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Abstract We study the propagation of energy density per-
turbation in a hot, ideal quark–gluon medium in which quarks
and gluons follow the Tsallis-like momentum distributions.
We have observed that a non-extensive MIT bag equation
of state obtained with the help of the quantum Tsallis-like
distributions gives rise to a breaking wave solution of the
equation dictating the evolution of energy density perturba-
tion. However, the breaking of waves is delayed when the
value of the Tsallis q parameter and the Tsallis temperature
T are higher.

1 Introduction

Studying the evolution of quark–gluon plasma (QGP), a hot
and dense medium created in the high-energy collision exper-
iments at the LHC, CERN and RHIC, BNL or the evolution
of the high-energy particles passing through it, has been a
subject matter of intense research. To study the evolution
of QGP, which is a short lived medium that expands very
fast, hydrodynamic equations have been employed for a long
time [1–7]. In addition to the vigorous change of the back-
ground medium, a bunch of high-energy particles (jets) pass-
ing through the bath also display sufficient modification in
their distribution. These particles are formed much earlier
than the formation of QGP, and if they happen to pass through
the medium, deposit energy inside it. The evolution of their
phase-space distribution has been studied microscopically
using the Fokker–Planck equation [8–11] or the Boltzmann
transport equation [12–14] in many articles.

Apart from the ones mentioned above, there are other types
of studies which have utilized the Boltzmann transport equa-
tion [15] or the hydrodynamic equation to investigate the evo-
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lution of the energy density perturbations in nucleus-nucleus
collision [16–20] using, in many cases, different equations
of state inspired from the MIT bag model, the mean field
treatment etc.

Energy density perturbations can originate due to high-
energy particles depositing energy inside the QGP medium.
The initial perturbations generated in QGP propagate through
the medium showing nonlinear features and undergo modifi-
cation due to medium effects. Now, if the perturbation does
not break, it undergoes particle production. Otherwise, it is
completely absorbed inside the bath. For example, when a
high energy particle enters quark–gluon plasma, it produces
energy density perturbation which may maintain its shape
and is detected as the same particle. However, a lighter, low
energy particle may not be able to maintain the shape of its
perturbation and may be absorbed inside the medium simu-
lating opaqueness.

Studying nonlinear waves in nuclear matter started with
the derivation of Korteweg de-Vries (KdV) equation describ-
ing the propagation of baryon density pulses in proton-
nucleus collisions [16]. Zero and non-zero temperature QGP
is considered in [17] where breaking wave solution is found
using the MIT bag equation of state. This kind of nonlinear
wave structures are also found in [20] for hot QGP in two
spatial dimensions with cylindrical symmetry. However, the
above calculations were done using the Boltzmann–Gibbs
statistics which does not consider a fluctuating ambiance that
appears in the high energy nuclear collisions.

Fluctuations of the positions of the nucleons inside the
colliding nuclei may lead to fluctuation in energy density.
Fluctuation inside the medium through which the perturba-
tion travels, impacts the distribution of the particles which are
created after the medium freezes-out. This can be understood
from the studies of the particle spectra originating from the p–
p or Pb–Pb collisions taking place in high-energy collision
experiments. In the analyses of those data, experimentally
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obtained particle distributions have been seen to be describ-
able by the Tsallis-like power law distributions [21–30] (also
called the ‘Tsallis non-extensive distributions’) that arise in a
fluctuating environment [31–34] which is very well the case
for the QGP medium [35].

In the present study, we examine the evolution of the
energy density perturbation inside a hot QGP medium with
the help of the Euler’s equation in which the Tsallis-MIT bag
equation of state [36,37] has been utilized to take into account
the fluctuating ambiance. We observe that the non-extensive
bag equation of state gives rise to a breaking wave solution
for the first order energy density perturbation. However, the
appearance of the breaking waves is influenced by the factors
like the Tsallis q parameter, the Tsallis temperature and the
parameters describing the initial condition. While carrying
out our analysis, we obtain analytical closed form expres-
sions for the Tsallis thermodynamic variables for gases com-
prising of very light (massless and almost massless) quantum
particles (Eqs. 9–12). As far as our knowledge goes, these
expressions were not used in any other studies, and our find-
ing is expected to have applications in studies pertaining to
thermodynamics of quantum Tsallis gas.

