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TheDK interaction is strong enough to form a bound state, theD�
s0ð2317Þ. This in turn begs the question

of whether there are bound states composed of several charmed mesons and a kaon. Previous calculations
indicate that the three-body DDK system is probably bound, where the quantum numbers are JP ¼ 0−,
I ¼ 1

2
, S ¼ 1 and C ¼ 2. The minimum quark content of this state is ccq̄ s̄ with q ¼ u, d, which means that,

if discovered, it will be an explicitly exotic tetraquark. In the present work. we apply the Gaussian
expansion method to study the DDDK system and show that it binds as well. The existence of these three
and four body states is rather robust with respect to the DD interaction and subleading (chiral) corrections
to the DK interaction. If these states exist, it is quite likely that their heavy quark symmetry counterparts
exist as well. These three-body DDK and four-body DDDK molecular states could be viewed as
counterparts of atomic nuclei, which are clusters of nucleons bound by the residual strong force, or
chemical molecules, which are clusters of atoms bound by the residual electromagnetic interaction.

DOI: 10.1103/PhysRevD.100.034029

I. INTRODUCTION

In 2003 the BABAR collaboration discovered the
D�

s0ð2317Þ [1],1 a strange-charmed scalar meson, the
observation of which was subsequently confirmed by
CLEO [2] and Belle [3]. Its mass is about 160 MeV below
the one predicted for the lightest cs̄ scalar state in the naive
quark model, which makes it difficult to interpret theD�

s0 as
a conventional qq̄ state [4–17].
On the other hand, the D�

s0 can be easily explained as a
dynamically generated state arising from the Weinberg-
Tomozawa (WT) DK interaction [18–38]. This has led to
the prevailing idea that theD�

s0ð2317Þ is a molecular state, a
hypothesis which has been further supported by a series of
Lattice QCD simulations [39–43]. For a recent brief
summary of all the experimental, lattice QCD, and theo-
retical supports for such an assignment, see, e.g., Ref. [44].

If the DK interaction is strongly attractive, a natural
question to ask is what happens when one adds one extraD
meson to the system.2 The answer seems to be that it binds
[48,49]. In Ref. [48] it was noticed that the DD�

s0 system
can exchange a kaon near the mass shell, leading to a
relatively long-range attractive Yukawa potential that is
strong enough to bind. This conclusion is left unchanged if
one explicitly considers the composite nature of the D�

s0,
which simply leads to more binding [48]. A later, more
complete calculation in Ref. [49] leads to a binding energy
of about 90 MeV for the DDK three-body system.
In the present manuscript we revisit the calculation of the

DDK bound state and extend it to the DDDK system by
using the Gaussian expansion method (GEM), which offers
a number of advantages compared to previous studies
[48,49]. First, a main advantage of the GEM is that it
can be easily extended to four (or even five [50]) body
systems, which allows us to study the likely existence of a
DDDK bound state. Second, with the GEM one can
calculate directly the density distribution of the three (four)
body system, which then gives a transparent picture for
their spacial distributions. Third, it has enough flexibility so
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1From now on, we will simply refer to it as D�
s0 unless

specified otherwise.

2It has been shown that the DD̄�K system binds as well in
two recent works [45,46], though the dynamics in these two
frameworks are quite different, as well as the DKK and DKK̄
systems [47].
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that one can study the impact of the existence of a repulsive
core. Indeed, the chiral potential kernel up to the next to
leading order with the low-energy constants determined by
the corresponding lattice QCD data shows that this may
indeed be the case [33].
The outcome of the exploration presented in this work is

that both the DDK and DDDK systems bind, with binding
energies of the order of 65–70 and 90–100 MeV in each
case. While the DDK bound state, owing to its ccq̄s̄ quark
content, might be produced in experiments in the future, the
DDDK bound state is more likely to be observed on the
lattice instead.3

This article is organized as follows. In Sec. II, we explain
how we parametrize and determine the two-body DK and
DD interactions. In Sec. III, we explain how to construct
the three- and four-body DDK and DDDK wave functions
and solve the corresponding Schrödinger equation using
the GEM. In Sec. IV, we present our predictions for the
DDK andDDDK bound states and discuss their sensitivity
to a series of possible corrections. Finally, we summarize
the results of this manuscript in Sect. V.

