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We present the resummation of one-jettiness for the color-singlet plus jet production process pp →
ðγ�=Z → lþl−Þ þ jet at hadron colliders up to the fourth logarithmic order (N3LL). This is the first
resummation at this order for processes involving three colored partons at the Born level. We match our
resummation formula to the corresponding fixed-order predictions, extending the validity of our results to
regions of the phase space where further hard emissions are present. This result paves the way for the
construction of next-to-next-to-leading order simulations for color-singlet plus jet production matched to
parton showers in the GENEVA framework.
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I. INTRODUCTION

The study of the production of a color singlet system at
large recoil is of crucial importance for the physics
programme at the Large Hadron Collider. In particular,
theoretical predictions for γ�=Z þ jet production are
needed at higher precision to match the accuracy reached
by experimental measurements of the Z boson transverse
momentum (qT) spectrum. Combining next-to-next-to-
leading order (NNLO) predictions for γ�=Z þ jet [1–6]
with qT resummation [7–15] provides an accurate descrip-
tion of this distribution over the whole kinematic range and
can be used to extract αs [16] and as a background for new
physics searches.
The one-jettiness variable is a suitable event shape for

color singlet ðLÞ þ jet production which does not suffer
from superleading or nonglobal logarithms. It is a specific
case of N-jettiness [17], and has been used to perform
slicing calculations at NNLO [18–22]. Resummation of the
jettiness has been performed for various N [23–27], and

this was exploited to match NNLO calculations to parton
shower algorithms for color singlet production in GENEVA

[23,25,28–33]. In this work, we resum the one-jettiness up
to N3LL accuracy, providing state-of-the-art predictions for
this variable, which was only previously known up to
NNLL [26]. In order to obtain this accurate result, we rely
on higher-order perturbative ingredients which have only
become available in the last few years. In particular, the
structure of the hard anomalous dimensions that is relevant
for N3LL resummation was derived in Ref. [34] together
with the direct evaluation of the four-loop cusp anomalous
dimension in Refs. [35,36]. N3LL resummation also
requires the knowledge of two-loop soft boundary terms
which were first evaluated in Refs [37,38] and recomputed
for this paper with a refined treatment of the small and large
angle regions [39].
We define the one-jettiness resolution variable as [17]

T 1 ¼
X
k

min

�
2qa · pk

Qa
;
2qb · pk

Qb
;
2qJ · pk

QJ

�
; ð1Þ

with qa;b ¼ xa;bEcmna;b=2 ¼ Ea;bna;b and qJ ¼ EJnJ,
where EJ is the jet energy. The beam directions are na;b ¼
ð1; 0; 0;�1Þ while the massless jet direction is nJ ¼
ð1; n⃗JÞ. In Eq. (1) the sum runs over the four-momenta
pk of all partons which are part of the hadronic final state.
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We use a geometric measure where Qi ¼ 2ρiEi with i ¼ a,
b, J is proportional to the energy of the beam or jet
momenta. This particular choice is preferable because it is
independent of the total jet energy, but makes the one-
jettiness definition frame dependent. Results in frames that
differ by a longitudinal boost can be obtained by making
different choices for ρi. In this work we show results for T 1

in the laboratory frame (LAB) and in the frame where the
color singlet system has zero rapidity (CS). The LAB frame
definition is obtained by setting ρi ¼ 1 and evaluating the
jet energy and the directions of the partonic momenta in the
laboratory. In order to obtain the CS frame definition we
instead set

ρa ¼ eŶL ; ρb ¼ e−ŶL ;

ρJ ¼ ðe−ŶL q̂þJ þ eŶL q̂−J Þ=ð2ÊJÞ;

where ŶL is the rapidity of L in the laboratory. The
quantities q̂�J ¼ q̂0J ∓ q̂3J and ÊJ are the light cone com-
ponents and energy of the reconstructed massless jet four-
momentum q̂J in the laboratory frame respectively. In this
way the longitudinal boost between the two frames is
absorbed by a redefinition of the ρi.
The manuscript is organized as follows. In Sec. II we

introduce the factorization formula, detailing its ingredients
and their renormalization group (RG) evolution. We present
a final resummed formula valid up to N3LL accuracy and
we match it with the appropriate fixed-order calculation in
order to extend the description of the one-jettiness spectrum
also in regions where more than one hard jet is present. In
Sec. III we discuss the details of the implementation and
present our results for the one-jettiness distribution. We
also study the nonsingular contribution in different frames
and provide predictions matched to the appropriate fixed-
order (FO) distributions. We finally draw our conclusions
in Sec. IV. Further details about the derivation of the
resummed results are described in the appendices.

II. FACTORIZATION AND RESUMMATION

A general factorization formula for the N-jettiness
distribution was derived in Refs. [40,41]. For the case of
one-jettiness in hadronic collisions it reads

dσ
dΦ1dT 1

¼
X
κ

HκðΦ1; μÞ
Z

dtadtbdsJ

× Bκaðta; xa; μÞBκbðtb; xb; μÞJκJðsJ; μÞ

× Sκ

�
na · nJ; T 1 −

ta
Qa

−
tb
Qb

−
sJ
QJ

; μ

�
; ð2Þ

where xa;b ¼ ðQLJ=EcmÞ expf�YLJg andQLJ is the invari-
ant mass of the color-singlet plus jet system (LJ). The
index set κ ≡ fκa; κb; κJg runs over all allowed partonic
channels and κa, κb, κJ denote the individual parton types.

Φ1 is the phase space for the LJ system and na · nJ ¼
ð1 − cos θaJÞ measures the angle between the jet and the
rightward beam direction in the laboratory frame. In
general, for Lþ jet production all permitted partonic
channels contribute, i.e. κaκbκJ ∈ fqq̄g; qgq; ggg;…g,
where we have indicated all the crossing and charge-
conjugated processes within the dots. For the pp →
ðγ�=Z → lþl−Þ þ jetþ X case we consider in this work,
the qq̄g and qgq channels (plus their crossing and charge-
conjugated ones) appear at Born level. The ggg channel
instead begins to contribute only at Oðα3sÞ.
In Eq. (2) the hard functionsHκ are defined as the square

of the Wilson coefficients of the effective theory operators
defined in soft-collinear effective theory (SCET). They
can be obtained from the UV- and IR-finite relevant
amplitudes in full QCD. The beam Bκa=b and the jet JκJ
functions describe collinear emissions along the beam and
jet directions respectively. The functions Sκ describe
isotropic soft emissions from soft Wilson lines and depend
on the angle between the beam and jet directions.
The differential cross section in T 1 for a typical multi-

scale process such as γ�=Z þ jet depends on logarithms of
the ratios of different energy scales

μH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

lþl− þ q2T

q
; μB ¼ μJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
μHT 1

p
; μS ¼ T 1;

which are the characteristic scales of the hard, beam, jet,
and soft functions. In the regions of phase space which are
dominated by soft or collinear radiation, these energy scales
assume a strong ordering μH ≫ μB ∼ μJ ≫ μS such that
large logarithms of the ratios of these scales may arise. This
spoils the convergence of fixed-order perturbation theory
and requires the resummation of these logarithms to all
orders. In the SCET framework this is achieved through RG
evolution.
All the functions appearing in the factorization formula

are evolved from their characteristic energy scales
(μX; X ¼ H, S, B, J) to the common scale μ by separately
solving their associated RG evolution equations. The
accuracy of the resummed predictions is systematically
improvable by including higher-order terms in the fixed-
order expansions of the hard, soft, beam and jet functions as
well as in their corresponding anomalous dimensions. To
achieve N3LL accuracy one needs the boundary conditions
of the hard, soft, beam and jet functions up to two loops.
The coefficients of the scale-dependent and kinematic-
dependent logarithmic terms in the anomalous dimension
and the QCD beta function need to be evaluated up to four
loops. Finally, nonlogarithmic noncusp terms in the anoma-
lous dimension need to be evaluated up to three loops. The
power of the logarithms that are resummed at each different
resummation order and the corresponding ingredients can
be found, for example, in Ref. [42].
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In the rest of this section we will present the functions
appearing in the factorization formula (2) and their evo-
lution separately and derive the final resummed formula in
Sec. II D.

