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The “intermediate window quantity” of the hadronic vacuum polarization contribution
to the anomalous magnetic moment of the muon allows for a high-precision comparison between
the data-driven approach and lattice QCD. The existing lattice results, which presently show good
consistency among each other, are in strong tension with the data-driven determination. In order to
check for a potentially common source of systematic error of the lattice calculations, which are all
based on the time-momentum representation (TMR), we perform a calculation using a Lorentz-
covariant coordinate-space (CCS) representation. We present results for the isovector and the
connected strange-quark contributions to the intermediate window quantity at a reference point in
the ðmπ; mKÞ plane, in the continuum and infinite-volume limit, based on four different lattice
spacings. Our results are in good agreement with those of the recent TMR-based Mainz-CLS
publication.
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I. INTRODUCTION

As a precision observable, the anomalous magnetic
moment of the muon, aμ, has attracted a great deal of
attention in recent years. With the release of the first results
by Fermilab’s E989 experiment in 2021, the experimental
world-average [1,2] of this quantity has reached the
precision level of 35 ppm. Tremendous efforts have also
been invested on the theory side to reach the same level of
precision. To achieve the desired precision target, it is
indispensable to bring the hadronic contributions—which
entirely dominate the error budget of the theory estimate—
under good control. The various hadronic contributions are
classified according to the order in the electromagnetic
coupling constant αQED at which they contribute to aμ. The
leading, Oðα2QEDÞ term is the hadronic vacuum polarization
(HVP) contribution to aμ. Together with the Oðα3QEDÞ
hadronic light-by-light contribution (HLbL), it has been
the key quantity to improve over the last decade in order to
reach the precision that the direct experimental measure-
ment would achieve in the near future. The efforts from the

theory community to resolve the hadronic contributions to
aμ can be sorted into two categories of methodology: the
data-driven [3–22] and lattice [23–37]. The 2020 ðg − 2Þμ
theory white paper (WP) [38] provided the Standard Model
prediction at a precision level comparable to that of the
experiment; that prediction currently stands in 4.2σ tension
with the experimental world-average for aμ. To confirm the
discrepancy, further improvement on the uncertainties is

needed. Especially, the HVP contribution ahvpμ has to be
known to the few-per-mille level.
The WP value for the HVP is solely based on the data-

driven method, due to the lattice determinations having
larger uncertainties at the time of the publication. After the
publication of the WP, the Budapest-Marseille-Wuppertal
(BMW) collaboration published their lattice QCD estimate
for ahvpμ at almost the same precision level [34]. Their
calculation, however, yields a larger value for aμ, in better
agreement with the direct experimental measurement.
Although their result should still be verified by other lattice
collaborations, preferably using different discretization
schemes to pin down potential systematic errors, under-
standing the tension within SM predictions resulting from
different classes of methods has become a matter of high
priority. Especially the HVP contribution needs to be
sharply scrutinized, as it dominates currently the hadronic
uncertainties.
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The window quantities for ahvpμ , originally introduced in
Ref. [39], provide a good way to break down the ahvpμ into
subcontributions associated with different Euclidean time
intervals. In particular, the intermediate window suggested
therein is a more tractable observable for lattice practi-
tioners, as it avoids the short-distance region, where
discretization effects can become hard to control, and
the large-distance region, where the statistical Monte-
Carlo noise and finite-size effects become the limiting
factor. As the calculation of this observable is amenable to
the data-driven methods [40], the theory community has
invested significant effort into refining the estimates on this
quantity [34,39,41–45]. The original formulation of the
window quantity in fact relies on the time-momentum
representation (TMR) of ahvpμ , which involves a Euclidean-
time correlation function calculated at vanishing spatial
momentum [46]. The aim of the present paper is to offer a
verification of the method based on an alternative for-
mulation which utilizes the position-space Euclidean-time
two-point correlator without any momentum projection.
This alternative makes use of the previously introduced
covariant coordinate-space (CCS) kernel [47], which is
motivated by the rapid fall-off of the Euclidean correlation
function with the spacetime separation. An important
feature of this alternative formulation is the fact that
the lattice points are treated in an O(4)-covariant way,
whereby different discretization effects are expected than
under the TMR. Therefore, the CCS representation can
provide a valuable check for the continuum extrapolated
value obtained from the TMR. In this work, we focus on
lattice ensembles at an almost fixed pion mass of around
350 MeVat four different lattice spacings and apply finite-
size corrections ensemble by ensemble based on a field-
theoretic model which is able to describe to a good degree
the experimental data of the pion electromagnetic form
factor. On the one hand, this calculation provides a proof-
of-principle that the CCS method is not only viable,
but also quite competitive with the TMR method. On the
other hand, at mπ ¼ 350 MeV we are able to directly
compare our result to the recent calculation by the
Mainz-CLS collaboration [43], thereby testing whether
lattice-QCD based results are independent of the chosen
representation. Ultimately, this represents a test of the
restoration of Lorentz invariance, which is broken both at
short distances by the lattice and in the infrared by the
finite volume.
This paper is organized as follows. In Sec. II, we present

the CCS formalism for the calculation of the window
quantities. Our numerical setup and computational strate-
gies are reported in Sec. III. Section IV is dedicated to the
correction of the finite-size effects used for this work. The
continuum extrapolation of the results is discussed and
compared to the previous Mainz results [43] evaluated at
the same pion mass in Sec. V. Finally, concluding remarks
are made in Sec. VI.

II. FORMALISM

Under the time-momentum representation (TMR) [46],
the hadronic vacuum polarization contribution to aμ can be
written as an integral over the two-point function

GμνðxÞ ¼ hjμðxÞjνð0Þi ð1Þ

of the quark electromagnetic current

jμ ¼
X
f

Qfψ̄fγμψf

�
Qu ¼

2

3
;Qd ¼ Qs ¼ −

1

3

�
; ð2Þ

in Euclidean time weighted with a QED kernel [48].
Explicitly, the TMR representation of ahvpμ reads

ahvpμ ¼
�
α

π

�
2
Z

∞

0

dtfðt; mμÞGðtÞ; ð3Þ

where GðtÞ is the two-point correlator projected to vanish-
ing spatial momentum,

