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Semileptonic Bs → Klν decays provide an alternative b-decay channel to determine the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element jVubj and to obtain a R-ratio to investigate lepton-flavor-
universality violations. Results for the CKM matrix element may also shed light on the discrepancies seen
between analyses of inclusive or exclusive decays. We calculate the decay form factors using lattice QCD
with domain-wall light quarks and a relativistic b-quark. We analyze data at three lattice spacings with
unitary pion masses down to 268 MeV. Our numerical results are interpolated/extrapolated to physical
quark masses and to the continuum to obtain the vector and scalar form factors fþðq2Þ and f0ðq2Þ with full
error budgets at q2 values spanning the range accessible in our simulations. We provide a possible
explanation of tensions found between results for the form factor from different lattice collaborations.
Model- and truncation-independent z-parametrization fits following a recently proposed Bayesian-
inference approach extend our results to the entire allowed kinematic range. Our results can be combined
with experimental measurements of Bs → Ds and Bs → K semileptonic decays to determine
jVubj ¼ 3.8ð6Þ × 10−3. The error is currently dominated by experiment. We compute differential branching
fractions and two types of R ratios, the one commonly used as well as a variant better suited to test lepton-
flavor universality.
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I. INTRODUCTION

High-precision tests of the Standard Model (SM) from
flavor physics are an important complement to direct
searches at colliders for new physics. The absence of
tree-level flavor-changing neutral currents in the SM pro-
vides one window where new physics effects could be seen,

though it is important to test high-precision calculations of
both tree- and loop-level SM processes against experiment.
New physics is expected to occur at higher energy scales,

and seeing its effects is more likely if the decaying particle
can release large amounts of energy. Decays of mesons
containing a heavy b-quark provide many opportunities
because the b-quark lives long enough for experimental
investigation but also delivers more than 4 GeV of energy.
The large b-quark mass allows a plethora of decay channels
and correspondingly many tests of the SM. Tantalizing
deviations between SM predictions and experimental mea-
surements have been reported [1–6]. While the latest
experimental LHCb results [7] confirm the universality
of lepton families under the weak interaction, the high-
energy reach of flavor physics continues to make it a
primary probe for the search of beyond-SM physics.
Here, we focus on Bs-meson decay arising at tree level

in the SM with a kaon in the final state. Lattice results
over the full q2 range for Bs→Klν form factors have
been obtained by HPQCD [8,9], RBC-UKQCD [10], and
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Fermilab-MILC [11] as well as at a single q2 value by the
AlphaCollaboration [12]. Recent lattice results forBs→Klν
semileptonic decays are summarized in Refs. [13–15].
Bs → Klν decays have been observed by LHCb [16]

and can be used to obtain the magnitudes of the CKM
matrix elements jVubj. Using these alternative b-decay
channels may shed light on the use of different kinematical
parametrizations for the exclusive decay form factors and
on tensions within and between extractions of jVubj from
inclusive or exclusive decays.
The remainder of this paper is structured as follows. In

Sec. II, we describe the form factors we will compute and
provide the details of our lattice computation. In Sec. III,
we describe the statistical analysis of the lattice data. In
Sec. IV, we determine estimates for all sources of uncer-
tainties and thereby assemble a complete error budget.
Section V discusses the extrapolation of the obtained form
factors over the full kinematical range and provides a
wealth of quantities of phenomenological interest before
we conclude in Sec. VI.

II. LATTICE CALCULATION

A. Form factors

Wework in the Bs-meson rest frame for our calculations.
For B̄0

s → Kþl−ν̄l, the differential decay rate in this frame
is given by

dΓðBs → KlνÞ
dq2

¼ ηEW
G2

FjVubj2
24π3

ðq2 −m2
lÞ2jpKj

ðq2Þ2

×
��

1þ m2
l

2q2

�����pKj2jfþðq2Þj2

þ 3m2
l

8q2
ðM2

Bs
−M2

KÞ2
M2

Bs

jf0ðq2Þj2
�
: ð1Þ

The 4-momenta of the Bs and the final-state kaon are
denoted by pBs

and pK , respectively. MBs
and MK denote

the corresponding meson masses, EK is the K-meson
energy, jpKj ¼ ðE2

K −M2
KÞ1=2, and q ¼ pBs

− pK is the
momentum transfer between the Bs and K mesons. ηEW is
an electroweak correction factor.1 The form factors fþ and
f0 arise in the decomposition of the QCD matrix element

hKðpKÞjVμjBsðpBs
Þi ¼ fþðq2Þ

�
pμ
K þpμ

Bs
−qμ

M2
Bs
−M2

K

q2

�

þf0ðq2Þ
M2

Bs
−M2

K

q2
qμ: ð2Þ

In the SM, Vμ ¼ ūγμb is the continuum charged current
operator. For lattice simulations, it is convenient to use the
alternative parametrization

hKjVμjBsi ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MBs

q
½vμf‘ðEKÞ þ pμ

⊥f⊥ðEKÞ�; ð3Þ

and the relations

f0ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MBs

p
M2

Bs
−M2

K
½ðMBs

− EKÞfkðEKÞ

þ ðE2
K −M2

KÞf⊥ðEKÞ�; ð4Þ

fþðq2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2MBs

p ½fkðEKÞ þ ðMBs
− EKÞf⊥ðEKÞ�; ð5Þ

where v is the Bs meson 4-velocity, ðpBs
Þμ⊥≡

pμ
K − ðpK · vÞvμ, and in the Bs meson rest frame

fkðEKÞ¼
hKjV0jBsiffiffiffiffiffiffiffiffiffiffiffi

2MBs

p ; f⊥ðEKÞ¼
1

pi
K

hKjVijBsiffiffiffiffiffiffiffiffiffiffiffi
2MBs

p : ð6Þ

We note that no Einstein summation convention is applied
in the second equation; it holds component by component
for the nonzero components of pi

K .

B. Action and parameters

Our calculations are based on a subset of RBC-
UKQCD’s 2þ 1 flavor domain-wall fermion and
Iwasaki gauge-field ensembles [19–22] which we summa-
rize in Table I. Our dataset includes six ensembles at three
different lattice spacings, with pion masses down to
268 MeV. Light and strange quarks are simulated using
domain-wall fermions [23–28]. The light (up and down)
sea-quark masses are degenerate and correspond to pion
masses in the range 268 MeV ≤ Mπ ≤ 434 MeV. The
strange sea-quark mass is within 20% to 25% of its physical
value on the C and M ensembles and is tuned to a deviation
of 1% on the F1S ensemble.
Bottom quarks are simulated using the relativistic heavy-

quark (RHQ) action [30,31], a variant of the Fermilab
action [32] with three nonperturbatively tuned parame-
ters [33]. The RHQ tuning procedure uses the experimen-
tally measured Bs-meson mass and hyperfine splitting,
together with the constraint that the lattice rest mass
(measured from the exponential decay of meson correlation
functions) equals the kinetic mass (measured from the
meson dispersion relation) in order to determine these three
parameters, in particular the bare quark mass (m0a), the
clover coefficient (cP) and the anisotropy parameter (ζ).
The outputs of the RHQ tuning for the ensembles used here
are given in Table XVII, with details of the procedure in
Appendix A.
Light and strange quarks are generated using point

sources, whereas b-quarks are generated using a Gaussian

1We follow Ref. [17] and take ηEW ¼ 1.011ð5Þ by combining
the factor computed by Sirlin [18] with an estimate of final-state
electromagnetic corrections using the ratio of signal yields from
charged and neutral decay channels.
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smeared source [34,35] in order to reduce excited-state
contamination. We use the smearing parameters that were
determined in Ref. [33] and list them in Table XIII in
Appendix A.
Our data are generated using the lattice QCD software

packages QLUA [36] and CHROMA [37]. Further details of
the setup can be found in Refs. [10,22,29,38,39].

C. Operator renormalization and improvement

Matrix elements from our simulations are matched to
continuum ones using the relation

hKjVμjBsi ¼ Zbl
Vμ
hKjVμjBsi; ð7Þ

where l stands for the light quark and we denote the
continuum and lattice currents by Vμ and Vμ, respectively.
The renormalization factor

Zbl
Vμ

¼ ρblVμ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zll
VZ

bb
V

q
ð8Þ

is obtained following Refs. [40,41]. The flavor-conserving
renormalization factors Zll

V and Zbb
V account for most of the

operator renormalization, while ρblVμ
is a residual correction,

expected to be close to unity because most of the radiative
corrections, including tadpoles, cancel [42]. We obtain Zbb

V
nonperturbatively from the matrix element of the b → b
vector current between two Bs mesons:

Zbb
V hBsjV0jBsi ¼ 2MBs

: ð9Þ

Details of the calculation are given in appendix A of
Ref. [38]. The light-light renormalization factor was
calculated from Zll

A [20] using the relation Zll
V ¼ Zll

A to
OðamresÞ for domain-wall fermions.
Following our previous work [10], we improve the

heavy-light vector current to OðαsaÞ using the following
operators,

V imp
0 ðxÞ ¼ V0

0ðxÞ þ c3t V3
0ðxÞ þ c4t V4

0ðxÞ; ð10Þ

V imp
i ðxÞ ¼ V0

i ðxÞ þ c1sV1
i ðxÞ þ c2sV2

i ðxÞ þ c3sV3
i ðxÞ

þ c4sV4
i ðxÞ; ð11Þ

where cnt and cns are coefficients and

V0
μðxÞ ¼ ψ̄ðxÞγμQðxÞ; ð12Þ

V1
μðxÞ ¼ ψ̄ðxÞ2D⃗μQðxÞ; ð13Þ

V2
μðxÞ ¼ ψ̄ðxÞ2D⃖μQðxÞ; ð14Þ

V3
μðxÞ ¼ ψ̄ðxÞ2γμγiD⃗iQðxÞ; ð15Þ

V4
μðxÞ ¼ ψ̄ðxÞ2γμγiD⃖iQðxÞ; ð16Þ

with ψ a light quark and Q an RHQ quark. The covariant
derivatives are given by

D⃗μQðxÞ¼ 1

2
ðUμðxÞQðxþ μ̂Þ−U†

μðx− μ̂ÞQðx− μ̂ÞÞ; ð17Þ

ψ̄ðxÞD⃖μ ¼
1

2
ðψ̄ðxþ μ̂ÞU†

μðxÞ− ψ̄ðx− μ̂ÞUμðx− μ̂ÞÞ: ð18Þ

Both the residual renormalization factor ρblV and the
coefficients cnt and cns were computed at one-loop order [43]
in mean-field improved lattice perturbation theory [44],
with the results given in Table XX in Appendix C.

D. Setup of the calculation

In Fig. 1, we sketch our calculation of three-point
correlation functions using sequential propagators separat-
ing initial and final state by Δt [45]. The initial Bs meson is
located at tsnk ¼ tsrc þ Δt, whereas the final-state kaon is at
tsrc. We proceed by letting the strange spectator quark
propagate from t ¼ tsrc to t ¼ tsnk where we give it a sink
which is turned into the sequential source for the parent

TABLE I. RBC/UKQCD coarse (C), medium (M), and fine (F) gauge-field ensembles [19–22] used in this calculation, with 2þ 1-
flavor domain-wall fermions and Iwasaki-gauge action. The domain-wall height for light and strange quarks is M5 ¼ 1.8. The
ensembles are generated using the Shamir domain-wall kernel [23,24]. aml denotes the light sea-quark mass, and amsea

s denotes the
strange sea-quark mass. The lattice spacing and physical strange quark were obtained in the combined analysis of Refs. [21,22,29].
The valence strange-quark masses used in our simulations on the C(M) ensembles are amsim

s ¼ 0.03224ð0.025Þ, while on F1S, we used
amsim

s ¼ amsea
s .

L=a T=a Ls a−1=GeV aml amsea
s amphys

s Mπ=MeV # configurations # sources

C1 24 64 16 1.7848(50) 0.005 0.040 0.03224(18) 340 1636 1
C2 24 64 16 1.7848(50) 0.010 0.040 0.03224(18) 434 1419 1
M1 32 64 16 2.3833(86) 0.004 0.030 0.02477(18) 301 628 2
M2 32 64 16 2.3833(86) 0.006 0.030 0.02477(18) 363 889 2
M3 32 64 16 2.3833(86) 0.008 0.030 0.02477(18) 411 544 2
F1S 48 96 12 2.785(11) 0.002144 0.02144 0.02167(20) 268 98 24
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b-quark. The b-quark is contracted with a child light quark
also starting at t ¼ tsrc over all time slices in the range
tsrc ≤ t ≤ tsnk. The contraction is calculated inserting the
operators for the vector current defined in Eqs. (12)–(16).
In addition to the shown setup in the “forward” direction,
we effectively double statistics by calculating the “back-
ward” direction; i.e., we use a second sink location at
t0snk ¼ tsrc − Δt. For each configuration, we first average
forward and backward three-point correlators before pro-
ceeding with the analysis. This step is similar to “folding”
two-point correlators about the central time slice in order to
take advantage of the symmetry of forward- and backward-
propagating states.
We use one time source at tsrc=a ¼ 0 for the coarse C1

and C2 ensembles; two time sources at tsrc=a ¼ 0, 32 for
the medium M1, M2, and M3 ensembles; and 24 time
sources separated by four time slices on the F1S ensemble.
The separation Δt on ensembles C1, C2, M1, M2, and M3
is the same as in our previous work [10] where we carefully
studied several source-sink separations to cleanly identify
the ground-state signal. On the F1S ensemble, we generated
data for multiple source-sink separations (Δt=a ¼ 30, 32,
34) to study the effects of excited states. We found that the
signal saturates for Δt=a ¼ 32 with the center of the signal
region being ground-state dominated and compatible with
the Δt=a ¼ 34 dataset. We therefore chose Δt=a ¼ 32 for
our final analysis. Our choice of Δt=a ¼ 20, 26, and 32 for
the three lattice spacings corresponding to the C, M, and F
ensembles, respectively, results in a Δt that is nearly
constant in physical units. In order to further decorrelate
measurements, we perform a random 4-vector shift on the
gauge field prior to placing any source. This 4-vector shift

is equivalent to randomly choosing the first source position
on each configuration but simplifies the bookkeeping.
The initial Bs meson is kept at rest, and momentum is

inserted in the final state through the current operator. The
simulations use strange spectator quarks with a mass close
to the physical value (see Table I), and we tune the RHQ
parameters such that the parent quark corresponds to a
physical b quark. The child light quark is unitary and has
the same mass as the light sea quarks.

