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Abstract Using the Hayward–Kodama temperature for the
apparent horizon, it is found that matter content in the Uni-
verse is not thermodynamically stable, and the entry to the
late accelerated expansion is actually a second order phase
transition. The cosmological model used for the purpose is
one that imitates the ΛCDM model, the favoured model for
the present Universe.

1 Introduction

The idea of a horizon and the thermodynamical properties
of cosmological models were brought into being inspired by
black hole thermodynamics [1,2]. This served the purpose as
a diagnostics of the validity of cosmological models, mainly
by checking the validity of the “Generalized Second Law of
Thermodynamics” (GSL) [3] in the model. The GSL states
that the total entropy of the Universe is non-decreasing. For a
comprehensive review, we refer to the monograph by Faraoni
[4]. This helps one to determine the favoured model amongst
two or more. For example, we refer to the recent work which
indicates that freezing models are better in this respect than
the thawing models [5].

Understanding the thermodynamic stability of the mat-
ter content of the Universe offers insights into the underly-
ing mechanisms governing cosmic processes. It allows us to
discern the conditions under which the matter components
maintain equilibrium or undergo transformative phases. This
knowledge contributes to a deeper comprehension of how the
cosmos evolves and goes through different phases. Further-
more, the connection between thermodynamic stability and
late accelerated expansion provides a unique vantage point
for verifying and refining existing cosmological models. If
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such a correlation is confirmed, it implies a previously unno-
ticed interplay between thermodynamics and the evolution
of the Universe. This can lead to novel perspectives on the
driving forces behind the cosmic expansion and the role of
various energy components. If thermodynamic stability is
indeed linked to the accelerated expansion phase, it could
offer a new perspective on the nature and behavior of dark
energy, potentially guiding future research and theoretical
developments in this realm. This correlation offers a means
to select favoured propositions from various existing theo-
ries concerning dark energy in the literature. Thermodynam-
ics is a robust branch of physics and survived all attempts
at empirical falsification. It can establish bounds on physical
processes.

Recently, Barboza et al. [6], delved into the thermody-
namic aspects of DE fluids. Their study encompasses both
thermal and mechanical stability, necessitating positive val-
ues for heat capacities and fluid compressibility. Their find-
ings indicated that the stability of DE fluid implies a neg-
ative constant equation of state parameter. However, their
analysis encountered a contradiction with observational con-
straints set by type Ia supernovae, Baryon Acoustic Oscilla-
tions (BAO), and Hubble parameter data on a generalized
DE fluid. Consequently, their conclusion suggested that DE
fluid models might be regarded as unfeasible from a ther-
modynamic standpoint. On the other hand, as indicated in
reference [7], in order to achieve a universe currently under-
going an accelerated expansion, it becomes necessary to posit
a negative value for specific heat at constant volume (CV ).

Their study further reveals that the specific heat at constant
volume, CV , exhibits a negative value in the present epoch,
while the specific heat at constant pressure (CP ), approaches
a value close to zero. These outcomes are consistent with the
ΛCDM model.

The thermodynamic stability of model can be ascertained
from the properties of the second order derivatives of the
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internal entropy of the system. For some examples, see ref-
erences [8,9]. The motivation of the present work, to begin
with, is to look at the thermodynamic stability of a cosmolog-
ical model that mimics a ΛCDM model for the late time evo-
lution. The method is to look for the concavity of the entropy
function for the matter content in the Universe. This is done
through the properties of the hessian matrix, which involves
the second order derivatives of the entropy. An example of
such treatments in cosmology can be found in the work by
Bhandari et al. [10].

With a metric ansatz where the scale factor is a hyper-
bolic function (a ∼ sinh2/3(t/t0)), that imitates a ΛCDM
behaviour, it is found that the system is not thermodynami-
cally stable.