This article is organized as follows. In the next section,
we describe the mathematical model containing some dis-
cussions about the relativistic Euler’s equation, the conser-
vation equation, the non-extensive equation of state, and the
derivation of the thermodynamic variables to be used in the
equation of state. Section 3 contains a detailed account of the
evolution equation and its solution. Section 4 highlights the
results, and we summarize as well as conclude in Sect. 5.

2 Mathematical model

Since here we derive the nonlinear evolution equation for
energy density perturbation in hot QGP using Tsallis statis-
tics and relativistic hydrodynamics, we need to evaluate the
required thermodynamic variables and the equation(s) of
state. As the basic dynamical equations of the system we
use the relativistic Euler’s equation and continuity equation
for entropy density. We consider hot QGP produced at the
LHC, where the baryon number density is zero at the central
rapidity region and evaluate the energy density and pres-
sure appearing in Euler’s equation using the Tsallis-MIT bag
equations of state.

2.1 Relativistic Euler equation

Throughout this article we will follow the natural units i.e.,
c = 1, h̄ = 1, kB = 1. As discussed in [17], the correct
description of nonlinear wave structure in QGP including
quantum effects should be given by relativistic hydrodynam-
ics of colored superfluids which is too complicated and still

in an initial stage. Admitting this fact, we stick to the clas-
sical relativistic hydrodynamics to study the nonlinear wave
structure in hot QGP following Tsallis distribution.

The velocity field is given by, v = v(x, t)x̂ with a magni-
tude v in the x-direction. We use the one-dimensional rela-
tivistic Euler’s equation [38,39] which is written as,

∂v

∂t
+ v

∂v

∂x
= v2 − 1

ε + P

(
∂P

∂x
+ v

∂P

∂t

)
, (1)

where ε ≡ ε(x, t) is the energy density and P ≡ P(x, t) is
the pressure.

Our calculation will be aimed at quark–gluon plasma pro-
duced at the LHC energies where at the central rapidity
region the net baryonic number density is zero, and hence
we encounter vanishing chemical potential. This leads to the
fact that the particle and the anti-particle distributions are
identical.

Now, defining the entropy four-current as sμ = suμ,
where uμ ≡ (γ, γ v) is the four-velocity, the continuity equa-
tion for the entropy density s can be derived as (for details
see [17]),

vs

(
∂v

∂t
+ v

∂v

∂x

)
+ (1 − v2)

(
∂s

∂t
+ s

∂v

∂x
+ v

∂s

∂x

)
= 0,

(2)

where we have used the Lorentz factor as γ = 1/
√

1 − v2.

2.2 Non-extensive MIT bag equation of state

From Eqs. (1) and (2), we observe that we have four unknown
quantities appearing in two equations. Hence, we require two
additional equations which may be provided by the equations
of state. In the present work we consider the non-extensive
MIT bag model [36,37] equations of state which enable us
to express the pressure and the entropy density in terms of
the energy density. In this model, quarks and gluons follow
the quantum Tsallis fermionic (‘ f ’) and bosonic (‘b’) single
particle distributions [40] given by,

n f = 1[
1 + (q − 1)

Ep−μ

T

] q
q−1 + 1

nb = 1[
1 + (q − 1)

Ep−μ

T

] q
q−1 − 1

, (3)

where Ep = √
p2 + m2 is the single particle energy of a

particle of massm, μ is the chemical potential, q is the Tsallis
parameter, and T is the Tsallis temperature.

