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1 Introduction

The Sommerfeld enhancement is a non-relativistic quantum effect that can significantly
change the annihilation cross section of two slow-moving particles [1]. When the two
particles interact through the exchange of a light mediator, the plane-wave approximation of
the incident particles is violated and there can be a significant enhancement (or suppression)
of the annihilation cross section due to the attractive (or repulsive) force which is mediated.
This is given by

σ = Sσfree , (1.1)

where σ and σfree are the annihilation cross sections with and without the interaction,
respectively. The dimensionless factor S is known as the Sommerfeld enhancement factor
that quantifies the enhancement (or suppression).

The importance of the Sommerfeld enhancement in the dark matter (DM) annihilation
was first realised in refs. [2–7]. Originally motivated by the observation of cosmic positron
excesses [8–10], there have been a number of works focusing on the effects of the enhancement
on DM annihilation and indirect detection [11–23]. Many of these studies use the Sommerfeld
enhancement generated by Yukawa potentials to enhance indirect detection signals. On the
other hand, if the DM abundance is determined by the freeze-out mechanism in the early
universe, the Sommerfeld enhancement can also modify the annihilation rate of DM, and
thus alter its abundance [5–7, 24–28].
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Due to its important applications to DM studies, the Sommerfeld enhancement has
been extensively investigated in various aspects. The Sommerfeld enhancement factors for
partial waves of higher orders than the s-wave were calculated in refs. [29–31], and turn out
to be relevant in the non-perturbative region or under some special mechanism [32]. The
force mediators that lead to enhancements of the DM annihilation can be, e.g., pseudo-scalar
Goldstone bosons [33], unparticles [34] and multiple mediators [35, 36]. Additionally, the
annihilation rates of the heavy electroweak triplets which can explain neutrino masses in the
type-II and type-III seesaw mechanisms may also be enhanced by the Sommerfeld corrections,
thus will significantly reduce the baryon asymmetries they generate via leptogenesis [37].
The Sommerfeld corrections on the effective potential between two wino DM particles
mediated by the exchange of electroweak gauge bosons and photons were calculated to the
next-to-leading order in refs. [38–40].

Generally speaking, in the presence of light particles mediating long-range forces, the
Sommerfeld enhancement is expected. Neutrinos, as one of the lightest species in the
Standard Model, might also serve as a light mediator for the Sommerfeld enhancement. It
is well known that the exchange of a pair of light neutrinos between two particles leads to a
long-range force [41–43]. The effective potential of such a force is proportional to 1/r5 if
we neglect neutrino masses and assume a contact interaction.1 Neutrino forces might have
important cosmological and astrophysical effects. Early studies include long-range forces
from the cosmic neutrino background [48–50] and the possibility of neutron stars being
affected by neutrino forces [51–57]. More recently, ref. [58] showed that the neutrino force
generated from a DM-neutrino interaction could be strong enough to impact small-scale
structure formation in the early universe.

So far, the possibility that the Sommerfeld enhancement could be caused by neutrino
forces has not been discussed in the literature. In the present paper, we investigate the
effects of neutrino forces on the Sommerfeld enhancement. This may be significant in the
presence of DM-neutrino interactions, and may therefore affect the DM thermal evolution
and DM indirect detection today. DM-neutrino interactions are worthy of consideration
for several reasons. They are present in many models of DM, such as sterile neutrino DM,
neutrino portal models or other scenarios which link the dual problems of neutrino masses
and DM. On the observational side, DM-neutrino couplings are generically less constrained
than DM couplings with other SM particles while their cosmological phenomenology is
rich [59–64] and provides an additional way to test these, albeit indirectly. Moreover, there
could be significant implications for structure formation, indeed some cosmological data
seems to favour such interactions [65].

The remainder of this paper is organised as follows. In section 2, we briefly review the
Sommerfeld enhancement and the formalism to calculate it for a general potential. We
then calculate the Sommerfeld enhancement factor in the specific case of a neutrino force
in section 3. As we show, a straightforward calculation using a potential more singular
than 1/r2 in the Schrödinger equation is invalid, thus one cannot use the contact 1/r5

1When the distance r exceeds the inverse of the neutrino masses, the potential becomes exponentially sup-
pressed with the suppression depending on the masses and the Dirac or Majorana nature of neutrinos [44–46];
when r is too small to maintain the contact vertex, the 1/r5 form changes to other forms [47].
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neutrino force at all scales. Rather, one should open up the contact vertex and consider the
short-range behaviour of neutrino forces in the calculation of the Sommerfeld enhancement.
We consider two possible UV completions of the contact interaction and calculate the
corresponding Sommerfeld enhancement factor in sections 3.2 and 3.3, where the short-
range behaviour of the neutrino force is 1/r and 1/r2, respectively [47]. Then in section 4,
we discuss how to build models that can realise the DM-neutrino interaction and generate
sizeable Sommerfeld enhancements, as well as the impacts on DM phenomenology of neutrino
forces. We summarise our main results in section 5. Finally, some mathematical aspects
about the short-range behaviour of the radial wave function in a general inverse-power
potential are discussed in appendix A.

2 Sommerfeld enhancement

The Sommerfeld enhancement occurs in processes involving long-range attractive forces
between two slow-moving particles. In quantum field theory, it is a non-perturbative
effect which can be computed by solving the Bethe-Salpeter equation [30, 31]. Since the
enhancement itself is only related to soft scattering of slow-moving particles, it can be
computed in nonrelativistic quantum mechanics. In this section, we briefly review the
quantum mechanics approach to the Sommerfeld enhancement [13].