II. THE S-WAVE DK AND DD POTENTIALS

The calculation of the DDK and DDDK bound states
depends on the DK and DD two-body interactions. While
the DK interaction can be well constrained directly from
the assumption that theD�

s0ð2317Þ is aDK bound state, and
indirectly from chiral perturbation theory, the DD inter-
action is far from being well determined and wewill have to
resort to phenomenological models instead. In this section
we will explain the type of potentials we will use to model
these two-body interactions. For the masses and spin
parties of the D, K, and D�

s0ð2317Þ, please refer to Table I.

A. The DK interaction

The most important contribution to theDK interaction is
the WT term between a D meson and a kaon.4 In the
nonrelativistic limit we can write this interaction as a
standard quantum mechanical potential,

VDKðq⃗Þ ¼ −
CWðIÞ
2f2π

ð1Þ

where the pion decay constant fπ ≈ 130 MeV and CWðIÞ
represents the strength of the WT interaction, which is

CWð0Þ ¼ 2 and CWð1Þ ¼ 0; ð2Þ

depending on whether we are considering the isospin I ¼ 0
or I ¼ 1 configuration of the DK system. The Fourier-
transform of the previous potential in coordinate space is

VDKðr⃗Þ ¼ −
CWðIÞ
2f2π

δð3Þðr⃗Þ; ð3Þ

which has to be regularized before being used within the
Schrödinger equation. A possible choice is to use a local
Gaussian regulator of the type

VDKðr;RcÞ ¼ −
CWðIÞ
2f2π

e−ðr=RcÞ2

π3=2R3
c
; ð4Þ

where Rc is the cutoff we use to smear the delta function.
For sensible choices of the cutoff, this potential reproduces
the D�

s0 pole. Nowadays we consider the WT interaction as
the leading order (LO) term in the chiral expansion of the
DK potential [33,34]. In this regard it is interesting to
notice that even though LO chiral perturbation theory
(ChPT) indeed indicates that the I ¼ 0 DK interaction in
S-wave is attractive, it happens that the next-to-leading
order (NLO) correction is weakly repulsive, see, e.g.,
Ref. [33]. This motivates the inclusion of a short-range
repulsive core in the DK interaction, as we will explain in
the next paragraph.
For the present purposes a more practical approach will

be to consider the DK interaction in a contact-range
effective field theory, in which at LO we have the (already
regularized) potential

VDKðr;RcÞ ¼ CðRCÞ
e−ðr=RcÞ2

π3=2R3
c
; ð5Þ

with Rc the cutoff and where the CðRcÞ is now a running
coupling constant. The differences with a unitarized WT
term are (i) that we let the cutoff Rc to float and (ii) that we
consider the strength of the interaction to runwith the cutoff.
In this way by varying the cutoff within a sensible range, for
which we choose Rc ¼ 1 − 3 fm in this work, we can
estimate the uncertainty in the calculations coming from
subleading corrections. We advance that the cutoff variation
will be tiny. Besides the variation of the cutoff, we will
consider a second method to assess the error in our

TABLE I. Mass and spin-parity of the D, K and D�
s0ð2317Þ

mesons.

Particles Mass(MeV) IðJPÞ
D� 1869.65 1

2
ð0−Þ

D0 1864.83 1
2
ð0−Þ

K� 493.677 1
2
ð0−Þ

K0 497.611 1
2
ð0−Þ

D�
s0ð2317Þ 2317.7 0ð0þÞ

3It must be pointed out that multimeson systems have been
studied before, see, e.g., Refs. [51–55], though from different
perspectives.

4In the framework of Ref. [49], we have checked that coupled
channel interactions are small, namely, have basically no impact
on the binding energy of theDDK state. Therefore, in the present
work we would work in the single-channel scenario.
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calculations. Inspired by the fact that ChPT predicts a
repulsive core in the DK interaction at NLO (as previously
mentioned), we can explicitly include this core in the
potential

VDKðr⃗;RcÞ ¼ CS
e−ðr=RSÞ2

π3=2R3
S

þ CðRCÞ
e−ðr=RcÞ2

π3=2R3
c

¼ C0
Se

−ðr=RSÞ2 þ C0
Le

−ðr=RcÞ2 ; ð6Þ

where CS is a coupling constant that we set as to provide a
repulsive core, i.e., we take C0

S > jC0
Lj, and RS is a second

cutoff which fulfills the condition RS < Rc. For concrete-
ness we take RS ¼ 0.5 fm.