Tsallis single particle distributions can be obtained from
the Tsallis entropy defined by [41],

S =
∑
i

pqi − pi
1 − q

, (4)
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where pi are the probabilities of the micro-states. This
entropic form is non-additive, i.e. the total entropy of the
system is not a summation of those of its sub-parts. This
situation may appear due non-ideal plasma effects, fluctu-
ation etc [42,43]. Extremizing the Tsallis thermodynamic
potential with respect to pi one arrives at the expression for
the Tsallis probabilities and the single particle distribution
[44]. It is shown in Ref. [44] that the transverse momen-
tum spectra obtained from the single particle distribution is
expressed in terms of an infinite summation and the zeroth
term coincides with the phenomenological classical Tsallis
distribution widely used in the literature. The forms of the
Tsallis quantum distributions used in literature are similar to
(but not always exactly the same as) the zeroth order approx-
imated term when one uses the factorization approximation
used in Ref. [40]. In this work we restrict ourselves within
this approximated version of the Tsallis quantum distribu-
tion. We reserve the analysis with the exact distributions for
future.

Assuming an ideal gas of quarks and gluons, we write
down the expressions for the thermodynamic variables like
the net baryonic number density ρB, energy density ε and
pressure P .

ρB,bag = ρ f − ρ̄ f , (5)

εbag = B + εb + 2ε f , (6)

Pbag = −B + Pb + 2Pf , (7)

where B is the bag constant which represents the pressure
of the vacuum [45], and the subscript ‘b’(‘ f ’) signifies the
bosonic (fermionic) contribution of the thermodynamic vari-
ables. The factor 2 in front of the fermionic parts lets us con-
sider both particles and anti-particles. According to the bag
model, quarks and gluons are assumed to stay in a spherical
cavity (the ‘bag’) in QCD vacuum and the constant B takes
care of the confinement property. ρ f (ρ̄ f ) signifies the parti-
cle (anti-particle) number density and as already mentioned
in the previous section, the net baryonic number at the central
rapidity region at the LHC energies is zero. Hence, we have
zero baryonic chemical potential which leads to ρ f = ρ̄ f .

For the energy density and pressure, we identify that the
bag variables have contributions from the massless bosons
(gluons) and from the massive (where mass is much less
than temperature) fermions (up and down quarks) and they
can be expressed in terms of nb and n f in the following way:

εi = g
∫

d3 p

(2π)3 Ep ni , Pi = g
∫

d3 p

(2π)3

p2

3Ep
ni , (8)

where g is the degeneracy factor and i = f, b.

2.2.1 Energy density and pressure for massless bosons

The closed analytic expressions of the energy density and
pressure of a non-extensive massless bosonic gas are given
by,

εb = gT 4

2π2(q − 1)3q

[
3ψ(0)

(
3

q
− 2

)
+ ψ(0)

(
1

q

)

−3ψ(0)

(
2

q
− 1

)
− ψ(0)

(
4

q
− 3

)]
, (9)

Pb = gT 4

6π2(q − 1)3q

[
3ψ(0)

(
3

q
− 2

)
+ ψ(0)

(
1

q

)

−3ψ(0)

(
2

q
− 1

)
− ψ(0)

(
4

q
− 3

)]
, (10)

and they are related by εb = 3Pb. In Eqs. (9) and (10) ψ(0) is
the digamma function [47]. We defer the detailed calculations
till the appendix of the paper.

2.2.2 Energy density and pressure for massive fermions

We evaluate the fermionic thermodynamic variables up to
O(m2T 2). We consider the plasma to be consisted of the
up and down quarks having masses of 5–10 MeV and we
have checked that for a wide range of the q and T parameter
values appearing in the phenomenological studies of high-
energy collisions, the O(m2T 2) approximation works very
well when the mass of the particle is around 10 MeV. In some
papers it has been suggested that the O(m2T 2) contribution
helps one account for the non-perturbative effects [46] in
QGP. The closed analytic expressions for the thermodynamic
variables for a non-extensive gas of massive fermions up to
O(m2T 2) are given by the following equations:

ε f = gT 4

2π2(q − 1)3q

[
3Φ

(
−1, 1,

2

q
− 1

)

−3Φ

(
−1, 1,

3

q
− 2

)

+Φ

(
−1, 1,

4

q
− 3

)
− Φ

(
−1, 1,

1

q

)]

− gm2T 2

4π2(q − 1)q

[
Φ

(
−1, 1,

2

q
− 1

)
− Φ

(
−1, 1,

1

q

)]
,

(11)

Pf = gT 4

6π2(q − 1)3q

[
3Φ

(
−1, 1,

2

q
− 1

)

−3Φ

(
−1, 1,

3

q
− 2

)

+Φ

(
−1, 1,

4

q
− 3

)
− Φ

(
−1, 1,

1

q

)]

− gm2T 2

4π2(q − 1)q

[
Φ

(
−1, 1,

2

q
− 1

)
− Φ

(
−1, 1,

1

q

)]
,

(12)
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where Φ is the Lerch’s transcendent [47]. For this section
also, we defer the detailed calculations till the appendix.

2.2.3 Calculation of εbag and Pbag

Using Eqs. (9)–(12), we write down the expressions for the
energy density and pressure in the non-extensive bag model,

εbag(x, t) = B + εb,1T
4 + 2(ε f,1T

4 + ε f,2m
2T 2),

= B + εbag,1T
4 + εbag,2m

2T 2 (13)

Pbag(x, t) = −B + Pb,1T
4 + 2(Pf,1T

4 + Pf,2m
2T 2)

= −B + Pbag,1T
4 + Pbag,2m

2T 2. (14)

When written out long-hand, εi,	 and Pi,	 (i = f, b; 	 =
1, 2) are given by,

εb,1 = g

2π2(q − 1)3q

[
3ψ(0)

(
3

q
− 2

)
+ ψ(0)

(
1

q

)

−3ψ(0)

(
2

q
− 1

)
− ψ(0)

(
4

q
− 3

)]
, (15)

ε f,1 = g

2π2(q − 1)3q

[
3Φ

(
−1, 1,

2

q
− 1

)

−3Φ

(
−1, 1,

3

q
− 2

)
+ Φ

(
−1, 1,

4

q
− 3

)

−Φ

(
−1, 1,

1

q

)]
, (16)

ε f,2 = − g

4π2(q − 1)q

[
Φ

(
−1, 1,

2

q
− 1

)

−Φ

(
−1, 1,

1

q

)]
, (17)

Pb,1 = εb,1

3
, Pf,1 = ε f,1

3
, Pf,2 = ε f,2. (18)

In terms of the above variables, εbag,	 and Pbag,	 (	 = 1, 2)
are given by,

εbag,1 = εb,1 + 2ε f,1, Pbag,1 = Pb,1 + 2Pf,1,

εbag,2 = 2ε f,2, Pbag,2 = 2Pf,2. (19)

Once we get the pressure, the entropy density is given
by the partial derivative of the pressure with respect to the
temperature T , i.e. sbag = ∂Pbag/∂T . Hence we obtain,

sbag = 4Pbag,1T
3 + 2Pbag,2m

2T . (20)

It has been verified that in absence of the baryonic chemical
potential, the pressure, energy density and the entropy density
obey the following relationship,

εbag + Pbag = T sbag. (21)

2.2.4 Equations of state

In order to find out the equations of state, we express the pres-
sure P and the entropy density s as functions of the energy

density ε. We solve Eq. (13) for the temperature T in terms
of the bag model energy density εbag, and put the solution in
Eqs. (14), and (20) to express Pbag, and sbag as functions of
εbag. Solving Eq. (13) for a real and positive value of T and
denoting the solution with Tsol we obtain,

Tsol =
(

−m2εbag,2 + R(εbag)

2εbag,2

) 1
2

, (22)

whereR(εbag) =
√
m4ε2

bag,2 + 4εbag,1(εbag − B). The expres-

sions of Pbag(εbag) and sbag(εbag) are given by,

Pbag = −B + Pbag,1

(
−m2εbag,2 + R(εbag)