The calculation yields a surprising result. It is found that
although the entropy S is continuous, CV , the thermal capac-
ity at constant volume has a discontinuity at a particular value
of the redshift z, where the evolution transits from the decel-
erated to the accelerated state of expansion. Clearly, this tran-
sition is a phase transition as the discontinuity is in CV . It is
also found that the deceleration parameter q plays the role
of the order parameter, and the order of the discontinuity is
simply unity.

Unlike the case of a stationary black hole, the horizon in
cosmology is evolving, and is defined as an apparent horizon.
This motivates one to replace the Hawking temperature by
Hayward–Kodama temperature [11–13] as the temperature
of the horizon. This turns out to be a crucial difference. If the
Hawking temperature is used instead, this phase transition
goes missing! This may be the reason behind this impor-
tant connection between the signature flip in q and a second
order phase transition. It deserves mention that some recent
research on evolving black holes embedded in a de-Sitter
spacetime, a second order phase transition is indicated [14–
18].

The paper is organized as follows. Section 2 introduces the
general thermodynamic stability conditions. In Sect. 3, the
cosmological model used in the work is discussed. Section 4
deals with the stability analysis and the phase transition in
the model. Section 5 includes some concluding remarks.

2 General stability condition

We consider a spatially flat, homogeneous and isotropic uni-
verse given by the metric,

ds2 = −dt2 + a2(t)[dr2 + r2dΩ2], (1)

where a = a(t) is the scale factor. The corresponding Ein-
stein field equations are,

3H2 = ρ, (2)

2Ḣ = −(ρ + p), (3)

where ρ and p are the total energy density and pressure of
the matter content, H = ȧ

a is the Hubble parameter and an
overhead dot indicates a derivative with respect to the cosmic
time t . Units are chosen where c = 1 and 8πG = 1. Radius of
apparent horizon, r̃h , defined as gμν r̃h,μ r̃h,ν = 0 , is r̃h = 1

H
for a spatially flat (k = 0) universe [4].

We consider that the fluid inside the horizon is in ther-
modynamical equilibrium with the horizon. As shown by
Mimoso and Pavón [19], it has been determined that the
attainment of thermal equilibrium between radiation and
the cosmic horizon is not possible. This is due to Wien’s
law, which consistently results in a wavelength greater than
the horizon radius throughout all time periods. However,
nonrelativistic particles can achieve equilibrium at a cer-
tain juncture in the expansion, contingent upon the mass of
the particles. In this context, the conjecture posited by var-
ious researchers (such as in [20–22]), thermal equilibrium
between dark energy and the horizon is not without its ratio-
nale. In our study, we have not taken into account any radia-
tion component. As a result, the assumption to consider ther-
modynamic equilibrium between the horizon and the fluid
content remains applicable.

The temperature associated with a horizon is linked to
its surface gravity through the equation T = κ

2π
, where κ

denotes the surface gravity. When dealing with a spacetime
that remains unchanging, an event horizon falls under the cat-
egory of a Killing horizon. The surface gravity (κ) is defined
in relation to the Killing vector (ξa) using the equation:

ξa∇aξ
b = κξb. (4)

However, in cases characterized by dynamic conditions, the
aforementioned concept encounters limitations due to the
absence of a timelike Killing vector. Yet, Hayward introduced
an alternative definition of surface gravity that applies to
dynamic, spherically symmetric spacetimes. This new defini-
tion relies on the Kodama vector denoted as Ka . The Kodama
vector is defined as [23],

Ka ≡ εab∇bR, (5)

where R is the areal radius of the 2-sphere and εab is the
volume form of the 2-metric hab [1]. It can be expressed as
follows:

1

2
gabK c(∇cKa − ∇aKc) = κkoK

b. (6)

In this context, κko represents the surface gravity. For an
extensive and detailed exploration of this concept, we rec-
ommend referring to the monograph authored by Faraoni [4]
(see also [24]). Within the framework of a spatially flat FRW
cosmology, the surface gravity associated with the apparent
horizon is given by [25]:
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κko = − 1