Consider the collision of two particles affected by a long-range attractive potential V .
Denote the wave function of the two particles with coordinates r1 and r2 by Ψ(r1, r2). The
wave function can be written as a product of two parts that depend on r ≡ r1 − r2 and
r1 + r2 respectively. The part depending on r1 + r2 is not important since it is merely a
plane-wave solution describing the motion of the center-of-mass. The r-dependent part,
denoted by ψ(r), is however affected by the potential. Specifically, it is determined by the
following Schrödinger equation:[

−∇
2

2µ + V (r)
]
ψ(r) = Eψ(r) , (2.1)

where µ = m1m2/(m1 + m2) is the reduced mass of the two particles, whose individual
masses are m1 and m2. The boundary condition is given by ψ → eikz + f(θ)eikr/r as
r →∞, where eikz corresponds to an incoming plane wave along the z-axis and f(θ)eikr/r
to an outgoing spherical wave.

The Sommerfeld enhancement factor is determined by the ratio:2

S =
∣∣∣∣ ψ(0)
ψfree(0)

∣∣∣∣2 , (2.2)

where ψ and ψfree = eikz denote solutions of eq. (2.1) with and without V , respectively.
Since the solutions are symmetric around the z-axis, we expand it in Legendre polyno-

mials,

ψ(r) =
∞∑
l=0

Pl(cos θ)ul(r)
r

. (2.3)

2For a more rigorous treatment of the short-range behaviour of the wave function in the calculation of
the Sommerfeld enhancement, see ref. [66].
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Since eikz =
∑∞
l=0 Pl(cos θ)iljl(kr), the expansion of ψfree simply gives ufree, l(r) = riljl(kr).

In particular, for l = 0, we have

ufree, 0(r) = rj0(kr) = 1
k

sin(kr) . (2.4)

It has been shown in ref. [13] that contributions of l > 1 to the Sommerfeld enhancement
factor vanish if the potential does not blow up faster than 1/r near the origin.3 Hence, we
will only focus on the l = 0 mode. For simplicity, in what follows, we denote u0(r) by u(r),
and ufree, 0(r) by ufree(r).

Applying the Legendre expansion in eq. (2.3) to eq. (2.1), we obtain the radial
Schrödinger equation for χ(r):

− 1
2µu

′′(r) + V (r)u(r) = Eu(r) . (2.5)

The Sommerfeld enhancement factor is then determined by u,

S = lim
r→0

∣∣∣∣ u(r)/r
ufree(r)/r

∣∣∣∣2 =
∣∣u′(0)

∣∣2 . (2.6)

Note that the amplitude of u(r) at r →∞ is fixed by ufree(r), i.e. u(r) should be identical
to sin(kr)/k up to a phase shift. Therefore, one may need to solve eq. (2.5) with the initial
condition u(0) = 0 and u′(0) = C where C is determined by matching the amplitude of u(r)
to ufree(r) at r →∞. Since eq. (2.5) is linear with respect to u, changing u′(0) by a factor
of C corresponding to multiplying the entire u(r) function by the same factor. Hence one
can start with the initial value u′(0) = 1, solve eq. (2.5) to get the amplitude, Au, and then
compute the Sommerfeld enhancement factor by

S =
∣∣∣∣ 1
kAu

∣∣∣∣2 . (2.7)

Let us apply the above procedure to the well-studied case of Yukawa potentials. Consider
a Yukawa interaction L ⊃ −yχφχχ, where φ is a light scalar with mass mφ and χ a heavy
fermion with mass mχ. The interaction induces the potential,

Vφ = −αχ
r
e−mφr , (2.8)

with αχ ≡ y2
χ/(4π).

Substituting eq. (2.8) into eq. (2.5), we numerically solve it with k/mχ = 10−3, αχ = 0.1,
and mφ = {0, 0.05, 0.06}mχ, as shown in figure 1. The choice of k/mχ = v = 10−3 is
motivated by the fact that DM velocities are vDM ∼ 10−3 today. As one can see, starting
from the origin, u(r) initially increases linearly with r, then oscillates with an increasing
amplitude, and eventually behaves as a free particle with a constant amplitude. According
to eq. (2.7), the smaller the final amplitude, the larger the value of S we obtain. Substituting
the obtained amplitudes into eq. (2.7), we find S = 445.3, 159.5, and 7541.2 for the blue,
orange, and green curves, respectively.

3In fact, if the potential blows up faster than 1/r but slower than 1/r2, or if limr→0 r
2|V (r)| is a small

(smaller than a certain critical value) finite value, this conclusion still holds. For further discussions, see
appendix A.
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Figure 1. Examples of the solutions of the radial Schrödinger equation for Yukawa potentials.
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Figure 2. Feynman diagrams of neutrino forces arising from contact (left), t-channel (middle), and
s-channel (right) interactions.

3 Effects of neutrino forces on Sommerfeld enhancements

Like other light particles, neutrinos may mediate long-range forces as well. Since neutrinos
are fermions, the exchange of a pair of neutrinos is required to generate a force, as shown in
figure 2. For contact interactions (left panel of figure 2), the induced potential is proportional
to 1/r5, provided that neutrino masses are negligible. The 1/r5 form remains valid as long
as the external fermions are non-relativistic and the momentum transfer between them,
q ∼ r−1, is smaller than the energy scale of the contact interaction. At smaller distances
(correspondingly higher momentum transfer), the 1/r5 form will be modified to 1/r2 or
1/r, depending on possible ways of opening the contact interaction [47]. In this section,
we investigate possible effects of neutrino forces on the Sommerfeld enhancement. We will
first consider the case of contact interactions, for which it is necessary to impose a cut-off
at some small distance scale. Then we consider possible modifications of the potential in
the t- and s-channel cases, as shown in the middle and right panels of figure 2. We will
show that the Sommerfeld enhancement in the contact interaction scenario is in general
quite weak, unless the contact interaction strength is greater than 1/m2

χ, above which the
UV completion becomes important. It turns out that for the s-channel UV completion,
the Sommerfeld enhancement remains weak, while for the t-channel case, the enhancement
can be quite significant and the contribution of neutrino forces is more than merely a loop
correction to the tree-level mediator.
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3.1 Contact interactions

For illustration, we consider the following scalar type of contact interactions:

Lint ⊃ GSννχχ , (3.1)

where GS is the effective coupling strength, ν denotes a neutrino and χ is a fermion,
which we may imagine is dark matter. One may consider other types of interactions such
as pseudoscalar, vector, axial-vector, or tensor. In such generalizations, neutrino forces
are either suppressed (e.g. pseudoscalar) or of the same order of magnitude (e.g. vector)
as the scalar case, depending on whether the non-relativistic limit of the χ bilinear is
velocity-suppressed or not.