B. The DD interaction

The DD interaction is not known experimentally, but
there are phenomenological models for it. Here we will
consider the one boson exchange (OBE) potential, which
provides a very simple and intuitive description of the
hadron-hadron interactions. The first qualitatively success-
ful description of the two-nucleon potential used the OBE
model [56,57], and the same is true for the first speculations
about the existence of heavy hadron molecules [58]. The
particular version of the OBE model that we will use is the
one in Ref. [59], developed for the description of heavy
meson-meson and heavy meson-antimeson systems.
In the particular case of the DD two-body system, the

OBE potential involves the exchange of the σ, ρ and ω
mesons:

VDDðr;ΛÞ ¼ Vρðr;ΛÞ þ Vωðr;ΛÞ þ Vσðr;ΛÞ ð7Þ

where the contribution of each light meson is regularized
by means of a form factor and Λ is a cutoff. The particular
contribution of each meson can be written as [59]

Vσðr;ΛÞ ¼ −g2σmσWC

�
mσr;

Λ
mσ

�
; ð8Þ

Vρðr;ΛÞ ¼ þτ⃗1 · τ⃗2g2ρmρWC

�
mρr;

Λ
mρ

�
; ð9Þ

Vωðr;ΛÞ ¼ þg2ωmωWC

�
mωr;

Λ
mω

�
; ð10Þ

where

WCðx; λÞ ¼
e−x

4πx
− λ

e−λx

4πλx
−
ðλ2 − 1Þ

2λ

e−λx

4π
: ð11Þ

The masses of the bosons we use are mρ ¼ 0.770 GeV,
mω ¼ 0.780 GeV, mσ ¼ 0.6 GeV, and the couplings are
gρ ¼ gω ¼ 2.6, gσ ¼ 3.4. The cutoff is set by reproducing
the Xð3872Þ pole, yielding Λ ¼ 1.01þ0.19

−0.10 GeV [59]. Here

for the sake of simplicity we will set the cutoff to
Λ ¼ 1.0 GeV, where we note that the cutoff dependence
is weak.

III. GAUSSIAN EXPANSION METHOD TO SOLVE
THE 3-BODY DDK AND 4-BODY DDDK SYSTEMS

In this section we briefly explain the Gaussian expansion
method (GEM) [60,61] as applied to the DDK and DDDK
systems. In the past the GEM has been successfully applied
in hypernuclear as well as heavy-hadron systems. The
focus of the manuscript is on the one hand to confirm the
previous theoretical studies about the existence of a DDK
bound state and to explore whether there are also bound
DDDK tetramers. Regarding the DDK system, it was
investigated in Ref. [48] first as aDD�

s0 two-body system, a
description which is valid provided that the size of the
DDK trimer is larger than its components (in particular the
D�

s0 meson), and second as a genuine three-body system by
solving the Faddeev equations. In each case the bound state
is at about ð50 − 60Þ MeV and ð60 − 100Þ MeV below the
DDK threshold, respectively. Later a more complete study
appeared in Ref. [49], which uses the method developed by
the Valencia group [62–70] to solve the Faddeev equation
[71] for the DDK system, predicting a bound state at about
90 MeV below the DDK threshold.

A. Three-body DDK system

The Schrödinger equation of the DDK 3-body system is

HΨtotal
JM ¼ EΨtotal

JM ; ð12Þ
with the corresponding Hamiltonian

Ĥ ¼
X3
i¼1

p2
i

2mi
− Tc:m: þ

X3
1¼i<j

VðrijÞ; ð13Þ

where Tc:m: is the kinetic energy of the center of mass and
VðrijÞ is the potential between the ith and the jth particle
pair. The three Jacobi coordinates for the DDK system are
shown in Fig. 1. The total wave function is a sum of the
amplitudes of the three possible rearrangement of the
Jacobi coordinates, i.e., of the channels (c ¼ 1–3) shown
in Fig. 1

FIG. 1. The three permutations of the Jacobi coordinates for the
DDK system.
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Ψtotal
JM ¼