A. Hard functions for pp → ðγ�=Z → l+l− Þ+ jet
The hard function for the channel κ satisfies the follow-

ing RG equation (RGE)

d
d log μ

HκðΦ1; μÞ ¼ Γκ
HðμÞHκðΦ1; μÞ; ð3Þ

with Γκ
HðμÞ ¼ 2RefΓκ

CðμÞg. Here we have already
exploited the fact that for the color-singlet plus jet pro-
duction process, the color structure is trivial, i.e., the
anomalous dimensions of the Wilson coefficient Γκ

CðμÞ
[or equivalently the anomalous dimension of the hard
function Γκ

HðμÞ] is diagonal in color space, as we show
below. For ease of notation we use in this section the
abbreviations a ¼ κa, b ¼ κb and c ¼ κJ. Writing the
anomalous dimension Γκ

CðμÞ in full generality as a matrix
in color space and using its explicit expression up to N3LL
given in Ref. [34], we find

Γκ
CðμÞ ¼ Γκ

CðμÞ1

¼
�
ΓcuspðαsÞ

2

�
ðCc − Ca − CbÞ ln

μ2

ð−sab − i0Þ þ cyclic permutations

�

þ γaCðαsÞ þ γbCðαsÞ þ γcCðαsÞ þ
C2
A

8
fðαsÞðCa þ Cb þ CcÞ

�
1

þ
X
ði;jÞ

�
−fðαsÞT iijj þ

X
R¼F;A

gRðαsÞð3DR
iijj þ 4DR

iiijÞ ln
μ2

ð−sij − i0Þ
�
þOðα5sÞ; ð4Þ

where the sums run over all the external hard parton pairs
with i ≠ j and Ci is the quadratic Casimir invariant for the
parton i in the color representation Ri. The symbol 1
denotes the identity element in color space. The cusp
ΓcuspðαsÞ and noncusp γiCðαsÞ anomalous dimensions are
given in Appendix A of Ref. [34] for both quark and gluon
cases.1 We have ΓcuspðαsÞ ¼

P∞
n¼0 ðαs4πÞnΓn, with Γn the

universal cusp anomalous dimension coefficients. The
symmetrized color structures that appear in Eq. (4) are
defined as

T ijkl ¼ fadefbceðTa
i T

b
jT

c
kT

d
l Þþ;

DR
ijkl ¼ dabcdR Ta

i T
b
jT

c
kT

d
l ; ð5Þ

where ðTa1
i1
…Tan

in
Þþ ≡ 1

n!

P
π T

aπðaÞ
iπð1Þ …T

aπðnÞ
iπðnÞ denotes the nor-

malized sum of all possible permutations π of the n color
operators and

da1…an
R ¼ TrRðTa1…TanÞþ ¼ 1

n!

X
π

TrðTaπð1Þ
R …T

aπðnÞ
R Þ: ð6Þ

The functions fðαsÞ and gRðαsÞ (R ¼ F for the funda-
mental and R ¼ A for the adjoint representation) start at
Oðα3sÞ andOðα4sÞ respectively. The explicit expressions can
be derived from Refs. [34–36]; we report them below for
completeness

fðαsÞ ¼ 16ðζ5 þ 2ζ2ζ3Þ
�
αs
4π

�
3

þOðα4sÞ

gFðαsÞ ¼ TFnf

�
128π2

3
−
256ζ3
3

−
1280ζ5

3

��
αs
4π

�
4

þOðα5sÞ

gAðαsÞ ¼
�
−64ζ2 −

3968

35
ζ32 þ

64

3
ζ3 − 192ζ23

þ 1760

3
ζ5

��
αs
4π

�
4

þOðα5sÞ: ð7Þ

The terms proportional to these functions start contribut-
ing only at N3LL accuracy. In particular, similar to the
ΓcuspðαsÞ case, gRðαsÞ needs to be known one order higher
than fðαsÞ since it multiplies a scale logarithm.
It is possible to show using color conservation relations

(
P

i¼a;b;c TijMi ¼ 0) and the symmetry properties of
dabcdR that a symmetric combination of the term propor-
tional to gRðαsÞ can be rewritten in terms of quartic
Casimirs

C4ðRi; RÞ ¼
dabcdRi

dabcdR

NRi

≡DiR; ð8Þ

associated to the external legs, where NRi
is the dimension

of the color representation Ri (i.e., NF ¼ Nc and NA ¼
N2

c − 1 for the fundamental and adjoint representations of
SUðNcÞ respectively). The explicit form of the DiR is

1In the notation of Ref. [34] they read ΓcuspðαsÞ≡ γcuspðαsÞ
and γiCðαsÞ≡ γiðαsÞ.
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DFF ¼ ðN4
c − 6N2

c þ 18ÞðN2
c − 1Þ

96N3
c

;

DFA ¼ ðN2
c þ 6ÞðN2

c − 1Þ
48

;

DAF ¼ NcðN2
c þ 6Þ
48

;

DAA ¼ N2
cðN2

c þ 36Þ
24

: ð9Þ

Similar relations can also be found by exploiting consis-
tency relations among anomalous dimensions. Explicitly,
when acting on the color states we find

3ðDR
iijj þDR

jjiiÞ þ 4ðDR
iiij þDR

jjjiÞ
¼ ðDkR −DiR −DjRÞ1; ð10Þ

where i ≠ j ≠ k. These relations have a similar structure to
the quadratic Casimir case, where for three colored partons
one finds for example identities of the type Ta · Tb ¼
½T2

c − T2
a − T2

b�=2. The only relevant difference is the
appearance of the index R which labels the fundamental
and adjoint representations. This is due to the presence of
different partons in the internal loops. We have verified that
these relations hold by directly evaluating the action of the
color insertion operators on the possible color states in the
color-space formalism. We have further checked these
relations using the COLORMATH package [43].
By employing these expressions, the logarithmic term of

the hard anomalous dimension in Eq. (4) can be further
simplified and rewritten in terms of quartic Casimirs. In
order to do so we define

c̄κ ¼ cκs þ cκu þ cκt ¼ −ðCa þ Cb þ CcÞ=2; ð11Þ

c̄κL ¼ cκsLs þ cκuLu þ cκt Lt; ð12Þ

with

cκs ¼ Ta · Tb; cκu ¼ Tb · Tc; cκt ¼ Ta · Tc: ð13Þ

We also introduce an arbitrary hard scale Q to separate the
cusp and noncusp terms and use the abbreviations

Ls ¼ ln
−sab − i0

Q2
¼ ln

sab
Q2

− iπ;

Lu ¼ ln
sbc
Q2

; Lt ¼ ln
sac
Q2

:

By analogy to the quadratic case, we also define the sum of
the quartic Casimirs of the external colored legs as

c̄κ;R4 ¼ DaR þDbR þDcR: ð14Þ

For the quartic Casimir terms the kinematic dependence is
encoded by

c̄κ;R4;L ≡ cκ;R4;s Ls þ cκ;R4;uLu þ cκ;R4;t Lt; ð15Þ

where

cκ;R4;s ¼ DaR þDbR −DcR;

cκ;R4;t ¼ DaR þDcR −DbR;

cκ;R4;u ¼ DbR þDcR −DaR: ð16Þ

Using all the above definitions the anomalous dimension of
the Wilson coefficient for each channel κ can be written in a
fully diagonal form in color space as

Γκ
CðμÞ ¼

�
−c̄κΓcuspðαsÞ þ

X
R¼F;A

c̄κ;R4 gRðαsÞ
�
ln
Q2

μ2

þ
X

i¼a;b;c

γiCðαsÞ þ fðαsÞcκf − c̄κLΓcuspðαsÞ

þ
X
R¼F;A

gRðαsÞc̄κ;R4;L; ð17Þ

where the last missing ingredient appearing in the noncusp
anomalous dimensions is

cκf ¼ −
�
C2
A

4
c̄κ þ

X
i≠j

hMjT iijjjMi
hMjMi

�
: ð18Þ

This again requires an explicit evaluation of the action of
the color insertion operators on the possible color states.
We remind the reader that for three colored partons the
result of the color insertion operators must be diagonal and
proportional to the identity by Schur’s lemma. Therefore,
we consider their action on the amplitude in color space
jMi for each partonic channel κ. The color amplitude jMi
is the same for all quark channels, jMi ¼ tajijijai where
the taji are the Gell-Mann matrices and the quantum
numbers iðjÞ denote the color of the quark (antiquark)
and a that of the gluon respectively. We proceed by
calculating separately for each channel the action of the
color operators as a function of the number of colors Nc.
For κ ¼ qq̄g we find

X
ði;jÞ

hMjT iijjjMi
hMjMi ¼ 1

hMjMið2hT qqq̄q̄iþ4hT qqggiÞ ð19Þ

where we used the abbreviation hT ijkli≡ hMjT ijkljMi
and the relations
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hT qqq̄q̄i¼ hT q̄ q̄qqi¼
3

16
CFN2

c;

hT xxggi¼ hT ggxxi¼
1

16
CFN2

cðN2
cþ4Þ; x¼ q;q̄: ð20Þ

The normalization factor corresponds to the color factor of
the Born amplitude hMjMi ¼ CFNc.
For the κ ¼ qgq channel it is crucial to properly take into

account whether the quark is in the initial state or in the
final state, since it uniquely defines the action of the color
operators on the color states. We do so by using the notation
qi (qf) for the initial (final) state quark. We find