Eq. (3.1) leads to, via the first diagram in figure 2, the following attractive
potential [41, 47]:

Vc = − 3G2
S

8π3r5 . (3.2)

Note that the power of r in the denominator is greater than two. For an attractive
potential V ∝ 1/rm with m > 2, a straightforward calculation using the potential in the
Schrödinger equation would be invalid. This has previously been addressed in a series of
studies on the theory of singular potentials — see ref. [67] for a review. That the critical value
of the power is two can be understood using Landau and Lifshitz’s argument [68, 69]: when
the particle is approaching the center of the potential, the kinetic energy Ek = k2/(2mχ)
with k ∼ r−1 increases as 1/r2 while V decreases as −1/rm. Therefore, the total energy
would not be bounded from below and the particle would keep falling to infinitely small r,
corresponding to infinitely high energy. Indeed, as mentioned above, for very small r the
1/r5 form will be no longer valid and the true form has lower powers such as 1/r or 1/r2,
depending on the UV behaviour of the contact vertex.

Despite the UV dependence, eq. (3.2) is valid over a wide range of large r and we would
like to ask whether in its valid range it could cause significant Sommerfeld enhancement or
not. To this end, we introduce a cut-off length scale Rcut, above which we employ eq. (3.2)
and below which we assume the neutrino force vanishes (corresponding to a flat potential).4

By solving the Schrödinger equation, we obtain the Sommerfeld enhancement factors
in figure 3. We set Rcut = 0.5m−1

χ and 1.0m−1
χ since for r � m−1

χ the non-relativistic
approximation would fail. In addition, the velocity is set by k/mχ = 10−3.

Let us first focus on the left panel, where we show the values of S−1 for G−1/2
S ≥ 1.0mχ.

In this regime, the S factor monotonically increases as the interaction strength GS increases.
The reason is obvious: a larger GS leads to a stronger neutrino force and hence a stronger
Sommerfeld enhancement effect. The result depends on the cut-off scale, Rcut. For
Rcut = 0.5m−1

χ (1.0m−1
χ ), S − 1 cannot exceed 0.18 (0.021) if G−1/2

S ≥ 1.0mχ.
One might ask what would happen if one further increases GS . In the right panel of

figure 3, we extend it to G−1/2
S ∈ [0.15, 1.0]mχ. As is shown in this plot, the S factor can

be drastically enhanced up to S & 103 when G
−1/2
S < 1.0mχ. In particular, the curves

develop several resonances, which is the typical behaviour of the Sommerfeld enhancement.
4Note that similar situations were discussed in some models with singular potentials [33, 34, 70].
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Figure 3. The Sommerfeld enhancement due to neutrinos forces derived from contact interactions.
The left (right) panel shows a small (large) enhancement effect for G−1/2

S > mχ (G−1/2
S < mχ).

Note, however, for G−1/2
S comparable to or less than mχ, the 1/r5 form of the potential is

likely to lose its validity before the non-relativistic approximation fails, because at r ∼ m−1
χ ,

the momentum transfer would be comparable to or greater than G
−1/2
s . Therefore, the

results obtained with G−1/2
S . 1.0mχ are presented only for illustration: the correct answer

depends the UV physics underlying the contact interaction.

3.2 The t-channel case

As discussed above, for potentials blowing up faster than 1/r2 (e.g. V ∝ 1/rm with m > 2),
there is a theoretical inconsistency: the particle would fall towards small r with its kinetic
energy increasing infinitely. In section 3.1, we simply imposed a cut-off on the potential. In
fact, sufficiently high energies would open the contact vertex, leading to an altered form of
the potential.

Let us now consider that the contact interaction is generated by a t-channel mediator,
with the Lagrangian given as follows:

L ⊃ −yνννφ− yχχχφ−
1
2m

2
φφ

2 . (3.3)

At energies well below mφ, it generates the effective interaction in eq. (3.1) with

GS = yνyχ
m2
φ

. (3.4)

Note that at tree level, the mediator φ already induces an attractive potential as formulated
in eq. (2.8). Hence the neutrino force can alternatively be viewed as a special loop correction
to the tree-level potential. From ref. [47], the effective potential including the neutrino
force reads:

Vt (r) = αχ

[
−e
−mφr

r
+ αν

4πmφV (mφr)
]
, (3.5)

where αχ,ν ≡ y2
χ,ν/(4π),

V (x) ≡ 2 + (2 + x) exEi (−x) + (2− x) e−xEi (x)
x

, (3.6)
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Figure 4. The Sommerfeld enhancement factor S as a function of the t-channel mediator mass mφ.
The effective potential used to obtain these curves is given in eq. (3.6), assuming αν = {0, 0.1, 0.3}
and αχ = 0.1. The left panel shows the entire mass range whereas the right panels focus on the two
highest peaks.

and Ei(x) ≡ −
∫∞
−x z

−1e−zdz is the exponential integral function. As one can check, in the
long-range limit (r � mφ), the above potential returns to the 1/r5 form in eq. (3.2), whereas
in the short-range limit (r � mφ) it behaves as 1/r, which implies that the Schrödinger
equation can be solved consistently without manually imposing any cut-off.

Solving the Schrödinger equation with the potential in eq. (3.6) give the results displayed
in figure 4. Here we set k/mχ = 10−3, αχ = 0.1, and αν = {0, 0.1, 0.3}. The left panel of
figure 4 shows how S varies within mφ ∈ [10−3, 1]mχ, while the right panels focus on two
highest peaks, which are around mφ ≈ 0.06mχ and mφ ≈ 0.016mχ. The curves in figure 4
can be viewed as the correct extrapolation of the curves in figure 3 for large GS , assuming
a t-channel UV completion of the contact interaction.