III. ANALYSIS

The analysis to extract form factor results is implemented
ensemble by ensemble as a simultaneous correlated fre-
quentist fit over two-point and three-point correlation
functions to obtain masses and the lattice form factors
fk and f⊥ for all simulated momentum transfers, i.e., one
single fit per ensemble. These form factors are then
renormalized and converted to fþ and f0 using Eqs. (4)
and (5). They are subsequently interpolated/extrapolated to
physical quark masses and to the continuum limit in a
single step. We use bootstrap resampling [46] with 1000
samples.

A. Two-point correlation function fits

Here, we describe individual correlated fits to the π, K,
and Bs two-point data. The results for the pion mass
determined here will enter subsequent analyses. For K
and Bs, this section only serves to determine optimal fit
ranges, which we use in the next section for the combined
fit with ratios of three-point and two-point correlators.
The functional form of the two-point correlation func-

tions C2 is given by

CP
2 ðt; T;pPÞ ¼

X
x

eipP·xhOsnkðx; tÞO†
srcð0; 0Þi

¼
XN
n¼0

h0jOsnkjXðnÞihXðnÞjO†
srcj0i

×

�
e−EP;nt þ e−EP;nðT−tÞ

2EP;n

�
; ð19Þ

where the interpolating operators Osrc and Osnk are given
by l̄γ5l, s̄γ5l, and b̄γ5s and are chosen to induce states with
the quantum numbers of the π, K, and Bs, respectively.
In a first step, we extract the energies EP;n and ampli-

tudes hXðnÞjOj0i for n ¼ 0, 1 separately for the π,K, and Bs
meson by fitting the correlation functions to the functional
form given in Eq. (19) with N ¼ 1. For the Bs mesons, we
simultaneously fit the smeared-sink and point-sink corre-
lation functions under the constraint that they both describe
the same meson energy. The fit ranges are determined in
such a way that the inclusion of the ground and excited
states visibly describes the data well, while also providing

FIG. 1. Sketch of the construction of the three-point function in
the “forward direction.” The strange spectator quark (dot-dashed
line) originates from time slice tsrc and propagates forward to time
slice tsnk where we create a point sink and turn it into a sequential
source for the parent b-quark (double line) propagating back-
ward. This sequential propagator is contracted with the child light
quark (solid line) also originating from tsrc. The contraction of
child and parent quark (gray box) is calculated inserting
the operators for the vector current and varied over the time
slices tsrc to tsnk.
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an acceptable p-value. Furthermore, we check that the
results are stable under variations of the fit range.
The energies of the final-state kaon can be related to its

rest mass via the continuum (E2
K ¼ M2

K þ p2
K) or the lattice

dispersion relation,

sinh2
�
aEKðaMK; apKÞ

2

�

¼ sinh2
�
aMK

2

�
þ
X3
i¼1

sin2
�
apK;i

2

�
: ð20Þ

We have tested that the data are described by the dispersion
relation using lattice momenta pK ¼ 2πn=L with n2 ¼ 0, 1,
2, 3, 4, where equivalent 3-momenta are averaged. This
justifies imposing the lattice dispersion relation in the com-
bined fit that wewill describe in the next section.Wewill also
compare these results with those based on the continuum
dispersion relation in order to assess systematic effects.

B. Form factors from global fits

Without loss of generality, we assume tsrc ¼ 0 in the
following. The three-point correlation functions for the
transition Bs → K have the functional form

C3;μðt;Δt;pKÞ
¼

X
x;y

eipK ·yhOBs
ðx;ΔtÞV imp

μ ðy; tÞO†
Kð0; 0Þi

¼
X
n;m

h0jOBs
jBðnÞ

s ihBðnÞ
s jV imp

μ jKðmÞihKðmÞjO†
Kj0i

×
e−EK;mte−MBs;nðΔt−tÞ

4EK;mMBs;n
; ð21Þ

where V imp
μ are the improved lattice temporal and spatial

vector currents from Eqs. (10) and (11). We notice that
our notation suppresses the fact that the operators inducing
the Bs mesons can be either smeared or local at the sink.
Furthermore, we neglect around-the-world effects due to
the finite temporal extent T as these are suppressed
by e−EKðT−ΔtÞ.
To determine the form factors fk and f⊥ [compare

Eq. (6)], we require the ground-state matrix element
hKjV imp

μ jBsi [where for convenience we dropped the super-
script (0)]. To this end, we define the ratioR3;μðt; tsnk;pKÞ as

R3;μðt; tsnk;pKÞ ¼
C3;μðt; tsnk;pKÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CK
2 ðt;pKÞCBs

2 ðtsnk − t; 0Þ
q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EK;0

e−EK;0t−MBs;0ðtsnk−tÞ

r
; ð22Þ

where we ensure that the appropriate smearing is used to
cancel the overlap factors between the three-point and

two-point correlation functions. By construction, these ratios
satisfy

fbarek ðpKÞ ¼ lim
0≪t≪tsnk

R3;0ðt; tsnk;pKÞ

fbare⊥ ðpKÞ ¼ lim
0≪t≪tsnk

1

pi
K
R3;iðt; tsnk;pKÞ; ð23Þ

sowe can obtain the form factors fbarek and fbare⊥ by fitting the

ratio R3;μ.
In practice, we carry out a simultaneous correlated fit

over the point-point K and smeared-point and point-point
Bs two-point functions (including one excited state in both
cases), together with all components μ of the three-point
correlation functions. For the latter, we simultaneously fit
over results for all momenta including ground-state-Bs-to-
excited-K and excited-Bs-to-ground-state-K terms for the
matrix element of the current. Throughout this fit, we
enforce the lattice dispersion relation to describe the energy
levels of the kaon [cf. Eq. (20)]. Except for the results on
F1S, for momenta n2 ¼ 3, 4, the statistical noise on the
three-point functions is too large to allow for meaningful
constraints on the latter matrix element, and we do not
include it in the fit. The term containing both the Bs and K
excited states leads to poorly constrained fits and is
excluded. The inclusion of excited states allows us to
extend the range of time slices we can fit, as illustrated in
Fig. 2. In order to limit the impact of strong correlations
between neighboring time slices in the ratio R3;μ only every
fourth time slice enters the fit. We choose fit ranges which
visibly describe the data well while still giving acceptable
p-values. The results for the ground-state matrix elements
determined in this way show no dependence on the choice
of lower and upper end of the fit range for the ratio when
varied by �1 time slices. An example for this fit is shown
in Fig. 2.
What remains is to extract Zbb

V . We first consider the
temporal component of the zero-momentum matrix
element for the b → b vector current on the Bs meson
and restrict ourselves to the region where only the ground
state contributes:

C3;0ðt; tsnk; 0Þ
¼ lim

0≪t≪tsnk

X
x;y

hOBs
ðx; tsnkÞVbb

0 ðy; tÞO†
Bs
ð0; 0Þi

¼ jh0jOBs
jBsij2

4M2
Bs

hBsjVbb
0 jBsie−MBs tsnk : ð24Þ

Recalling Eq. (9), we notice that dividing the two-point
function CBs

2 at t ¼ tsnk (with the appropriate smearing) by
this expression gives

EXCLUSIVE SEMILEPTONIC Bs → Klν … PHYS. REV. D 107, 114512 (2023)

114512-5



CBs
2 ðtsnk; T; 0Þ

C3;0ðt; tsnk; 0Þ
¼ lim

0≪t≪tsnk

2MBs

hBsjVbb
0 jBsi

¼ Zbb
V ; ð25Þ

allowing us to extract Zbb
V from a simple fit to a constant.

We show data and the fit on the F1S ensemble in Fig. 3 and
collect results for all ensembles in Table II.
With the value of Zbb

V at hand, and using Eq. (8), we can
determine the renormalization constants Zbl

Vμ
and compute

fkðpPÞ ¼ Zbl
V0
fbarek ðpPÞ;

f⊥ðpPÞ ¼ Zbl
Vi
fbare⊥ ðpPÞ: ð26Þ

Finally, we convert to f0ðq2Þ and fþðq2Þ using Eqs. (4)
and (5). Table III summarizes all fit results.

C. Chiral-continuum extrapolation

We extrapolate the renormalized lattice form factors
to vanishing lattice spacing and to the physical light-
quark mass and interpolate in the kaon energy, using

next-to-leading order (NLO) SU(2) chiral perturbation
theory for heavy-light mesons (HMχPT) in the “hard-pion”
(or in this case kaon) limit [47–49]. In the SU(2) theory, the
strange quark is integrated out. The chiral logarithms for
Bs → Klν depend on the pion mass and the kaon energy,
while the SU(2) low-energy constants depend implicitly on
the values of the strange-quark and b-quark masses. The
function we use is

fBs→K
X ðMπ;EK;a2Þ

¼ Λ
EKþΔX

�
cX;0

�
1þδfðMs

πÞ−δfðMp
π Þ

ð4πfπÞ2
�

þcX;1
ΔM2

π

Λ2
þcX;2

EK

Λ
þcX;3

E2
K

Λ2
þcX;4ðaΛÞ2

�
; ð27Þ

where X ¼ þ; 0 for the vector and scalar form factor,
respectively, and whereMs

π is the simulated pion mass on a
given ensemble; Mp

π ¼ ð2Mπ� þMπ0Þ=3 is the isospin-
averaged physical pion mass; ΔM2

π ¼ ðMs
πÞ2 − ðMp

π Þ2; and
Λ ¼ 1 GeV is the renormalization scale appearing in the
one-loop chiral logarithm in δf shown in (28) below and is
also used as a dimensionful scale to render the fit
coefficients dimensionless. ΔX ¼ MB� −MBs

, and the B�

is a b̄u flavor state with JP ¼ 1− for fþ, or JP ¼ 0þ for f0.
For fþ, this is the vector meson B� with mass
MB� ¼ 5.32471ð21Þ GeV [50], while for f0, there is a
theoretical estimate for the 0þ state, MB�ð0þÞ ¼
5.63 GeV [51]2 (the formalism for effective theories for
heavy hadrons of arbitrary spin was derived in Ref. [73]
and is reviewed in Ref. [74]). We take Δþ ¼ −42.1 MeV
for fþ using experimentally measured masses [50,75] and
Δ0 ¼ 263 MeV for f0 using the theoretical estimate from
Ref. [51]. Since the estimated B�ð0þÞ pole location is rather
far from the physical q2 region, the fit is insensitive to its
precise position (and varying it is included in our uncer-
tainty for the chiral extrapolation).
While the 0þ and 1− poles describe the physical form

factors f0 and fþ, respectively, past work [10,11] used
Eq. (27) for fk and f⊥ based on the observation in Eq. (4)
that f0 is dominated by fk and f0 by f⊥. Below, we discuss
whether this assumption is warranted with our data.
For the case of the fþ form factor, the coefficient c3 is

compatible with zero within statistical errors. Since the
quality of the fit remains good when removing this term
from the ansatz, we perform the fits for fþ without such
a term.
The term δf entering (27) is the same for fþ and f0 and

is given by

FIG. 3. Example extraction of the vector-current renormaliza-
tion constant Zbb

V on the F1S ensemble.

FIG. 2. Example extraction of fk (top) and f⊥ (bottom) on the
F1S ensemble from a correlated global fit. The different colors are
for different momenta n2π=L injected at the current. The plot
shows the fit including excited-state contributions as well as the
ground-sate contribution (horizontal dashed lines). Filled sym-
bols indicate the points that were included in the fits.

2Results from this and other theoretical calculations [52–71]
are summarized in Table 4 of Ref. [72]. They span a range from
2% below to 2% above this value.
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δf¼−
3

4

�
M2

π log

�
M2

π

Λ2

�
þ4Mπ

L

X
jnj≠0

K1ðjnjMπLÞ
jnj

�
: ð28Þ

The first term is the one-loop chiral logarithm, and the
second term is an estimate for effects due to the finite
(spatial) volume, where K1 is a modified Bessel function
of the second kind and jnj is the magnitude of a vector of
integers n ¼ ðnx; ny; nzÞ specifying the spatial lattice
momentum 2πn=L. The second term is estimated using
one-loop finite-volume SU(2) hard-pion χPT [76,77] where
loop integrals are replaced by sums over lattice sites, with
its expression derived in Ref. [78].
The pion masses entering the fit are obtained from

separate two-point correlation function fits, and we take
fπ ¼ 130.2 MeV [79]. We include a term proportional to
a2 to account for the dominant lattice-spacing dependence.
The domain-wall fermion and Iwasaki gluon actions are
expected to have discretization errors OððaΛQCDÞ2Þ, about
3% (5%) on the F (M) ensemble(s) for ΛQCD ¼ 500 MeV,
while power-counting estimates of errors in the RHQ action
and heavy-light current are smaller, below 2%. The a2 term

in our fit therefore accounts for the leading discretization
effects.
Results for the parameters of the chiral-continuum fit are

given in Table IV. Figure 4 shows the fit, while the
systematic errors from variations in the fit are discussed
in Sec. IV and shown in Fig. 5. Values for the form
factors in the continuum and physical quark mass limit,
along with their statistical and systematic errors and
correlations, are given at the end of the discussion of
systematic errors in Sec. IV for a set of reference q2 values.
These are obtained by using the results in Table IV to
evaluate the form factor for a given kaon energy, after
setting a ¼ 0, taking the limit L → ∞ in Eqs. (27) and (28),
and setting mπ ¼ ð2m�

π þm0
πÞ=3 ≈ 138 MeV (isospin-

averaged pion mass) [50].