2H
(Ḣ + 2H2). (7)

Consequently, building on the preceding analysis, one can
find the Hayward–Kodama temperature [11–13] for the
apparent horizon as,

T = | κko |
2π

= 2H2 + Ḣ

4πH
. (8)

It deserves mention that the temperature vanishes if the
scale factor has the form a(t) = √

αt2 + βt + γ . There-
fore in a pure radiation dominated era, Eq. (8) yields a zero
temperature. However, the present work is quite safe in this
respect as it does not deal with radiation in any way. The
entropy of the horizon is

Sh = 2π A, (9)

where A = 4π r̃2
h is the area of apparent horizon [4].

Differentiating Sh with respect to time t , one obtains,

Ṡh = −16π2 Ḣ

H3 . (10)

For the fluid inside the horizon, first law of thermodynam-
ics applied to a hydrostatic system looks like,

TdSin = dU + pdV, (11)

where Sin, U and V denote the entropy, the internal energy
and the volume of the fluid inside the horizon respectively.
V is bounded by the apparent horizon,

V = 4

3
π r̃3

h

= 4

3
π

1

H3 . (12)

Rate of change of entropy of fluid inside the horizon is,

Ṡin = 1

Th

[
(ρ + p)V̇ + ρ̇V

]

= 1

Th
(ρ + p)(V̇ − 3HV ). (13)

Now inserting Th from Eq. (8) and V from Eqs. (12) in (13),
one obtains the expression of Ṡin as,

Ṡin = 16π2 Ḣ

H3

(
1 + Ḣ

2H2 + Ḣ

)
. (14)

Therefore rate of change of the total entropy is,

Ṡ = Ṡh + Ṡin

= 16π2 Ḣ
2

H3

(
1

2H2 + Ḣ

)
. (15)

3 A model that mimics ΛCDM

We assume a simple ansatz for the scale factor:

a

a0
∼ sinh2/3(t/t0)

sinh2/3(1)
, (16)

which gives an accelerated expansion for a late time whereas
as a decelerated expansion in the early matter dominated
era. Here we have considered a = a0 at t = t0 and taken
t0 = 1. It’s worth highlighting that the chosen ansatz has
been tailored to imitate the characteristics inherent in the
ΛCDM model, the favoured model for the present Uni-
verse [26]. In the era dominated by matter, the scale factor
adheres to a behavior of a(t) ∝ t2/3. During the phase pri-
marily influenced by dark energy, with the assumption of
w = −1, the scale factor asymptotically follows a trend of
a(t) ∝ exp(Ht). When considering a Universe that main-
tains a spatially flat geometry and encompasses both matter
and vacuum energy, the solution encompasses the attributes
of these two components across early and late time periods.
This comprehensive solution is expressed as,

a(t) =
(

Ωm

Ωvac

)1/3 (
sinh[3√

ΩvacH0t/2]
)2/3

=
(

Ωm

Ωvac

)1/3

sinh2/3(t/t0), (17)

effectively capturing the tendencies exhibited by matter and
vacuum energy, while aligning with their behaviors as time
progresses from earlier to later epochs and is essentially
offers a ΛCDM model [27]. In our study, we have included
the sine hyperbolic behavior dependent on time into the
scale factor. This inclusion enables us to replicate the intrin-
sic characteristics of the ΛCDM model while simplifying
mathematical details. The Eq. (16) can be used to write

t/t0 = arcsinh
(
( 1

1+z )
3/2 sinh(1)

)
, where z is the redshift,

defined as 1 + z = a0
a , where a0 is the present value of the

scale factor. One can write Hubble parameter in terms of z
as,

H = 2

3
coth(t/t0)

= 2 csch(1)

3

√
1 + sinh2(1)

(1+z)3

(
1

1+z

)3/2 . (18)

Deceleration parameter, defined as q = −
[
1 + Ḣ

H2

]
, looks

like,

q(z) = −1 + 3

2
(

1 + sinh2(1)

(1+z)3

) , (19)
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Fig. 1 Plot of q against z

in terms of z.
Figure 1 shows the behaviour of q against z. At z = −1+

21/3 sinh2/3(1) � 0.403, expansion of the Universe transits
from the deceleration to the acceleration phase.