From the perspective of Feynman diagrams, the neutrino force in the t-channel scenario
is only a loop correction to the Yukawa force. To inspect the role of neutrinos in the
Sommerfeld enhancement, one should compare the curves with αν 6= 0 to the one with
αν = 0. As shown in the left panel, the neutrino force generally enhances the S factor. For
the parameters mentioned above, we find that the peaks are enhanced by, from right to left
(i.e. larger mφ/mχ to smaller),

∆S
S

=

5.4%, 9.5%, 12%, 14%, . . . , 19% for αν = 0.1
17%, 29%, 37%, 43%, . . . , 60% for αν = 0.3

, (3.7)

where the last values are the small-mφ limits of ∆S/S. This is much larger than usual
one-loop corrections which are typically of the order of αν/(4π) = 0.8% or 2% for αν = 0.1
or 0.3 respectively. We have verified that varying αχ can increase or decrease the number
and heights of the peaks but the relative ratios in eq. (3.7) remain rather stable with such
changes. The results are also independent of mχ, as long as mφ/mχ is fixed.

3.3 The s-channel case

Another way to open the contact vertex is via an s-channel mediator. To investigate
how neutrino forces may affect the Sommerfeld enhancement in this case, we consider the

– 8 –
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Figure 5. The Sommerfeld enhancement factor S in the s-channel case as a function of m∆ which
is defined by m2

∆ ≡ m2
φ −m2

χ.

following Lagrangian:
L ⊃ − (yνχνφ+ h.c.)− 1

2m
2
φφ

2 , (3.8)

which leads to the box diagram in figure 2. As has been pointed out in ref. [47], the effective
potential generated in this case contains spin-dependent and spin-independent pieces. For
simplicity, we focus on the latter which reads [47]:

Vs (r) = −3α2
ν

8πr

∫ ∞
0

[
1

2A + B2 − tA
4AB

√
tA

ln
(
B −

√
tA

B +
√
tA

)]
e−
√
trdt , (3.9)

where
A ≡ t− 4m2

χ , B ≡ t+ 2m2
∆ , m

2
∆ ≡ m2

φ −m2
χ . (3.10)

In the long-range limit, eq. (3.9) returns to the 1/r5 form whereas in the short-range
limit, it becomes proportional to 1/r2. More specifically, we have the following analytic
approximations:

Vs (r) ≈ −3α2
ν

8π ×



π
4mχr2 m−1

χ � r � m−1
∆

π
4mχm2

∆r
4 m−1

∆ � r � mχm
−2
∆

1
m4

∆r
5 mχm

−2
∆ � r

. (3.11)

In fact, when r is approaching m−1
χ , the potential behaves as 1/rα with α < 2, which

justifies the use of quantum mechanics to compute the Sommerfeld enhancement. By
directly substituting eq. (3.9) into the Schrödinger equation and solving it, we obtain the
Sommerfeld enhancement factor presented in figure 5.

According to eq. (3.11), the most important mass scale in the s-channel case is the mass
squared difference m2

∆ defined in eq. (3.10). A smaller m∆ leads to a stronger neutrino
force and hence a larger S, as is shown in figure 5. Overall, the Sommerfeld enhancement
is not significant in the s-channel case. For αν = 0.1 ∼ 0.3, the maximal enhancement is
around 1% ∼ 10%.
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Similar to our previous discussion in the t-channel case, figure 5 can also be viewed
as another large-GS extrapolation of the curves in figure 3. Unlike the t-channel case, the
s-channel extrapolation is flat without any resonances.

4 Dark matter model-building and phenomenology

We have now seen that a neutrino force in the dark sector via a t-channel interaction from
eq. (3.3) can produce potentially sizeable modifications to the Sommerfeld enhancement.
So far, we have been dealing with a toy model, since eq. (3.3) is clearly not gauge-invariant
and the nature of the dark matter particle χ is also unspecified. In this section, we will
briefly discuss some of the model-building challenges and possible ways to avoid them. We
will then consider the impact of this neutrino force on dark matter phenomenology.

First we note that the large αν and αχ required to modify the Sommerfeld enhancement
implies that both the φ and χ will equilibrate with the SM. Consequently, mχ,mφ &MeV
is required to avoid affecting BBN too greatly, given ∆Neff . 0.3 [71].

The Yukawa interaction ννφ could involve a) only left-handed neutrinos, in which case
we have νcLνLφ+ h.c., b) a left-handed and a right-handed neutrino, νLνRφ+ h.c., or c) only
right-handed neutrinos, νcRνRφ+ h.c.. Then, the requirement of gauge invariance implies
that either αν or αχ should inevitably receive some type of suppression.

If the scalar couples to at least one left-handed neutrino, then it must have a non-trivial
representation under SU(2)L ×U(1)Y . The only gauge-invariant renormalisable term which
induces a νcLνLφ interaction is lcLiσ2σ

a∆alL + h.c., with ∆a ∼ 31, where the first number is
the representation under SU(2)L and the second is the hypercharge. Similarly, the νLνRφ
interaction is generated at the renormalisable level by a term of the form lLΦ̃νR + h.c.,
where Φ ∼ 21/2. The first consequence of a scalar charged under the EW symmetry is
that its mass has to be high to avoid collider bounds.5 The second is that a χχφ coupling
implies that χ should be the neutral component of a low-dimensional SU(2)L multiplet.
However, direct detection rules out such DM candidates, see e.g. [74]. The DM can be
made sterile with respect to the SM via various mechanisms, for instance if the φ mixes
with some neutral scalar that couples to χ, or if the χχφ interaction is generated from
some higher-dimensional operator. These mechanisms generically face a suppression factor.
The mixing angle, for instance, scales as θ ∼ 〈φ〉/mφ . O(10−2), since the VEV of an
EW-charged scalar is constrained to be 〈φ〉 .GeV by EW precision data [75].

