is almost the same as the pseudogap of CDW,
ΔCDW ≈ Δc ≈ 9.041Tc, both of which are much larger than
the BCS value. The above phase transition implies that the
appearance of pseudogap can promote the prepairing of
carriers and support the cooperative relation between the
pseudogap phase and the superconducting phase. Similar
phenomenon was previously observed in a holographic
model with novel insulator as well [53].

VI. DISCUSSION

We have constructed a holographic model in which the
role of CDW during the phase transition of superconduc-
tivity has been clearly disclosed. First, the UBð1Þ gauge
symmetry of in the bulk is spontaneously broken due to the
presence of CDW only, indicating that the superconduc-
tivity can form from the preexisting CDW phase by the
first-order phase transition. Second, below the critical
temperature Tc, the system is characterized by the coex-
istence of the CDW phase and the superconducting phase.
It is found that CDW phase and superconducting phase can
both cooperate and compete with each other. Furthermore,
the system remains neutral during the phase transition,
implying that the charge excitations are composed of both
electron pairs and hole pairs, beyond the traditional Cooper
pairs. It also supports the opinion that the pseudo-gap in
CDW phase promotes the preformed pairs of carriers such
that the formation of superconductivity benefits from the
presence of CDW. Our work has provided a novel under-
standing on the complicated relationship between CDW
and superconducting phases from the holographic point of
view, and may shed light on the mechanism of high
temperature superconductivity.
The most desirable work next is to further investigate

the features of superconductivity induced by CDW, and
compare them with those induced by free charges, in
particular, their responses to external magnetic field or
disorder effects. Moreover, it is intriguing to investigate
the relation between CDW and superconductivity in
more complicated environment, since the practical high

temperature superconductors are doped compounds with
free carriers. To this end, one may turn on the chemical
potential and the free charges with constant density such
that the black hole background is charged under the field B
as well. In this situation, the superconductivity may be
induced by both CDW and free charges, analogous to the
materials in experiments. Furthermore, the order parame-
ters of CDWand superconductor are not directly coupled in
current model. We definitely can introduce the coupling of
these order parameters to explore the complicated relations
between CDW and superconductors. Last but not the least,
one may treat field A as the doping and consider its impacts
on the relations between CDW and superconductors.

ACKNOWLEDGMENTS

We are grateful to Matteo Baggioli, Yuxuan Liu, Chao
Niu, Zhuoyu Xian, and Yikang Xiao for helpful discussions
and suggestions. Y. L. would also like to thank Weijia Li,
Hong Liu, Yu Tian, Jianpin Wu, Junbao Wu, Hongbao
Zhang for previous collaboration or discussion. This
work is supported by the Natural Science Foundation of
China under Grants No. 11575195, No. 11875053,
No. 11905083, and No. 11847055.

APPENDIX A: THE EQUATIONS OF MOTION

In this Appendix, we derive the equations of motion for
our model. We rewrite the UBð1Þ charged complex scalar
field Ψ as ηeiθ, where η > 0 is a real scalar field and θ is a
Stückelberg field, then the action can be cast as,

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∇ΦÞ2 − VðΦÞ

−
1

4
ZAðΦÞF2 −

1

4
ZBðΦÞG2 −

1

2
ZABðΦÞFG

− ð∇ηÞ2 −m2
vη

2 − η2ð∇θ − eBÞ2
�
: ðA1Þ

The equations of motion for all fields can be written as,

Rμν − TΦ
μν − TA

μν − TB
μν − TAB

μν − Tη
μν − Tθ

μν ¼ 0;

∇2Φ −
1

4
Z0
AF

2 −
1

4
Z0
BG

2 −
1

2
ZAB

0FG − V 0 ¼ 0;

∇2η −m2
vη − ð∇θ − eBÞ2η ¼ 0;

∇μðZAFμν þ ZABGμνÞ ¼ 0;

∇μðZBGμν þ ZABFμνÞ þ 2eη2ð∇νθ − eBνÞ ¼ 0;

∇μðη2ð∇μθ − eBμAÞÞ ¼ 0; ðA2Þ

where

TABLE I. The fitted parameters for optical conductivity.