2εbag,2

)2

+Pbag,2m
2

(
−m2εbag,2 + R(εbag)

2εbag,1

)
,

sbag = 4Pbag,1

(
−m2εbag,2 + R(εbag)

2εbag,2

) 3
2

+2Pbag,2m
2

(
−m2εbag,2 + R(εbag)

2εbag,2

) 1
2

. (23)

3 Nonlinear evolution equation of energy density
perturbation

In this section, we derive the evolution equation of energy
density perturbation of the QGP system using the well known
Reductive Perturbation Theory (RPT) [48] which helps one
to deal with the perturbation which can not be neglected with
respect to the mean value. For this procedure, we consider
the two dynamical equations i.e, the relativistic Euler’s equa-
tion (Eq. 1) and the entropy conservation equation (Eq. 2).
We expand the dependent variables in terms of a perturba-
tion parameter σ following the RPT. Finally combining Eqs.
(1) and (2) and solving the system of equations order by
order we arrive at the space-time evolution of a perturba-
tion of the energy density in quark–gluon plasma. Now, we
put Pbag(εbag), and sbag(εbag) in Eqs. (1) and (2) and in the
resulting equations express (εbag−B) in terms of temperature
using Eq. (13). Hence we obtain,

∂v

∂t
+ v

∂v

∂x
+ E1(1 − v2)

(
∂εbag

∂x
+ v

∂εbag

∂t

)
= 0 (24)

C1(1 − v2)

(
v
∂εbag

∂x
+ ∂εbag

∂t

)
+ C2

(
∂v

∂x
+ v

∂v

∂t

)
= 0,

(25)

where E1, C1 and C2 are given by,

C1 = m2εbag,2 + 2T 2εbag,1 (26)
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C2 =
(
m2εbag,2 + 2

3
εbag,1T

2
)

×
(

4T 4εbag,1 + 2m2T 2εbag,2

)
(27)

E1 =
(
m2εbag,2 + 2

3εbag,1T 2
)

(
m2εbag,2 + 2T 2εbag,1

) ( 4
3T

4εbag,1 + 2m2T 2εbag,2
) .

(28)

Now we express Eqs. (24), and (25) in terms of the fol-
lowing dimensionless variables:

ε̂ = εbag

ε0
, v̂ = v

cs
, (29)

where ε0 is a reference energy density, and cs is the velocity
of sound. We express ε̂ and v̂ in terms of a small parameter
σ following RPT as,

ε̂ = 1 + σε1 + σ 2ε2 + O(σ 3)

v̂ = σv1 + σ 2v2 + O(σ 3). (30)

We also change the independent variables from (x , t) to (ξ ,
τ ) which are related by,

ξ = σ
1
2
(x − cst)

R
, τ = σ

3
2
cst

R
, (31)

where R is the characteristic length scale of the problem.
The stretched coordinates used in Eq. (31) is a part of the

‘reductive perturbation technique’ (RPT) where the small
parameter σ signifies the smallness of the perturbed quan-
tities relative to the corresponding equilibrium quantities.
Eq. (31) involves two time scales in order to explain fast
dynamics at the linear limit and slower dynamics occurring
at the nonlinear level. This means, at short time scale (at the
lowest limit of σ ) the perturbation obeys linear equation and
travels with velocity cs . Over a longer time scale, the wave
form is influenced by nonlinearity giving rise to the breaking
wave structure. The particular scaling with σ used in Eq. (31)
comes from the idea of two time scales for long waves. The
scaling must satisfy the required invariance and compatibil-
ity condition as discussed in [49,50] in order to keep the
perturbation scheme valid. A similar scaling is also used in
[17] for studying nonlinear waves in cold and hot QGP.

Using the expansion (30) in Eqs. (24) and (25) and equat-
ing the coefficients of different powers of σ to zero, we get
the system of differential equations for the perturbations.