GðtÞδij ¼ −
Z

d3xGijðt; xÞ; ð4Þ

and fðt; mμÞ is the QED kernel

fðt; mμÞ ¼
2π2

m2
μ

�
−2þ 8γE þ 4

t̂2
þ t̂2 −

8K1ð2t̂Þ
t̂

þ 8 lnðt̂Þ þ G2;1
1;3

�
t̂2
����

3
2

0; 1; 1
2

��
; ð5Þ

where t̂≡ tmμ.
Although Eq. (3) provides a way to compute ahvpμ on the

lattice, the necessity to precisely control the discretization
effects stemming from small Euclidean-times and the loss
of statistical quality in long Euclidean-times make it
challenging for lattice calculations to achieve the same
precision as methods using the R-ratio [49,50]. Alternative
observables were first proposed in Ref. [39], which consist
in filtering contributions from different Euclidean-time
regions with appropriate extra weight factors to Eq. (3).
One can alter the kernel with the help of smoothed
Heaviside functions ΘΔðtÞ ¼ 1

2
ð1þ tanhð tΔÞÞ to restrict

the integral to a particular energy window, which amounts
to substituting the QED-kernel appearing in Eq. (3) by

fWðt; mμÞ ¼ ½ΘΔðt − t0Þ − ΘΔðt − t1Þ�fðt; mμÞ: ð6Þ

The original proposal in Ref. [39] was motivated by the fact
that lattice calculations and phenomenological estimates
can be made accurate in different euclidean time windows;
applying different methods according to their performance
in the concerned region can thus lead to a better combined
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estimate. Typically, lattice calculations suffer from
enhanced discretization effects at very short distances,
and the long-distance nature of aμ makes the finite-size
corrections non-negligible. The intermediate window
quantity, aWμ , defined by Eq. (6) with t0 ¼ 0.4 fm, t1 ¼
1.0 fm and Δ ¼ 0.15 fm, is therefore expected to be
well-suited for lattice calculations, where a subpercent
precision level with well-controlled systematic errors is
easier to achieve than for the whole ahvpμ . A comparison
between the lattice and phenomenological determinations
of this quantity would shed light on the current tension
within SM predictions since the publication of the BMW
result [40].
During the past few years, many lattice results on aWμ

have been published by independent collaborations
[30,34,41–44,51,52]. The current estimates from different
lattice discretization schemes show nice consistency
within the reached accuracy. It is then worth checking
the current available results, all obtained from the TMR,
with alternative approaches to exclude a potential
common bias from the TMR method. Specifically, it is
interesting to see if one can still get a consistent result
from a method which has different discretization effects
than the TMR. We propose an alternative representation of
aWμ based on an alternative approach for the calculation of
aμ, the covariant coordinate-space (CCS) method, intro-
duced in Ref. [47]. The derivation is given in Appendix A.
Qualitatively, it follows closely the derivation of the
original CCS kernels, which applies to observables which
can be written as a weighted integral over the Adler
function AðQ2Þ≡Q2 d

dQ2 ΠðQ2Þ, where ΠðQ2Þ is the

vacuum polarization function. Nontrivial examples of
such observables are the subtracted vacuum polarization
function and aμ.
Exploiting the transversality of the vacuum polarization

tensor, the dependence on the tensor structure of the vector-
vector correlator GμνðxÞ can be made explicit and we arrive
at a representation of aWμ as a four-dimensional integral,

aWμ ¼
Z

d4xHμνðxÞGμνðxÞ; ð7Þ

where the symmetric, rank-two, transverse (∂μHμν ¼ 0)
kernel

HμνðxÞ ¼ −δμνH1ðjxjÞ þ
xμxν
jxj2 H2ðjxjÞ ð8Þ

is characterized by two scalar weight functions,

H1ðjxjÞ ¼
2

9πjxj4
Z jxj

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 − t2

q
ð2jxj2 þ t2ÞfWðt; mμÞ;

ð9Þ

H2ðjxjÞ ¼
2

9πjxj4
Z jxj

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 − t2

q
ð4t2 − jxj2ÞfWðt; mμÞ:

ð10Þ

A remarkable feature of the CCS method is the pos-
sibility of modifying the kernel and hence the integrand in
Eq. (7) without changing the final integrated value in
infinite-volume, thanks to current conservation. Effectively,
using the fact that the vector-vector correlator is conserved,
∂μGμν ¼ 0, one can add a total-derivative term of type
∂μ½xνgðjxjÞ� to the kernel without changing aWμ , as this only
leads to a surface term vanishing in infinite volume [53].
This flexibility makes lattice calculations with the CCS

method attractive because it allows one to find an optimum
in terms of discretization- and finite-size-errors by con-
trolling the sensitivity of the integrand to different regions
by adjusting the shape of the integrand (see Sec. III for our
setup for the lattice computation). In particular, the success
in the control of the finite-size effects in the hadronic light-
by-light contribution to aμ in an analogous way [54,55]
makes this a promising strategy. Nonetheless, the system-
atic error induced by finite-size and discretization effects
might require careful studies for each kernel. These are
important subjects of this paper (Sec. IV and Sec. V).
In the following, we will perform calculations with two

additional kernels, the traceless

HTL
μν ðxÞ ¼

�
−δμν þ 4

xμxν
jxj2

�
H2ðjxjÞ; ð‘TL’Þ ð11Þ

and the one which is proportional to xμxν,

HXX
μν ðxÞ¼

xμxν
jxj2

�
H2ðjxjÞþjxj d

djxjH1ðjxjÞ
�

ð‘XX’Þ: ð12Þ

These choices were studied in Ref. [53]. In particular,
the XX kernel is motivated by a stronger suppression
of the contributions from long distances when the correlator
is modeled by a simple vector-meson exchange [47].
Finally, for the remainder of the paper, we denote a generic
kernel as

H̃μνðxÞ ¼ −δμνH̃1ðjxjÞ þ
xμxν
jxj2 H̃2ðjxjÞ: ð13Þ

III. LATTICE SETUP

We apply the CCS method to five different Nf ¼ 2þ 1
flavor gauge ensembles generated by the Coordinated
Lattice Simulations consortium [56] at a pion mass around
350 MeV. These ensembles have been generated with the
OðaÞ-improved Wilson-clover fermion action and tree-
level Oða2Þ improved Lüscher-Weisz gauge action. The
detailed information about the used ensembles can be

COORDINATE-SPACE CALCULATION OF THE WINDOW … PHYS. REV. D 107, 054505 (2023)