IV. SYSTEMATIC ERROR ANALYSIS

Our systematic-error analysis has much in common with
that done in our earlier work on semileptonic B → πlν
and Bs → Klν decays [10]. We streamline our discussion
where possible, relying on Ref. [10] for details, and
introduce new features for this analysis.

TABLE III. Summary of results from the global fit and the separate fit to pion two-point functions. The squared momentum transfer,
q2, is determined from the outgoing kaon momentum, k ¼ ð2π=LÞn, with the values of jnj2 being given in the table. The reduced χ2 in
the table is defined as χ2red ¼ χ2=Ndof .

jnj2 C1 C2 M1 M2 M3 F1S

Ndof=χ2red=p – 41=1.35=0.06 54=0.95=0.59 41=0.93=0.61 46=1.27=0.10 51=1.24=0.11 57=0.77=0.90
fþðq2Þ 1 2.001(29) 2.011(27) 2.038(39) 1.995(28) 1.984(33) 2.355(50)
fþðq2Þ 2 1.545(29) 1.545(29) 1.578(40) 1.566(28) 1.561(33) 1.917(43)
fþðq2Þ 3 1.250(41) 1.270(38) 1.282(50) 1.288(33) 1.256(42) 1.663(43)
fþðq2Þ 4 1.029(65) 1.141(61) 1.040(75) 1.081(51) 1.055(61) 1.476(53)

f0ðq2Þ 0 0.8710(93) 0.8872(97) 0.884(13) 0.8692(95) 0.877(12) 0.879(14)
f0ðq2Þ 1 0.7523(93) 0.774(10) 0.769(14) 0.7442(93) 0.767(12) 0.796(12)
f0ðq2Þ 2 0.672(13) 0.703(14) 0.699(18) 0.675(12) 0.690(14) 0.739(12)
f0ðq2Þ 3 0.602(20) 0.662(22) 0.628(26) 0.633(19) 0.629(22) 0.703(16)
f0ðq2Þ 4 0.581(36) 0.625(35) 0.564(42) 0.606(30) 0.558(37) 0.675(21)

aMBs
– 3.00572(97) 3.00977(88) 2.25278(88) 2.25186(70) 2.25321(80) 1.92574(87)

aMK – 0.30666(49) 0.32646(30) 0.22489(49) 0.23440(42) 0.24141(47) 0.19144(46)

C1 C2 M1 M2 M3 F1S

Ndof=χ2red=p 12=1.10=0.36 12=0.60=0.84 14=1.14=0.32 8=1.32=0.23 8=0.58=0.80 20=0.89=0.60
aMπ 0.19026(50) 0.24289(45) 0.12639(49) 0.15222(36) 0.17260(45) 0.09640(34)
Mπ½GeV� 0.3395(13) 0.4335(15) 0.3012(16) 0.3628(16) 0.4114(18) 0.2684(14)

TABLE II. Numerical values of the renormalization constants Zll
A and Zbb

V .

C1 C2 M1 M2 M3 F1S

Zll
A 0.7172 0.7178 0.7449 0.7452 0.7452 0.7624

Zbb
V 9.099(24) 9.135(23) 4.7767(87) 4.7602(75) 4.770(10) 3.6236(57)
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Following the same strategy as in Ref. [10], we introduce
a set of reference q2 values in the range where we have
lattice data. By determining the form factors, their stat-
istical uncertainty and all systematic uncertainties at these
reference points, we obtain synthetic data points which
include the complete and fully correlated error budget.
These serve as inputs for the extrapolation over the entire
kinematically allowed range q2 ∈ ½0; q2max�.
We distinguish between different contributions to the full

error budget. The statistical uncertainty is computed from
the bootstrap analysis of the chiral and continuum extrapo-
lation described in Sec. III C. We assess the systematic error
arising from these fits in Sec. IVA by applying cuts to the
data entering the fit as well as varying the functional
description of the data, i.e., Eq. (27).

We estimate all remaining sources of uncertainty in
Secs. IV B to IV H. Finally, in Sec. IV I, we address how to
combine these various sources of uncertainty to complete
the error budget.

A. Chiral-continuum extrapolation

We estimate the systematic uncertainty from the chiral-
continuum extrapolation for Bs → Klν by performing cuts
to the data as well as varying the fit ansatz in Eq. (27). We
consider the following variations to the fit form:

(a) omitting the finite volume corrections (the second
term in δf),

(b) omitting the term proportional to a2 (c4 ≡ 0),
(c) omitting the term proportional to M2

π (c1 ≡ 0),
(d) analytic fits omitting the chiral logarithms (δf ≡ 0),

FIG. 4. Chiral-continuum extrapolation for the Bs → Klν form factors fþ (left) and f0 (right). The colored data points show the
underlying data. The colored lines show the result of the fit evaluated at the parameters of the respective ensembles. The gray bands
display the obtained form factors in the chiral-continuum limit and the associated statistical uncertainty.

TABLE IV. Fitted parameters for chiral-continuum extrapolation for the Bs → Klν form factors defined in (27). Results for the
coefficients, statistical errors, and correlation matrix for the central continuum-limit fit. The fit quality is ðNdof=χ2red=pÞ ¼
ð20=1.09=0.35Þ for fþ and ð25=1.12=0.11Þ for f0.

cþ;0 cþ;1 cþ;2 cþ;4 c0;0 c0;1 c0;2 c0;3 c0;4

1.8169 0.2803 −0.7542 −0.0936 0.5310 0.2273 0.2996 −0.0938 −0.0136

cþ;0 δcþ;0 0.0453 0.2661 0.0411 0.1461 0.0269 0.1057 0.0748 0.0590 0.0567

cþ;0 1.8169 0.0453 1.0000 −0.3532 −0.6247 −0.4534 0.1671 −0.2710 0.2122 −0.2545 −0.3595
cþ;1 0.2803 0.2661 −0.3532 1.0000 −0.0280 −0.3974 −0.2226 0.7687 0.0216 −0.0133 −0.2866
cþ;2 −0.7542 0.0411 −0.6247 −0.0280 1.0000 −0.0035 0.2323 −0.0341 −0.3524 0.4313 0.0124
cþ;4 −0.0936 0.1461 −0.4534 −0.3974 −0.0035 1.0000 −0.2261 −0.2842 0.0044 −0.0123 0.7535

c0;0 0.5310 0.0269 0.1671 −0.2226 0.2323 −0.2261 1.0000 −0.3095 −0.8652 0.8331 −0.2633
c0;1 0.2273 0.1057 −0.2710 0.7687 −0.0341 −0.2842 −0.3095 1.0000 0.0950 −0.0942 −0.4221
c0;2 0.2996 0.0748 0.2122 0.0216 −0.3524 0.0044 −0.8652 0.0950 1.0000 −0.9836 −0.0143
c0;3 −0.0938 0.0590 −0.2545 −0.0133 0.4313 −0.0123 0.8331 −0.0942 −0.9836 1.0000 0.0069
c0;4 −0.0136 0.0567 −0.3595 −0.2866 0.0124 0.7535 −0.2633 −0.4221 −0.0143 0.0069 1.0000
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(e) analytic fits simultaneously omitting the chiral
logarithms and the a2 term,

(f) including the term proportional to ðEK=ΛÞ2 into the
fit for fþ,

We also vary the data that enters the fit by:
(g) omitting the data points at the highest momentum,

pK ¼ 2πð2; 0; 0Þ=L (smallest q2),
(h) omitting the data points at zero momentum, i.e., q2max

in f0,
(i) using form factor data that have been obtained by

imposing the continuum dispersion relation which at
leading order differs from the lattice dispersion
relation by powers ðapÞ2. We therefore also include
a term cX;5 in these fits.

Finally, we consider the impact of variations of some of the
numerical values of parameters entering the fit, such as:

(j) replacing the numerical value of fπ by its chiral limit
value f0¼112MeV [20] or by fK¼155.7MeV [15],

(k) varying the model estimate ofMB�ð0þÞ enteringΔ0 by
�100 MeV and the experimentally precisely known
value of MB� entering Δþ by a generous �30 MeV.

Figure 5 shows the relative effects of these variations
compared to the statistical uncertainty of the central fit (gray
shaded area). We notice that our fit is insensitive to most of
these variations. The largest deviations are observed for
variations including the lattice spacing and the pion-mass
dependence, i.e., variations b, c, and d. However, even these
remain of the same size as the statistical errors we quote. We
take the largest difference between thepreferred fit and anyof
the alternatives as the systematic uncertainty due to the
chiral-continuum extrapolation.
An important subtlety is worth highlighting here. In

previous work on the Bs → Klν semileptonic form fac-
tors [10,11], but also other decay channels like, e.g.,
B → πlν semileptonic [10,80], it was assumed that the
pole locations of the physical form factors fþ and f0 also
describe the kinematical behavior of f⊥ and fk,

respectively. In particular, based on the linear relations
in Eqs. (4) and (5), f⊥ was assumed to be dominated by fþ
and fk by f0. In Fig. 6, we compare the results when
extrapolating the lattice data in both cases using Eq. (27).
While with the current level of statistical precision no
significant difference is observed for fþ, a significant
difference—which increases with the kaon energy—can
be observed for f0. Since form-factor parametrizations
often rely on the kinematical constraint fþð0Þ ¼ f0ð0Þ, this
is a relevant problem for both the vector and scalar form
factor. An interesting question in this context is whether
this observation could explain the observed tensions
between different sets of lattice results for Bs → Klν, as

FIG. 5. Relative changes, ΔfX ¼ jfprefX − faltX j=fprefX for X ¼ 0;þ, of the form-factor central values under variations of the chiral-
continuum fit for Bs → Klν. The shaded band shows the statistical uncertainty of the preferred fit.

FIG. 6. The plot shows the result of the chiral-continuum fit
based on Eq. (27), once using fk and f⊥ as input (and
subsequently converted to f0 and fþ) and once using f0 and
fþ as input. The results for f0 differ significantly and increas-
ingly as the kaon momentum is increased.
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observed by FLAG 21 [15]. Regarding the Bs → Klν
decay, we note that HPQCD in Ref. [81] carried out the
chiral and continuum limits based on the vector and scalar
form factors. In line with our observation, their results for
fþ show a distinctly milder curvature as the results of
Ref. [10,11] (cf. Fig. 32 in FLAG 21 [15]).

B. Lattice-scale uncertainty

We propagate the uncertainty of the lattice-scale deter-
mination (cf. Table I) by creating a Gaussian distribution
with the correct central value and width, which is then used
to convert the dimensionless lattice masses into dimen-
sionful quantities prior to the chiral-continuum extrapola-
tions. We therefore do not account separately for this
uncertainty.

C. Strange-quark-mass uncertainties

1. Valence strange-quark-mass uncertainty

The Bs → Klν form factors depend explicitly on the
valence-strange-quark mass, so the effects of any mistun-
ings in this mass must be accounted for. In order to estimate
the corresponding systematic uncertainty, we evaluate the
form factors for additional choices of the spectator-quark
mass on the C1 ensemble. We determine the fractional
change of the form factor with respect to a percentage
mistuning in the strange-quark mass; i.e., for X ¼ þ; 0 we
compute

ΔfX=Δms ≡ fXðamsÞ − fXðamphys
s Þ

ams − amphys
s

amphys
s

fXðamphys
s Þ : ð29Þ

We repeat this for the different choices of momenta and
take the largest value this ratio takes, which occurs at the
smallest momentum. We tabulate the maximal values of
this term for the form factors fþ and f0 in Table V. The
largest deviation from the physical strange quark mass
occurs on the F1S ensemble, where amsim

s ¼ 0.02144
and amphys

s ¼ 0.02167ð20Þ. Allowing for one standard
deviation, we find

Δms ¼ max
�jamsim

s − ðamphys
s � δamphys

s Þj
amphys

s

	
¼ 1.98%: ð30Þ

Combining this with the above, we determine the maximal
deviations as shown in the last line of Table V. We find that
the largest impact of the strange quark mistuning is 0.20%
for fþ and 0.13% for f0 which are far smaller than our
leading uncertainties and therefore negligible.

2. Strange-sea-quark mistuning

Our fit functions do not depend explicitly on the strange
sea-quark mass, and at each lattice spacing, we have form
factors for only a single value of this mass. We estimate any
systematic effects stemming from the sea strange-quark
mistuning (which is largest on the coarse ensembles) in the
same way, but including an additional suppression factor of
αs. Numerically, this is approximately ΔfX=Δms × αs ×
maxðΔmsea

s Þ ¼ 0.28% and 0.46% for f0 and fþ, respec-
tively. This is intended as a conservative estimate for this
uncertainty, and it is a negligible contribution to the total
error budget.

D. Effects of the RHQ parameter uncertainty
on the form factors

As outlined in Appendix A, the RHQ tuning procedure
determines three coefficients in the RHQ action. These are
the bare b-quark mass (m0a), the clover coefficient (cP),
and the anisotropy (ζ). The experimental inputs to this
tuning are the measured Bs-meson mass and the hyperfine
splitting (ΔMBs

≡MB�
s
−MBs

). In addition, the lattice
scale and the physical strange-quark mass are required
inputs. Furthermore, we enforce that the rest mass equals
the kinetic mass. The tuned parameters, including estimates
for all relevant sources of uncertainties, are listed in
Table XVII in Appendix A.
In order to propagate the effect of these tuning uncer-

tainties onto the form factors, we generated additional form
factor data for different choices of the RHQ parameters on
the C1 ensemble. Using this dataset, we determine the
partial derivatives of the form factors with respect to the
respective RHQ parameters. We normalize these values by
the ratio of the tuned form factor and respective RHQ
parameters on this ensemble and conservatively quote the
maximum value this takes. These values are listed in the
first two rows of Table VI.
We derive the uncertainty on the form factor due to a

given RHQ parameter by multiplying these normalized
derivatives on the C1 ensemble with the relative uncertainty
of this RHQ parameter on a given lattice spacing. We
illustrate this on the example of ζ,

�
δfX
ftunedX

�
ζ

¼ max
n

�
ζtuned

ftunedX

∂fX
∂ζ

�����
C1

δζ

ζtuned
; ð31Þ

where ftunedX is the form factor evaluated at the tuned value
of the RHQ parameters on C1, while the last term is
evaluated lattice spacing by lattice spacing.