With this model, the thermodynamic behaviour will be
investigated.

4 Thermodynamic stability and phase transition

For thermodynamic stability, entropy of the fluid inside the
horizon has to be maximized. In terms of the Hessian matrix
of entropy, this can be realized as follows [28–31], all the kth
order principle minors of the matrix are ≤ 0 if k is odd and
≥ 0 if k is even. Hessian matrix W of Sin is

W =
⎡

⎣
∂2Sin
∂U2

∂2Sin
∂U∂V

∂2Sin
∂V ∂U

∂2Sin
∂V 2

⎤

⎦ . (20)

Therefore the thermodynamic stability requires that the
conditions

(i)
∂2Sin

∂U 2 ≤ 0, (21)

(ii)
∂2Sin

∂U 2

∂2Sin

∂V 2 −
(

∂2Sin

∂U∂V

)2

≥ 0, (22)

are satisfied together.
Now,

∂2Sin

∂U 2 = − 1

T 2CV
, (23)

and

∂2Sin

∂U 2

∂2Sin

∂V 2 −
(

∂2Sin

∂U∂V

)2

= 1

CV T 3VβT
= α. (24)

The second expression is denoted by α for the sake of
brevity. Here T is the temperature, CV is heat capacity at
constant volume and βT is the isothermal compressibility.

Heat capacity at constant volume (CV ) and that at constant
pressure (CP ) of the fluid are defined respectively as,

CV = T

(
∂Sin

∂T

)

V
, (25)

and

CP = T

(
∂Sin

∂T

)

P
. (26)

Isothermal compressibility is defined as,

βT = − 1

V

(
∂V

∂P

)

T
. (27)

Using Eq. (11), one can calculate the heat capacities and
isothermal compressibility for the matter inside the event
horizon.

CV = V

(
∂ρ

∂T

)

V

= 32π2 Ḣ

2H2 Ḣ + H Ḧ − Ḣ2

= 144π2

−2 + (1 + z)3 csch2(1)
, (28)

CP = V

(
∂ρ

∂T

)

P
+ (ρ + P)

(
∂V

∂T

)

P

= 32π2 H2 Ḣ + Ḣ2

H2(2H2 Ḣ + H Ḧ − Ḣ2)

= −72π2 sinh2(1)

(1 + z)3 + sinh2(1)
, (29)

βT = 3Ḣ(2H2 + Ḣ)

2(H2 + Ḣ)(2H2 Ḣ + H Ḧ − Ḣ2)

= −27

4

4 + (1 + z)3 csch2(1)
(−2 + (1 + z)3 csch2(1)

) . (30)

Figures 2 and 3 describes the behaviour of CV and CP

respectively against the redshift Z for low z (0 ≤ z ≤ 1).

Using the expressions for CV and βT from Eqs. (28) and

(30) in Eqs. (23) and (24), one can plot ∂2Sin
∂U2 and α. These

are shown in Figs. 4 and 5 respectively. In Fig. 4, we have
written SinUU as legend along the Y-axis and in the caption

in place of ∂2Sin
∂U2 . It is clearly seen that the two conditions

(21) and (22) are never satisfied together for the low redshift
range (0 ≤ z ≤ 1). Thus the model is not thermodynamically
stable in the said redshift range.

The crucial observation that one can make from the Fig. 2
is that CV has a discontinuity, in fact a divergence, at
z = −1 + 21/3 sinh2/3(1) � 0.403, the value of z where
the Universe flips from the decelerated to the accelerated
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Fig. 2 Plot of CV against z

Fig. 3 Plot of CP against z

Fig. 4 Plot of SinUU against z

phase of expansion! So, the transition from the decelerated
to the accelerated state of expansion is actually a thermody-
namic phase transition. It has been checked that the entropy
S does not have any such discontinuity in the mentioned red-
shift range, the discontinuity is rather in CV . Thus the phase
transition is definitely a second order phase transition.