054505-3



found in Table I. In this work, our goal is to provide a cross-
check for the calculation carried out in the conventional
TMR method [43], restricting ourselves to the (strongly
dominant) quark-connected contributions in the f ¼ u, d, s
sector.
To control the discretization effects, in this work, we

consider both the local (L) and the conserved (C) version of
the vector current on the lattice

jðLÞμ ðxÞ ¼ ψ̄ðxÞγμQψðxÞ; ð14Þ

and

jðCÞμ ðxÞ ¼ 1

2

�
jðNÞμ ðxÞ þ jðNÞμ ðx − aμ̂Þ

�
; ð15Þ

jðNÞμ ðxÞ ¼ 1

2

�
ψ̄ðxþ aμ̂Þð1þ γμÞU†

μðxÞQψðxÞ

− ψ̄ðxÞð1 − γμÞUμðxÞQψðxþ aμ̂Þ
�
; ð16Þ

where UμðxÞ is the gauge link and Q is a generic quark
charge matrix acting in flavor space. Starting from the

Noether current jðNÞμ , we have defined the site-centered

current jðCÞμ , which obeys the on-shell conservation equa-

tion
P

3
μ¼0 ∂

�
μj

ðCÞ
μ ¼ 0, where ∂

�
μ is the lattice backward

derivative.
In practice, to handle the OðaÞ lattice artifacts, we

substitute the lattice vector currents with their improved
counterparts1 [58]

jðαÞ;Iμ ðxÞ ¼ jðαÞμ ðxÞ þ acðαÞV ∂νTμνðxÞ; for α ¼ L;C; ð17Þ

where the local tensor current is defined by Tμν≡
− 1

2
ψ̄ðxÞ½γμ; γν�QψðxÞ and cðαÞV is an improvement coeffi-

cient. For cðαÞV , we use the interpolating formulas Eq. (46.a)

and Eq. (46.b) of Ref. [59], consistently with the treatment
of Ref. [43]. For both flavor combinations considered here,
the renormalization is multiplicative,

jðLÞ;Rμ ðxÞ ¼ ẐðLÞ
V jðLÞ;Iμ ðxÞ: ð18Þ

In the case of the local isovector current, corresponding
to Q ¼ diagð1

2
;− 1

2
; 0Þ, the renormalization factor is

given by

ẐðLÞ
V ¼ ZVðg0Þ

�
1þ 3b̄effV amav

q þ bVamq;l

�
; ð19Þ

where the parameters ZV , b̄effV and bV are obtained from
the Padé fits Eqs. (44.a,b,c) of Ref. [59]. The average
quark mass mav

q and the mass of the quark of flavor f, mq;f,
are taken from the same reference. The conserved
vector current does not need to be renormalized, thus we

have ẐðCÞ
V ¼ 1. This treatment of the renormalization

and improvement coefficients corresponds to Set 1 in the
recent calculation of the window observable of the Mainz
group [43].
The strange current, since we consider only the

connected contribution to its two-point function,
must be defined within a partially quenched theory. For
instance, adding a fourth, purely “valence” quark s0 mass-
degenerate with s, the flavor structure corresponds to
Q ¼ diagð0; 0; 1

3
ffiffi
2

p ;− 1

3
ffiffi
2

p Þ. The corresponding renormali-

zation factor can be written in the form

ẐðLÞ
V ¼ ZVðg0Þ½1þ 3b̄effV amav

q þ bVamq;s

þ bpqV ðamav
q − amq;sÞ�: ð20Þ

It contains an additional term with a coefficient bpqV (of
order g40 in perturbation theory) representing a sea-quark
effect. Both for the latter reason and the fact that we work
quite close to the SUð3Þf point amav

q ¼ amq;s, we neglect
this additional term.
We give some further details for the implementation in

the following subsections. Although the expressions are

TABLE I. Overview of the used ensembles. The lattice spacings are determined in Ref. [57] and the pion and kaon masses are taken
from Ref. [43]. Open boundary conditions are employed for all of the listed ensembles. For the ensemble N203, two replica have been
included in the analysis. To exploit translational invariance to reduce statistical fluctuations, all contracted correlators [Eqs. (25), (26),
and (29)] have been computed at L different choices of origin situated at ðn; n; n; T=2Þ. The last column indicates the number of
configurations (“confs”) for each quark species.

Id β L3 × T a [fm] mπ [MeV] mK [MeV] mπL L [fm] Number of confs light/strange

U102 3.4 243 × 96 0.08636 353(4) 438(4) 3.7 2.1 200=0
H102 323 × 96 4.9 2.8 240=120

S400 3.46 323 × 128 0.07634 350(4) 440(4) 4.2 2.4 240=120
N203 3.55 483 × 128 0.06426 346(4) 442(5) 5.4 3.1 90 × 2=90 × 2

N302 3.7 483 × 128 0.04981 346(4) 450(5) 4.2 2.4 240=120

1Equation (17) is valid for the flavor nonsinglet combinations
considered here.
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given for the case where both currents are local, the
generalization to the cases with conserved currents should
be straightforward.

A. Contracted correlators

From the Lorentz structure of the CCS kernel Eq. (8), we
deduce that the integral representation of aWμ , Eq. (7), can
be conveniently written as

aWμ ¼
Z

∞

0

drfðrÞ; ð21Þ

fðrÞ≡ r3
�
−H̃1ðrÞG1ðrÞ þ

1

r2
H̃2ðrÞG2ðrÞ

�
; ð22Þ

where

G1ðrÞ ¼
Z
S3

dΩxGμνðxÞδμν; ð23Þ

G2ðrÞ ¼
Z
S3

dΩxGμνðxÞxμxν; ð24Þ

with r≡ jxj, x̂≡ x=jxj and S3 is the measure of the three-
sphere. The functions G1 and G2 will be referred to as the
contracted correlators and f as the integrand.
In infinite volume, the integrand transforms as a scalar

under O(4)-transformations. In particular, it is expected to
decay exponentially with the separation r at large distances
due to the behavior of the vector-current two-point corre-
lator. For our lattice calculation, where the O(4)-symmetry
is broken, the contracted correlators need to be sampled by
points which are spread around on the same shell as evenly
as possible to restore the rotational symmetry. This in part
motivates our choice for saving the following quantities on
each given distance r on the lattice for the quark-connected
contribution of aWμ

Ĝconn
1 ðrÞ¼−TrfQ2g

X
x∈Λ;jxj¼r

ℜTr½Sðx;0ÞγμSð0;xÞγμ�; ð25Þ

Ĝconn
2 ðrÞ ¼ −TrfQ2g

X
x∈Λ;jxj¼r

ℜTr½Sðx; 0Þ=xSð0; xÞ=x�; ð26Þ

where Λ denotes the set of all points on the lattice and
Sðx; 0Þ is a quark propagator with point-source at 0. Note
that, in this convention, we have Ĝconn

i ðrÞ → r3GiðrÞ in the
continuum and infinite-volume limit. Another advantage of
such choice is the reusability of the data for other quantities
for which the form factors of the CCS kernel are known; it
suffices to substitute the form factors H̃1 and H̃2 in the
master formula Eq. (21) with the desired one in such a case.
For the OðaÞ-improvement of the discretized lattice

vector current Eq. (17), there is another quantity which
has to be taken into account due to the tensor current.