X
ði;jÞ

hMjT iijjjMi
hMjMi ¼ 1

hMjMi ð2hT qiqiqfqfi þ 4hT qiqiggiÞ;

ð21Þ

where we used

hT qiqiqfqfi≡ hT qfqfqiqii¼CFN2
c
3

16
;

hT qxqxggi≡ hT ggqxqxi¼CFN2
c
N2

cþ4

16
; x¼ i;f: ð22Þ

Finally, the κ ¼ q̄gq̄ can be obtained trivially from the
κ ¼ qgq results simply by applying charge conjugation and
replacing the quark with an antiquark. Some of these color
factors also appear in the calculation of the threshold three-
loop soft function in Ref. [44], for which we find complete
agreement.
Everything is now in place to write the solution of the

RGE for the hard Wilson coefficient. Indicating with μH its
canonical scale, the evolution kernel for the hard function
Uκ

HðμH; μÞ ¼ jUκ
CðμH; μÞj2 reads

Uκ
HðμH; μÞ ¼ exp

�
4c̄κKΓcusp

ðμH; μÞ − 4

� X
R¼F;A

c̄κ;R4 KgRðμH; μÞ
�
− 2c̄κηΓcusp

ðμH; μÞ ln
Q2

μ2H

þ 2

� X
R¼F;A

c̄κ;R4 ηgRðμH; μÞ
�
ln
Q2

μ2H
− 2Refc̄κLgηΓcusp

ðμH; μÞ þ
X
R¼F;A

2Refc̄κ;R4;LgηgRðμH; μÞ

þ 2
X

i¼a;b;c

KγiC
ðμH; μÞ þ 2cκfKfðμH; μÞ

�
; ð23Þ

where we have used the definitions

KΓx
ðμH; μÞ ¼

Z
αsðμÞ

αsðμHÞ

dαs
βðαsÞ

ΓxðαsÞ
Z

αs

αsðμHÞ

dα0s
βðα0sÞ

;

ηΓx
ðμH; μÞ ¼

Z
αsðμÞ

αsðμHÞ

dαs
βðαsÞ

ΓxðαsÞ;

KγxðμH; μÞ ¼
Z

αsðμÞ

αsðμHÞ

dαs
βðαsÞ

γxðαsÞ ð24Þ

and

KgRðμH; μÞ≡
Z

αsðμÞ

αsðμHÞ

dαs
βðαsÞ

gRðαsÞ
Z

αs

αsðμHÞ

dα0s
β½α0s�

;

ηgRðμH; μÞ≡
Z

αsðμÞ

αsðμHÞ

dαs
βðαsÞ

gRðαsÞ;

KfðμH; μÞ≡
Z

αsðμÞ

αsðμHÞ

dαs
βðαsÞ

fðαsÞ: ð25Þ

The latter are identically zero at lower orders since gRðαsÞ
and fðαsÞ start at Oðα4sÞ and Oðα3sÞ respectively.
The hard function admits a perturbative expansion

whose coefficients HðnÞ
κ are defined by

HκðΦ1;μHÞ¼
4παsðμHÞ
4dκadκb

X∞
n¼0

�
αsðμHÞ
4π

�
n
HðnÞ

κ ðΦ1;μHÞ; ð26Þ

where di is the dimension of the color representation of
parton i. Up to N3LL we only need the first two coef-
ficients. They can be extracted from the two-loop helicity
amplitudes calculated in Refs. [45,46], using the methods
described in Ref. [47]. In addition, we include the one-loop
axial corrections due to the difference between massive top
and massless bottom triangle loops, which were computed
in Ref. [48]. At present, our implementation neglects the
Oðα3sÞ axial contributions to the qq̄g and qgq channels,
which have only been recently calculated in Ref. [49].
Their contributions is expected to be extremely small for
the one-jettiness distribution.
We constructed the hard functions from the known UV-

and IR-finite helicity amplitudes for Z þ jet [45–47],
adding the Z=γ� interference and the decay into massless
leptons, producing the final squared matrix elements in an
analytical form. They have been obtained by rewriting
products of spinor brackets in terms of the kinematic
invariants, writing them in terms of five parity-even
invariants and one parity-odd invariant which is given by
the contraction of the Levi-Civita tensor with four of
the external momenta. Since they are too lengthy to be
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presented here, we refrain from including them in the
manuscript.

B. N-jettiness beam and jet functions

The beam and jet functions that enter Eq. (2) are the
same in the factorization formula for every N [41]. The
former can be written as convolutions of perturbatively
calculable kernels with the standard parton distribution
functions (PDFs). The beam and jet functions satisfy the
RGEs [40,50]

μ
d
dμ

Baðt; x; μÞ ¼
Z

dt0Γa
Bðt − t0; μÞBaðt0; x; μÞ; ð27Þ

μ
d
dμ

Jcðs; μÞ ¼
Z

ds0Γc
Jðs − s0; μÞJcðs0; μÞ; ð28Þ

where a, c can be a quark or a gluon. Formulas for the
second beam function are easily obtained by substituting
a → b. The anomalous dimensions in Eqs. (27) and (28)
read

Γa
Bðt; μÞ ¼ −2

�
CaΓcuspðαsÞ þ 2

X
R¼F;A

DaRgRðαsÞ
�
L0ðt; μ2Þ

þ γaBðαsÞδðtÞ; ð29Þ

Γc
Jðs; μÞ ¼ −2

�
CcΓcuspðαsÞ þ 2

X
R¼F;A

DcRgRðαsÞ
�
L0ðs; μ2Þ

þ γcJðαsÞδðsÞ; ð30Þ

where we denote the standard plus distributions by [51]

Lnðx; μmÞ ¼
�
θðxÞlnnðx=μmÞ

x

�
þ
; ð31Þ

where m is an integer equal to the mass dimension of x. In
order to solve both RGEs we find it convenient to cast
Eqs. (27) and (28) in Laplace space, where momentum
convolutions turn into simple products. We denote the
Laplace space conjugate functions with a tilde

B̃aðςB; x; μÞ ¼
Z

dte−t=ðQaeγEςBÞBaðt; x; μÞ; ð32Þ

J̃cðςJ; μÞ ¼
Z

dse−s=ðQJeγEςJÞJcðs; μÞ; ð33Þ

where the measures Qa and QJ are those introduced in the
definition of T 1 in Eq. (1). The RGEs for the beam and jet
functions can be written as

μ
d
dμ

ln B̃aðςB; x;μÞ ¼ −2
�
CaΓcuspðαsÞ þ 2

X
R¼F;A

DaRgRðαsÞ
�

× ln

�
QaςB
μ2

�
þ γaBðαsÞ; ð34Þ

μ
d
dμ

ln J̃cðςJ; μÞ ¼ −2
�
CcΓcuspðαsÞ þ 2

X
R¼F;A

DcRgRðαsÞ
�

× ln

�
QJςJ
μ2

�
þ γcJðαsÞ: ð35Þ

The solutions of Eqs. (34) and (35) yield the resummed
beam and jet functions in Laplace space

B̃aðςB; x; μÞ ¼ exp

�
4CaKΓcusp

ðμB; μÞ þ 8
X
R¼F;A

DaRKgRðμB; μÞ þ KγaB
ðμB; μÞ

�

× B̃ð∂ηB ; x; μBÞ
�
QaςB
μ2B

�
ηB
				
ηB¼−2½CaηΓcusp ðμB;μÞþ2

P
R¼F;A

DaRηgR ðμB;μÞ�
; ð36Þ

J̃cðςJ; μÞ ¼ exp

�
4CcKΓcusp

ðμJ; μÞ þ 8
X
R¼F;A

DcRKgRðμJ; μÞ þ KγcJ
ðμJ; μÞ

�

× J̃ð∂ηJ ; μJÞ
�
QJςJ
μ2J

�
ηJ
				
ηJ¼−2½CcηΓcusp ðμJ;μÞþ2

P
R¼F;A

DcRηgR ðμJ;μÞ�
; ð37Þ

where they are evolved from their canonical scales μB and μJ to an arbitrary scale μ. By performing the inverse Laplace
transform, we obtain them in momentum space

Baðt; x; μÞ ¼ exp

�
4CaKΓcusp

ðμB; μÞ þ 8
X
R¼F;A

DaRKgRðμB; μÞ þ KγaB
ðμB; μÞ

�

× B̃ð∂ηB ; x; μBÞ
e−γEηB

ΓðηBÞ
1

t

�
t
μ2B

�
ηB
				
ηB¼−2½CaηΓcusp ðμB;μÞþ2

P
R¼F;A

DaRηgR ðμB;μÞ�
; ð38Þ
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Jcðs; μÞ ¼ exp

�
4CcKΓcusp

ðμJ; μÞ þ 8
X
R¼F;A

DcRKgRðμJ; μÞ þ KγcJ
ðμJ; μÞ

�

× J̃ð∂ηJ ; μJÞ
e−γEηJ

ΓðηJÞ
1

s

�
s
μ2J

�
ηJ
				
ηJ¼−2½CcηΓcusp ðμJ;μÞþ2

P
R¼F;A

DcRηgR ðμJ;μÞ�
: ð39Þ

Similar to the hard functions in Eq. (26), the perturbative
components of the beam and jet functions admit an
expansion in terms of powers of the strong coupling
constant and perturbatively calculable coefficients. For
the beam functions these have been recently calculated
up to N3LO [50,52–55] while for the jet functions they have
been known for some time [56–62]. For our N3LL
predictions we only need the beam and jet coefficients
up to Oðα2sÞ.