X
c;α

Cc;αΨc
JM;αðrc;RcÞ; ð14Þ

where α ¼ fnl; NL;Λ; tTg and Cc;α are the expansion
coefficients. Here l and L are the orbital angular momenta
for the coordinates r and R, t is the isospin of the two-body
subsystem in each channel, Λ and T are the total orbital
angular momentum and isospin, n andN are the numbers of
Gaussian basis function corresponding to coordinates r and
R, respectively. For the DD and DK two-body potentials
we refer to Sec. II. The eigenenergy E and coefficients are
determined by the Rayleigh-Ritz variational principle.
Considering that the two D mesons are identical, the total
wave function should be symmetric with respect to the
exchange of the two D mesons, which requires that

P12Ψtotal
JM ¼ Ψtotal

JM ; ð15Þ

and P12 is the exchange operator of particles 1 and 2. The
wave function of each channel has the following form

Ψc
JM;αðrc;RcÞ ¼ Hc

T;t ⊗ ½Φc
lL;Λ�JM; ð16Þ

where Hc
T;t is the isospin wave function, and Φc

lL;Λ the
spacial wave function. The total isospin wave function
reads as

Hc¼1
T;t ¼ ½½η1

2
ðD2Þη1

2
ðK3Þ�t1η1

2
ðD1Þ�1

2
;

Hc¼2
T;t ¼ ½½η1

2
ðD1Þη1

2
ðK3Þ�t2η1

2
ðD2Þ�1

2
;

Hc¼3
T;t ¼ ½½η1

2
ðD1Þη1

2
ðD2Þ�t3η1

2
ðK3Þ�1

2
; ð17Þ

where η is the isospin wave function of each particle. The
spacial wave function Φc

lL;Λ is given in terms of the
Gaussian basis functions

Φc
lL;Λðrc;RcÞ ¼ ½ϕG

nclc
ðrcÞψG

NcLc
ðRcÞ�Λ; ð18Þ

ϕG
nlmðrcÞ ¼ Nnlrlce−νnr

2
cYlmðr̂cÞ; ð19Þ

ψG
NLMðRcÞ ¼ NNLRL

c e−λnR
2
cYLMðR̂cÞ: ð20Þ

Here NnlðNNLÞ are the normalization constants of the
Gaussian basis and the range parameters νn and λn are
given by

νn ¼ 1=r2n; rn ¼ rminan−1 ðn ¼ 1; nmaxÞ;
λN ¼ 1=R2

N; RN ¼ RminAN−1 ðN ¼ 1; NmaxÞ; ð21Þ

in which fnmax;rmin;aorrmaxg and fNmax; Rmin; A orRmaxg
are Gaussian basis parameters. After the basis expansion,
the Schrödinger equation of this system is transformed into
a generalized matrix eigenvalue problem:

½Tab
αα0 þ Vab

αα0 − ENab
αα0 �Cb;α0 ¼ 0: ð22Þ

Here, Tab
αα0 is the kinetic matrix element, Vab

αα0 is the potential
matrix element and Nab

αα0 is the normalization matrix
element.
The quantum numbers of all the allowed configurations

are determined by angular momentum conservation, iso-
spin conservation, parity conservation, and Bose-Einstein
statistics. Given that we only consider S-wave interactions,
and only the DK interaction in I ¼ 0 is dominant, we
obtain the allowed configurations shown in Table II, where
we have given explicitly the values of nmax andNmax, which
are sufficiently large to ensure convergence. The DDK
system that we are interested in has isospin 1=2 and spin
parity 0−.

B. Four-body DDDK system

A generic four-body system has 18 Jacobi coordinates.
In the DDDK system, owing to the fact that there are three
identical D mesons, the possible configurations of the
Jacobi coordinates reduce to three K-type channels and one
H-type channel, see Fig. 2. There are 4 identical Jacobi
coordinates for each K-type channel and 6 identical Jacobi
coordinates for the H-type channel. The total wave function
of this DDDK system is