The scalar may be a singlet without SM charges if it couples only to right-handed
neutrinos, which is reminiscent of the Majoron model [76]. Motivated by the Majoron
model, it could be a pseudoscalar which however would lead to suppressed neutrino forces,
as previously mentioned. If we consider a scalar instead of a pseudoscalar, then the νcRνRφ
term can have an O(1) coupling6 and hence significant Sommerfeld enhancements, provided

5For the triplet ∆ which contains a doubly charged Higgs, the latest bound lies between 500 to 800GeV,
depending on the lepton flavour [72]. For the doublet Φ which is mainly constrained by its singly charged
Higgs, the latest bound is around 80GeV [73].

6The experimental constraints on such a scenario are very weak since φ does not directly couple to SM
particles and its loop-induced couplings to SM particles is highly suppressed by neutrino masses [77].
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that νR is much lighter than the DM. However, in this case the DM phenomenology is most
likely limited to the dark sector because the active-sterile neutrino mixing must be less
than O(10−2) [78].

4.1 Beyond scalar-mediated neutrino force

The requirement of gauge invariance is one of the main challenges for model-building with
a scalar mediator. The situation is much simpler, however, when considering a Z ′ model.
The Z ′ of a gauged Lµ − Lτ is permitted by experiments to have order-one couplings as
long as its mass is mZ′ & 200GeV, around which it is mainly constrained by the muon
g − 2 and CCFR — see e.g. [79]. One can then introduce a vector-like fermion (thereby
avoiding gauge anomalies), χ, which is charged under the Lµ − Lτ , as the DM candidate.
The resulting interactions,

L ⊃ gµ−τZ ′α(νµγαPLνµ − ντγαPLντ + χγαχ) + . . . , (4.1)

form a vectorial version of eq. (3.3). Above, the ellipsis is for the Z ′ coupling to the mu and
tau. The DM freezes out via s-channel annihilations into charged leptons and neutrinos,
and t- and u-channel annihilations into Z ′ pairs. As shown in figure 6, this scenario gives
the correct DM abundance for O(1) gauge coupling, except in the band mZ′ ' 2mχ, where
there is an s-channel resonance. The neutrino forces arising in the t-channel mediated by the
vector boson can be calculated in the same manner as the scalar case in [47]. The resulting
potentials have a similar r-dependence to the scalar case, though the spin dependence is
different and more complicated. We leave a dedicated study of the vector case to future work.

Beyond this, we point out that any fermion sufficiently light compared to both the DM
and mediator can replicate the effect of the neutrino force on the Sommerfeld enhancement.
One may therefore equally have an electron (or muon or tau) force when both DM and the
mediator are much heavier than its mass scale. Not only does this open up further model-
building possibilities, it could also perhaps have greater phenomenological consequences,
since generally DM-electron interactions are better constrained than DM-neutrino ones.

4.2 Dark matter phenomenology

The Sommerfeld enhancement may be important for a number of aspects of DM phe-
nomenology, as outlined in the introduction. Here we briefly survey the implications of dark
matter whose Sommerfeld enhancement is modified due to the presence of a neutrino force.

Firstly, a DM-neutrino interaction implies the possibility of indirect detection of DM via
χχ→ νν annihilations. The experimental bounds on this process remain much weaker than
on DM annihilations into photons or charged particles. Indeed, an analysis of constraints
for dark matter masses from MeV to ZeV scales found that except for a narrow band around
mχ ∼ 10–30MeV, the thermally-averaged cross section is allowed to be several orders of
magnitude larger than the one required for the correct relic abundance in the canonical
freeze-out scenario, 〈σv〉 ' 3× 10−26cm3/s [80]. However, this channel may be important if
neutrinos are the only SM particles with which DM interacts; alternatively it may provide
a signal which, in conjunction with others, would allow us to determine more precisely the
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Figure 6. Masses and gauge coupling required for correct DM abundance in the Lµ − Lτ model.

nature of DM. Given the weakness of the bounds, a Sommerfeld enhancement factor of up
to 104 (cf. figure 4) would be a neat explanation of how DM could produce an observable
neutrino signature yet still be consistent with the correct relic abundance. A neutrino force
which increases this Sommerfeld factor by up to ∼ 60% further opens up this possibility.
Note also that, as mentioned above, an equivalent ‘electron force’ can be realised if both
the DM and mediator masses are much heavier than the electron. In this case, such a force
would further enhance the rate of χχ→ e+e− compared to the typical expectation, which
could potentially leave a far more striking signature.

Secondly, it has been remarked that the Sommerfeld enhancement affects the standard
freeze-out calculation and can modify the relic abundance by an order-one factor [5]. This
would be additionally affected in the presence of a neutrino force, and therefore we remark
that a precise freeze-out calculation for DM which interacts with neutrinos requires careful
consideration of the neutrino force.

DM self-interactions are also known as a possible resolution of tensions between cold DM
predictions and observations in small-scale structures [81]. In particular, self-interactions
which have a Sommerfeld enhancement at low velocities are particularly attractive as they
can facilitate σ/m ∼ 1cm2/g required to ameliorate the tensions while avoiding constraints
from observations at higher DM velocities, where the enhancement is less effective. If DM
experiences a substantial neutrino force, not only will its annihilations into neutrinos be
further enhanced, but also its own scatterings.
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5 Conclusion

The Sommerfeld enhancement is by now an established part in dark matter phenomenology.
In this paper we went beyond the canonical light-mediator scenario and investigated the
role of a neutrino force on this effect.