Starting with the OðaÞ-improved vector-current given
Eq. (17), one can keep the explicit coefficient acV
fixed and substitute the vector- and tensor-currents by their
continuum and infinite-volume limit counterparts. Plugging
it into the original infinite-volume vector-current two-point
correlator, Eq. (7) is then modified to, up to Oða2Þ-terms,

ãWμ ðaÞ ¼
Z

d4xfHμνðxÞGμνðxÞ þ acV ½hjμðxÞTναð0Þi

− hTμαðxÞjνð0Þi�∂αHμνðxÞg; ð27Þ
where we have performed an integration-by-part to get the
second term on the right-hand side. The second term in the
curly bracket can be seen as a lattice artifact as it vanishes
at the a → 0 limit at fixed cV , where aWμ is recovered.
Exploiting the Lorentz symmetry as done previously, we can
consider it as a convolution of the correlation function in the
square-bracket as

acV

Z
∞

0

drrH̃3ðrÞG3ðrÞ; ð28Þ

where

G3ðrÞ ¼
Z
S3

dΩxxα½−hjμðxÞTμαð0Þi þ hTμαðxÞjμð0Þi�;

ð29Þ

H̃3ðrÞ ¼ H̃2ðrÞ þ rH̃0
1ðrÞ: ð30Þ

This observation facilitates the numerical computation as
the same propagators required for the calculation of the
previously mentioned contracted correlators can be reused
and leads to the quantity to be computed on the lattice

Ĝconn
3 ðr2Þ ¼ −TrfQ2g

X
x∈Λ;jxj¼r

ℜTr½Sðx; 0ÞγμSð0; xÞ

× ð=xγμ − γμ=xÞ�: ð31Þ

B. Summation schemes

Because of the periodicity in the spatial directions on
the lattice, the spatial separation in each direction is
mapped to xk ∈ ½−L=2; L=2� in infinite-volume spacetime.
This means that, in total, one can sample up to r ¼ L on a
lattice with T ≥ L. However, the CCS formulation consists
in treating the lattice points shell-by-shell with fixed r
across the hypercube, following the radial direction; in
the r > L=2 region, the corresponding shell on the hyper-
cube is not faithfully sampled anymore. Upon taking the
continuum and infinite-volume limit, the summations in
the lattice-summed contracted correlators Ĝi run over the
three-sphere S3. As the summands become O(4)-invariant
objects in this limit, it suffices to evaluate them at a given
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point and multiply by the S3-measure to get the
answer. However, on a finite lattice, this simplified
procedure is exposed to both discretization and finite-
volume effects. This is better illustrated with Fig. 1: when
going beyond r ¼ L=2 in the radial direction, the hyper-
sphere only intersects with a subset of points on the entire
shell of the hypercube submerged in infinite-volume
spacetime.
In order to control the finite-volume effects, we propose

the following summation scheme for our lattice data. We
correct for these missing points by a multiplicative factor
given by:

cðr; LÞ ¼ r4ððr=aÞ2Þ
navailðr2; LÞ

; with r4ðnÞ ¼ 8
X

djn;4∤d
d ð32Þ

being the number of ways to represent n as the sum of four
squares and navailðr2; LÞ is the number of available points
on the lattice, which can easily be counted. The sum in
Eq. (32) runs over all divisors d of the integer number n,
where 4 is not a divisor of d itself. This is known as Jacobi’s
four-square theorem. A proof is given for example in
Ref. [60]. Note that, in this definition, cðr; LÞ ¼ 1 for all
r ≤ L=2. This summation scheme allows one to sample the
contribution from the portion of a hypersphere cut out by
the box as described by the red points on the right panel of
Fig. 1. As a consequence, our lattice version of the master
formula for aWμ reads:

aW;lat
μ ¼ a4

XL
r¼0

cðr; LÞflatðrÞ; ð33Þ

where the lattice integrand is defined as

flatðrÞ≡ −H̃1ðrÞĜconn
1 ðrÞ þ 1

r2
H̃2ðrÞĜconn

2 ðrÞ

þ acV
r2

H̃3ðrÞĜconn
3 ðrÞ: ð34Þ

The results for the ensembles given in Table I calculated
with this scheme are collected in Table III. Finally,
as commented early, we could also have computed the

lattice-summed correlators Ĝi’s by starting from
the continuum expression (21), which is based on 4d
spherical coordinates, and implementing it in one particu-
lar direction on the lattice. The result should agree with the
summation scheme of Eq. (33) after a proper continuum
and infinite-volume extrapolation. In general, the two
approaches introduce a different scaling toward to con-
tinuum limit.We have explicitly verified in the present case
that the difference between these two treatments of the
lattice data is much smaller than the statistical error of
the data.

IV. CORRECTION FOR THE FINITE-SIZE
EFFECTS

The finite-size effects (FSEs) on the electromagnetic
correlator come dominantly from the two-pion intermedi-
ate states, which belong to the isovector channel. In the
context of the TMR method, a number of different
approaches have been considered to estimate the FSEs.
Perhaps the most straightforward way to estimate FSEs is
to rely on chiral perturbation theory (ChPT) in a finite
box. The role of the ρ-meson, which contributes very
strongly to the HVP at intermediate distances, however
only enters at higher orders [30]. Alternatively, one can
use phenomenological models, e.g. Ref. [61], to include
the effects of the ρ [34]. Finite-size effects in the tail of the
TMR correlator can also be computed based on the pion
electric form factor in the timelike region, which can be
obtained from auxiliary lattice calculations [29,48,62,63].
Finally, the first terms of a systematic asymptotic expan-
sion are given in Refs. [64,65], where the FSEs correction
to ahvpμ are related to a pion-photon Compton scattering
amplitude.
In our approach with the CCS method, where the

position-space vector-vector correlator is needed, a new
aspect in the study of volume effects comes from the
Lorentz structure of the correlator as a symmetric rank-2
tensor under the breaking of the O(4)-symmetry into that
of a subgroup of the hypercubic group H(4), or the
octahedral group Oh if the time extent is taken to be
infinite. In addition, it is not straightforward to generalize
the approach of Refs. [64,65] or of Ref. [62]: as the
correlator used in the CCS method is a position-space
object, the whole range of center-of-mass momenta must
be considered. For these reasons, we opted to base our
FSEs estimate on the model proposed in Ref. [61]. We will
refer to this model as the Sakurai QFT in the remainder of
the paper.
The pion electric form factor, Fπ , is commonly

parametrized by the Gounaris-Sakurai (GS) formula [66].
In particular, it incorporates different dominant vector
resonances with their widths into the form factor.
Reference [61] suggests a model which is realistic atffiffiffi
s

p
< 1 GeV: the Lagrangian of the theory in Euclidean

spacetime is given by

FIG. 1. Visualization of the domain of integration on a hyper-
cube of size L. The Details of the integration procedure are
provided in Sec. III B.
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LE ¼ 1