C. One-jettiness soft functions

The soft function for exclusive N-jet production was first
calculated at NLO in Ref. [63]. There, results were
presented for the fully differential soft function in T i

N ,
where i labels the beam and jet regions, i ¼ a; b; J1;…; JN .
In our case, the NLO soft function appearing in Eq. (2) can
be obtained from these results by specifying N ¼ 1 and
projecting the soft momenta from each region to a single
variable,

SκðT s
1;μÞ

¼
Z

dkadkb dkJSκN¼1ðfkig;μÞδðT s
1−ka−kb−kJÞ; ð40Þ

where we have left implicit any angular dependence of
the soft functions on the jet directions, i.e., SκðT s

1; μÞ≡
Sκðna · nJ; T s

1; μÞ introduced in Eq. (2). It satisfies the
following RGE

μ
d
dμ

SκðT s
1; μÞ ¼

Z
dlΓκ

SðT s
1 − l; μÞSκðl; μÞ; ð41Þ

with the anomalous dimensions Γκ
SðT s

1; μÞ related to those
of the fully differential soft function SκN¼1ðfkig; μÞ by an
analogous projection of the soft momentum from each
region to a single variable,

Γκ
SðT s

1;μÞ

¼
Z

dkadkbdkJΓκ
SN¼1

ðfkig;μÞδðT s
1−ka−kb−kJÞ: ð42Þ

Explicit expressions for both the fully differential
Γκ
SN¼1

ðfkig; μÞ and SκN¼1ðfkig; μÞ at OðαsÞ can be found
in Ref. [63]. Note that in Eqs. (40) and (41) we have
exploited the fact that, for the present case, the soft function
and its anomalous dimensions are trivial matrices in color

space. The consistency of the factorization formula, Eq. (2),
implies that the anomalous dimensions of SκðT s

1; μÞ can be
related to those of the hard, beam, and jet functions by

Γκ
SðT s

1; μÞ ¼ −QaΓa
BðQaT s

1; μÞ −QbΓb
BðQbT s

1; μÞ
−QJΓc

JðQJT s
1; μÞ − 2Re½Γκ

CðμÞ�δðT s
1Þ: ð43Þ

Using known identities of the plus distributions Ln [51], we
find

Γκ
SðT s

1;μÞ

¼ 4

�
−c̄κΓcuspðαsÞ þ

X
R¼F;A

c̄κ;R4 gRðαsÞ
�
L0ðT s

1;μÞ

þ
�
γκSN¼1

ðαsÞ þ 2ΓcuspðαsÞðcκsLab þ cκt Lac þ cκuLbcÞ

− 2
X
R¼F;A

gRðαsÞðcκ;R4;s Lab þ cκ;R4;t Lbc þ cκ;R4;uLbcÞ
�
δðT s

1Þ;

ð44Þ

where the noncusp anomalous dimensions of the fully
differential soft function [63] are given by

γκSN¼1
ðαsÞ ¼ −2

X
i¼a;b;c

γiCðαsÞ − γaBðαsÞ

− γbBðαsÞ − γcJðαsÞ − 2cκffðαsÞ; ð45Þ

and we use an abbreviated form for the logarithms

Lij ≡ ln ŝij; with ŝij ¼
2qi · qj
QiQj

: ð46Þ

Eq. (41) dictates the evolution of the soft function
SκðT s

1; μÞ from its canonical scale μS to an arbitrary μ.
In addition, it determines its distributional structure in T s

1,
up to a boundary term that necessitates explicit computa-
tion. Here, we exploit this in order to solve for the Oðα2sÞ
soft function coefficient. We start by noting that Γκ

SðT s
1; μÞ

in Eq. (44) has the same distributional form as the zero-
jettiness soft function anomalous dimensions [40]. Thus,
we can directly use the known solutions of the zero-
jettiness soft function as long as we properly account for
the different anomalous dimension coefficients. The log-
arithmic contributions to the zero-jettiness soft function
were calculated up to N3LO in Ref. [64] and in the
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following we use the conventions therein. We expand the
soft function in momentum space as

SκðT s
1; μÞ ¼

X∞
n¼0

�
αsðμÞ
4π

�
n
SκðnÞðT s

1; μÞ; ð47Þ

and write the perturbative coefficients in terms of delta
functions and plus distributions,

SκðmÞðT s
1; μÞ ¼ sκðmÞδðT s

1Þ þ
X2m−1

n¼0

SκðmÞ
n LnðT s

1; μÞ: ð48Þ

We find that the OðαsÞ coefficients read

Sκð1Þ1 ¼ −2ðCa þ Cb þ CcÞΓ0;

Sκð1Þ0 ¼ −2ðcκsLab þ cκt Lac þ cκuLbcÞΓ0;

while at Oðα2sÞ they read

Sκð2Þ3 ¼ 2Γ2
0ðCa þ Cb þ CcÞ2;

Sκð2Þ2 ¼ 2Γ0ðCa þ Cb þ CcÞ
× ½β0 þ 3Γ0ðcκsLab þ cκt Lac þ cκuLbcÞ�;

Sκð2Þ1 ¼ 4Γ2
0½ðcκsLab þ cκt Lac þ cκuLbcÞ2

− ζ2ðCa þ Cb þ CcÞ2�
þ 2Γ0½2β0ðcκsLab þ cκt Lac þ cκuLbcÞ
− ðCa þ Cb þ CcÞsκð1Þ� − 2Γ1ðCa þ Cb þ CcÞ;

Sκð2Þ0 ¼ 4Γ2
0ðCa þ Cb þ CcÞ½ζ3ðCa þ Cb þ CcÞ

− ζ2ðcκsLab þ cκt Lac þ cκuLbcÞ� − γκSN¼1;1
− 2β0sκð1Þ

− 2ðΓ0sκð1Þ þ Γ1ÞðcκsLab þ cκt Lac þ cκuLbcÞ:

Note that the functions fðαsÞ ∼Oðα3sÞ and gRðαsÞ ∼Oðα4sÞ,
and therefore they enter in the fixed-order expansion of
SðT s

1; μÞ starting only at N3LL0 accuracy.
The boundary terms sκðnÞ are not predicted by the RGE

and they necessitate an explicit computation. At LO they
are still trivial,

sκð0Þ ¼ 1; ð49Þ

while at OðαsÞ they have been analytically calculated for
arbitrary N and distance measures Qi in Ref. [63]. In the
case of one-jettiness they read

sκð1Þ ¼ 2cκs

�
L2
ab −

π2

6
þ 2ðIab;c þ Iba;cÞ

�

þ 2cκt

�
L2
ac −

π2

6
þ 2ðIac;b þ Ica;bÞ

�

þ 2cκu

�
L2
bc −

π2

6
þ 2ðIbc;a þ Icb;aÞ

�
; ð50Þ

where we use the abbreviation for the finite integrals

Iij;m ≡ I0

�
ŝjm
ŝij

;
ŝim
ŝij

�
ln
ŝjm
ŝij

þ I1

�
ŝjm
ŝij

;
ŝim
ŝij

�
; ð51Þ

with expressions for I0;1ðα; βÞ given in Ref. [63]. In our
predictions we evaluate Eq. (50) for each phase space point
on-the-fly in the corresponding reference frame.
The Oðα2sÞ boundary term sκð2Þ was evaluated in

Refs. [37,38] in the LAB frame, where the parameters
ρi ¼ 1. The result is numeric, and the authors of Ref. [38]
provide useful fit functions for the complete NNLO
correction for all partonic channels. Nevertheless, in this
work, we use a new evaluation of the soft function
performed by a subset of the authors of Ref. [39]. This
calculation is based on an extension of the SoftSERVE
framework [65–67] to soft functions with an arbitrary
number of lightlike Wilson lines. This approach relies
on a universal parametrization of the phase-space integrals,
which is used to isolate the singularities of the soft function
in Laplace space. The observable-dependent integrations
are then performed numerically.
The soft function in the CS frame is then related to that in

the LAB frame by a boost along the beam direction. While
the invariants ni · nj are frame-independent, the soft func-
tion implicitly depends on the quantities ŝij defined in
Eq. (46), which are frame-dependent. Specifically, in the
LAB and CS frame they are related by