DM-neutrino interactions should be considered at two scales, depicted in figure 2. After
outlining the formalism in section 2, we began section 3 by considering the long-range
force generated by the exchange of a pair of neutrinos, which produces a potential of the
form V ∝ 1/r5. We showed that within the region of validity of this potential, it induces
only a very modest Sommerfeld enhancement, as displayed in the left panel of figure 3.
At shorter scales, the UV completion must be considered. We computed the Sommerfeld
enhancement for two potentials valid at short distances recently derived in [47], and saw
that the results varied significantly between the different cases. While the enhancement
factor is negligible in the s-channel case, the t-channel one can induce an enhancement as
large as O(104). Importantly, although this effect is generated by the DM interaction with
the scalar mediator alone, the presence of the neutrino interaction can modify it by as much
as O(60%). This is much greater than what would be expected of a loop correction, and is
one of the main results of this paper.

Our results are rather general and can be applied to any instance in which the DM
interacts with a light fermion in a form given by eqs. (3.1), (3.3) or (3.8). The critical point
of distinction between the two UV completions is that at short distances the t-channel
potential scales as V ∝ 1/r while for the s-channel it behaves as V ∝ 1/r2. The behaviour
of the DM wave function for these and more general potentials was studied in appendix A.

Finally, we commented on model-building and dark matter phenomenology in section 4.
Although it is challenging to construct a satisfactory t-channel model with a scalar mediator,
we demonstrated that the basic idea fits into a greater class of models. The mediator may
be a vector, as illustrated in the example of a gauged Lµ−Lτ . Alternatively, for sufficiently
heavy dark matter, the effect of the neutrino force may be replicated by an electron (or
muon or tau) force instead. There are a variety of implications, including for indirect
detection experiments and freeze-out calculations, which warrant further investigation.
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A Small-r behaviour of radial wave functions in inverse-power potentials

In this appendix, we perform a systematic study of the short-range behaviour of the radial
wave function in general inverse-power potentials. The radial Schrödinger equation reads

u′′(r) +
[
2µ (E − V )− l (l + 1)

r2

]
u(r) = 0 , (A.1)
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where E = µv2/2 > 0 is the energy of relative motion, with v the relative velocity between
two particles. Defining the dimensionless quantity ρ ≡

√
2µE r, one obtains

u′′(ρ) +
[
1− V (ρ)

E
− l (l + 1)

ρ2

]
u(ρ) = 0 . (A.2)

Suppose we have an inverse-power potential like

V (ρ) = −m0
ρd

, (A.3)

where m0 is a parameter with the dimension of mass and d is an arbitrary positive number.
Then the radial equation is

u′′(ρ) +
[
1 + b

ρd
− l (l + 1)

ρ2

]
u(ρ) = 0 , (A.4)

with b ≡ m0/E. It is obvious that b > 0 (b < 0) corresponds to an attractive (repulsive)
potential. The physical initial condition of the radial wave function requires limρ→0 u(ρ) = 0.
However, it can be shown that for d > 2 and b > 0, the solution of eq. (A.4) will not tend
to zero near the origin [67]. More precisely, a potential V (ρ) that satisfies

lim
ρ→0

ρ2V (ρ) = 0 (or±∞) (A.5)

is called regular (or singular) at ρ = 0, while a potential satisfying

lim
ρ→0

log V (ρ)
log ρ = −2 (A.6)

is said to be a transitional potential. For regular or transitional potentials, the solution of
eq. (A.4) can be expanded as a series of ρ near ρ = 0 (using the Frobenius method discussed
below), while for a singular potential there does not exist a series solution near the origin.
In fact, the solutions of eq. (A.4) with singular potential have the following asymptotic
behaviour as ρ→ 0 [67]:

u(ρ) ∼ |V (ρ)|−1/4 exp
(
±i
∫ ρ [
−V (ρ′)

]1/2
dρ′
)
. (A.7)

In particular, for an attractive singular potential (b > 0, d > 2), eq. (A.7) shows that the
solution will oscillate infinitely rapidly as it tends to the origin. This corresponds to an
unacceptable solution since it does not have a unique bound-state spectrum, has an infinite
number of bound states and no lower bound on the energy [67]. On the contrary, a repulsive
singular potential (b < 0, d > 2) can lead to a solution which decreases to zero exponentially
near the origin [82–84]

u(ρ) ∼ ρd/4exp
(
− 2
d− 2 ρ

− d−2
2

)
, (A.8)

which is well-defined for physical problems. Throughout this paper, we will only focus on
the short-range behaviour of the solutions for regular and transitional potentials. This is
because the t- and s-channel case of neutrino forces behave as 1/r and 1/r2 respectively at
small distance [47], both of which are well-behaved (i.e. not singular) potentials. In the next
part of this appendix, we will introduce the general method to obtain the series solutions
near the origin for regular and transitional potentials.
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A.1 Frobenius method

Consider the following second-order linear differential equation for u(ρ):

u′′(ρ) + P (ρ)u′(ρ) +Q(ρ)u(ρ) = 0 , (A.9)

where P (ρ) and Q(ρ) are some general functions. If P (ρ) or Q(ρ) has a pole at ρ = 0, then
one cannot simply expand the solution as a series at ρ = 0 because it is the singular point
of this equation. However, the theorem of Frobenius shows that if both P̃ (ρ) ≡ ρP (ρ) and
Q̃(ρ) ≡ ρ2Q(ρ) are finite as ρ approaches zero,7 then one can still obtain the general series
solution [85]

u(ρ) = ρν
∞∑
n=0

anρ
n , (A.10)

where ν is some number to be determined. Note that one can always adjust the value of ν
to make a0 6= 0. In this case, ν is determined by the indicial equation,

ν (ν − 1) + P̃ (0)ν + Q̃(0) = 0 , (A.11)

where P̃ (0) and Q̃(0) are the limits of P̃ (ρ) and Q̃(ρ) as ρ → 0. Below we will illustrate
how to apply the Frobenius method through some concrete examples.