4
FμνðAÞ2 þ

1

4
FμνðρÞ2 þ

e
2gγ

FμνðAÞFμνðρÞ

þ 1

2
m2

ρρ
2
μ þ ðDμπÞ†ðDμπÞ þm2

ππ
†π; ð35Þ

with the covariant derivative Dμ ≡ ∂μ − ieAμ − igρμ. The
degrees of freedom are the photon Aμ, the pion π and the
massive ρ-meson ρμ. In this Lagrangian, the ρ-meson and
the photon mix already at tree-level via the product of the
field strengths, known as kinetic mixing term. The nor-
malization condition Fπð0Þ ¼ 0 emerges as a result of
gauge invariance, independently of the values of the
coupling constants gγ and g. As a condition to determine
the latter, we match the decay rates of the vector meson to
πþπ− and to eþe− to their experimentally measured values.
This procedure gives g ¼ 5.98 and gγ ¼ 4.97 [Eq. (B18)
and Eq. (B14)]. The details of this derivation as well as the
renormalization of the theory in infinite volume are
deferred to Appendix B.
As a sanity check, we have looked at the predictions

of the Sakurai QFT for different Euclidean time windows,
i.e., different choices of t0 and t1 in Eq. (6) at fixed
Δ ¼ 0.15 fm. With our choice of parameters g and gγ , the
two-pion channel contribution to these windows computed
in the Sakurai QFT to one-loop agrees surprisingly well
with the analysis based on the eþe− cross-section data
below 1 GeV [40]; see Table II. Note that according to the
analysis presented in Ref. [40], the two-pion channel
amounts about 70% of the total ahvpμ . This observation
further strengthens our confidence in the model.
In Fig. 2, we plot the infinite-volume integrands defined

in Eq. (21) predicted by the Sakurai QFT together with the
finite-size corrected lattice integrand Eq. (33) for the
ensemble N203, according to the procedure described in

Sec. IVA. Two different mρ are considered: one corre-
sponds to its physical value (775 MeV) and the other
(827 MeV) is obtained from a previous lattice study of the
pion electric form factor in Gounaris-Sakurai parametriza-
tion [29], evaluated at mπ ¼ 350 MeV. A point worth
mentioning is the sensitivity to mρ. At the considered pion
mass,mρ ¼ 827 MeV gives an aWμ of ∼155 × 10−10, which
is about 6% lower than the value from mρ ¼ 775 MeV.
This difference results from the different height of the peaks
of the integrands. More importantly, as can be seen in the
shape of the integrand in Fig. 2, tuning the ρ-mass to its
exact value predicted by the lattice study of Ref. [29] leads
to a much better agreement in the long-distance region with
the lattice data obtained in our study. In our study of the
finite-size effects presented in this work, we have chosen
mρ to match the values listed in Ref. [29].

A. Finite-size-effect correction scheme

We neglect the effects of having a finite temporal extent,
as mπT is large for the ensembles included in this
calculation. In the CCS method, one has to correct for
the FSEs coming from two sources. The first one is the
truncation of the integrand of Eq. (21) at rmax ¼ L=2
because of the finite lattice size. The resulting missing
contribution could be large if the integrand is long-ranged.
Selected raw lattice results obtained with different kernels
are displayed in Fig. 3. We see that the widths of the
integrand are very different according to the kernel used.
For the kernels HTL

μν and HXX
μν , the integrals to get ahvpμ

saturate more rapidly than in the case of the original,
unsubtracted kernel Hμν; the FSE corrections due to the
truncation are thus much smaller for the first two.
The second source of FSEs is the wrap-around-the-world

effect related to the discretized momenta in a finite,
periodic box. We estimate this effect by directly comparing

FIG. 2. Comparison between the integrand from the ensemble
N203 for the conserved-local discretization of the vector current
and the prediction of the Sakurai QFT for the corresponding mπ

and mρ. The correction for the wrap-around-the-world pion has
been applied to the lattice data.

TABLE II. Predictions of the Sakurai QFT for different Euclid-
ean time windows defined by Eq. (6) with Δ ¼ 0.15 fm and the
corresponding values for t1 and t0. mπ and mρ in the Lagrangian
are set to their physical values and ðg; gγÞ ¼ ð5.984; 4.97Þ. The
precision requirement for the numerical integration is set below the
displayed digits. All numbers in the table are in units of 10−10.
The uncertainties quoted for the values from Ref. [40] result from
all sources of error added in quadrature.

½t0; t1� (fm) Sakurai QFT Reference [40]

[0, 0.1] 0.66 0.83(1)
[0.1, 0.4] 14.05 12.89(12)
[0.4, 0.7] 53.03 51.02(45)
[0.7, 1.0] 87.59 87.28(72)
[1.0, 1.3] fm 94.05 95.31(73)
[1.3, 1.6] 79.64 80.88(58)
½1.6;∞� 165.81 166.08(106)

Total 494.83 494.30(355)
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the correlators computed in finite- and infinite-volume
Sakurai QFT [Eq. (B57)]. The finite-volume part of the
latter is to be done following the same summation schemes
described in Sec. III B for different spacetime regions to
match the lattice QCD calculation. As ultimately, the
relevant quantities for the calculation of aWμ are the con-
tracted correlators [Eqs. (23)and (24)], we compute the
contracted finite-volume correlators at a distance jxj ¼ r
by sampling them at several points x equally-distributed
on the same hypersphere in order to reduce the computa-
tional cost.
The numerical error of this sampling procedure is

quantified based on the variation of the correction when
increasing the density of the sampled points. With our

setup, we estimate the wrap-around-the-world effect to be
controlled at the 10%-level. An additional uncertainty
comes from the fact that the winding expansion Eq. (B57)
is truncated at a given order. Our choice is to truncate at
knk22 ¼ 4 and knk22 þ kνk22 ¼ 3 in the first and the second
sum in Eq. (B57) respectively. An estimate of the upper
bound for the truncation error is given by the highest-
order kept term. This error is added in quadrature to the
uncertainty of the sampling procedure, which gives the
total numerical error of the calculation. The FSE correc-
tions computed according to the procedure described
above are summarized in Table VI.
To get an idea of the size of the systematic error

associated with the use of the Sakurai QFT, we also
compute the same quantity in leading-order ChPT, where
the photon-two-pions coupling is described by scalar QED.
There are significant relative differences between the
estimates, though the order of magnitude remains the
same. Thus we decide to quote 25% of the total FSE
correction as a modeling error, which we add in quadrature
to the numerical error discussed in the previous paragraph.