TABLE V. Partial derivatives of the form factor as a function of
the strange quark mistuning as defined in the text.

fBs→K
0 fBs→K

þ
ΔfX=Δms 0.0630(46) 0.1027(84)
maxðΔmsÞ½%� 1.98 1.98
maxðΔfXÞ½%� 0.13 0.20
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We find that the uncertainty is largest on the F1S
ensemble and therefore take this to provide a conservative
estimate for the RHQ parameter tuning on the form factors
and list their values in the last two rows of Table VI. Adding
these contributions in quadrature, we quote an uncertainty
of 1.26% on fþ and 0.83% on f0.

E. Discretization errors

Due to their different origin and size, we separately
discuss discretization errors due to the light quarks and
gluons in the action, the heavy-light current, and the RHQ
quarks.

1. Discretization effects from the action
and the current

The dominant discretization error from the light quarks
and gluons in the action is OððaΛQCDÞ2Þ which, using
ΛQCD ¼ 500 MeV, amounts to ∼3.2% on the finest ensem-
ble. This is accounted for by including a2-terms in the
chiral-continuum extrapolations. We assign the estimate
ðaΛQCDÞ4 ∼ 0.10% for subsequent terms. Potential uncer-
tainties stemming from the residual chiral symmetry break-
ing are estimated to be of the size amres ∼ 0.1% for the light
quarks.
The leading quark and gluon discretization errors in the

heavy-light currents areOðαsam̃l;ðam̃lÞ2;α2saΛQCD;ðapÞ2Þ.
In the comparison between our central fit and the

variations (i) and (g), we do not observe any evidence of
sizable momentum-dependent discretization errors in our
data. Thus, we do not include a systematic error from this
source.
Estimating the effects by power counting on the fine

ensemble, the first two terms are negligible (<0.1%), while
the third amounts to ∼0.78%. Combining this in quadrature
with the ðaΛQCDÞ4 and amres from above, we quote 0.79%.

2. Heavy quark discretization errors

The RHQ action gives rise to nontrivial lattice-spacing
dependence in the form factors when m0a ∼ 1. To estimate
the resulting discretization errors, we use the same power-
counting approach as in our previous papers [10,33,38].
For reproducibility and completeness, we provide a
brief summary of the procedure as well as intermediate

numerical values in Appendix B. We take the size of heavy-
quark discretization errors in our calculation of semilep-
tonic form factors from the estimate on our finest ensemble
(a−1 ¼ 2.785 GeV). They amount to ∼1.3% for the lattice
form factor fk and ∼1.5% for f⊥.

F. Renormalization factor

The renormalization factor relating the lattice weak
current to the continuum one is shown in Eq. (8) in
Sec. II C, where Zbl

Vμ
is given by a product of three

components. We consider the uncertainties from these
three multiplicative factors separately and add them in
quadrature to obtain the total error on the form factors.
For Zll

V, we use the nonperturbatively determined
value of the axial-current renormalization factor ZA evalu-
ated at the value of the light quark mass (see Table II for
numerical values). We can neglect the statistical uncertainty
in ZA (which is only 0.02% on the finer ensembles) and
the difference between Zll

V and ZA [which is OðamresÞ ∼
7 × 10−4 at a ≈ 0.086 fm].
For Zbb

V , we use the nonperturbative determination from
Ref. [38]. The statistical uncertainty in Zbb

V on the finer
ensemble is well below 1% and propagated into the
statistical error analysis. The perturbative truncation error
in ρblV is taken to be the full size of the one-loop correction
at the finer a ≈ 0.086 fm lattice spacing, which leads to
1.7% for ρV0

and 0.6% for ρVi
. We use the values of ρVμ

and

Zll
V in the chiral limit and must consider errors due to the

nonzero physical up, down, and strange masses. The
leading quark-mass dependent errors in ρVμ

and Zll
V are

Oðαsam̃qÞ and Oððam̃qÞ2Þ, respectively, but these are
already accounted for in our estimate of light-quark and
gluon discretization errors (see Sec. IV E 1), and we do not
count them again here.
Perturbative truncation errors are by far the dominant

source of uncertainty in the renormalization factor, and the
quadrature sum of the three error contributions is 1.7% for
fk and 0.6% for f⊥.

G. Finite-volume corrections

As discussed in Sec. III C, we directly account for the
finite size effects in the chiral continuum extrapolation [i.e.,
in Eq. (27)]. We can assess the numerical size of these
effects by comparing to a fit that does not include the
second term in Eq. (28). The maximum deviation for f0
(fþ) is given by 0.06% (0.13%).

H. Isospin breaking

The leading quark-mass contribution to the isospin break-
ing from the valence-quark masses is of Oððmd −muÞ=
ΛQCDÞ ∼ 0.5%, obtained usingmd−mu¼2.38ð18ÞMeV [82]
and ΛQCD ¼ 500 MeV. The difference between the u and
d-quark masses in the sea sector should have a negligible

TABLE VI. Estimates for the normalized partial derivatives on
the C1 ensemble (top two rows) and the maximum uncertainty
propagated onto the form factors.

am0 ζ cP

fþ max normalized slope 0.2368 0.1003 0.0543
f0 max normalized slope 0.1067 0.0418 0.1089

fþ RHQ uncertainty [%] 0.8145 0.9004 0.3215
f0 RHQ uncertainty [%] 0.3670 0.3755 0.6448
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effect on the form factors because the sea quarks couple
to the valence quarks through I ¼ 0 gluon exchange, giving
an uncertainty of Oðððmd −muÞ=ΛQCDÞ2Þ ∼ 0.003%. The
electromagnetic contribution to isospin breaking is expected
to beOðαQEDÞ ∼ 1=137 ¼ 0.7%. We therefore take 0.7% as
the uncertainty from isospin breaking and electromagnetic
effects.

I. Form factor results and correlation matrices

In the next section, we will fit a z-expansion to synthetic
data for the physical form factors in the continuum and
infinite-volume limit, generated at selected values of q2, to
extend our form factors to the full kinematic range. Because
we first extrapolate to the continuum limit and then perform
the z-expansion to extend the form factors over the full
kinematic range, the number of available independent
reference q2 values is restricted by the number of resolved
parameters in the chiral-continuum limit of the HMχPT
description of the lattice data. Since we resolve 3 (2) param-
eters that parametrize the continuum form factors f0 (fþ),
the number of synthetic data points we can choose is
limited by this. We account for the correlations between the
form factors at these q2 values as follows.
The total error budget can be divided into three major

contributions: the statistical uncertainty, the uncertainties
associated to the chiral-continuum extrapolation, and the
uncertainties that are estimated as a constant q2 indepen-
dent percentage of the form factors. We refer to these as
statistical, fit systematic, and flat systematic. While most of
the latter are estimated as a percentage uncertainty on the
form factors fþ and f0, the contributions described in
Secs. IV E 2 and IV F are determined with respect to the
form factors fk and f⊥, which induces a mild q2 depend-
ence when this is related to fþ and f0. The resulting
cumulative systematic errors for Bs → Klν are illustrated
in Fig. 7. We now provide more detail on estimating the

correlations of the different sources of uncertainties at the
reference values.
It is straightforward to obtain the statistical correlations

from the bootstrap analysis of the chiral and continuum fit
in Sec. III C.
The systematic error for the chiral-continuum extrapola-

tion is found by varying the fit function and parametric
inputs, as described above.This does not provide information
on correlations between different q2-values. However, alter-
nate chiral-continuum fits with different fit functions exhibit
very similar statistical correlations between q2-bins. Hence,
we take the statistical correlationmatrix fromour preferred fit
and multiply it by the estimated chiral-continuum extrapo-
lation error at each q2 value. For off-diagonal elements of the
correlation matrix, we use the product σq2i σq2j .

We assume each of the remaining “flat” systematic errors
to be 100% correlated and add the corresponding covari-
ance matrices. Where the percent error is given for fk and
f⊥, we first construct the corresponding covariance matrix
for fk and f⊥ and then propagate the correlated error in
order to obtain the covariance matrix for fþ and f0.
Table VIII shows the resulting statistical and systematic
correlation matrices, which enable the full reconstruction of
the total covariance matrices using the form factor values
and errors from Table VII.

V. PHENOMENOLOGICAL APPLICATIONS

A. z-expansions of form factors

Once we have continuum values for the form factors, we
extrapolate them over the entire physical range of q2 using
a fit to a z-expansion [83–90]. The squared momentum
transfer, q2, is mapped to the variable z using

zðq2; t�; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t� − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t� − t0
p : ð32Þ

FIG. 7. Cumulative systematic errors for the chiral- and continuum-extrapolated form factor for Bs → Klν.
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This transformation maps the complex q2 plane, with a cut
for q2 ≥ t�, onto the unit disk in z. For use below, we set
t� ¼ ðMBs

�MKÞ2, with t− ¼ q2max, while t� is fixed by
the appropriate two-particle production threshold t� ¼
ðMB þMπÞ2. The value of t0 can be chosen to fix the
range in z corresponding to a given range in q2. We choose

t0 ¼ topt ¼ t� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�ðt� − t−Þ

p
: ð33Þ

This symmetrizes the range of z about zero for
0 ≤ q2 ≤ q2max, which is mapped onto the real axis
0.2≳ z≳ −0.2, indicating that an expansion of the form
factor in z rather than in q2 might converge quickly. This
motivated Boyd, Grinstein, and Lebed (BGL) [84] to write
the form factor as

fXðq2Þ ¼
1

BXðq2ÞϕXðq2; t0Þ
X
n≥0

aX;nðt0Þzn; ð34Þ

where ϕXðq2; t0Þ is known as the outer function, with
expressions given in Appendix D. For X ¼ þ; 0, the
Blaschke factor BXðq2Þ is chosen to vanish at the positions
of subthreshold poles MX

i ,

BXðq2Þ ¼
Y

i∈Xpoles
zðq2; t�; ðMX

i Þ2Þ: ð35Þ

For fþ, the measured 1− vector-meson with Mþ
B�ð1−Þ ¼

5.32471 GeV [50] sits above the physical semileptonic
region 0 ≤ q2 ≤ q2max, but also below the Bπ threshold.
Specifically, q2max ≤ ðMþ

B�ð1−ÞÞ2 ≤ t� → 23.73 GeV2 ≤
28.35 GeV2 ≤ 29.35 GeV2. We cancel this pole through
the corresponding Blaschke factor Bþðq2Þ prior to

expanding in z. For f0, the theoretically predicted pole
massM0

B�ð0þÞ ¼ 5.63 GeV [51] sits above the Bπ threshold,

and no pole needs to be canceled.
The following unitarity constraint applies,

1

2πi

I
C

dz
z
θzjBXðq2ÞϕXðq2; t0ÞfXðq2Þj2 ≤ 1; ð36Þ

with C the unit circle, θz ≡ θðαBsK − j arg½z�jÞ and αBsK ¼
arg½zðtþ; t�; t0Þ�. Since for the Bs → Klν transition the
two-particle Bπ production threshold lies below the BsK
threshold, i.e., t� < tþ, the unitarity constraint originally
proposed by BGL [84] needs to be modified. This is similar
to the situation discussed in Refs. [91–94], but note some
differences in notation in those papers, in particular our use
of t� and tþ for the locations of the Bπ and BsK production
thresholds, respectively. The step function θz achieves this
by restricting the integration over the unit circle to the
relevant arc. Let us now define the inner product

hzijzjiα ¼
1

2π

Zα
−α

dϕðziÞ�zj
����
z¼eiϕ

;

¼
(

sinðαði−jÞÞ
πði−jÞ i ≠ j

α
π i ¼ j

ð37Þ

on the arc ½−α;þα� of the unit circle. When the inner
product is defined over the entire unit circle, ½−π;þπ�, the
monomials zi are orthonormal, hzijzjiπ ¼ δij. In that case,
the unitarity constraint (36) becomes

P
i jaX;ij2 ≤ 1. With

the restriction to the arc ½−αBsK;þαBsK�, the modified BGL
unitarity constraint developed in Ref. [95] is

TABLE VII. Values and error budgets for the Bs → Klν form factors at three representative q2 values in the range
of simulated lattice momenta. The total error is obtained by adding the individual errors in quadrature. See
Table VIII for the corresponding correlation matrices. The data shown in this table are contained in the
accompanying data file.

fþ f0

q2 ½GeV2� 17.60 23.40 17.60 20.80 23.40
fþ;0ðq2Þ 0.9878 2.9301 0.5594 0.6843 0.8397

Error budget (absolute contribution)
Statistical error 0.0377 0.0743 0.0141 0.0133 0.0167
Chiral-continuum extrapolation 0.0407 0.0698 0.0116 0.0139 0.0180
Other 0.0240 0.0700 0.0139 0.0172 0.0213

Total 0.0604 0.1236 0.0230 0.0258 0.0325

Error budget (in per cent)
Statistical error 3.82 2.54 2.53 1.94 1.99
Chiral-continuum extrapolation 4.12 2.38 2.06 2.03 2.14
Other 2.43 2.39 2.49 2.51 2.54

Total 6.12 4.22 4.10 3.77 3.87
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X
i;j≥0

a�X;ihzijzjiαBsKaX;j ≡ jaXj2αBsK ≤ 1; ð38Þ

where we have defined jaXj2αBsK to mean the quadratic form
on the left-hand side.