ŝLABab ¼ ŝCSab ¼ 1; ŝLABaJ ¼ na · nJ
2

¼ ρaρJŝCSaJ ; ð52Þ

which implies that events with moderately sized ŝCSaJ may
require us to evaluate the LAB-frame soft function at
exceedingly small values of ŝLABaJ , depending on the size of
the boost-induced factor ρaρJ. We therefore supplement our
numerical calculation with analytic results that can be
derived in the asymptotic limit of a jet approaching one of
the beam directions, i.e., where ŝLABaJ ≪ 1 (or ŝLABbJ ≪ 1),
to leading power in ŝLABaJ (ŝLABbJ ) (details are given in
Ref. [39]).
Specifically, we use the symmetry of the soft function

under the exchange of the two beam directions to restrict
the phase space to configurations with ŝLABaJ ≤ 1=2. We
then divide the phase space into four regions with
ŝLABaJ ≤ 10−12, ŝLABaJ ∈ ½10−12; 10−8�, ŝLABaJ ∈ ½10−8; 10−4�,
and ŝLABaJ ∈ ½10−4; 1=2�. In the first region we use the novel
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analytic leading-power expressions. As power corrections
are expected to scale as Oð

ffiffiffiffiffiffiffiffiffiffi
ŝLABaJ

p
Þ (modulo logarithms),

this means that the accuracy of the leading-power approxi-
mation should be at subpercent level in this region. For the
remaining three regions, we construct Chebyshev interpo-
lations of numerical grids, consisting of 4, 9, and 43
sampling points respectively, directly in Laplace space.
We construct these interpolations for each interval sepa-
rately before putting them together.
Following similar considerations as in Sec. II B, we now

turn to the resummed soft function in Laplace space which
is defined as

S̃κðςS; μÞ ¼
Z

dT s
1e

−T s
1
=ðeγEςSÞSκðT s

1; μÞ; ð53Þ

and satisfies the multiplicative RGE

μ
d
dμ

ln S̃κðςS;μÞ

¼ 2

�
−c̄κΓcuspðαsÞ þ

X
R¼F;A

c̄κ;R4 gRðαsÞ
�
ln

�
ς2S
μ2

�

þ
�
γκSN¼1

ðαsÞ þ 2ΓcuspðαsÞðcκsLab þ cκt Lac þ cκuLbcÞ

− 2
X
R¼F;A

gRðαsÞðcκ;R4;s Lab þ cκ;R4;t Lbc þ cκ;R4;uLbcÞ
�
: ð54Þ

The solution of Eq. (54) is given by

S̃κðςS; μÞ ¼ exp

�
2ðcκsLab þ cκt Lac þ cκuLbcÞηΓcusp

ðμS; μÞ − 2
X
R¼F;A

ðcκ;R4;s Lab þ cκ;R4;t Lac þ cκ;R4;uLbcÞηgRðμS; μÞ

þ 4c̄κKΓcusp
ðμS; μÞ − 4

X
R¼F;A

c̄κ;R4 KgRðμS; μÞ þ KγκS
ðμS; μÞ

�

× S̃κð∂ηS ; μSÞ
�
ςS
μS

�
2ηS

				
ηS¼−2c̄κηΓcusp ðμS;μÞþ2

P
R¼F;A

c̄κ;R
4

ηgR ðμS;μÞ
; ð55Þ

and by performing the inverse transform we obtain it in momentum space

SκðT s
1; μÞ ¼ exp

�
2ðcκsLab þ cκt Lac þ cκuLbcÞηΓcusp

ðμS; μÞ − 2
X
R¼F;A

ðcκ;R4;s Lab þ cκ;R4;t Lac þ cκ;R4;uLbcÞηgRðμS; μÞ

þ 4c̄κKΓcusp
ðμS; μÞ − 4

X
R¼F;A

c̄κ;R4 KgRðμS; μÞ þ KγκS
ðμS; μÞ

�

× S̃κð∂ηS ; μSÞ
e−2γEηS

Γð2ηSÞ
1

T s
1

�
T s

1

μS

�
2ηS

				
ηS¼−2c̄κηΓcusp ðμS;μÞþ2

P
R¼F;A

c̄κ;R
4

ηgR ðμS;μÞ
: ð56Þ

D. Final resummed and matched formulas

Combining all the previous ingredients together and using the following definitions

Kγtot ¼ −2ngKγgC
ðμS; μHÞ þ 2ðng − 3ÞKγqC

ðμS; μHÞ − ðng − nκJg ÞKγgJ
ðμJ; μBÞ − ngKγgJ

ðμS; μJÞ
þ ðng − 2 − nκJg ÞKγqJ

ðμJ; μBÞ þ ðng − 3ÞKγqJ
ðμS; μJÞ þ 2cκfKfðμH; μSÞ; ð57Þ

where ng is the total number of gluons and nκJg the number of gluons in the final state, we arrive at the resummation formula
which, when evaluated at N3LL accuracy, reads
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dσN3LL

dΦ1dT 1

¼
X
κ

exp

�
4ðCa þ CbÞKΓcusp

ðμB; μHÞ þ 4CcKΓcusp
ðμJ; μHÞ − 2ðCa þ Cb þ CcÞKΓcusp

ðμS; μHÞ

− 2CcLJηΓcusp
ðμJ; μHÞ − 2ðCaLB þ CbL0

BÞηΓcusp
ðμB; μHÞ þ Kγtot

þ
�
Ca ln

�
Q2

au
st

�
þ Cb ln

�
Q2

bt
su

�
þ Cκj ln

�
Q2

Js
tu

�
þ ðCa þ Cb þ CcÞLS

�
ηΓcusp

ðμS; μHÞ

þ
X
R¼F;A

�
8ðDaR þDbRÞKgRðμB; μHÞ þ 8DcRKgRðμJ; μHÞ

− 4ðDaR þDbR þDcRÞKgRðμS; μHÞ − 4DcRLJηgRðμJ; μHÞ − 4ðDaRLB þDbRL0
BÞηgRðμB; μHÞ

þ 2

�
DaR ln

�
Q2

au
st

�
þDbR ln

�
Q2

bt
su

�
þDcR ln

�
Q2

Js
tu

�
þ ðDaR þDbR þDcRÞLS

�
ηgRðμS; μHÞ

��

×HκðΦ1; μHÞS̃κð∂ηS þ LS; μSÞB̃κað∂ηB þ LB; xa; μBÞB̃κbð∂η0B þ L0
B; xb; μBÞJ̃κJð∂ηJ þ LJ; μJÞ

×
Q−ηtot

T 1
1−ηtot

ηtote−γEηtot

Γð1þ ηtotÞ
; ð58Þ

where the terms

ηS ¼ −2c̄κηΓcusp
ðμS; μÞ þ 2

X
R¼F;A

c̄κ;R4 ηgRðμS; μÞ;

ηB ¼ −2
�
CaηΓcusp

ðμB; μÞ þ 2
X
R¼F;A

DaRηgRðμB; μÞ
�
;

η0B ¼ −2
�
CbηΓcusp

ðμB; μÞ þ 2
X
R¼F;A

DbRηgRðμB; μÞ
�
;

ηJ ¼ −2
�
CκcηΓcusp

ðμJ; μÞ þ 2
X
R¼F;A

DcRηgRðμJ; μÞ
�
;

are combined as

ηtot ¼ ηB þ η0B þ ηJ þ 2ηS;

and we have also introduced the definitions

LH ¼ ln

�
Q2

μ2H

�
; LB ¼ ln

�
QaQ
μ2B

�
; L0

B ¼ ln

�
QbQ
μ2B

�
;

LJ ¼ ln

�
QJQ
μ2J

�
; LS ¼ ln

�
Q2

μ2S

�
:

In the previous equation all the KX and ηX evolution
functions are evaluated at N3LL accuracy and the boundary
terms of the hard, soft, beam, and jet functions in the
second to last line are implicitly expanded up to relative
Oðα2sÞ. The complete formula with the boundary terms
expanded out is presented in Appendix C.
While Sudakov logarithms at small T 1 invalidate the

perturbative convergence and call for their resummation at
all orders, as T 1 approaches the hard scale they are no
longer considered large. In this regime, the spectrum is

correctly described by fixed-order predictions. In addition,
T 1 is subject to the constraint T 1=T 0 ≤ 1 − 1=N, with
N ¼ 2 (N ¼ 3) at NLO (NNLO). Therefore, in order to
achieve a proper description throughout the T 1 spectrum
while satisfying the T 1=T 0 constraint, we construct two-
dimensional (2D) profile scales that modulate the transition
to the FO region as a function of both T 1=μFO and T 1=T 0,
with μFO the fixed-order scale. These profile scales cor-
rectly implement the phase space constraint in T 1=T 0,
reducing to T 1-dependent profile scales when it is satisfied
and asymptoting to μFO when it is violated. A detailed
discussion of our 2D profile scale construction is given in
Sec. III B.
A reliable theoretical prediction must include a thorough

uncertainty estimate by exploring the entire space of
possible scale variations. In our analysis, we achieve this
by means of T 1 profile scale variations, see e.g. Ref. [28].
Specifically, our final uncertainty is obtained by separately
estimating the uncertainties related to resummation and the
FO perturbative expansion. Since these are considered to be
uncorrelated, we sum them in quadrature. A breakdown of
the various components is presented in Appendix B.
In order to achieve a valid description also in the tail

region of the one-jettiness distribution, the resummed cross
section is matched to the full fixed order results using a
standard additive matching prescription

dσN
3LLþNLO2

dΦ1dT 1

¼ dσN
3LL

dΦ1dT 1

þ dσNons

dΦ1dT 1

; ð59Þ

where the nonsingular contribution is defined as

dσNons

dΦ1dT 1

≡ dσNNLO1

dΦ1dT 1

−
dσN

3LL

dΦ1dT 1

				
Oðα2sÞ

: ð60Þ
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Here dσNNLO1
dΦ1dT 1

refers to the full fixed-order result in pertur-

bation theory and dσN
3LL

dΦ1dT 1
jOðα2sÞ is the singular contribution at

NNLO. When computing the nonsingular correction we
use the fact that for T 1 > 0 the Z=γ� þ 1 jet cross section at
NNLO1 is identical to the next-to-leading order cross
section for Z=γ� þ 2 jets (NLO2), and we therefore
determine the nonsingular corrections from

dσNons

dΦ1dT 1

¼
�

dσNLO2

dΦ1dT 1

−
dσN

3LL

dΦ1dT 1

				
Oðα2sÞ

�
θðT 1Þ: ð61Þ

The NLO2 predictions for Z=γ� þ 2 jets are obtained from
GENEVA, which implements a local FKS subtraction [68],
using tree-level and one-loop amplitudes from OpenLoops2

[69]. We note that for this reason in Eq. (59) we have
written the highest accuracy as N3LLþ NLO2 (even if it is
identical to N3LLþ NNLO1 because Eq. (60) and Eq. (61)
both exactly vanish at T 1 ¼ 0.). The formula in Eq. (59)
can therefore also be safely used for quantities integrated
over T 1. Similar formulas for the matching readily apply at
lower orders.
We also note that there is some freedom when evaluating

T 1 on events with two or three partons. In this work, we use
N-jettiness as a jet algorithm [70] and minimize over all
possible jet directions nJ obtained by an exclusive cluster-
ing procedure T̃ 1 ¼ minnJ T 1. This means that we recur-
sively cluster together emissions in the E-scheme using the
T 1 metric in Eq. (1) until we are left with exactly one jet.
The resulting jet is then made massless by rescaling its
energy to match the modulus of its three-momentum; the jet
direction is then taken to be n⃗J. We stress that this choice is
intrinsically different from determining the jet axis a priori
by employing an inclusive jet clustering, as done for
example in refs. [19–22].
This difference has also the interesting consequence that

one has to be careful when defining T̃ 1 via the exclusive jet
clustering procedure in a frame which depends on the jet
momentum. There are indeed choices of the clustering
metric that render the T̃ 1 variable so defined infrared (IR)
unsafe. A particular example is given by the frame where
the system of the color-singlet and the jet has zero rapidity
YLJ ¼ 0 (underlying-Born frame) which was instead pre-
viously studied for the inclusive jet definition [22]. A
detailed discussion of these features and a comparison of
the size of nonsingular power corrections for these alter-
native T 1 definitions is beyond the scope of this work and
will be presented elsewhere.

III. NUMERICAL IMPLEMENTATION
AND RESULTS

We consider the process

pp → ðγ�=Z → lþl−Þ þ jetþ X;

at
ffiffiffi
S

p ¼ 13 TeV and use the NNPDF31_nnlo_as_0118
PDF set [71].
The factorization and renormalization scales are set

equal to each other and equal to the dilepton transverse
mass,

μR ¼ μF ¼ μFO ¼ mT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

lþl− þ q2T

q
; ð62Þ

which we also use as hard scale for the process, i.e.
μH ¼ μFO. At this stage, we also fix Q2 ¼ sab.
Here we report the numerical parameters used in the

predictions, for ease of reproducibility. We set the follow-
ing nonzero mass and width parameters

mZ ¼ 91.1876 GeV; ΓZ ¼ 2.4952 GeV;

mW ¼ 80.379 GeV; ΓW ¼ 2.0850 GeV;

mt ¼ 173.1 GeV:

In the plots presented in this section, we apply either a cut
T 0 > 50 GeV or qT > 100 GeV in order to have a well-
defined Born cross section with a hard jet. However, since
our predictions depend on the choice of the cut that defines
a finite Born cross section, we study different variables and
values to cut upon in Sec. III D.

A. Resummed and matched predictions

In the upper panel of Fig. 1 we show the absolute values
of the spectra for fixed-order, singular and nonsingular
contributions with T 0 > 50 GeV at different orders in the
strong coupling. We plot on a logarithmic scale in the
dimensionless τ1 ¼ T 1=mT variable, which is the argument
of the logarithms appearing in the cross section for our
choice of μH ¼ mT . In the lower panel of the same figure
we compare the nonsingular contributions in the LAB and
CS frames on a linear scale. At both orders one can see how
the singular spectrum reproduces the fixed-order result at
small values of τ1 and how the nonsingular spectrum has
the expected suppressed behavior in the τ1 → 0 limit. As
anticipated, the nonsingular contribution in the CS frame is
consistently smaller than that evaluated in the laboratory
frame. Due to the smaller power corrections in the non-
singular contribution, from now on we only focus on and
present results in the color-singlet frame (though the
formalism adopted is able to deal with any frame definition
related by a longitudinal boost). Similar results for qT cuts
are reported in Sec. III D.
In the left panel of Fig. 2 (Fig. 3) we show our resummed

predictions in the peak region of the T 1 spectrum in the CS
frame, with a cut T 0 > 50 GeV (qT > 100 GeV). We
observe good perturbative convergence between different
orders. Starting from NNLL0, the inclusion of NNLO
boundary conditions together with NLO × NLO mixed-
terms in the factorization formula results in a large impact
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on the central values and in a sizeable decrease of the
theoretical uncertainty bands. We also notice that the
differences between the N3LL and the NNLL0 predictions
are minor, suggesting that, unlike at lower-orders, the
N3LL evolution does not change considerably the NNLL0
results.
In the right panel of Fig. 2 we present our final results

after additive matching to the fixed-order predictions. In
order to better highlight the effects in the resummation
region (T 1 ≲ 30 GeV), the plot is shown on a linear T 1

scale up to 30 GeV and a logarithmic scale above. In this
case, the addition of the nonsingular contributions sub-
stantially modifies the resummed predictions, both in the
fixed-order (T 1 ≳ 30 GeV) but also in the resummation
region. This can be better appreciated by looking at Fig. 4,
which compares the values of the resummed and non-
singular predictions at NNLLþ LO2 (left panel) and at
N3LLþ NLO2 (right panel). The relative size of each
contribution to the corresponding matched predictions is
shown in the lower inset. We note that this poor con-
vergence is also present when cutting on the vector boson
transverse momentum qT > 100 GeV in the right panel of
Fig. 3 and the difference between orders grows larger when
the cut is reduced (see Sec. III D).
However, since these are the first nontrivial corrections

to the T 1 spectrum, their large size is not completely
unexpected and further motivates their inclusion.

B. Two-dimensional profile scales

A final state with N particles is subject to the kinematical
constraint

T 1ðΦNÞ
T 0ðΦNÞ

≤
N − 1

N
¼

�
1=2; N ¼ 2

2=3; N ¼ 3
ð63Þ

where we explicitly specify the possible upper bounds that
T 1=T 0 can have for the NNLO calculation of color-singlet
plus one jet. Our goal in this section is to formulate profile
scales that force the resummed prediction to satisfy the
phase space constraint in Eq. (63) and at the same time to
have the appropriate scaling at small and large T 1, i.e.,

μSðT 1 ≪ μFOÞ ∼ T 1;

μSðT 1 ∼ μFOÞ ∼ μFO;

μSðT 1=T 0 ∼ ðN − 1Þ=NÞ ∼ μFO: ð64Þ

Both requirements in Eqs. (63) and (64) can be satisfied by
formulating two-dimensional profile scales in T 1=μFO and
T 1=T 0. To this end, we choose the soft profile scale to be

μSðT 1=μFO; T 1=T 0Þ
¼ μFO½ðfrunðT 1=μFOÞ − 1Þsðp;kÞðT 1=T 0Þ þ 1� ð65Þ

FIG. 1. Absolute values of the τ1 ¼ T 1=mT spectra with T 0 > 50 GeV for fixed-order, singular and nonsingular contributions at
Oðα2sÞ (left) and at pureOðα3sÞ (right) on a logarithmic scale (upper frames) and signed values for the nonsingular on a linear scale (lower
frames). Results for both the laboratory frame (LAB) and the frame where the color-singlet system has zero rapidity (CS) are shown.
Statistical errors from Monte Carlo integration, shown as thin vertical error bars, become sizeable at extremely low τ1 values.
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FIG. 2. Resummed (left) and matched (right) results for one-jettiness distribution with T 0 > 50 GeV.