B. Comparison of the prediction for the finite-size error
between the Sakurai QFT and lattice data

Although in Fig. 3, the shorter-range HXX
μν might appear

to be beneficial in terms of its noise-to-signal ratio, we still
prefer theHTL

μν kernel in this study for two reasons. First, on
coarser ensembles, the integrand exhibits noticeable oscil-
lations at short distances, which indicates that the discre-
tization effect due to the breaking of the O(4)-symmetry
might be less well handled by performing the angular
average over the available lattice points. This effect can be
observed in the comparison between the data from a coarser
(N203) and finer (N302) ensemble plotted in Fig. 3. The
second reason for preferring the TL-kernel is that, even
though the tail is strongly suppressed, the Sakurai theory
still predicts non-negligible contributions in this region, if
the box size is not big enough. In Fig. 4, we show a
zoomed-in version of the tail of the integrand of H102 with
the TL-kernel. With this choice of kernel, the integrand is
very well described by the Sakurai QFT. On the other hand,
with the quality of our data, using the XX-kernel in this
region gives a noisy result consistent with zero, making it
hard to really conclude if the model describes the long
distance behavior of the integrand correctly. Therefore, we
deem it most appropriate to opt for the traceless kernelHTL

μν

in our calculation for aWμ , as the FSE due to the truncation
seems to be better controlled. However, one should not
exclude the possibility that the shorter ranged XX-kernel
might become a better choice, if only fine enough ensem-
bles are included in the continuum extrapolation, with well-
resolved tails of the integrand. In order to test to what extent
our FSE correction procedure works, we compare the
difference between the integrand data computed with

FIG. 3. Comparison of the integrand of Eq. (21) for different
kernels [Eqs. (8), (11), and (12)], for two different ensembles for
the conserved-local discretization.
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H102 and U102, differing only in their spatial length L, to
the Sakurai QFT prediction at the corresponding volumes,
as shown in Fig. 5. For this study, we setmρ for U102 to be
the same as that of H102, as only the latter is available from
Ref. [29]. The error on the lattice data is obtained by adding
the statistical errors from each individual ensemble in
quadrature. Although the fluctuations on the lattice data

are large compared to the central values, the prediction from
the Sakurai QFT seems to follow the trend very nicely and
gives the right order of magnitude up to about r ¼ 0.8 fm,
where the integrand from the Sakurai QFT peaks. However,
beyond this region, the Sakurai QFT is no longer in good
agreementwith the lattice data. Besides a possiblemistuning
inmρ for U102, another reason for this discrepancymight be
that, as we approach or go beyond the half of the linear box
size (1.05 fm for U102), the convergence of the winding
expansion Eq. (B57) is not sufficiently good for such a small
box. As the summation scheme for the region beyond r ¼
1.05 fm requires one to sample the two boxes in different
ways for geometrical reasons, a more careful discussion of
the validity of the Sakurai QFTwould be needed, especially
on smaller boxes where the sensitivity of the model at short
distances becomes critical.
The study described above suggests that the Sakurai

QFT is able to effectively model the FSE due to the wrap-
around-the-world effect of the pion up to medium values of
r, but this effect might become too large to control with
smaller boxes. Moreover, the correction needed to recon-
struct the tail is sizeable for a small box like U102, leading
to a less predictive result. For these reasons, the ensemble
U102 is not included in the final analysis of this work.

V. NUMERICAL RESULTS

In this section, we discuss the numerical results for aWμ
from our lattice simulations, which are based on the kernel
HTL

μν and on the finite-size corrections detailed in Sec. IV.
We first compare the results from each individual ensemble
to what has been obtained in the previous Mainz publica-
tion based on the TMR [43]. Then, we correct for the
mistuning of the pion mass to shift to the reference pion
mass of 350 MeV and kaon mass of 450 MeV prior to
extrapolating the data to the continuum limit.

A. Comparison to the time-momentum
representation result

The ensemble-by-ensemble results for the isovector and
strange contributions are displayed in Table III. Recall that

FIG. 4. Plot of the lattice data from H102 and the prediction of
the Sakurai QFT for the tail of the integrand. The red curve is
used to calculate the correction for truncating the integrand.

FIG. 5. Comparison of the difference between the ensembles
U102 and H102 and the prediction from the Sakurai QFT.

TABLE III. Comparison between the results for the isovector and strange connected contribution obtained in the CCS method using
spherical integration and the results of the Mainz group [43] using the TMR method. Finite size corrections are applied to the isovector
contribution for both methods. The results for U102 are not included in the final analysis. All values are in units of 10−10.

CCS method HTL
μν kernel TMR method

Isovector Strange Isovector Strange

Id (LL) (CL) (LL) (CL) (LL) (CL) (LL) (CL)

U102 174.26(191) 164.78(190) ... ... ... ... ... ...
H102 177.83(92) 168.66(90) 35.66(19) 33.54(19) 178.54(52) 179.75(52) 35.66(12) 35.90(11)
S400 175.21(96) 167.57(94) 34.90(20) 33.15(20) 173.82(69) 174.49(68) 34.402(86) 34.548(82)
N203 173.25(89) 167.60(88) 34.11(14) 32.83(13) 173.75(43) 174.11(43) 34.225(90) 34.283(89)
N302 169.08(96) 165.39(95) 33.31(17) 32.46(17) 167.77(87) 167.84(87) 32.427(83) 32.444(82)
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two discretizations of the current-current correlator, namely
the local-local (LL) and the conserved-local (CL), have
been used to check for discretization effects (cf. Sec. III).
Due to the different discretization schemes, the results from
this study based on the CCS method do not necessarily
agree with those obtained with the TMR method. For the
strange-quark contribution, the results obtained from both
methods agree with each other quite well. Note that we do
not apply any FSE correction to the strange data, as they
receive contributions from the kaon loop at the leading
order in ChPT, which is far more suppressed at large
distances due to the higher mass of the kaon. In the
isovector channel, we observe a good agreement between
the CCS and the TMR methods for the local-local data on
the larger ensembles H102 and N203. For the smaller
ensembles S400 and N302 the agreement for the local-local
discretization is slightly worse. When we look at the
strange data, the agreement on the smaller ensembles is
better. This could be a sign that the worse agreement in the
isovector channel for S400 and N302 is due to finite-size
effects, because these effects are much smaller for the
strange channel. On the contrary, for the conserved-local
data we see a different behavior, when we compare the
individual ensembles: our results with the CCS method lie
below the TMR values. This fact is a hint that the results for
the conserved-local discretization show a much flatter
gradient as the continuum limit is approached, since in
both methods, the OðaÞ-improvement has been imple-
mented. This behavior is illustrated in Fig. 6, when we
later perform the continuum extrapolation at the common
reference point.