B. Extrapolation to q2 = 0

To extrapolate our results to the full physical range
of q2, we start from the results for fþ and f0 listed in
Table VII, with statistical and systematic errors and
correlations given in Table VIII, added in quadrature.
Input parameters for the z fits are summarized in
Table IX. We use the short-hand vector notation
f ¼ ðfþ; f0ÞT for the vector and scalar form factors at
the kinematical reference points and denote the correspond-
ing covariance matrix by Cf. We fit the data to

a z-parametrization of Eq. (34), subject to the unitarity
constraint (38) and the kinematical constraint fþð0Þ ¼
f0ð0Þ.
In the Bayesian-inference strategy for fitting form factors

developed in Ref. [95], the unitarity constraint is imple-
mented as a flat prior, which acts as a regulator for the
fitting problem. In contrast to frequentist fits, this allows us
to determine the parameters of a BGL parametrization to
arbitrarily high order, removing errors from truncating the
power series in z in Eq. (34).
The Bayesian-inference problem of determining the

BGL parameters a ¼ ðaþ; a0ÞT and functions gðaÞ of them
amounts to computing expectation values

hgðaÞi ¼ N
Z

dagðaÞπðajf; CfÞπa; ð39Þ

TABLE VIII. Statistical, fit- and flat-systematic errors δfþ=0 for representative q2 values (given in units of GeV2

as arguments of fþ=0), and corresponding correlation matrices. The data shown in this table are contained in the
accompanying data file.

fþ f0

17.60 23.40 17.60 20.80 23.40

q2 ½GeV2� δfþ=0 0.0377 0.0743 0.0141 0.0133 0.0167

fþ 17.60 0.0377 1.0000 0.8254 0.6976 0.7540 0.7212
23.40 0.0743 0.8254 1.0000 0.5165 0.7632 0.8008

f0 17.60 0.0141 0.6976 0.5165 1.0000 0.8118 0.7117
20.80 0.0133 0.7540 0.7632 0.8118 1.0000 0.9699
23.40 0.0167 0.7212 0.8008 0.7117 0.9699 1.0000

Statistical

fþ f0

17.60 23.40 17.60 20.80 23.40

q2 ½GeV2� δfþ=0 0.0407 0.0698 0.0116 0.0139 0.0180

fþ 17.60 0.0407 1.0000 0.8254 0.6976 0.7540 0.7212
23.40 0.0698 0.8254 1.0000 0.5165 0.7632 0.8008

f0 17.60 0.0116 0.6976 0.5165 1.0000 0.8118 0.7117
20.80 0.0139 0.7540 0.7632 0.8118 1.0000 0.9699
23.40 0.0180 0.7212 0.8008 0.7117 0.9699 1.0000

Fit systematic

fþ f0

17.60 23.40 17.60 20.80 23.40

q2 ½GeV2� δfþ=0 0.0240 0.0700 0.0139 0.0172 0.0213

fþ 17.60 0.0240 1.0000 0.9974 0.9461 0.9419 0.9368
23.40 0.0700 0.9974 1.0000 0.9229 0.9178 0.9115

f0 17.60 0.0139 0.9461 0.9229 1.0000 0.9999 0.9995
20.80 0.0172 0.9419 0.9178 0.9999 1.0000 0.9998
23.40 0.0213 0.9368 0.9115 0.9995 0.9998 1.0000

Flat systematic
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where N is a normalization constant. As prior knowledge
on the form factor, we use only the unitarity constraint
expressed in terms of the distribution

πa ∝ θð1 − jaþj2αBsK Þθð1 − ja0j2αBsKÞ; ð40Þ

which essentially limits the integration range in Eq. (39).
The conditional probability density for the parameter a
given the fit model and data is

πðajf; CfÞ ∝ exp

�
−
1

2
χ2ða; fÞ

�
; ð41Þ

where

χ2ða; fÞ ¼ ðf − ZaÞTC−1
f ðf − ZaÞ: ð42Þ

Following Ref. [95], the matrix Z consists of diagonal
blocks

ðZXXÞij ¼
zj

BXðq2i ÞϕXðq2i ; t0Þ
; ð43Þ

where XX is either þþ or 00, for the vector or scalar form
factors, respectively. The off-diagonal blocks, which imple-
ment the kinematical constraint fþð0Þ ¼ f0ð0Þ, are

ðZþ0Þij ¼ 0;

ðZ0þÞij ¼
1

zð0; t�;M2
B� Þϕþð0Þ

ϕ0ð0Þ
ϕ0ðq2i Þ

zjð0Þ: ð44Þ

The integral in Eq. (39) can be performed by
Monte Carlo, which corresponds to drawing multivariate
normal-distributed pseudorandom numbers. An efficient
algorithm and an implementation in PYTHON are presented
in Refs. [95,96]. The results presented here are based on
2000 samples.
Figure 8 shows the results of z-fits to our Bs → Klν

data, with numerical values for the fit parameters in
Table X.
For the discussion of the results, it is also worthwhile, in

parallel, to have a look at the first data column of Table XI,
which shows the result for the form factor extrapolated to
q2 ¼ 0. For both the coefficients a and fþð0Þ, we find
significant variation in both error and central value when
increasing the order of the z expansion from Kþ;0 ¼ 2. We
find stable central values and errors forK ≥ 3. Higher-order
coefficients can be added to the fit (the tables show results
up to Kþ;0 ¼ 10), whereby the errors on the significantly
determined lower-order coefficients and also the result for
fþ;0ð0Þ remain stable, and the higher-order coefficients are
compatible with zero. We conclude that the form factor
parametrization determined in this way becomes truncation
independent for large-enough Kþ;0. For the following
analyses, we use results with ðKþ; K0Þ ¼ ð5; 5Þ.
Furthermore, the value of the form factors at q2 ¼ 0 is

of interest for comparison with predictions from different
theoretical methods. Using light cone sum rules, Duplancic
and Melic report fð0Þ ¼ 0.30ðþ4

−3Þ [97], and Khodjamirian
and Rusov quote fð0Þ ¼ 0.336ð23Þ [98]. Based on a
relativistic quark model, Faustov and Galkin predict

TABLE IX. Input masses for the BGL z fits. Values are in GeV
[50]. The superscript † indicates, where the isospin-averaged
mass has been taken.

MB MBs
Mπ MK Mþ

B�ð0þÞ
5.27950† 5.36682 0.138039† 0.495644† 5.32471

FIG. 8. z-fits to Bs → Klν form factors for ðKþ; K0Þ ¼ ð5; 5Þ, plotted against q2 (left) and against z (right), where in the latter plot the
outer function and Blaschke factor has been removed. Blue denotes fþ, and red denotes f0.
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fð0Þ ¼ 0.284ð14Þ [99], where the NLO perturbative-QCD
result by Wang and Xiao is fð0Þ ¼ 0.26ðþ4

−3Þð2Þ [100]. All
these values are compatible with our ðKþ; K0Þ ¼ ð5; 5Þ
result

fðq2 ¼ 0Þ ¼ 0.25ð11Þ; ð45Þ

however, our uncertainty at q2 ¼ 0 is substantially larger
than for these other predictions.

TABLE X. Results for z-fits to data for scalar and vector form factors for Bs → Klν. The main results of this paper are the ones with
ðKþ; K0Þ ¼ ð5; 5Þ. The data for this case and the corresponding correlation matrix is contained in the accompanying data file.

Kþ K0 aþ;0 aþ;1 aþ;2 aþ;3 aþ;4 aþ;5 aþ;6 aþ;7 aþ;8 aþ;9

2 2 0.0293(11) −0.0871ð46Þ � � � � � � � � � � � � � � � � � � � � � � � �
2 3 0.0249(16) −0.0999ð57Þ � � � � � � � � � � � � � � � � � � � � � � � �
3 2 0.0245(16) −0.0799ð50Þ 0.093(21) � � � � � � � � � � � � � � � � � � � � �
3 3 0.0245(15) −0.078ð12Þ 0.101(49) � � � � � � � � � � � � � � � � � � � � �
3 4 0.0246(16) −0.078ð16Þ 0.100(70) � � � � � � � � � � � � � � � � � � � � �
4 3 0.0246(17) −0.075ð31Þ 0.102(49) −0.07ð72Þ � � � � � � � � � � � � � � � � � �
4 4 0.0246(17) −0.077ð32Þ 0.100(68) −0.03ð70Þ � � � � � � � � � � � � � � � � � �
5 5 0.0246(17) −0.074ð31Þ 0.099(70) −0.08ð67Þ 0.05(70) � � � � � � � � � � � � � � �
6 6 0.0247(16) −0.073ð32Þ 0.101(69) −0.10ð69Þ 0.09(74) −0.05ð71Þ � � � � � � � � � � � �
7 7 0.0247(17) −0.071ð33Þ 0.107(70) −0.11ð72Þ 0.08(89) −0.04ð89Þ 0.03(73) � � � � � � � � �
8 8 0.0248(17) −0.068ð35Þ 0.102(74) −0.18ð77Þ 0.2(1.1) −0.2ð1.3Þ 0.1(1.2) −0.06ð82Þ � � � � � �
9 9 0.0248(18) −0.068ð38Þ 0.107(85) −0.16ð82Þ 0.2(1.4) −0.2ð1.9Þ 0.1(1.9) −0.1ð1.5Þ 0.03(89) � � �
10 10 0.0247(18) −0.067ð43Þ 0.112(95) −0.15ð90Þ 0.2(1.8) −0.2ð2.6Þ 0.1(2.9) −0.1ð2.7Þ −0.0ð1.9Þ 0.02(98)

Kþ K0 a0;0 a0;1 a0;2 a0;3 a0;4 a0;5 a0;6 a0;7 a0;8 a0;9

2 2 0.0981(36) −0.286ð14Þ � � � � � � � � � � � � � � � � � � � � � � � �
2 3 0.0917(39) −0.331ð19Þ −0.211ð53Þ � � � � � � � � � � � � � � � � � � � � �
3 2 0.0950(37) −0.263ð15Þ � � � � � � � � � � � � � � � � � � � � � � � �
3 3 0.0953(43) −0.254ð41Þ 0.02(13) � � � � � � � � � � � � � � � � � � � � �
3 4 0.0955(44) −0.254ð42Þ 0.02(22) −0.02ð60Þ � � � � � � � � � � � � � � � � � �
4 3 0.0954(43) −0.254ð40Þ 0.03(12) � � � � � � � � � � � � � � � � � � � � �
4 4 0.0953(42) −0.254ð42Þ 0.02(21) −0.02ð60Þ � � � � � � � � � � � � � � � � � �
5 5 0.0954(44) −0.254ð41Þ 0.02(21) −0.01ð55Þ −0.00ð62Þ � � � � � � � � � � � � � � �
6 6 0.0957(42) −0.251ð41Þ 0.04(21) −0.01ð52Þ −0.06ð65Þ 0.07(65) � � � � � � � � � � � �
7 7 0.0955(44) −0.250ð40Þ 0.06(20) 0.05(50) −0.13ð72Þ 0.17(79) −0.12ð69Þ � � � � � � � � �
8 8 0.0954(43) −0.250ð41Þ 0.06(22) 0.06(50) −0.18ð84Þ 0.2(1.0) −0.21ð99Þ 0.10(74) � � � � � �
9 9 0.0956(44) −0.247ð41Þ 0.08(23) 0.06(50) −0.27ð96Þ 0.4(1.4) −0.4ð1.5Þ 0.3(1.2) −0.15ð80Þ � � �
10 10 0.0956(42) −0.245ð42Þ 0.11(24) 0.11(49) −0.4ð1.1Þ 0.7(1.8) −0.8ð2.2Þ 0.7(2.1) −0.4ð1.5Þ 0.16(87)

TABLE XI. Results for observables based on the results for the z fits in Table X. The main results of this paper are the ones with
ðKþ; K0Þ ¼ ð5; 5Þ.

Kþ K0 fðq2 ¼ 0Þ Rimpr
Bs→K RBs→K

Γτ

jVubj2 ð 1psÞ Γμ

jVubj2 ð 1psÞ V low
CKM Vhigh

CKM Vfull
CKM

2 2 0.222(21) 1.545(17) 0.741(19) 5.37(43) 7.25(70) 0.00356(39) 0.00325(30) 0.00336(32)
2 3 0.087(39) 1.657(46) 0.954(75) 3.70(50) 3.94(81) 0.0070(22) 0.00408(46) 0.00420(52)
3 2 0.231(21) 1.721(57) 0.774(27) 4.34(45) 5.62(72) 0.00375(42) 0.00382(41) 0.00379(39)
3 3 0.248(88) 1.721(56) 0.76(10) 4.48(72) 6.1(1.7) 0.0039(14) 0.00381(46) 0.00381(52)
3 4 0.25(12) 1.722(64) 0.77(15) 4.51(84) 6.2(2.3) 0.0042(22) 0.00380(48) 0.00382(53)
4 3 0.249(86) 1.72(12) 0.76(12) 4.55(82) 6.3(2.0) 0.0039(16) 0.00378(53) 0.00379(59)
4 4 0.25(12) 1.72(12) 0.78(17) 4.53(89) 6.3(2.4) 0.0043(29) 0.00381(57) 0.00383(62)
5 5 0.25(11) 1.72(11) 0.77(16) 4.57(90) 6.4(2.4) 0.0041(24) 0.00376(55) 0.00378(61)
6 6 0.26(11) 1.71(11) 0.76(16) 4.63(88) 6.5(2.4) 0.0040(26) 0.00375(54) 0.00376(58)
7 7 0.26(11) 1.71(11) 0.75(15) 4.67(90) 6.7(2.4) 0.0038(19) 0.00373(56) 0.00374(62)
8 8 0.26(11) 1.70(12) 0.74(15) 4.71(94) 6.8(2.6) 0.0038(19) 0.00371(55) 0.00372(62)
9 9 0.27(11) 1.70(12) 0.74(16) 4.76(98) 7.0(2.7) 0.0038(20) 0.00370(59) 0.00371(66)
10 10 0.28(11) 1.71(13) 0.73(16) 4.80(99) 7.1(2.8) 0.0037(31) 0.00368(58) 0.00368(62)
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C. Standard Model predictions

With the parametrization of the form factors fþðq2Þ and
f0ðq2Þ over the entire physical phase space 0 ≤ q2 ≤ q2max
at hand, we consider a variety of phenomenological
applications.