Ψtotal
IðJPÞ ¼

X
c;α

Ac;αΨc
αðrc;Rc; ρcÞ; c ¼ 1 − 18; ð23Þ

and the wave function in each Jacobi channel reads

Ψc
αðrc;Rc; ρcÞ ¼ Hc

t;T;I ⊗ Φc;JP
lLλ;σΛ: ð24Þ

TABLE II. Quantum numbers of different Jacobi coordinate
channels ðc ¼ 1 − 3Þ of the DDK IðJPÞ ¼ 1

2
ð0−Þ state and the

number of Gaussian basis used. Note that channel 1 and channel 2
are the same.

c l L Λ t T J P nmax Nmax

1(2) 0 0 0 0 1
2

0 − 10 10
1(2) 0 0 0 1 1

2
0 − 10 10

3 0 0 0 1 1
2

0 − 10 10

FIG. 2. Jacobi coordinates for the rearrangement channels
(c ¼ 1 − 4) of the DDDK system. The three D mesons are to
be symmetrized.
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Here t, T, I are the isospin of the coordinates r, R and ρ in
each channel; l, L and λ are the orbital angular momenta
for the coordinates r, R and ρ, while σ is the coupling of l
and L, Λ is the coupling of σ and λ, and J, P is the total
angular momentum and parity. The Gaussian basis and
parameters are in the same form as those in the 3-body
system, which are

Φc
lLλ;σΛ ¼ ½ϕG

nclc
ðrcÞψG

NcLc
ðRcÞ�σcφG

νcλc
ðρcÞ�Λ; ð25Þ

ϕG
nlmðrcÞ ¼ Nnlrlce−νnr

2
cYlmðr̂cÞ; ð26Þ

ψG
NLMðRcÞ ¼ NNLRL

c e−λNR
2
cYLMðR̂cÞ; ð27Þ

φG
νλμðρcÞ ¼ Nνλρ

λ
ce−ωνρ

2
cYλμðρ̂cÞ: ð28Þ

Here NnlðNNLÞ are the normalization constants of the
Gaussian basis and the range parameters νn, λn, and ων

are given by

νn ¼ 1=r2n; rn ¼ rminan−1ðn ¼ 1; nmaxÞ;
λN ¼ 1=R2

N; RN ¼ RminAN−1ðN ¼ 1; NmaxÞ;
ων ¼ 1=ρ2ν; ρν ¼ ρminα

ν−1ðν ¼ 1; νmaxÞ: ð29Þ
Since we are considering only S-wave interactions, we have
J ¼ l ¼ Lλ ¼ σ ¼ Λ ¼ 0, and the parity is þ. The pro-
cedure to determine the allowed configurations for the
DDDK system is the same as the DDK case. The 4-body
DDDK configurations are shown in Table III, together with
the number of Gaussian basis used.

IV. PREDICTIONS

In this section we discuss the predictions we make for the
DDK andDDDK bound states.With the two-body inputs of
Sec. II and the three(four)-body configurations detailed in
Sec. III, we can predict the existence of DDK and DDDK
bound states. The outcome is that theDDK trimer will bind
by about 70 MeV and the DDDK tetramer by about
100 MeV, with variations of a few MeVat most, stemming
from the uncertainties in the DK and DD potentials.

A. Solving the DDK and DDDK systems

The two basic input blocks for the calculation of the
DDK and DDDK systems are the DK and DD inter-
actions, of which the DK one is the most important factor
when it comes to binding. The DK potential contains the
running coupling CðRcÞ and the cutoff Rc, where Rc ¼
ð1 − 3Þ fm and CðRcÞ is determined from the condition of
reproducing the well-known D�

s0ð2317Þ as a DK bound
state with a binding energy of 45 MeV. In addition there are
two additional parameters, the coupling CS and the short-
range radius Rs ¼ 0.5 fm, which are used to estimate the
uncertainties in the DK potential. We study three combi-
nations of RS and Rc, which can be consulted in Table IV,

TABLE III. Quantum numbers of different Jacobi coordinate
channels ðc ¼ 1 − 4Þ of the DDDK IðJPÞ ¼ 1ð0þÞ state and the
number of Gaussian basis used. The identical channels have
the same configuration. The number in the brackets denotes the
alternative value.

c l L λ σ L t T I J P nmax Nmax νmax

1 0 0 0 0 0 1 1
2
ð3
2
Þ 1 0 þ 10 10 10

2 0 0 0 0 0 1 1
2
ð3
2
Þ 1 0 þ 10 10 10

3 0 0 0 0 0 0(1) 1
2
ð3
2
Þ 1 0 þ 10 10 10

4 0 0 0 0 0 1 0 (1) 1 0 þ 10 10 10

TABLE IV. Binding energies (in units of MeV) of DDK and DDDK systems with and without the DD interaction for different
combinations of RS, Rc, C0

S, and C0
L. The couplings are in units of MeV.