A.2 Coulomb potential

To start, we consider the Coulomb potential, which corresponds to d = 1 in eq. (A.4).
Substituting eq. (A.10) into eq. (A.4), one obtains

a0ρ
ν [ν (ν − 1)− l (l + 1)] + ρν+1 {a1 [ν (ν + 1)− l (l + 1)] + b a0}

+
∞∑
n=2

ρν+n {an [(n+ ν) (n+ ν − 1)− l (l + 1)] + an−2 + b an−1} = 0 . (A.12)

Considering the coefficient of a0, with a0 6= 0 by convention, we have the indicial equation

ν (ν − 1)− l (l + 1) = 0 , (A.13)

which gives ν1 = l + 1 or ν2 = −l. Then the terms proportional to ρν+1 and ρν+n give the
recursive relation

a1 = b a0
l (l + 1)− ν (ν + 1) , an = −an−2 − b an−1

(n+ ν − 1) (n+ ν)− l (l + 1) (for n > 2) . (A.14)

For l > 0, the two roots of ν along with the recursive relation give two independent solutions,
with the general solution being a linear combination of these,

ul(ρ) = c1ρ
l+1
[
1− b

2 (l + 1)ρ+ b2 − 2 (l + 1)
4 (l + 1) (2l + 3)ρ

2 + . . .

]

+ c2ρ
−l
[
1 + b

2l ρ+ b2 + 2l
4l (2l − 1)ρ

2 + . . .

]
, l > 1 , (A.15)

7In this case, ρ = 0 is called a regular singular point of the equation, otherwise it is an irregular singular
point. It is obvious that for regular and transitional potentials with d 6 2 in eq. (A.4), ρ = 0 is a regular
singular point, while for singular potential with d > 2, ρ = 0 is an irregular singular point.
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where c1 and c2 are two arbitrary numbers to be determined by initial conditions, and the
ellipses denote terms with higher powers of ρ. It is obvious that terms proportional to ρ−l

blow up when ρ→ 0, so we must set c2 = 0. Thus, the asymptotic behaviour of ul(ρ) as ρ
approaches zero is

ul(ρ) ∼ ρl+1, l > 1 . (A.16)

For the case of l = 0, the second line of eq. (A.15) blows up. Therefore, one should firstly
take the solution taking with only the ν1 = l + 1 root of the indicial equation,

u
(1)
0 (ρ) = ρ

(
1− b

2ρ+ b2 − 2
12 ρ2 + . . .

)
. (A.17)

Then the second particular solution cannot be deduced from the recursion relation in
eq. (A.14). Rather, it can be calculated from the first particular solution by

u
(2)
0 (ρ) = u

(1)
0 (ρ)

∫ ρ exp
[
−
∫ ρ′ P (ρ′′)dρ′′

]
[
u

(1)
0 (ρ′)

]2 dρ′ , (A.18)

where P (ρ) is the function defined in eq. (A.9) and is zero in this case. Thus, it is
straightforward to calculate the second particular solution,

u
(2)
0 = b u

(1)
0 (ρ) log ρ−

[
1− b

2ρ−
b2 + 1

2 ρ2 + b
(
11b2 + 2

)
72 ρ3 + . . .

]
, (A.19)

and the general solution for l = 0 is given by a linear combination of u(1)
0 (ρ) and u(2)

0 (ρ).
However, in order to guarantee limρ→0 u0(ρ) = 0, the term proportional to u(2)

0 (ρ) must
vanish. Hence, the asymptotic behaviour of u0(ρ) as ρ→ 0 is

u0(ρ) ∼ ρ . (A.20)

The wave function is therefore dominated by the l = 0 mode as ρ→ 0,

ψ(ρ) ∼
∞∑
l=0

Pl (cos θ) ul(ρ)
ρ
∼ u0(ρ)

ρ
∼ finite constant . (A.21)

A.3 Regular potential

Next we consider the general regular potential, where 0 < d < 2 in eq. (A.4). For simplicity,
we assume that d is a rational number, so that it can be written as the ratio of two positive
integers d = s/t with s < 2t. The radial equation reads

u′′(ρ) +
[
1 + b

ρs/t
− l (l + 1)

ρ2

]
u(ρ) = 0 . (A.22)

The key observation is that one can change the variable from ρ to ρ̃ = ρ1/t, then the radial
equation turns out to be

ρ̃2u′′(ρ̃) + (1− t) ρ̃u′(ρ̃) + t2
[
ρ̃2t + bρ̃2t−s − l (l + 1)

]
u(ρ̃) = 0 . (A.23)
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Note that since s < 2t, the term proportional to u(ρ̃) in eq. (A.23) is finite and independent
of ρ̃ as ρ̃→ 0. Thus the indicial equation is given by

ν (ν − 1) + (1− t) ν − t2l (l + 1) = 0 , (A.24)

with the solutions ν1 = t (l + 1) and ν2 = −tl. For l > 1, the general solution can be written
as

ul(ρ) = c1ρ̃
t(l+1)(1 + a1ρ̃+ a2ρ̃

2 + . . .) + c2ρ̃
−tl(1 + a′1ρ̃+ a′2ρ̃

2 + . . .)

= c1ρ
l+1(1 + a1ρ

1/t + a2ρ
2/t + . . .) + c2ρ

−l(1 + a′1ρ
1/t + a′2ρ

2/t + . . .) , (A.25)

with c1 and c2 arbitrary numbers. The initial condition requires c2 = 0, thus the asymptotic
behaviour of ul(ρ) as ρ→ 0 is

ul(ρ) ∼ ρl+1 , l > 1 . (A.26)

As for l = 0, again one should only use the solution from the first root of the indicial
equation, ν1 = t (l + 1), to obtain

u
(1)
0 (ρ̃) = ρ̃t (1 + a1ρ̃+ . . .) , (A.27)

while the second particular solution is given by

u
(2)
0 (ρ̃) = u

(1)
0 (ρ̃)

∫ ρ̃ exp
[
−
∫ ρ̃′ P (ρ̃′′)dρ̃′′

]
[
u

(1)
0 (ρ̃′)

]2 dρ̃′

= u
(1)
0 (ρ̃) log ρ̃+ C

(
1 + a′1ρ̃+ . . .