1. Determination of jVubj
The CKM matrix element jVubj can be computed by

comparing the differential decay rate in Eq. (1) to exper-
imental data for the same exclusive decay. In practice, one
compares the differential decay rate after integrating over
q2 bins. To date, only data for the branching fraction

RBF ¼
BðB0

s → K−μþνμÞ
BðB0

s → D−
s μ

þνμÞ
ð46Þ

for two q2 bins from LHCb is available [16]. In particular,
for the low (q2 ≤ 7 GeV2), high (q2 ≥ 7 GeV2), and
combined bins, we use

Rlow
BF ¼ 1.66ð08Þð09Þ × 10−3;

Rhigh
BF ¼ 3.25ð21Þðþ18

−19Þ × 10−3;

Rtotal
BF ¼ 4.89ð21Þðþ24

−25Þ × 10−3; ð47Þ

where the first error is statistical and the second error the
combined systematic uncertainty. jVubj can still be deter-
mined by combining these results with the branching
ratio [101]

BðB0
s → D−

s μ
þνμÞ ¼ 2.49ð12Þð21Þ × 10−2; ð48Þ

and the B0
s lifetime τB0

s
¼ 1.520ð5Þ × 10−12 s [50,102],

jVubj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rbin
BFBðB0

s → D−
s μ

þνμÞ
τB0

s
Γbin
0 ðBs → KlνÞ

s
; ð49Þ

where bin is either “low” or “high.” The reduced decay rate
Γbin
0 ¼ Γbin=jVubj2 is obtained from the lattice computation

and integrated over the range of the experimental bin. We
symmetrize errors and generate a multivariate distribution
for the branching fractions and the lifetime, assuming no
statistical correlation but the systematic errors to be 100%
correlated (as, e.g., in Ref. [103]). In this way, we compute
results for jVubj for both bins individually and combined in
terms of a weighted average taking into account correla-
tions. We present our results in Table XI. Our final result,
the one for ðKþ; K0Þ ¼ ð5; 5Þ, is

jVubj ¼ 3.78ð61Þ × 10−3; ð50Þ

and we emphasize that our predictions for the low and high
q2-bin are consistent within uncertainties. Repeating the

analysis with vanishing experimental error, the result would
be jVubj ¼ 3.73ð37Þ × 10−3, indicating that at this stage
the error on the result in Eq. (50) is dominated by the
experimental uncertainty. For comparison and used in
the following section, we quote the results for jVubj from
the exclusive and inclusive analyses

jVubjFLAG21
exclusive¼ 3.74ð17Þ×10−3 ½10;15;80;104–107� ð51Þ

jVubjPDG 22
inclusive ¼ 4.13ð26Þ × 10−3 ½50; 102; 108–110�: ð52Þ

These two results are compatible within less than 2σ. Our
result is compatible with both values, albeit with a larger
overall error.

2. Differential decay width

The information provided by the analysis of our lattice
data allows us to predict the shape of the differential decay
width dΓ=dq2 in the SM. Our results are shown in Fig. 9,
assuming our result for jVubj from Eq. (50) and the result in
Eq. (52), respectively. At the current level of precision, the
shapes of the inclusive and exclusive decay rates are
compatible with each other. Detailed studies of decay-rate
shapes could in the future, when higher-precision theory
predictions are available, allow us to shed light on possible
discrepancies between inclusive and exclusive CKM
determinations.

3. R ratios

A second, very important application is to test lepton
flavor universality (LFU). LFU is an accidental symmetry
in the SM, and it is extremely important to test if it holds.
One test is to compare these semileptonic decays with
electron (e), muon (μ), or tau (τ) leptons in the final state. In
the SM, their couplings with gauge bosons (W, Z) are
identical. However, since their masses differ, the shapes of
the partial width distributions with respect to q2 will be
different, and so will be their integrated (or partially
integrated) rates. Comparison of measured and predicted
rates constitutes another important test of the SM. It is
particularly interesting and important to take ratios of
integrated rates which are manifestly independent of the
mixing angles. Since the mixing angles are known within
some uncertainty, LFU tests using the following ratios can
be a powerful precision test. Traditionally, one introduces

RBs→K ¼
R q2max

m2
τ

dq2 dΓðBs→Kτν̄τÞ
dq2R q2max

m2
l

dq2 dΓðBs→Klν̄lÞ
dq2

ð53Þ

and takes the limit of integration from q2 ¼ m2
lðτÞ to the

maximum value of q2 that is kinematically allowed. In this
equation, l in the denominator stands for e or μ, whereas
the numerator is for the tau lepton. Since the electron and
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muon masses are negligible compared to the mass of the
parent Bs, the contribution to the denominator from the
form factor f0 is tiny since it is proportional to the lepton
mass in the amplitude. This means that for the numerator
involving decays to τ, the contribution from the scalar form
factor f0 cannot be determined experimentally from data
for the semileptonic decays into e or μ. The scalar form
factor must be calculated from theory in a nonperturbative
framework. This realization motivated lattice studies long
ago [111].
The conventional definition of RBs→K in Eq. (53) has a

drawback. The contribution to the denominator from
m2

l ≤ q2 ≤ m2
τ has no corresponding contribution in the

numerator; thus, that region does not give useful informa-
tion for testing LFU. To emphasize this, imagine dΓ=dq2 is
very peaked for small q2. Then, the conventional RBs→K ,
given in (53), would tend to be very small, providing little
useful information.
Following Refs. [112,113], we propose to use another

ratio (cf. Ref. [114]) where we:
(i) use a common integration range in the numerator

and denominator, with lower limit q2min ≥ m2
τ

(changing the lower limit was proposed earlier in
Refs. [115,116] as well as in Ref. [113]),

(ii) make the weights multiplying the form factor terms
involving fþðq2Þ in the integrands the same for τ
and l modes (as in Ref. [113]).

To do this, we rewrite the differential decay rate in Eq. (1)
in the form

dΓðBs → KlνÞ
dq2

¼ Φωlðq2Þ½F2
V þ ðFl

SÞ2�; ð54Þ

where l can be any of e, μ, τ and

Φ ¼ ηEW
G2

FjVubj2
24π3

; ð55Þ

ωlðq2Þ ¼
�
1 −

m2
l

q2

�
2
�
1þ m2

l

2q2

�
; ð56Þ

F2
V ¼ jpKj3jfþðq2Þj2; ð57Þ

ðFl
SÞ2 ¼

3

4

m2
ljpKj

m2
l þ 2q2

ðM2
Bs
−M2

KÞ2
M2

Bs

jf0ðq2Þj2: ð58Þ

The subscript l on ωl and superscript l in ðFl
SÞ2 show

where the dependence on the lepton mass enters. The
improved R ratio is now defined by

Rimp
Bs→K ¼

R q2max

q2min
dq2 dΓðBs→Kτν̄τÞ

dq2R q2max

q2min
dq2½ωτðq2Þ

ωlðq2Þ�
dΓðBs→KlνÞ

dq2

; ð59Þ

where l in the denominator is once again e or μ. With
instead a vector meson in the final state, this matches the
definition in Ref. [113]. The ratio can be evaluated using
experimentally measured differential decay rates. We pro-
pose using this ratio as a way to monitor LFU.
We can evaluate the ratio Rimp

Bs→K from the Standard
Model using our lattice determinations of the form factors.
In the approximation in which we drop the scalar form
factor contribution in the denominator [in (58), m2

e;μ=2q2 ≤
m2

μ=2q2 ≤ m2
μ=2m2

τ ¼ 0.002 in the integration range],
we have

Rimp;SM
Bs→K ≈ 1þ

R q2max

q2min
dq2ωτðq2ÞðFτ

SÞ2R q2max

q2min
dq2ωτðq2ÞF2

V

; ð60Þ

where now both numerator and denominator have the same
weight.

FIG. 9. The differential decay width dΓ=dq2 for Bs → Kμν̄μ (left) and Bs → Kτν̄τ (right). The values for jVubj are taken from
Eqs. (50) and (52). The darker (lighter) shading indicates the error without (with) the contribution from the error on jVubj.
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Results for both RBs→K and Rimpr
Bs→K . are listed in Table XI,

where we also include our result for the integrated decay
rate Γ=jVubj. As above, only the results forKþ;0 ≥ 3 should
be considered to be free of truncation errors in the z
expansion. The error we achieve on the new ratio is about
three times smaller than for the old ratio. Here is a summary
of our central results (based on ðKþ; K0Þ ¼ ð5; 5Þ):

RBs→K ¼ 0.77ð16Þ; ð61Þ

Rimpr
Bs→K ¼ 1.72ð11Þ: ð62Þ

4. Forward-backward and polarization asymmetries

Starting from the differential decay rate in terms of the
lepton angle θl between the charged-lepton and Bs

momentum in the q2 rest frame, our form factor data also
allows us to compute the forward-backward asymmetry.
The forward-backward difference is given by

Al
FBðq2Þ≡

"Z1
0

−
Z0
−1

#
d cos θl

d2ΓðBs → KlνÞ
dq2d cos θl

; ð63Þ

and in the SM, it takes the form [117]

Al
FBðq2Þ ¼ ηEW

G2
FjVubj2

32π3MBs

�
1 −

m2
l

q2

�
2

jpKj2

×
m2

l

q2
ðM2

Bs
−M2

KÞfþðq2Þf0ðq2Þ: ð64Þ

A probe for helicity-violating interactions is provided by
the difference of the left-handed and right-handed contri-
butions to the decay rate [117]

Al
polðq2Þ ¼

dΓðl;LHÞ
dq2

−
dΓðl;RHÞ

dq2
; ð65Þ

FIG. 10. Forward-backward asymmetries Aμ
FB (left) and Aτ

FB (right). For convenient visualization, the left-hand plot is shown on a
logarithmic scale. The values for jVubj are taken from Eqs. (50) and (52). The darker (lighter) shading indicates the error without (with)
the contribution from the error on jVubj.

FIG. 11. Difference of the left-handed and right-handed contributions to the decay rateAμ
pol (left) andA

τ
pol (right). The values for jVubj

are taken from Eqs. (50) and (52). The darker (lighter) shading indicates the error without (with) the contribution from the error on jVubj.
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where

dΓðl;LHÞ
dq2

¼ ηEW
G2

FjVubj2jpKj3
24π3

�
1−

m2
l

q2

�
2

f2þðq2Þ;

dΓðl;RHÞ
dq2

¼ ηEW
G2

FjVubj2jpKj
24π3

m2
l

q2

�
1−

m2
l

q2

�
2

×

�
3

8

ðM2
Bs
−M2

KÞ2
M2

Bs

f20ðq2Þ þ
1

2
jpKj2f2þðq2Þ

�
:

ð66Þ

We show our results for the forward-backward asymmetries
and the polarization distribution in Figs. 10 and 11,
respectively, where the case l ¼ μ (τ) is shown in the left
(right) panel. In Table XII, we provide numerical results for

I½Al� ¼
Zq2max

m2
l

dq2Alðq2Þ=jVubj2; ð67Þ

and

Āl ¼
R q2max

m2
l

dq2Alðq2ÞR q2max

m2
l

dq2dΓðBs → KlνÞ=dq2
; ð68Þ

where Al ¼ Al
FB;A

l
pol. Here is a summary of our central

results [ðKþ; K0Þ ¼ ð5; 5Þ]:

I½Aτ
FB� ¼ 1.30ð28Þ ps−1; ð69Þ

I½Aμ
FB� ¼ 0.040ð24Þ ps−1; ð70Þ

Āτ
FB ¼ 0.2821ð89Þ; ð71Þ

Āμ
FB ¼ 0.0057ð18Þ; ð72Þ

I½Aτ
pol� ¼ 0.18ð29Þ ps−1; ð73Þ

I½Aμ
pol� ¼ 6.3ð2.3Þ ps−1; ð74Þ

Āτ
pol ¼ 0.035ð60Þ; ð75Þ

Āμ
pol ¼ 0.9834ð49Þ; ð76Þ

TABLE XII. Results for observables based on the results for the z fits in Table X. The main results of this paper are the ones with
ðKþ; K0Þ ¼ ð5; 5Þ.

Kþ K0
IðAτ

FBÞ ð 1psÞ IðAμ
FBÞ ð 1psÞ Āτ

FB Āμ
FB

IðAτ
polÞ ð 1psÞ IðAμ

polÞ ð 1psÞ Āτ
pol Āμ

pol

2 2 1.46(12) 0.0320(46) 0.2720(21) 0.00440(27) 0.794(92) 7.16(68) 0.148(13) 0.98768(73)
2 3 0.99(14) 0.0115(41) 0.2679(27) 0.00284(46) 0.31(13) 3.90(80) 0.082(27) 0.9912(11)
3 2 1.23(13) 0.0315(46) 0.2825(28) 0.00560(44) 0.14(15) 5.53(71) 0.031(34) 0.9838(13)
3 3 1.27(23) 0.038(19) 0.2836(77) 0.0058(15) 0.13(16) 6.0(1.7) 0.030(35) 0.9833(39)
3 4 1.28(27) 0.040(26) 0.2833(91) 0.0057(19) 0.14(17) 6.1(2.2) 0.030(38) 0.9834(49)
4 3 1.29(26) 0.038(19) 0.2820(80) 0.0058(16) 0.18(31) 6.2(2.0) 0.034(65) 0.9832(45)
4 4 1.28(28) 0.039(25) 0.2817(93) 0.0058(20) 0.16(31) 6.2(2.4) 0.031(64) 0.9833(52)
5 5 1.30(28) 0.040(24) 0.2821(89) 0.0057(18) 0.18(29) 6.3(2.3) 0.035(60) 0.9834(49)
6 6 1.31(28) 0.041(24) 0.2826(88) 0.0058(18) 0.19(29) 6.4(2.3) 0.036(58) 0.9832(48)
7 7 1.33(28) 0.043(24) 0.2831(85) 0.0060(18) 0.20(31) 6.6(2.4) 0.037(62) 0.9829(47)
8 8 1.34(29) 0.043(25) 0.2827(86) 0.0059(18) 0.23(32) 6.7(2.5) 0.042(64) 0.9831(47)
9 9 1.35(31) 0.045(27) 0.2830(90) 0.0060(18) 0.23(34) 6.8(2.6) 0.041(67) 0.9827(49)
10 10 1.37(31) 0.047(27) 0.2832(93) 0.0062(18) 0.23(36) 7.0(2.7) 0.040(69) 0.9823(49)

FIG. 12. Comparison with results from other collaborations (HPQCD 14 [8], RBC/UKQCD 15 [10], FNAL/MILC 19 [11], and this
work, RBC/UKQCD 23).
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and in Fig. 12, we provide a comparison with results from
other lattice simulations. Two observations are worth high-
lighting: with respect to RBC/UKQCD 15, some of the
results shifted significantly, and the error of some results
increased visibly. The shift is mainly down to our decision to
do the HMχPT chiral and continuum limit for fþ and f0
rather than for f⊥ and fk. The assumption that the same pole
masses simultaneously describes the momentum depend-
ence of fþ and f⊥ and f0 and fk, respectively, does not seem
correct at the level of precision we achieve with our dataset.
The increase in error on the other hand is due to the change in
strategy for the BGL parametrization—at the cost of achiev-
ing a truncation-independent parametrization of the form
factor, the statistical error on observables particularly sensi-
tive to the low-q2 behavior of the form factor increases.