B. Shift to a common reference point

The chosen ensembles from Table I are not exactly at the
same pion and kaon mass. Although these masses are not
very different, we want to shift the results for each
ensemble to a common reference point in the ðmπ; mKÞ-
phase-space. We define this reference point to be at mπ ¼
350 MeV andmK ¼ 450 MeV. For this task, we use one of
the best global fits from the calculation of the Mainz group
in the TMR method [43]. For the isovector contribution the
fit has the following form

ðaWμ ÞI¼1ða;ϕ2;ϕ4Þ ¼ p0 þ p1ðϕ2 − ϕ2;physÞ
þ p2ðlogðϕ2Þ − logðϕ2;physÞÞ
þ p3ðϕ4 − ϕ4;physÞ þ p4a2; ð36Þ

and for the strange contribution we have

ðaWμ Þstrangeða;ϕ2;ϕ4Þ ¼ p0 þ p1ðϕ2 − ϕ2;physÞ
þ p2ðϕ2 − ϕ2;physÞ
þ p3ðϕ4 − ϕ4;physÞ þ p4a2: ð37Þ

The fit parameterspi and the associated covariancematrices
are taken from the calculation done in Ref. [43]. In the
above, a is the lattice spacing, ϕ2 ≡ 8t0m2

π and ϕ4 ≡
8t0ðm2

K þ 1
2
m2

πÞ are the dimensionless parameters defined
with the gradient flow time t0 [67]. With this fit form we
calculate the differences between the result at the reference
point and the result at the pion and kaon mass of the specific
ensemble. This difference is independent of the lattice
spacing of the given ensemble. The errors are calculated
from the covariancematrices of the fits and the results of this

FIG. 6. Continuum extrapolation at the reference point mπ ¼
350 MeV and mK ¼ 450 MeV using the TL-kernel. The results
from the TMR method are both at a ¼ 0. They are separated
slightly for a better visibility. The isovector contribution is
corrected for finite-size effects. For the strange contribution no
finite-size correction is applied. The smaller error bar is only the
statistical error, the larger is the total error. The systematic error
on N203 and H102 in the isovector contribution is almost not
visible. For the strange contribution the uncertainty on each
ensemble is highly dominated by the statistical error, as the
systematic error from the shift to the reference point is not visible.
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calculation are given in Table V. We then apply these
differences as a correction to the results on each ensemble
in the CCS method. We used the TMR fit for the same
current discretization (LL, CL) to correct the corresponding
CCS data. However, we see that there is only a very small
difference between the shifts for the LL and CL discretiza-
tion calculated in the TMR method.
Again, 25% of the correction is assigned for the system-

atic uncertainty for this procedure. Since the chosen ensem-
bles are very close to the chosen reference point, the
systematic errors from shifting to that reference point are
very small.

C. Continuum extrapolation

After we applied the corrections to account for the
mistuning of the pion masses to the reference point, we
perform an extrapolation to the continuum with a linear fit
in a2

f1ða; α1; β1Þ ¼ α1 þ β1a2: ð38Þ

This is depicted in Fig. 6 and the results of the continuum
extrapolation are displayed in Table IV.

Since the O(a)-improvement procedure is fully imple-
mented, O(a) artifacts are expected to be absent in the
continuum extrapolation. However, higher order terms,
such as a3, a2 logðaÞ and a2= logðaÞ could also be
non-negligible. This leads to a systematic error of the
extrapolation. In order to obtain an estimate of this
uncertainty, we perform several additional fits. For each
of the fits, we allow one of these terms to be nonzero. This
makes us consider the following additional three-parameter
fit-ansätze

f2ða; α2; β2; γ2Þ ¼ α2 þ β2a2 þ γ2a3; ð39Þ

f3ða; α3; β3; γ3Þ ¼ α3 þ β3a2 þ γ3a2 logðaÞ; ð40Þ

f4ða; α4; β4; γ4Þ ¼ α4 þ β4a2 þ γ4
a2

logðaÞ : ð41Þ

These fit ansätze leave only one degree of freedom with our
available data. Hence, overfitting could potentially be an
issue. We observe a large cancellation between the term
multiplying βi and the one multiplying γi. Lacking guid-
ance from additional data points, we introduce Gaussian
priors to constrain the highest order terms in a, γi, in the
ansätze Eqs. (39)–(41) to be in similar size as the best-fit
coefficient β1 from Eq. (38). Additionally, to probe the
sensitivity of the linear fit f1 to the range in lattice spacing
of the data, we also perform the fit with the coarsest lattice
spacing left out. We apply this procedure to the LL and CL
data independently, resulting in 10 different fits. To get an
estimate of the systematic error of the fitting procedure, we
calculate the root-mean-squared deviation of the individual
fit results in the continuum limit yi from their average ȳ,
ΔyRMS ≡ ðPN

i¼1ðyi − ȳÞ2=NÞ1=2. The results for aWμ from
the different fits are shown in Fig. 7. We see that the

FIG. 7. Comparison of the different fit-ansätze for the continuum extrapolation at the reference point mπ ¼ 350 MeV and mK ¼
450 MeV using the TL-kernel. The root-mean-square deviation of all the different fits is calculated and gives the systematic uncertainty
of the continuum extrapolation.

TABLE IV. Results of the continuum extrapolation from the
CCS method and the TMR method with statistical uncertainties.
The results of the TMR method are obtained from the fits in
Eqs. (36) and (37). All values are in units of 10−10.