C0
S C0

L E2 E3 (only VDK) E3ðVDK þ VDDÞ E4 (only VDK) E4ðVDK þ VDDÞ
RS ¼ 0.5 fm Rc ¼ 1 fm

0 −320.1 −45.0 −65.8 −71.2 −89.4 −106.8
500 −455.4 −45.0 −65.8 −70.4 −89.2 −103.5
1000 −562.6 −45.0 −65.7 −69.7 −88.8 −101.4
3000 −838.7 −45.0 −65.0 −68.4 −87.0 −97.3

RS ¼ 0.5 fm Rc ¼ 2 fm
0 −149.1 −45.0 −66.0 −68.8;−45.1 −88.7;−66.3 −97.6;−70.7
500 −178.4 −45.0 −65.9 −68.2;−45.5 −88.5;−66.7 −95.5;−70.9
1000 −195.0 −45.0 −65.8;−45.2 −67.9;−45.8 −88.2;−66.9 −94.5;−71.2
3000 −225.9 −45.0 −65.3;−45.6 −67.2;−46.6 −87.0;−67.0 −92.6;−71.7

RS ¼ 0.5 fm Rc ¼ 3 fm
0 −107.0 −45.0 −66.2;−47.3 −68.0;−48.3 −88.8;−70.2 −94.4;−74.3
500 −119.4 −45.0 −66.2;−48.2 −67.7;−49.3 −88.7;−71.0 −93.2;−74.8
1000 −125.6 −45.0 −66.1;−48.7 −67.5;−49.8 −88.4;−71.3 −92.5;−75.2
3000 −136.2 −45.0 −65.8;−49.4 −67.1;−50.7 −87.6;−71.7 −91.4;−75.7
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where we also list the values of the couplingsCR andCðRcÞ
and the binding energies of the DDK and DDDK systems.
The different potentials investigated are shown in Fig. 3 and
the probability density distributions of the DK pair corre-
sponding to the potentials are shown in Fig. 4.
A few comments about the results of Table IV are in

order. The first thing we notice is that the impact of theDD
interaction is mild. It makes the DDK and DDDK systems
more bound, but only by a few MeV. This is a bit relieving
as the DD interaction is not well known. The second
interesting observation is that the existence of theDDK and
DDDK bound states is rather robust with respect to the
likely existence of a short-range repulsive core. In other
words, the existence of the DDK and DDDK bound states
is almost guaranteed as long as theD�

s0 is dominantly aDK
bound state (we will later check that this will still be the
case even if the D�

s0 is a compact c̄s state). The third
observation is that as the range of the attraction becomes
larger, two bound state solutions appear instead of one,
with the deepest bound one becoming slightly shallower.
In Table V we show the root mean square (RMS) radius

of the DK and DDK systems as well as the expectation
values of the kinetic and potential terms. The RMS radius
of the D�

s0, which ranges from 1.2 to 2.6 fm, increases with
the cutoff Rc and with the coupling CS of the short-range
repulsive core. In the DDK system, the RMS radius of the

DK pair is slightly larger than its counterpart in the D�
s0.

The RMS radius of the DD system also increases if we
increase the cutoff Rc or the couplingCS. We notice that the
geometry of the DDK system is more or less of a proper
triangle, which agrees qualitatively with the findings of
Ref. [49]. From the last two columns of Table V, it is clear
that the DD interaction is weakly attractive, accounting for
only a few MeV of the total potential energy.