VI. CONCLUSIONS

In this paper, we present our new results for the non-
perturbative Standard Model contributions to the exclusive
semileptonic decay Bs → Klν. In particular, we present
the results for the form factors fþðq2Þ and f0ðq2Þ in the
continuum limit of Nf ¼ 2þ 1 lattice simulations. We
have improved our analysis in various ways: a) we have
improved the control of the continuum limit by including
simulations on a finer (a−1 ≈ 2.8 GeV) ensemble; b) we
include the effects of excited states in our correlation
function fits; c) doing the chiral-continuum extrapolation
of fþ and f0 rather than fk and f⊥ using HMχPT removes
an otherwise irreducible systematic effect present in earlier
work [10,11], which might be the origin of tensions in the
combined analysis of lattice results [15]; d) using the
Bayesian-inference approach to fitting the z-parametriza-
tion proposed in Ref. [95], we obtain a model- and
truncation-independent parametrization of the form factor
in the entire physical semileptonic kinematical range.

Regarding point c, we summarize the situation of
available lattice data for the Bs → Klν form factors in
Fig. 13. While all available data for the vector form factor
fþ are in agreement, the data for f0 show two clusters of
data points forming as q2 is reduced. The two clusters can
be distinguished by the way in which the chiral and
continuum limit have been taken. In our view, taking the
continuum limit in terms of fþ and f0 rather than in in
terms of f⊥ and fk is correct. The same note of caution
concerns other quantities like, e.g., B → πlν, where very
similar analysis techniques are being used.
We use our results to make a number of predictions for

phenomenology. In particular, we make a new prediction
for the CKM matrix element jVubj ¼ 3.78ð61Þ × 10−3

based on first results for the Bs → Klν decay from the
LHCb experiment [16]. The error is dominated by the
experimental uncertainty. In particular, if we repeat
the analysis with the experimental uncertainty set to zero,
the error on jVubj reduces to 0.37. Our result is compatible
with both exclusive and inclusive determinations. We also
make predictions for the shape of the differential decay rate,
the forward-backward asymmetry, and the difference
between left-handed and right-handed contributions to
the decay rate. With more precise experimental and lattice
results, these observables might in the future allow us to
shed light on the tension between inclusive and exclusive
jVubj determinations.
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APPENDIX A: RHQ PARAMETER TUNING

Here, we summarize the nonperturbative tuning of the
three parameters in the RHQ action used for b-quarks.
The procedure is described in Ref. [33], based on lattice
spacings determined in Ref. [20]. The lattice spacing is a
crucial input and with updated and refined global fits
available [21,22,29], plus new ensembles, we have per-
formed a new tuning for the ensembles used here. More
precise determinations of the lattice spacings lead to
reduced systematic errors in the RHQ parameters. In
addition, the values for the strange-quark mass have been
reanalyzed, and we have generated new valence-quark
propagators with mass tuned or close to the updated
strange-quark mass.

1. Nonperturbative tuning procedure

The parameters in the RHQ action, fm0a; cP; ζg, are
fixed by demanding that the action correctly describes

experimentally measured on-shell Bs-meson properties. We
match the experimental values [75] of the spin-averaged
mass and the hyperfine splitting and require that the rest
and kinetic masses of the Bs are equal

M̄Bs
¼MBs

þ 3MB�
s

4
; ΔMBs

¼MB�
s
−MBs

;
MBs

1

MBs
s
¼ 1:

ðA1Þ

The latter implies that the Bs meson satisfies the continuum
dispersion relation, E2

Bs
ðpÞ ¼ p2 þM2

Bs
. We calculate the

quantities above using seven sets of choices for the RHQ
parameters fm0a, cP, ζg and then make a linear interpo-
lation to find the values satisfying the matching conditions
above. The seven choices, indexed 1 to 7 from left to right,
comprise a central set plus variations of each of the three
parameters:

2
64
m0a

cP
ζ

3
75;

2
64
m0a − σm0a

cP
ζ

3
75;

2
64
m0aþ σm0a

cP
ζ

3
75;

2
64

m0a

cP − σcP
ζ

3
75;

2
64

m0a

cP þ σcP
ζ

3
75;

2
64

m0a

cP
ζ − σζ

3
75;

2
64

m0a

cP
ζ þ σζ

3
75: ðA2Þ

We make a constant-plus-linear ansatz for the dependence
of the observables on the RHQ parameters

2
64

M̄Bs

ΔMBs

MBs
1 =MBs

2

3
75 ¼ J ·

2
64
m0a

cP
ζ

3
75þ A: ðA3Þ

Here, J represents the “slope” and is a 3 × 3 matrix, while
A corresponds to the intercept and is a 3 × 1 vector. In a
region with sufficiently linear dependence on the param-
eters, we can obtain J and A using finite differences to
approximate derivatives:

J ¼
�
Y3 − Y2

2σm0a
;
Y5 − Y4

2σcP
;
Y7 − Y6

2σζ

�
;

A ¼ Y1 − J · ½m0a; cP; ζ�T: ðA4Þ

The vectors Yi are constructed from the values of meson
masses and splittings measured on the ith parameter set
in (A2),

Yi ¼ ½M̄Bs
;ΔMBs

;MBs
1 =MBs

2 �Ti : ðA5Þ

Inverting Eq. (A3), we obtain the tuned RHQ parameters
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2
64
m0a

cP
ζ

3
75
RHQ

¼ J−1 ·

0
B@
2
64

M̄Bs

ΔMBs

MBs
1 =MBs

2

3
75
PDG

− A

1
CA; ðA6Þ

by matching to PDG values and demanding the Bs rest
mass equals its kinetic mass. Specifically, we use [75].

M̄Bs
¼ 1

4
ð5366.82þ0.22

−0.22 þ 3 · 5415.4þ1.8
−1.4Þ MeV

¼ 5403.26þ1.8
−1.4 MeV;

ΔMBs
¼ 48.6þ1.8

−1.6 MeV: ðA7Þ

We conservatively use the full error on MB�
s
as the

uncertainty of the spin-averaged mass. The relative error
on ΔMBs

is much larger and will dominate systematic
effects due to the experimental inputs. These inputs are
updated from those in Ref. [118] used in Ref. [33].

2. Lattice simulations

The tuning procedure is implemented by first determin-
ing Bð�Þ

s -meson energies for zero and nonzero momenta on
our set of ensembles in Table I. We calculate two-point
functions by contracting strange-quark propagators using
point source and point sink with Gaussian source-smeared,

point-sink b-quark propagators and extract Bð�Þ
s -meson

energies from correlated fits to the plateau of effective
energies. We find good correlated confidence levels
(p-value ≳10%) in all cases, and varying the fitting range
by �1 time slice changes the result only within the
statistical uncertainty. The value of our input strange-quark
mass as well as the width σG and the number of iterations
NG for the Gaussian source smearing of the b-quarks are
summarized in Table XIII together with the fitting range

used to extract the BðsÞ
s meson energies.

Starting from the tuning performed in Ref. [33], we iterate
twice to find the new central set of RHQ parameters for the C
and M ensembles and choose roughly three times the size of
the statistical errors for the variations σfm0a;cP;ζg. For the new
F1S ensemble at the finer lattice spacing, we roughly scaled
our new results on C and M ensembles and then carried out
two iterations choosing variations σfm0a;cP;ζg of roughly 1.5
times the statistical uncertainties. In all cases, our final

parameter sets allow us to interpolate to the values of
m0a, cP, and ζ describing physical b-quarks, and we do
not observe any signs of curvature within the explored
parameter ranges. The final values of the central parameter
sets and their variations are listed in Table XIV. Using those
values, we determine spin-averaged masses, hyperfine split-
tings, and ratios of rest mass over kinetic mass in order to
match to experimental results reported by the Particle Data
Group (PDG) as in Eq. (A7). We finally obtain our tuned
parameters from Eq. (A6). For the C and M ensembles, we
cannot resolve a dependence on the light sea-quark mass
within statistical errors. Hence, we average the values at the
same lattice spacing. We report these results, plus the
outcome for tuning on the F1S ensemble, in Table XV.

TABLE XIII. Input strange-quark mass ams, width σG, and iteration count NG of the Gaussian source smearing

used to calculate Bð�Þ
s meson two-point functions. We extract the Bð�Þ

s energies by performing correlated fits using
the specified fit ranges. The optimal Gaussian source-smearing radius was explored for the C and M ensembles in
Ref. [33], and we scaled those results to the finer lattice spacing a−1 ¼ 2.785 GeV on the F1S ensemble.

a−1=GeV L3 aðms þmresÞ σG NG Fit range

C 1.785 243 0.03224þ 0.00315 7.86 100 [10:25]
M 2.383 323 0.025þ 0.00067 10.36 170 [12:21]
F 2.785 483 0.02144þ 0.00094 12.14 230 [14:29]

TABLE XIV. Central parameter set fm0a; cP; ζg with varia-
tions σm0a; σcP ; σζ for the final iteration of tuning the parameters
on C, M, and F ensembles with inverse lattice spacings ranging
from 1.785 to 2.785 GeV.

a−1=GeV L3 m0a� σm0a cP � σcP ζ � σζ

C 1.785 243 7.42� 0.18 4.86� 0.42 2.92� 0.21
M 2.383 323 3.46� 0.09 3.03� 0.24 1.75� 0.10
F 2.785 483 2.35� 0.20 2.75� 0.30 1.50� 0.15

TABLE XV. Tuned RHQ parameter values for all lattices
determined using the parameter sets specified in Table XIV.
For the C and M lattices, we see no dependence on the light sea-
quark mass within statistical errors, and we consequently com-
pute weighted averages to obtain our preferred values.

aml m0a cP ζ

C: a−1 ¼ 1.785 GeV, 243 × 64
0.005 7.468(66) 4.87(18) 2.922(82)
0.010 7.476(80) 4.97(19) 2.94(10)
average 7.471(51) 4.92(13) 2.929(63)

M: a−1 ¼ 2.383 GeV, 323 × 64
0.004 3.541(46) 3.19(13) 1.715(55)
0.006 3.474(37) 3.01(10) 1.759(46)
0.008 3.444(48) 3.02(14) 1.807(55)
average 3.485(25) 3.063(69) 1.760(30)

F: a−1 ¼ 2.785 GeV, 483 × 96
0.002144 2.423(62) 2.68(13) 1.523(79)
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3. Estimating systematic uncertainties

a. Heavy-quark-discretization errors

When m0a ∼ 1, the RHQ action leads to a nontrivial
lattice-spacing dependence of physical quantities. As dis-
cussed in detail in Ref. [33], we estimate the discretization
errors for the heavy sector using power counting, following
Oktay and Kronfeld [119]. Since we are considering the
same physical quantities, spin-averaged mass, hyperfine
splitting, and ratio of rest over kinetic mass, we simply list
uncertainties in percent and refer to Appendix C of
Ref. [33] for further details:

error
M1;Bs
total ¼ 0.05%;

error
M2;Bs
total ¼ 2.59%;

error
ΔMBs
total ¼ 4.40%: ðA8Þ

By assigning these errors as uncertainty in our inputs to the
matching procedure, we propagate them to the RHQ
parameters and collect the percentage changes in the central
values in the first panel of Table XVI.

b. Input strange-quark mass

Our RHQ parameters are tuned using strange-quark
propagators corresponding to a mass at or near the physical
strange-quark mass. We need to account for slight mis-
tunings as well as for the uncertainty in the strange-quark
mass quoted in Refs. [21,22] (see also Table I).
On the coarse (C) ensembles, we can bracket the strange-

quark mass using the additional quark propagators with
bare masses am0

s ¼ 0.03 and 0.04. This allows us to
determine numerically the slopes of m0, cP, and ζ with
respect to the strange-quark mass. Since the mass of our
strange-quark propagators matches the physical value, we
read off the changes inm0a, cP, and ζ after varying ams by
�1σ. The largest change we observe is 0.2%.