FIG. 3. Resummed (left) and matched (right) results for one-jettiness distribution with qT > 100 GeV.
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where frun is the same as that appearing in T 0 profile scales
used in previous GENEVA implementations, see, e.g.,
Ref. [28], while sðp;kÞ is a logistic function

sðp;kÞðT 1=T 0Þ ¼
1

1þ epkðT 1=T 0−1=pÞ ; ð66Þ

that behaves like a smooth theta function and controls the
transition to μFO for a target T 1=T 0 value. It depends on
the parameters k and p. The former fixes the slope of the
transition between canonical and fixed-order scaling, while
the latter determines the transition point where this hap-
pens. For our final predictions we use p ¼ 2 and k ¼ 100.
In Appendix Awe further investigate the dependence of the
resummed results on the way the resummation is switched
off in the T 1=T 0 direction.
Finally, it is straightforward to get the beam and jet

function profile scales since they are tied to the corre-
sponding soft profiles by

μBðT 1=μFO;T 1=T 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μFOμSðT 1=μFO; T 1=T 0Þ

p
; ð67Þ

μJðT 1=μFO; T 1=T 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μFOμSðT 1=μFO; T 1=T 0Þ

p
; ð68Þ

and for this process we set the hard scale to be

μH ¼ μFO ¼ mT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

lþl− þ q2T

q
: ð69Þ

When calculating scale variations we vary μFO by a factor
of two in either direction. The soft, jet and beam scales
variations are then calculated as detailed in Ref. [28] and
summed in quadrature to the hard variations.
Having discussed the implementation of the resummed

predictions, some freedom remains in how to treat theOðα3sÞ
singular resummed-expanded term. Since for T 1 > T 0=2
only the real contribution Oðα3sÞ with three particles can
contribute in the fixed-order, one can decide to completely
neglect both the resummed and the resummed-expanded
terms above that threshold. Alternatively, one can keep them
both on, but with the 2D profile scales we have chosen the
resummed predictionswill naturallymatch the singular ones
for T 1 ≳ T 0=2 and the two contributions will cancel again
in the matched predictions, leaving only the fixed-order real
contribution of Oðα3sÞ. This behavior is shown in Fig. 5,
where we plot the NLO2 fixed-order predictions for the
T 1=T 0 ratio, together with the N3LL resummed and
singular ones. We include two copies of the resummed
and singular predictions obtained with and without a hard
cut at T 1=T 0 ¼ 1=2 on the Oðα3sÞ singular contribution.
This is immediately evident from the fact that the singular
prediction with this cut is zero above T 1=T 0 ¼ 1=2. The
corresponding resummed prediction does not have the same
sharp jump because of the smoothing of the profile scale, but
it still experiences a drastic reduction on a short T 1=T 0

range.We also notice that the singular predictionwithout the
hard cut manifests a sudden jump: this is a consequence of
the fact that for T 1=T 0 ≤ 1=2 both the Oðα2sÞ and Oðα3sÞ

FIG. 4. Comparison between resummed and nonsingular contributions at NNLLþ LO2 (left) and N3LLþ NLO2 (right) for one-
jettiness distribution with T 0 > 50 GeV. The lower inset shows the ratio to the corresponding matched prediction.
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terms contribute, while abovewe only have theOðα3sÞ terms.
The instability of this Sudakov shoulder region is also
evident in the fixed-order predictions, showing the typical
miscancellation between soft and collinear Oðα3sÞ real
emissions in the region T 1=T 0 > 1=2. These are not
compensated by their virtual counterparts, which are con-
fined to the T 1=T 0 ≤ 1=2 region.
For the predictions obtained in this work we have chosen

to allow the singular contribution at order Oðα3sÞ above
T 1=T 0 > 1=2 up to the true kinematic limit T 1=T 0 ¼ 2=3.
In principle this choice affects the size of the Oðα3sÞ
nonsingular contribution across the whole T 1 spectrum.
Therefore we have carefully checked that our choice does
not produce numerically significant differences with the
choice of imposing T 1=T 0 ≤ 1=2. In fact, for the plots
shown in Fig. 1 we could only spot a very minor difference
in the largest bins of the τ1 distribution.

C. Effects of the inclusion of the
gg loop-induced channel

In this subsection we investigate the effect of the inclusion
of the NLL resummation of the gg loop-induced channel in
addition to the N3LLþ NLO2 matched predictions. Since
the gg loop-induced channel starts to contribute atOðα3sÞ it is
formally necessary to include it already when the resumma-
tion of the other channels is performed at NNLL0 accuracy.
However, as can be seen in Fig. 6, its contribution is
extremely small across the whole T 1 spectrum, reaching a

maximum deviation of around one per mille between 10 and
20 GeV. The fact that this deviation is smaller than the
numerical uncertainty associated with the Monte Carlo
integration allows one to safely neglect this contribution.

D. Results with different T 0 and qT cuts

The resummation of one-jettiness requires the presence
of a hard jet to have a well-defined Born cross section. In
order to investigate the effect of the selection of the hard jet
here we discuss the behavior of our predictions for different
values of the T 0 cut. We also present results obtained by
requiring that the color singlet has a substantial transverse
momentum qT , which is equivalent to requiring the
presence of at least one hard jet with a large kT imbalance
compared with other potential jets. Lowering the T 0 cut
value to 10 or 1 GeV, we observe a worsening of the
convergence of the resummed predictions. Moreover, the
nonsingular contribution increases with the lowering of
the T 0 cut value and the distance between the Oðα2sÞ and
Oðα3sÞ contributions widens when reaching the region
T 0 ∼ T 1 ≪ Q. This behavior can be easily explained by
considering that the factorization formula in Eq. (2) has
been derived assuming T 1 ≪ T 0 ∼Q. A thorough treat-
ment of this region would necessitate a multidifferential
resummation of T 0 and T 1, which is beyond the current
state of the art [72,73]. If we define the hard jet by placing a
cut on the qT of the color singlet system, we observe a
similar behavior when the cut is reduced. In Fig. 7 we show

FIG. 6. Effects of the inclusion of the NLL resummation of the
gg loop-induced channel on top of the N3LLþ NLO2 matched
predictions.

FIG. 5. Comparisons between resummed N3LL results, fixed-
order NLO2 and singular ones for T 0 > 50 GeV with or without
a hard cut at T 1=T 0 < 0.5 on the Oðα3sÞ singular contribution.
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FIG. 7. Absolute values of the τ1 ¼ T 1=mT spectra with qT > 50 GeV for fixed-order, singular and nonsingular contributions at
Oðα2sÞ (left) and at pureOðα3sÞ (right) on a logarithmic scale (upper frames) and signed values for the nonsingular on a linear scale (lower
frames). Results for both the laboratory frame (LAB) and the frame where the color-singlet system has zero rapidity (CS) are shown.
Statistical errors from Monte Carlo integration, shown as thin vertical error bars, become sizeable at extremely low τ1 values.

FIG. 8. Resummed results matched to the appropriate fixed-order on a semilogarithmic scale with qT > 50 GeV (left) and with
qT > 10 GeV (right).

SIMONE ALIOLI et al. PHYS. REV. D 109, 094009 (2024)

094009-16



the nonsingular contributions at Oðα2sÞ and Oðα3sÞ with a
qT > 50 GeV cut. Compared to the same plot for the T 0 >
50 GeV cut in Fig. 1 we observe a reduced difference
between the size of the power corrections for T 1 definitions
in the two different frames.
Finally, in Fig. 8 we show the resummed predictions

matched to the fixed-order in the peak region for the
additional cuts qT > 50 GeV and qT > 10 GeV. We
observe that the predictions are very sensitive to the cut
value, and the perturbative convergence is rapidly lost when
decreasing the cut value too much.