B. Solving the DDDK system as an
equivalent DDD�

s0 system

If the separation of the DK pair within the DDK trimer
and DDDK tetramer is comparable to or larger than the
expected size of the D�

s0, in a first approximation it will be
possible to treat the D�

s0 as a pointlike particle, with its
compound structure providing subleading corrections to
this pointlike approximation. From Table V we can see that
the RMS of the DK subsystem in the DDK and DDDK
systems is similar to that of the D�

s0 as a DK molecule. In
this regard we notice that in Ref. [48] the D�

s0 is approxi-
mated as pointlike, where the interaction between theD and
D�

s0 is mediated by one kaon exchange and is strong
enough to form a bound state. This DD�

s0 molecule is
predicted to be 50–60 MeV below the DDK threshold, to
be compared with 65 MeV when we consider it as a

FIG. 4. Density profile of the DK molecule corresponding to the potentials of Fig. 3.

FIG. 3. Isospin t ¼ 0 DK potential as a function of the distance between D and K for different RS, Rc, and C0
S. The coupling C0

L in
each case is determined by reproducing the D�

s0.
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genuine DDK three-body state and ignore the DD inter-
action (see Table IV). This indicates that the predictions of
the pointlike approximation are reasonably good (for such a
simple approximation) and that the compound structure of
theD�

s0 provides additional attraction. In the following lines
we will extend the ideas of Ref. [48] to the DDDK
tetramer, i.e., we will treat it as a three-body DDD�

s0
system where the D�

s0 is assumed to be a compact meson.
To do this, we first reproduce the two-body calculation of
Ref. [48], but in coordinate space, and then study the three-
body DDD�

s0 system using the GEM.
The interaction of DD�

s0 is attractive and reads as

VOKEðq⃗Þ ¼ −h2
ω2
K

f2π

1

μ2K þ q⃗2
; ð30Þ

where ωK ¼ mD�
s0
−mD and the effective kaon mass

μK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K − ω2
K

p
. As in Ref. [48], we take h ¼ 0.7 and

fπ ¼ 130 MeV. We regularize the potential by multiplying
it with a dipole form factor of the type:

FDðq2Þ ¼
ðΛ2 −m2

KÞ2
ðΛ2 − q2Þ2 : ð31Þ

After the inclusion of this form factor, theDD�
s0 potential in

coordinate space reads

VDD�
so
ðrÞ¼−h2

ω2
K

f2π

�
e−μKr

4πr
−
e−Λ

0r

4πr
−
ðΛ02−μ2KÞe−Λ0r

8πΛ0

�
;

ð32Þ

where we define Λ0 as

Λ02 ¼ Λ2 − q20 ¼ Λ2 − ω2
K: ð33Þ

Using the above DD�
s0 potential and the DD potential

provided by the OBE model, we can check whether the
three-body DDD�

s0 system binds. The binding energies we
obtain with different cutoffs are tabulated in Table VI.
With the effective cutoff Λ0 ranging from 0.8–1.6 GeV,

the results of Table. VI indicate that theDDD�
s0 bound state

is located about (65 – 90) MeV below the DDDK thresh-
old. This is to be compared with 100 MeV for the full four-
body calculation, see Table IV for details. That is, as
happened with the DD�

s0=DDK system, the approximation
that the D�

s0 is a compact state results in underbinding for
the DDD�

s0=DDDK system, but not much.

V. SUMMARY

In this manuscript we argued that the DK interaction is
attractive enough as to generate DK, DDK, and DDDK
bound states. For this we began by assuming that the
D�

s0ð2317Þ is a DK molecule, which determines in turn the
DK interaction. Then, by means of the Gaussian expansion
method [60,61] (a method for few-body calculations), we
have addressed the question of whether one can build up
multi-component molecular states, similar to the formation
of atomic nuclei from clusters of nucleons bound by the

TABLE V. Root mean square (RMS) radius (in units of fm) of DK and DDK systems, the expectation values (in units of MeV) of the
kinetic term, DK and DD interactions with various parameters RS. Rc, C0

S, and C0
L. The couplings are in units of MeV.