For the M ensembles, we simulate with a bare strange-
quark mass of 0.025 which is roughly 1σ larger than the
physical value. Using in addition am0

s ¼ 0.0272, we
determine the slopes with respect to ms and estimate the
error due to mistuning as well as the uncertainty in the
strange-quark mass by varying the strange-quark mass by
�2σ. Our RHQ parameters change at most by 0.3%.
For the F1S ensemble, since the slopes with respect to

ams decrease as the lattice spacing decreases, we use for
simplicity the average of the slopes obtained on the M
ensembles to estimate the uncertainty due to the input
strange quark mass for F1S. Here, our value for the mass of
the strange quark is within 1σ of the physical value. Being
conservative, we vary the strange-quark mass by �2σ and
read off changes of the RHQ parameters of at most 0.2%.
Given that for all ensembles and all three RHQ param-

eters the uncertainty due to the strange-quark mass is 0.3%
or less, we consider this effect negligible compared to the
percent-level uncertainties arising from, for example,
heavy-quark discretization errors.

c. Lattice scale uncertainty

The lattice scale enters our tuning procedure when we
convert the experimental input data to lattice units. To
propagate the uncertainty of the lattice spacings to our
RHQ parameters, we repeat the analysis varying the lattice
spacing by �1σ. For the C and M ensembles, we take the
largest fluctuation of a central value on either ensemble as
our estimate.

d. Experimental uncertainty

We estimate the uncertainty due to the experimental
inputs by varying both the spin-averaged mass and the
hyperfine splitting by �1σ each and rerun our matching
analysis. In practice, the uncertainty in the spin-averaged
mass is negligible compared to the few-percent effect due to
the uncertainty in the hyperfine splitting. We take the
largest change of the central values at a given lattice
spacing as our estimate for the corresponding uncertainty
in our RHQ parameters.

4. Tuned RHQ parameters

We summarize our tuned RHQ parameters in Table XVII
quoting our final results with all systematic errors found to
be significant.

APPENDIX B: RHQ DISCRETIZATION ERRORS

We tune the parameters in the RHQ action nonperturba-
tively, such that the leading heavy-quark discretization
errors from the action are Oða2Þ. We use an OðαsaÞ-
improved vector current and calculate the improvement
coefficient to one loop; hence, the leading heavy-quark
discretization errors from the current are of Oðα2sa; a2Þ.
Table XVIII gives values for the “mismatch” functions at

TABLE XVI. Systematic uncertainties in percent with a sig-
nificant effect on our tuned RHQ parameters. For the C and M
ensembles, we always report the largest fluctuation observed on
either ensemble.

Uncertainty a−1=GeV m0a cP ζ

Heavy quark discretization 1.785 1.0% 5.6% 3.4%
2.383 1.1% 6.0% 3.3%
2.785 1.5% 5.6% 2.8%

Lattice scale 1.785 1.1% 1.4% 0.5%
2.383 1.3% 1.7% 0.4%
2.785 1.3% 1.4% 0.3%

Experiment 1.785 0.6% 4.8% 0.1%
2.383 0.9% 5.0% 0.1%
2.785 1.2% 4.8% 0.1%
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each of our lattice spacings, from which we find and list in
Table XIX the estimated heavy quark discretization errors
from the five different operators in the action and current.
We refer the reader to Sec. V.E and Appendix B of Ref. [38]
for further details.

APPENDIX C: RENORMALIZATION
AND IMPROVEMENT COEFFICIENTS

Table II summarizes the values of the renormalization
constants Zll

AðamlÞ.

In Table XX, we give the residual renormalization factors
and the improvement coefficients for the heavy-light
currents with a heavy RHQ and a light domain-wall quark,
computed at one-loop order [43] in mean-field improved
perturbation theory.
Table XXI gives inputs used for numerical evaluation

of the perturbatively calculated coefficients. Mean-field
improvement uses values for the average gauge link, u. We
use either the fourth root of the plaquette expectation value,
denoted uP, or the mean link in Landau gauge, uL. We use
two choices of strong coupling: a mean-field lattice MS

strong coupling, αMS
s;lat, or the continuum MS strong cou-

pling, αMS
s;ctm, both evaluated at the scale μ ¼ a−1. For the

Iwasaki gauge action used for our gauge field ensembles,
the lattice strong coupling depends on the plaquette and
rectangle expectation values hPi and hR1i, respectively,
quoted in Table XXI. For the continuum coupling, we use
five-loop running from RUNDEC [120–122], starting from
αð5Þðm̄bðm̄bÞÞ ¼ 0.2268 at m̄bðm̄bÞ ¼ 4.163 GeV (the
same choice was made when using RUNDEC to compute
m̄bð2 GeVÞ for evaluating the χ factors in the outer
functions for BGL z-fits; see Appendix D). The perturba-
tive results in Table XXI are the average of values from the

four combinations of u and αMS
s . The columns headed Δ

give half of the spread in the values from the four
combinations.

TABLE XVII. Values of the tuned RHQ parameters with central values and statistical errors taken from Table XV
and estimates for the systematic errors from Table XVI. Tuning determines the bare-quark mass, m0a; clover
coefficient, cP; and anisotropy parameter, ζ, in the RHQ action. Errors listed for m0a, cP, and ζ are, from left to
right, statistics, heavy-quark discretization errors, the lattice scale uncertainty, and the uncertainty due to the
experimental measurement of the Bs meson hyperfine splitting, respectively. Other errors considered but found to be
negligible are not shown.

a−1=GeV m0a cP ζ

C 1.785 7.471(51)(75)(82)(45) 4.92(13)(28)(07)(24) 2.929(63)(100)(15)(03)
M 2.383 3.485(25)(38)(45)(31) 3.06(07)(18)(05)(15) 1.760(30)(58)(07)(02)
F 2.785 2.423(62)(36)(31)(29) 2.68(13)(15)(04)(13) 1.523(79)(43)(05)(02)

TABLE XVIII. Values of the mismatch functions defined in
Appendix B of Ref. [38] for the nonperturbatively tuned
parameters of the RHQ action given in Table XVII. The tree-
level coefficients fE, fXi

, and fY are known exactly. The two-

loop coefficient f½2�3 is not known, so we use an ansatz based on
the tree-level expression. The coupling αsða−1Þ needed to

evaluate f½2�3 is taken to be a lattice mean-field coupling at the
(inverse) lattice spacing scale (see the discussion of the pertur-
bative calculations in Sec. II C).

a−1=GeV αsða−1Þ fE fX1
fX2

fY f½2�3

C 1.785 0.2320 0.0594 0.0848 0.1436 0.1358 0.0333
M 2.383 0.2155 0.0809 0.0966 0.1691 0.1721 0.0298
F 2.785 0.2083 0.1042 0.1101 0.1946 0.2056 0.0299

TABLE XIX. Percentage errors from mismatches in the action and current for the bottom quark. For this estimate,
we calculate the mismatch functions for the non-perturbatively-tuned parameters of the RHQ action from
Table XVII. We estimate the size of operators using HQET power counting with ΛQCD ¼ 500 MeV and αMS

s ða−1Þ.
To obtain the total, we add the individual errors in quadrature, including each contribution the number of times that
operator occurs. Contribution E is counted twice, while 3 is counted twice for fk and four times for f⊥. The
definitions of operators E, X1, X2, Y, and 3, and expressions for the mismatch functions, are given in Appendix B
of Ref. [38].

Oða2Þ error from action Oða2Þ errors from current Oðα2saÞ error from current Total/%

a−1=GeV αsða−1Þ E X1 X2 Y 3 fk f⊥
C 1.785 0.2320 0.47 0.67 1.13 1.07 0.93 2.24 2.60
M 2.383 0.2155 0.36 0.43 0.74 0.76 0.63 1.53 1.77
F 2.785 0.2083 0.34 0.35 0.63 0.66 0.54 1.33 1.53
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APPENDIX D: BGL FITS

Here, we give expressions for the Blaschke factors and
outer functions used in BGL fits to form factors.
The Blaschke factor BXðq2Þ is chosen to vanish at the

positions of subthreshold poles sitting between q2max and t�,
with t� denoting the squared momentum transfer for
the lowest two-particle production threshold. If there are
n such poles with masses mi and corresponding z-values
zi ¼ zðm2

i ; t�; t0Þ, then

BXðq2Þ ¼
Yn−1
i¼0

z − zi
1 − z̄iz

¼
Yn−1
i¼0

zðq2; t�; m2
i Þ; ðD1Þ

where z ¼ zðq2; t�; t0Þ and z̄i is the complex conjugate of zi
in the first form of the expression. The function zðq2; t�; t0Þ

is defined in Eq. (32), and our choice for t0 is given
in Eq. (33). For Bs → Klν decays, the threshold is
MB þMπ ¼ 5.4175 GeV, and there is a subthreshold pole
at MB� ¼ 5.32471 GeV [50] for fþ, but not for f0 for
which MB�ð0þÞ ¼ 5.63 GeV [51]3 is above threshold.
The outer functions used in the parametrizations of fþ

and f0 take the form [84,89,91]4

ϕþðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηI
48πχ1−ð0Þ

r
r1=2q

r1=20

ðrq þ r0Þðrq þ
ffiffiffiffi
t�

p Þ−5

× ðtþ − q2Þ3=4ðrq þ r−Þ3=2; ðD2Þ

ϕ0ðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηItþt−

16πχ0þð0Þ
r

r1=2q

r1=20

ðrq þ r0Þðrq þ
ffiffiffiffi
t�

p Þ−4

× ðtþ − q2Þ1=4ðrq þ r−Þ1=2; ðD3Þ

where we have set rq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� − q2

p
, r− ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t� − t−
p

, and
r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t� − t0

p
[t� are defined after Eq. (32)]. The χJð0Þ

come from evaluating the vacuum polarization function of
two currents (b̄γμu and its Hermitian conjugate), while the
ηI are isospin factors counting accessible isospin-related
states when inserting a sum over states between the two
currents in the vacuum polarization function (to derive the
unitarity constraint on the form factors). For Bs → Klν, we
have ηI ¼ 1.
The χJð0Þ have condensate contributions and perturba-

tive parts. Expressions with the perturbative parts to two
loops are given in Ref. [124], and three-loop perturbative
contributions have been calculated by Grigo et al. in
Ref. [125] (the expressions in Ref. [124] use pole masses,
while those in Ref. [125] use MS masses; we checked that
they agree once the scheme conversion needed to relate
them is used). For Bs → Klν decays, with x ¼ u, χJð0Þ is
evaluated using u ¼ mx=mb ¼ 0.
We evaluate the perturbative contributions using the

results from Ref. [125] and following the procedure used
in Ref. [123], with input MS masses m̄bðm̄bÞ ¼
4.163ð16Þ GeV and m̄cð3 GeVÞ ¼ 0.986ð13Þ GeV from

Ref. [126], and αð5Þs ðm̄bðm̄bÞÞ ¼ 0.2268ð23Þ). To evaluate
the condensate contribution for Bs → Klν, we ran the b
mass to m̄bð2 GeVÞ ¼ 4.95 GeV using the RUNDEC

package [120–122] and combined it with hūuiμ¼2 GeV ¼
−ð274 MeVÞ3, from a weighted mean of 2þ 1þ 1 and
2þ 1 flavor estimates for Σ1=3 in SU(2) in the 2021 FLAG
review [15,127–134]), giving m̄bhūui ¼ −0.102 GeV4.

TABLE XX. Residual renormalization factors and operator
improvement coefficients. We compute the ρ factors and the
matching coefficients cni at one loop in mean-field improved
lattice perturbation theory [43]. They are evaluated for the tuned
RHQ bare-quark mass m0a at each lattice spacing (indicated by
the letters C, M, and F in column headers; see Table I) and for the
choices of the domain-wall height M5 ¼ 1.8 The values are an
average from four combinations of mean link and strong
coupling, with the columns headed Δ giving the spread in values
from the four combinations.

C M5 ¼ 1.8 M M5 ¼ 1.8 F M5 ¼ 1.8

value Δ value Δ value Δ

ρV0
1.0301 0.0115 1.0177 0.0059 1.0130 0.0041

ρVi
0.9959 0.0019 0.9926 0.0022 0.9921 0.0019

c3t 0.0599 0.0092 0.0574 0.0073 0.0550 0.0064
c4t −0.0120 0.0042 −0.0109 0.0030 −0.0101 0.0025
c1s −0.0010 0.0006 −0.0015 0.0006 −0.0018 0.0006
c2s 0.0020 0.0021 0.0004 0.0011 −0.0001 0.0009
c3s 0.0512 0.0060 0.0497 0.0050 0.0478 0.0044
c4s −0.0038 0.0020 −0.0022 0.0011 −0.0015 0.0008

TABLE XXI. Inputs for numerical evaluation of perturbatively
computed coefficients at the three different lattice spacings in our
ensembles.

C M F

a−1=GeV 1.785 2.383 2.785
β 2.13 2.25 2.31
hPi 0.588011 0.615580 0.627970
hR1i 0.343464 0.379841 0.396626
uP 0.875682 0.885770 0.890194
uL 0.843997 0.860991 0.868440
m0a 7.471 3.485 2.423

αMS
s;latða−1Þ 0.2320 0.2155 0.2083

αMS
s;ctmða−1Þ 0.3226 0.2811 0.2633

3The B�ð0þÞ masses in the compilation in Ref. [72] span a
range from 1.8% below to 2.2% above this value.

4These also agree with the expressions given in Eqs. (2.13) and
(2.14) of Ref. [123], if expressed in terms of z and using the same
t� and t0 as Ref. [123].
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We took hαsG2i ¼ 0.0635ð35Þ GeV4 from a sum rules
average [135]. We find

χ1−ð0Þ ¼ 6.03 × 10−4 GeV−2

χ0þð0Þ ¼ 1.48 × 10−2: ðD4Þ

The values of χJð0Þ and ηI are needed for checking or
imposing the unitarity constraint on each form factor. If the
constraint is not saturated, then their values do not affect the
physical result of a z-fit since they are a normalization

which can be absorbed by an overall factor in the fit
coefficients.
In Ref. [103], the two susceptibilities were computed

nonperturbatively,

χ1−ð0Þ ¼ 4.45ð1.16Þ × 10−4 GeV−2;

χ0þð0Þ ¼ 2.04ð0.20Þ × 10−2: ðD5Þ

We do not observe any significant changes in our results
for observables when using these values instead of those
in Eq. (D4).
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