)
, (A.28)

where C and a′1 are some irrelevant numbers that do not influence the short-distance
asymptotic behaviour of the wave function. Note that we have used P (ρ̃) = (1− t) /ρ̃ in
this case. Then the general solution can be written as

u0(ρ) = c1u
(1)
0 (ρ̃) + c2u

(2)
0 (ρ̃) = c1u

(1)
0

(
ρ1/t

)
+ c2u

(2)
0

(
ρ1/t

)
. (A.29)

The initial condition limρ→0 u0(ρ) = 0 enforces c2 = 0, thus the asymptotic behaviour of
u0(ρ) as ρ→ 0 reads

u0(ρ) ∼ ρ̃t ∼ ρ , (A.30)

while that of the wave function is given by

ψ(ρ) ∼
∞∑
l=0

Pl (cos θ) ul(ρ)
ρ
∼ u0(ρ)

ρ
∼ finite constant . (A.31)

This completes the proof that for regular potentials, the asymptotic behaviour of the wave
function at short distance is always dominated by the l = 0 mode.
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A.4 Transitional potential

Finally, let us consider the case of the transitional potential, namely d = 2 in eq. (A.4).
The indicial equation reads

ν (ν − 1) + b− l (l + 1) = 0 ⇒ ν1,2 =
1±

√
(2l + 1)2 − 4b

2 . (A.32)

Note that the indicial equation in the scenario of transitional potential depends on the
coupling constant of the potential, b. This is the main difference compared to regular
potentials. Using the Frobenius method, it is straightforward to obtain

ul(ρ) = c1ρ
ν1

[
1− 1

2 (1 + 2ν1)ρ
2 + 1

8 (1 + 2ν1) (3 + 2ν1)ρ
4 + . . .

]
+ c2ρ

ν2

[
1− 1

2 (1 + 2ν2)ρ
2 + 1

8 (1 + 2ν2) (3 + 2ν2)ρ
4 + . . .

]
, (A.33)

where ν1 and ν2 are given by eq. (A.32), while c1 and c2 are two arbitrary numbers. In
contrast to the regular potential, the dominant mode at short distance in eq. (A.33) does
rely on the value of b. Firstly, if the transitional potential is repulsive, namely b 6 0, then
the short-range behaviour of radial wave function is dominated by the l = 0 mode,

u(ρ) ∼ u0(ρ) ∼ ρ
1
2(1+

√
1−4b) . (A.34)

Secondly, if b satisfies l0 (l0 + 1) < b 6 1
4 (2l0 + 1)2, where l0 = 0, 1, 2, . . ., then the l = l0

mode dominates at short range and we have

ul(ρ) ∼ ul0 ∼ ρ
1
2

(
1−
√

(2l0+1)2−4b
)
. (A.35)

Finally, if b satisfies 1
4 (2l0 + 1)2 < b 6 (l0 + 1) (l0 + 2), then the short-range behaviour is

dominated by all modes no larger than l0

ul(ρ) ∼ ul′(ρ) ∼ ρ
1
2

(
1±i
√

4b−(2l′+1)2
)
, l′ = 0, 1, 2, . . . , l0 . (A.36)

For illustration, we have explicitly listed some values of b in table 1 along with the modes that
dominate at short ranges and the asymptotic behaviour of the radial wave function as ρ→ 0.

It is helpful to consider a concrete example. The short-range behaviour of the neutrino
force in the s-channel case is an attractive transitional potential (cf. eq. (3.11)),

Vs(r) = −3α2
ν

32
1

mχr2 = −3α2
ν

32
E

ρ2 , (A.37)

thus we have b = 3α2
ν/32 ≈ 0.1α2

ν in our case. The perturbativity of the theory requires
αν < 1 so b is certainly smaller than 1/4, which means that the dominant mode is l = 0. It is
then interesting to analyse the asymptotic behaviour of the radial wave function for small b.
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values of b dominant modes asymptotic behaviour of radial wave function

b 6 0 l = 0 ρ
1
2(1+

√
1−4b)

0 < b 6 1
4 l = 0 ρ

1
2(1−

√
1−4b)

1
4 < b 6 2 l = 0 ρ

1
2(1±i

√
4b−1)

2 < b 6 9
4 l = 1 ρ

1
2(1−

√
9−4b)

9
4 < b 6 6 l = 0, 1 ρ

1
2(1±i

√
4b−1), ρ

1
2(1±i

√
4b−9)

6 < b 6 25
4 l = 2 ρ

1
2(1−

√
25−4b)

25
4 < b 6 12 l = 0, 1, 2 ρ

1
2(1±i

√
4b−1), ρ

1
2(1±i

√
4b−9), ρ

1
2(1±i

√
4b−25)

Table 1. Some values of the coupling constant b for the transitional potential, along with the
dominant modes at short ranges and the asymptotic behaviour of the radial wave function as ρ→ 0.
For the purpose of illustration, we only list values of b no larger than 12.

When b equals zero, i.e. in the decoupling limit, the two particular solutions of u0(ρ)
are simply cos ρ and sin ρ, which behave as a constant and as ρ at small distances. For small
but nonzero values of b, u0(ρ) is a linear combination of ρb and ρ1−b at small distances.
However, we know from eq. (2.4) that the free solution without the potential behaves as
ufree,0(ρ) ∼ ρ as ρ→ 0, so the Sommerfeld enhancement factor is given by

S = lim
ρ→0

∣∣∣∣∣ u0(ρ)
ufree,0(ρ)

∣∣∣∣∣
2

∼ ρ−2b , (A.38)

which tends to zero for negative b and to infinity for positive b as ρ→ 0. This means that
there is no Sommerfeld enhancement for a repulsive transitional potential, while for an
attractive transitional potential the formalism used to calculate Sommerfeld enhancement
in eq. (2.2) no longer holds.8
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