C0
S C0

L r2ðDKÞ r3ðDKÞ r3ðDDÞ hTi hVDKi hVDDi
RS ¼ 0.5 fm Rc ¼ 1 fm

0 −320.1 1.28 1.32 1.36 124.37 −189.61 −5.98
500 −455.4 1.39 1.44 1.47 99.51 −164.83 −5.03
1000 −562.6 1.46 1.53 1.54 91.43 −156.67 −4.51
3000 −838.7 1.61 1.69 1.68 93.24 −157.80 −3.82

RS ¼ 0.5 fm Rc ¼ 2 fm
0 −149.1 1.74 1.80 1.80 60.20 −125.74 −3.23
500 −178.4 1.91 1.98 1.96 51.00 −116.59 −2.64
1000 −195.0 1.99 2.07 2.04 50.63 −116.12 −2.43
3000 −225.9 2.13 2.22 2.15 53.61 −118.59 −2.24

RS ¼ 0.5 fm Rc ¼ 3 fm
0 −107.0 2.13 2.19 2.17 39.49 −105.35 −2.13
500 −119.4 2.31 2.38 2.34 34.80 −100.73 −1.77
1000 −125.6 2.37 2.47 2.42 34.90 −100.77 −1.65
3000 −136.2 2.53 2.61 2.53 36.66 −102.24 −1.54

TABLE VI. Binding energies (in units of MeV) of DD�
s0 and

DDD�
s0 systems with different cutoff Λ0 (in units of GeV).

Λ0 BDD�
s0

BDDD�
s0
(only VDD�

s0
) BDDD�

s0
(VDD þ VDD�

s0
)

0.8 −5.1 −11.5 −13.9
1.0 −8.5 −18.9 −22.5
1.2 −11.7 −25.8 −30.3
1.4 −14.5 −31.9 −37.2
1.6 −17.0 −37.2 −43.3
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nucleon-nucleon interaction. The answer is yes. We find a
bound DDK trimer and a DDDK tetramer. The prediction
of this trimer confirms the previous calculations of
Refs. [48,49], while the prediction of the tetramer is novel
to the present work.
We have checked the robustness of these predictions

against a series of uncertainties. While the DK interaction
is well constrained by the existence of the D�

s0ð2317Þ and
chiral perturbation theory, the DD interaction is consid-
erably less well-known. Yet it also enters the calculations.
We chose to describe theDD potential in terms of the OBE
model, in which the DD interaction turns out to be mildly
attractive and has a minor impact on the binding energy of
the trimer and tetramer states. The DK potential, though
well-known, is still subject to subleading corrections,
which we take into account by varying the exact form
of this potential. As expected from the fact that we are
dealing with subleading corrections, the predictions are
almost left unchanged by these variations.
In addition, we have studied a rather unlikely scenario

that the D�
s0ð2317Þ is dominantly a genuine cs̄ state.

Nonetheless, even in such a case, we still predict DD�
s0

andDDD�
s0 bound stateswith the same quantumnumbers as

the DDK trimer and DDDK tetramer, but this time located
at approximately (50 − 62) and ð60 − 90Þ MeV below the
DDK and DDDK thresholds (instead of 70 and 100 MeV
when the D�

s0 is a molecular meson). The binding mecha-
nism is the long-range one-kaon-exchange potential in the
DD�

s0 system: owing to the mass difference between the D
andD�

s0 mesons, the kaon is exchanged near the mass shell,
leading to an enhancement in the range of the potential [48].
Although the existence of the DDK and DDDK bound

states seems to be quite robust, the question of where to find

them is much more challenging. If we now focus on the
DDK state, the experimental discovery of the D�

s0ð2317Þ
gives a clue. As already argued in Ref. [49], but awaiting
for a concrete study, the DDK state can decay into DD�

s or
D�Ds in P-wave. Therefore one may look for inclusive
combinations of three particles DDsπ and search for
structures in the corresponding invariant mass distribu-
tions. Given enough statistics, there should be a possibility
to discover it in the eþe− collision data collected by
Belle or BelleII or in the pp collision data collected at
the LHC.
It is well known that heavy quark spin and flavor

symmetries relate the DK interaction to those of D�K,
BK̄, and B�K̄. This is consistent with the existence of the
Ds1ð2460Þ. The bottom counterparts of the D�

s0ð2317Þ and
Ds1ð2460Þ have been predicted in a number of studies
[20,33,72] and confirmed by lattice QCD simulations [73].
As a result, we naively expect the existence of the heavy
quark symmetry partners of the DDK and DDDK states.
At this moment, given the accessible center of mass
energies at current facilities, and the simplification that
both theD andK are 0− mesons that only decay weakly, we
believe that they should be of top priority both experi-
mentally and theoretically.
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