IV. CONCLUSIONS

In this work, we presented novel predictions for the T 1

spectrum of the process pp → ðγ�=Z → lþl−Þ þ jet at
NNLL0 and N3LL accuracy in resummed perturbation
theory. By matching these results to the appropriate
fixed-order calculation, we obtained an accurate descrip-
tion of the spectrum across the entire kinematic range. This
is the first time that results at this accuracy have been
presented for a process with three colored partons at Born
level. Our calculation includes all two-loop singular terms
as T 1 → 0, off-shell effects of the vector bosons, the Z=γ�
interference, as well as spin correlations.
The resummed predictions in the color-singlet frame

exhibit a good perturbative convergence, with a significant
reduction of theoretical uncertainties as the perturbative
order is increased. Notably, the inclusion of N3LL evolu-
tion has only a minor effect on our final results. The
matching to the fixed-order calculation was achieved by
switching off the resummation in the hard region of phase
space by means of two-dimensional profile scales, which
allow for the kinematic restrictions on the one-jettiness
variable to be enforced consistently. Our matched results
indicate that the inclusion of theOðα3sÞ nonsingular terms is
important due to their large size.
In order to assess the consistency of our implementation,

we checked the explicit cancellation of the arbitrary μ
dependence which appears in the separate evolution of each
of the ingredients in the factorization formula and that the
singular structure of the resummed expanded results
matches that of the relative fixed order. We found that, in
accordancewith observations in the literature, the definition
of T 1 in the laboratory frame is subject to larger nonsingular
contributions. These arise due to the dependence of the
observable on the longitudinal boost between the hadronic
and the partonic center-of-mass frames. To mitigate their
impact, we found that a different definition of T 1 (which
incorporates a longitudinal boost to the frame where the
vector boson has zero rapidity) receives smaller power
corrections. This makes it suitable for slicing calculations
at NNLO and for use inMonte Carlo event generators which
match fixed order predictions to parton shower programs.

The N-jettiness variable is particularly useful in the
context of constructing higher-order event generators, since
it is able to act as a resolution variable which divides
the phase space into exclusive jet bins. In this context, the
NNLL0 resummed zero-jettiness spectrum has enabled the
construction of NNLOþ PS generators for color-singlet
production using the GENEVAmethod. The availability of an
equally accurate prediction for T 1 in hadronic collisions
will now enable these generators to be extended to cover
the case of color singlet production in association with a jet.
The predictions presented in this work will be made public
in a future release of GENEVA.
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APPENDIX A: ALTERNATIVE PROFILE
SCALE CHOICES

In this appendixwe study thedependenceof the resummed
results on the profile scale definition in the ðT 1=mT; T 1=T 0Þ
plane. We start by showing the functional form of μS for the
default 2D profile scales in Fig. 9. As observed, when the
LO2 kinematical constraint Eq. (63) is satisfied, the factor
sð2;100ÞðT 1=T 0 ≲ 1=2Þ → 1 in Eq. (65) and therefore the
scaling of μS is entirely dictated by frun, depending only on
the value of T 1=μFO. On the other hand, when the T 1=T 0 ≤
1=2 condition is violated, sð2;100ÞðT 1=T 0 ≳ 1=2Þ → 0,
which implies that μS ¼ μFO. This is a crucial asymptotic
limit, since for T 1=T 0 ≳ 1=2 the fixed-order and singular
cross sections pass a kinematical boundary. Therefore, since
the fixed-order corrections are extremely relevant in that
region, care must be taken to switch off the T 1 resummation
before passing the same threshold.
In Fig. 10 we show resummed predictions obtained using

2D profiles with p ¼ 3 and k ¼ 10, which results in a
earlier and smoother switch-off of the resummation around
T 1=T 0 ∼ 1=3. As one can see by comparing the results
with the left panel of Fig. 2, by doing so the convergence of
successive perturbative orders is slightly worsened.
Alternatively, we have explored the usage of 1D profile
scales, either by removing the suppression in the T 1=T 0

direction, see Fig. 11, or by switching off the resummation
in the T 1=T 0 direction by means of a 1D hybrid profile, see
Fig. 12. The hybrid profile approach has previously been
successfully used in enforcing multidifferential profile
scales switch-offs [74]. In our case it is defined by

μSðT 1=μFO; T 1=T 0Þ
¼ μFOfrunðT 1=T 0Þ þ T 1ð1 − frunðT 1=T 0ÞÞ; ðA1Þ

where now the argument of frun is the ratio T 1=T 0 rather
than T 1=μFO. The formula in Eq. (A1) smoothly interpo-
lates between T 1 and μFO on a diagonal slice of the

FIG. 9. Functional form of the two-dimensional soft profile
scale.

FIG. 10. Resummed results for one-jettiness distribution with
T 0 > 50 GeV at increasing accuracy, for the 2D profile with
sð3;10ÞðT 1=T 0Þ.

FIG. 11. Resummed results for one-jettiness distribution with
T 0 > 50 GeV at increasing accuracy, for the 1D flat profile
sðp;kÞðT 1=T 0Þ ¼ 1.
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ðT 1=T 0; T 1=mTÞ plane. In Fig. 11 we observe that
removing the T 1=T 0 suppression has very small effects
on the T 1 distribution, maintaining a good perturbative
convergence across orders. This, however, does not provide
the correct suppression of the resummation effects past the
kinematic endpoint in the T 1=T 0 direction. The usage of
the hybrid profile shows instead a much poorer conver-
gence (see Fig. 12). In particular, we notice a change
in the resummed predictions also in the peak region,
which should follow a canonical scaling. This is easily
explained by the fact that for the hybrid profiles in
Eq. (A1) the μS behavior at low T 1 is changed from T 1

to ð1þmT=T 0ÞT 1, which is still a canonical scaling but
includes small artificial leftover logarithms.

APPENDIX B: UNCERTAINTY BUDGET

In this appendix we study the size of the variation bands
associated with the possible sources of theoretical uncer-
tainties for our best predictions. In Fig. 13 we show the
resummation uncertainty for the calculation of the T 1

resummed spectrum at N3LL accuracy normalized to its
central value. In the same plot we also show the uncer-
tainties stemming from the separate variations of the fixed-
order scale μFO, the beam μB, the jet μJ and the soft μS
scales. We remind the reader that the final uncertainty is
obtained by summing in quadrature the μFO variations and

the symmetrized convolution of all the other resummation
variations. In the plot we show the maximum distance on
the uncertainty band from the central prediction. Due to the
use of the profile scales described in Sec. III B, all
resummation scales flow to μH for large values of T 1.
The region where the soft or beam scales play an important
role in the total uncertainty budget is therefore limited to
the peak region, as expected. It should also be noted that for
extremely low values of T 1 both the soft and the fixed-
order variations become large, signalling a deterioration in
the convergence of the perturbation theory also for the
resummed calculation.
The uncertainty budget for the calculation of the T 1

matched spectrum at N3LLþ NLO2 accuracy is instead
shown in Fig. 14, now normalized to its central value.

FIG. 12. Resummed results for one-jettiness distribution with
T 0 > 50 GeV at increasing accuracy, for the 1D hybrid profile
discussed in the text.

FIG. 13. Uncertainty budget for the N3LL resummed calcu-
lation of the one-jettiness distribution with T 0 > 50 GeV.

FIG. 14. Uncertainty budget for the N3LLþ NLO2 matched
calculation of the one-jettiness distribution with T 0 > 50 GeV.
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In this case the μFO variations become dominant for
moderately small values of T 1. Even at very small values
around 2 GeV, the uncertainty stemming from the non-
singular contribution is of similar size (or larger) than that
coming from the resummed part, highlighting the need for
an accurate description of both contributions.

APPENDIX C: RESUMMED FORMULA
AT N3LL ACCURACY

In this section we report the full formula for the N3LL
resummation with the explicit combination of the hard,
soft, beam, and jet boundary terms, evaluated at the
appropriate order, for completeness. It reads

dσN3LL

dΦ1dT 1

¼
X
κ

exp

�
4ðCa þ CbÞKN3LL

Γcusp
ðμB; μHÞ þ 4CcKN3LL

Γcusp
ðμJ; μHÞ − 2ðCa þ Cb þ CcÞKN3LL

Γcusp
ðμS; μHÞ

− 2CcLJη
N3LL
Γcusp

ðμJ; μHÞ − 2ðCaLB þ CbL0
BÞηN3LL

Γcusp
ðμB; μHÞ þ KN3LL

γtot

þ
�
Ca ln

�
Q2

au
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�
þ Cb ln

�
Q2
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�
þ Cκj ln

�
Q2

Js
tu

�
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�
ηN

3LL
Γcusp
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þ
X
R¼F;A

�
8ðDaR þDbRÞKN3LL

gR ðμB; μHÞ þ 8DcRKN3LL
gR ðμJ; μHÞ

− 4ðDaR þDbR þDcRÞKN3LL
gR ðμS; μHÞ − 4DcRLJη

N3LL
gR ðμJ; μHÞ − 4ðDaRLB þDbRL0

BÞηN3LL
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þ 2

�
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�
Q2
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�
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�
Q2
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�
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�
Q2

Js
tu

�
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��

×

�
Hð0Þ

κ ðΦ1; μHÞ
�
fκaðxa; μBÞfκbðxb; μBÞ

�
1þ αsðμSÞ

4π
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�
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�
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���
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�
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�
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