3.1 Calculation at O(σ )

At the lowest order, i.e at O(σ ) of Eqs. (24), (25), we get the
following relations,

c2
s
∂v1

∂ξ
= ε0E1

∂ε1

∂ξ
, C2

∂v1

∂ξ
= ε0C1

∂ε1

∂ξ
. (32)

Solving (32) we can determine the speed of sound cs as,

c2
s = C2E1

C1
. (33)

3.2 Calculation at O(σ 2)

At the next order i.e, at O(σ 2) we get the nonlinear evolution
equation for the energy density perturbation ε1. Using the
relations between v1 and ε1 from Eqs. (32) and (33) we
finally get,

∂ε1

∂τ
+ 2ε0εbag,1ε1

3m4ε2
bag,2 + 8m2T 2εbag,1εbag,2 + 4T 4ε2

bag,1

∂ε1

∂ξ

= 0,

(34)

which is the main result of our work which estimates the
evolution of the first order energy density perturbation.

Coming back to the x-t space, we get,

∂ε̂1

∂t
+ cs

∂ε̂1

∂x

+ 2csε0εbag,1ε̂1

3m4ε2
bag,2 + 8m2T 2εbag,1εbag,2 + 4T 4ε2

bag,1

∂ε̂1

∂x
= 0,

(35)

where ε̂1 = σε1 is the first order perturbation term in scaled
energy density. This differential equation is similar to the
form obtained in Ref. [17], differing only in the coefficient of
the last non-linear term. For a constantT = Tcon, the equation
(35) turns to be of the form of inviscid Burger’s equation [51]
the details of which is discussed in the next section. If we put,
m = 0, εbag,2 = 0, and εbag,1 = 37π2/30, as used in Ref.
[17] for the Boltzmann–Gibbs statistics of massless fermions
and bosons, we exactly get back the equation derived in there.

3.3 Breaking wave solutions

For a constant T = Tcon, the coefficient of the nonlinear term
of Eq. (34) can be written as,

Bc = 2ε0εbag,1

3m4ε2
bag,2 + 8m2T 2

conεbag,1εbag,2 + 4T 4
conε

2
bag,1

. (36)

Hence Eq. (34) becomes,

∂ε1

∂τ
+ Bcε1

∂ε1

∂ξ
= 0, (37)

which is nothing but the inviscid Burgers equation [51]. For
a linear initial condition, S. Chandrasekhar found the explicit
exact solution [52] of (37) as,

ε1(ξ, τ ) = 1

Bc

(
aξ + b

aτ + 1

)
, (38)
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where a, b are arbitrary free parameters. Explicit solutions
of Eq. (37) for other relevant initial conditions are not known
as far as our knowledge goes. In the x-t frame the form of
the exact solution (38) becomes,

ε1(x, t) = 1

Bc

(
aσ

1
2 (x − cst) + bR

aσ
3
2 cst + R

)
, (39)

where σ, R are the small parameter and characteristic length
of the system respectively ( defined in the previous section)
and cs is given by Eq. (33). The solution (39) behaves as a
breaking wave the energy of which dissipates quickly with
distance unlike solitons.

For a more general initial condition, the solution of

∂u(x, t)

∂t
+ f (u)

∂u(x, t)

∂x
= 0, (40)

is given by u (χ ≡ x − f (u)t) [53]. Assuming an initial (t =
0) energy perturbation distribution of

ε̂1(x) = A Sech2
( x

B

)
, (41)

the solution of Eq. (35) can be written as,

ε̂1(χ) = A Sech2
(χ

B

)
, (42)

where

χ = x − cs(1 + Bcε̂1(χ))t (43)

4 Results and discussion

For a fixed value of the reference energy density (ε0 = 0.16
GeV f m−3) and mass m = 10 MeV (which is of the order
of the down quark mass), the final solution depends on the
amplitude A of the initial wave, its width B, the Tsallis
entropic parameter q, and the Tsallis temperature T .