T=Tc Ks=μA K1=μA τ1μA ω01=μA K2=μA τ1μA ω02=μA

1.007 0 0.136 12.240 0.468 3.279 0.302 1.794
0.997 0.020 0.159 9.947 0.483 2.893 0.431 1.457
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TΦ
μν ¼

1

2
∇μΦ∇νΦþ 1

2
Vgμν;

TA
μν ¼

ZA

2

�
FμρF

ρ
ν −

1

4
gμνF2

�
;

TB
μν ¼

ZB

2

�
GμρG

ρ
ν −

1

4
gμνG2

�
;

TAB
μν ¼ ZAB

�
FðμjρjG

ρ
νÞ −

1

4
gμνFG

�
;

Tη
μν ¼ ∇μη∇νηþ e2η2BμBν þ

1

2
m2

vη
2gμν;

Tθ
μν ¼ η2ð∇μθ∇νθ − 2eBðμ∇νÞθÞ; ðA3Þ

and the prime denotes the derivative with respect to Φ.

APPENDIX B: THE NUMERICAL ANALYSIS
OF THE BACKGROUND

We adopt the following ansatz for the background with
CDW,

ds2 ¼ 1

z2

�
−ð1 − zÞpðzÞQdt2 þ Sdz2

ð1 − zÞpðzÞ

þ Vdy2 þ Tðdxþ z2UdzÞ2
�
;

A ¼ μAð1 − zÞψdt; B ¼ ð1 − zÞχdt;
Φ ¼ zϕ; η ¼ zζ; θ ¼ 0; ðB1Þ

where pðzÞ ¼ 4ð1þ zþ z2 − μ2z3

16
Þ and μA is the chemical

potential mismatch in the dual field theory. Q, S, V, T, U,
ψ , χ, ϕ, ζ are functions of x and z. In this coordinate
system, the black hole horizon locates at z ¼ 1 and the AdS
boundary at z ¼ 0. Thanks to the Einstein-DeTurck
method, the Hawking temperature of the black hole with
stripes is simply given by T=μA ¼ ð48 − μ2AÞ=ð16πμAÞ.
Notice that if we set Q ¼ S ¼ V ¼ T ¼ ψ ¼ 1 and
U ¼ χ ¼ ϕ ¼ ζ ¼ 0, then the background goes back to
the AdS-RN black hole.
First, we compute the critical temperature Tc by turning

on η in probe limit and solving (4). We plot the relation
between the charge e and Tc in Fig. 5. It indicates that
below the critical temperature Tc, the background with
CDW becomes unstable and the complex scalar hair starts
to condensate. Moreover, the condensation become easier
for larger charge, and for smaller momentum modes.
Next, we numerically solve the equations of motion (A2)

with the ansatz (B1). We apply Einstein-DeTurck method
to fix the coordinates with appropriate boundary conditions
[46]. In addition, we impose the regular boundary condition
on the horizon, and require an asymptotic AdS4 on the
boundary. With the equations of motion and boundary
conditions, we obtain the numerical solutions by the
pseudospectral method and Newton-Raphson iteration

method [7,44,47]. As an example, Fig. 6 shows the
solutions for scalar field ϕ and the charged scalar field ζ
at the temperature T ¼ 0.988Tc with e ¼ 4 and k ¼ kc.

APPENDIX C: THE NUMERICAL ANALYSIS OF
THE LINEAR PERTURBATIONS

Consider the following linear perturbation,

gμν ¼ ḡμν þ δgμν; Aμ ¼ Āμ þ δAμ; Bμ ¼ B̄μ þ δBμ;

Φ¼ Φ̄þ δΦ; ζ ¼ ζ̄þ δζ; θ ¼ θ̄þ δθ: ðC1Þ

We mark the unperturbated quantities with an overbar in
the above formula. Each perturbation oscillates with time as
e−iωt. In order to extract the optical conductivity along x
direction, we only turn on Bx and keep By ¼ 0.
Note also that we must turn on the Stückelberg field θ for

self-consistency. To fix the solutions, we adopt the Donder
gauge condition and Lorentz gauge condition,

∇̄μĥμν ¼ 0; ∇̄μδAμ ¼ 0; ∇̄μδBμ ¼ 0; ðC2Þ

where ĥμν ¼ δgμν − δgḡμν=2. As a result, we obtain 21
linear equations of motion for the perturbations. We impose
the ingoing boundary conditions on the horizon. Then the
whole perturbation system can be solved by pseudospectral
method.

FIG. 5. The relation between the charge e and the critical
temperature Tc for the condensate of the charged scalar field,
where for each curve the momentum mode k of CDW is fixed.

FIG. 6. The solution of the scalar ϕ and the charged scalar field
ζ for T ¼ 0.988Tc, e ¼ 4 and k ¼ kc.
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