It deserves mention that CV is negative for the present
Universe, z > −1 + 21/3 sinh2/3(1) � 0.403. However, a
negative heat capacity is not at all a surprise in gravitational

Fig. 5 Plot of α against z

systems (for a review, see [32]). In fact, Luongo and Quevedo
[7] arrived a strong result that for a currently accelerating
Universe, CV is required to be negative.

Using Eq. (19) in (28), one can obtain CV in terms of q as

CV = 24π2 1 − 2q

q
. (31)

So it is clearly seen that the discontinuity in CV results
from q appearing in the denominator with an exponent +1.
Thus q serves as the order parameter and the discontinuity is
of order unity.

5 Conclusion

The thermodynamical stability analysis is done for a model
which mimics the ΛCDM model for the present Universe. As
the horizon is evolving, the Hayward–Kodama temperature
is considered as the horizon temperature. The thermal stabil-
ity of an equilibrium thermodynamic system is ensured by
demanding a positive thermal capacity and compressibility
of the system and the same holds true for the matter content
in a cosmological system(see for example the recent work of
Luciano [33]). In the present case, CV comes out to be nega-
tive. Thus the model is expected to have a thermodynamical
instability.

The far reaching result obtained is that the matter content
undergoes a phase transition as the Universe flips from the
decelerated to the accelerated state of expansion. The phase
transition is manifestly a second order one, as the disconti-
nuity is in CV . The deceleration parameter q plays the role
of the order parameter. One disclaimer is that it has not been
the attempt to fit in the observational value of z at q = 0.
The investigation was really that of the qualitative thermody-
namic nature of the signature flip in q. The reason for earlier
investigations being unable to find the second order phase
transition at the commencement of the accelerated phase of
expansion of the Universe is perhaps because of the use of
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the Hawking temperature of the horizon and thus ignoring
the fact that the apparent horizon is evolving.

It is generally believed that the early universe witnessed at
least two phase transitions, one is the electroweak phase tran-
sition at the energy scale of 100 GeV (temperature ∼ 1015 K),
the other being the QCD transition at a temperature of 1012 K
[34]. There are speculations about some other phase transi-
tions as well [35]. The idea of thermal or non-thermal phase
transitions in cosmic matter all began when particle physics
theories started using the universe as the laboratory in the
quest of high energies unattainable in the laboratories on the
earth. The combination of gravity and particle physics could
describe the structure of the universe quite well. This com-
munication between gravity and particle physics, however,
is possible after the Planck epoch of energy scale beyond
1019 GeV, for which a proper quantum theory of gravity is
required, which is still elusive. For a comprehensive review
on the essence of the phase transitions in cosmic matter, we
refer to the classic work of Kibble [36]. Although some indi-
rect effects of these transitions in the observational quantities
are expected [35] in the present epoch, there is not much indi-
cation of a thermal phase transition in the late universe itself.
The present work brings out the possibility that the cosmic
fluid in the late universe itself might have undergone a phase
transition at the value of the redshift at which a decelerated
expansion of the universe enters into an accelerated mode
defying the attractive nature of normal matter and thus requir-
ing the so called dark energy. As opposed to the first order
transitions in the early universe [37], this late time phase tran-
sition is strongly second order. Certainly this late time phase
transition deserves more attention, as this may hold the key
to uncover the mystery of the dark energy.

We have assumed here that the dark matter and the dark
energy are in thermal equilibrium with the horizon. This may
appear to be a bit contrived [38] as they may evolve indepen-
dently. However, we have assumed only a composite fluid
where various sectors are not distinguished and only the evo-
lution history (a ∼ sinh2/3(t/t0)) matters.
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