In Fig. 1, we plot the solutions of Eq. (35) on the x-t
plane. For the sake of a better understanding, we present
Fig. 2 which displays a two-dimensional version of Fig. 1.
For both Figs. 1 and 2, A = 2.5, B = 0.5 f m, q = 1.08,
and T = 140 MeV. It is observed from Fig. 2 that at around
t = 10 f m, the solutions start becoming multiple-valued
functions thereby implying the breaking of the waves.

The solutions, however, depend on the width and the
amplitude of the waves as well. It is apparent from Fig. 3, that
beyond A = 1 (when t = 15 f m, B = 0.5 f m, q = 1.08,
and T = 140 MeV), the solutions start becoming multiple-
valued. This means, the more the amplitude of the initial
energy density perturbation is, the more it becomes prone
to be a breaking wave. On the other hand, a narrower initial
energy density perturbation is more likely to give rise to a
breaking wave solution (as seen in Fig. 4).

Fig. 1 Evolution of the energy density perturbation with time t and
space coordinate x . A = 2.5, B = 0.5 f m, q = 1.08, and T = 140
MeV

Fig. 2 Solutions of Fig. 1 at different times on a two-dimensional plot.
A = 2.5, B = 0.5 f m, q = 1.08, and T = 140 MeV

Fig. 3 Solutions at t = 15 f m for different amplitudes of the initial
wave. B = 0.5 f m, q = 1.08, and T = 140 MeV

The temperature T , and the Tsallis parameter q also influ-
ence the solutions so that moving from a lower to a higher
temperature value makes functions single-valued. Hence, the
lower the Tsallis temperature is, the more likely it is to get
a breaking wave solution (as seen in Fig. 5, where t = 15
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Fig. 4 Solutions at t = 15 f m for different widths of the initial wave.
A = 0.5, q = 1.08, and T = 140 MeV

Fig. 5 Solutions at t = 15 f m for different Tsallis temperature values.
A = 2.5, B = 0.5 f m, and q = 1.08

Fig. 6 Solutions at t = 15 f m for different Tsallis parameter values.
A = 2.5, B = 0.5 f m, and T = 140 MeV

f m, A = 2.5, B = 0.5 f m, and q = 1.08). Similarly, a
lower value of the q parameter indicates a higher likelihood
of obtaining breaking waves (as seen in Fig. 6, where t = 15
f m, A = 2.5, B = 0.5 f m, and T = 140 MeV).

5 Summary and conclusions

In summary, we have studied the evolution of the first order
energy density perturbation in hot, ideal, and non-extensive
quark–gluon plasma. To take into account the fluctuating
ambiance, we have used a non-extensive version of the MIT
bag model and find a breaking wave solution. However, we
observe that the breaking of the energy density perturbation
is influenced by the temperature and the Tsallis q parameter
which according to Ref. [31] is related to the relative variance
in a scale variable i.e. temperature. We observe that the break-
ing is favoured by decreasing values of both temperature and
the q parameter. This may have implications in the LHC phe-
nomenology as the quark–gluon plasma medium formed in
this region may have higher initial temperature and q value
in comparison with that formed at the experiments having
lower beam energies. So, the resulting wave may behave as
a stable one even after a long time.

We have also verified that the at a particular instant a wave
with higher amplitude and a smaller width is more prone
to breaking which is intuitively understandable. During the
analysis we have also provided the closed analytical formu-
lae for the Tsallis thermodynamic variables of an ideal gas of
massless bosons and very light fermions. This can be seen as
an extension of an earlier work for the classical Tsallis dis-
tribution by one of us [54]. These results can be used in the
studies pertaining to the thermodynamics of quantum Tsal-
lis gases. However, an unapproximated expression for the
thermodynamic variables may be used in the future studies
to examine whether that affects the present conclusions. In
addition to that, the present work relies on some simplifica-
tions like one-dimensional expansion. An extension of the
present work considering expansion in higher dimensions
should be done. Within the domain of the Boltzmann–Gibbs
statistics, whether one obtains a breaking wave or a local-
ized wave depends on the equation of state. For example,
in [18] an equation of state inspired by the mean field QCD
model resulted in the Korteveg-de Vries (KdV) soliton. But,
no similar study has been reported in the field of the Tsallis
statistics. It will also be interesting to explore this problem.
We reserve these studies for future.

Acknowledgements T. B. acknowledges partial support from the joint
projects between the JINR and IFIN-HH. The authors acknowledge
Prof. Jan-e Alam and Mr. M. Rahman for fruitful discussions. A. M
acknowledges partial financial support from the Ministry of Science
and Higher Education of the Russian Federation in the framework of
Increase Competitiveness Program of NUST MISiS (K4–2018–061),
implemented by a governmental decree dated 16 th of March 2013,
N 211.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: No experimen-
tal data have been analyzed in this paper and no new data have been
generated.]

123



656 Page 8 of 9 Eur. Phys. J. C (2020) 80 :656

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix

A Pressure for the massless case

The pressure of a gas of massless fermions is given by,

P = g

6π2

∫ ∞

0
dp

p3[(
1 + (q − 1)

p
T

) q
q−1 + 1

] . (44)

The Tsallis Fermi-Dirac single particle distribution is now
expressed in terms of the summation of an infinite series
involving different powers of the Tsallis Maxwell-Boltzmann
distributions. Now, swapping the integral and the summation
we obtain the following expression for the pressure,

P = g

6π2

∞∑
s=1

(−1)s+1
∫ ∞

0
dp

p3

(
1 + (q − 1)

p
T

) sq
q−1

.

= gT 4

6π2

∞∑
s=1

(−1)s+1
Γ

[
sq
q−1 − 4

]

(q − 1)4Γ
[

sq
q−1

]

= gT 4

6π2(q − 1)3q

[
3Φ

(
−1, 1,

2

q
− 1

)

−3Φ

(
−1, 1,

3

q
− 2

)
+ Φ

(
−1, 1,

4

q
− 3

)

−Φ

(
−1, 1,

1

q

)]
, (45)

which is the first (massless) term of Eq. (12). For the massless
bosons, the factor (−1)s+1 does not arise, and the summation
yields Eq. (10). Energy density can be obtained in a similar
way, too.

B Pressure for the massive case: up toO(m2T2)

The pressure of a gas of massive fermions is given by,

P = g

6π2

∫ ∞

0
dp

p4(p2 + m2)− 1
2[(

1 + (q − 1)

√
p2+m2

T

) q
q−1 + 1

] (46)

To find out the pressure of a gas of massive fermions up to
O(m2T 2), we first expand the integrand in Eq. (46) in a series
of mass m, and retain only the O(m2T 2) term. Hence, the
pressure can be approximated as,

P ≈ P(0) + P(2), (47)

where P(0) is the massless term and P(2) is the O(m2T 2)

term. P(0) can be evaluated using the steps detailed in the
previous section. When P is expanded in a series, P(2) is
given by,

P(2) = gm2

12π2

∫ ∞

0
dp

⎡
⎢⎣− p(

p(q−1)
T + 1

) q
q−1 + 1

−
p2q

(
p(q−1)

T + 1
) q

q−1 −1

T

[(
p(q−1)

T + 1
) q

q−1 + 1

]2

⎤
⎥⎥⎥⎦ . (48)

The first term on the r.h.s of Eq. (48) contains a single power
of the Tsallis Fermi-Dirac distribution and can be evaluated
following the steps detailed in the previous section.

The second term, which contains a square of the Tsallis
distribution, can be expressed in terms of a partial derivative
of the Tsallis distribution with respect to momentum p. Then
carrying out the integration by parts, one may be able to
express it in terms of a single power of the Tsallis distribution.
Afterwards, following the steps already discussed, one may
arrive at the expression given by the second term in Eq. (12).
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