Isovector Strange

Id (LL) (CL) (LL) (CL)

HTL
μν 165.75(158) 164.69(156) 32.61(24) 32.38(23)

TMR [43] 165.66(125) 165.09(123) 32.26(32) 32.11(31)
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extrapolations for the conserved and the local current are in
good agreement. Furthermore, the continuum values at the
reference point are consistent with the calculation with the
TMR method.
For our final estimate for the isovector and the strange-

quark contribution to aWμ with the CCS method at the
reference point of mπ ¼ 350 MeV and mK ¼ 450 MeV,
we quote the result from a constant fit to the LL and CL
outcomes under the fit-ansatz f1:

aW;I1
μ ¼ 165.17ð157Þstatð99Þsyst × 10−10; ð42Þ

aW;s
μ ¼ 32.49ð22Þstatð23Þsyst × 10−10: ð43Þ

VI. CONCLUSION

In this work, we have extended the covariant coordinate
space method first proposed in Ref. [47] to the window
quantity for the anomalous magnetic moment of the muon.
Due to the stark geometric difference to the time-momen-
tum representation, this alternative approach provides a
valuable cross-check for the existing window quantity
results from lattice QCD. We provide values for the
intermediate window quantity in the isovector channel
and for the strange quark-connected contribution at mπ ¼
350 MeV and mK ¼ 450 MeV. With an appropriate finite-
size effect correction scheme and a careful scrutiny of the
discretization effects, we obtain aWμ ¼ 165.17ð186Þ×10−10

for the isovector contribution and aWμ ¼ 32.49ð32Þ × 10−10

for the strange quark-connected contribution, where the
statistical and systematic errors have been added in quad-
rature, confirming the results of the calculation of the
Mainz group using the TMR method [43]. This study
strengthens the tension between the lattice calculations and
the dispersive approach on the window quantity.
One advantage of the CCS method is the freedom to

modify the weight of the correlator computed at different
regions without changing the final summed answer. This
might turn out useful especially if one wants to adjust the
shape of the lattice integrand to mitigate statistically noisy
contributions. Future applications might involve different
weight functions for different Euclidean time windows to
optimize the integrand for minimal lattice artifacts and
statistical noise. Furthermore, we have demonstrated how
to correct for the finite-size effects in the CCS method
based on an effective field theory approach. A strong
motivation for this strategy is the nontrivial symmetric
rank-two tensor structure of the coordinate-space correlator
required by the formalism. A simple ρ-γ mixing model
advocated by Jegerlehner and Szafron [61] successfully
captures the long-distance contribution to aWμ in the CCS
representation. The expected a2-scaling that our data shows
after the finite-size correction based on this model is
encouraging and suggests that the same model might also
be utilized as a guideline for further optimizations with the

CCS method. This is of special interest for the calculation
of the full hadronic vacuum polarization to aμ, whose
integrand is much longer-ranged than aWμ . The technical
details appended to this paper might be useful while
computing other coordinate-space observables with similar
integrable divergences in momentum-space.
The present calculation can be easily carried over to

calculations of other lattice observables such as the full
hadronic vacuum polarization contribution to aμ or the
running of the QED coupling. For these observables, it
might be of interest to combine the CCS method with
master field simulations [68]. These simulations are per-
formed over very large lattices, thus finite-size effects are
expected to be highly suppressed. In particular, we expect
that this framework is the best suited for studying the
quark-disconnected contribution, which has been omitted
in this work. It might be possible to get a more precise
determination of this contribution with a short-ranged CCS
kernel to filter out the noisy region for lattice calculations.
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APPENDIX A: DERIVATION OF THE KERNEL
FOR THE WINDOW QUANTITY IN THE CCS

REPRESENTATION

Let GðtÞ as defined in Eq. (4) be the (positive-definite)
TMR correlator. The relation to the vacuum polarization
function2 is

2The HVP function is defined as in Ref. [46].
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GðtÞ ¼t≠0
Z

∞

−∞

dω
2π

ω2½Πðω2Þ − Πð0Þ�eiωt: ðA1Þ

Introducing the Adler function

Aðω2Þ ¼ ω2
d

dω2
Πðω2Þ; ðA2Þ

one obtains after writing

Πðω2Þ − Πð0Þ ¼
Z

ω2

0

ds
s
AðsÞ ðA3Þ

and integrating by parts over ω (i.e., eiωt ¼ d
dω

eiωt
it ) in

Eq. (A1),

GðtÞ ¼ 1

π

Z
∞

0

dω2

ω2
Aðω2Þ d

2

dt2

�
sinðωtÞ

t

�
: ðA4Þ

Let now an observable in the TMR be given by

aWμ ¼
Z

∞

0

dtfWðtÞGðtÞ: ðA5Þ

Inserting expression (A4) for the correlator GðtÞ, one finds

aWμ ¼
Z

∞

0

dQ2AðQ2ÞgWðQ2Þ; ðA6Þ

with

gWðQ2Þ ¼ 1

πQ2

Z
∞

0

dtfWðtÞ
d2

dt2

�
sinðjQjtÞ

t

�
: ðA7Þ

For an expression of the type (A6), Ref. [47] (Eq. (33)
therein) gives an expression for the weight functions H1

and H2 to be used in the CCS method. Explicitly,

aWμ ¼
Z

d4xGμνðxÞHμνðxÞ; ðA8Þ

HμνðxÞ ¼ −δμνH1ðjxjÞ þ
xμxν
x2

H2ðjxjÞ; ðA9Þ

with

HiðjxjÞ ¼
2

3

Z
∞

0

dQ2

Q2
hiðjQjjxjÞgWðQ2Þ ðA10Þ

¼ 2

3π

Z
∞

0

dtfWðtÞ
d2

dt2

�
1

t

Z
∞

0

dQ2

Q4

× hiðjQjjxjÞ sinðjQjtÞ
�
: ðA11Þ

One finds, with r ¼ jxj,

1

t

Z
∞

0

dQ2

Q4
h1ðjQjjxjÞ sinðjQjtÞ

¼ θðr − tÞ
120

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p
ð32r4 þ 11r2t2 þ 2t4Þ

r4

− 45t arccos ðt=rÞ
�
; ðA12Þ

1

t

Z
∞

0

dQ2

Q4
h2ðjQjjxjÞ sinðjQjtÞ ¼ θðr − tÞ ðr

2 − t2Þ5=2
15r4

:

ðA13Þ
In the second derivatives, needed in Eq. (A10), the terms
proportional to δðt − rÞ or its derivative do not contribute to
the Hi, as long as fWðtÞ is smooth. One then finds

H1ðjxjÞ ¼
2

9πr4

Z
r

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p
ð2r2 þ t2ÞfWðtÞ; ðA14Þ

H2ðjxjÞ ¼
2

9πr4

Z
r

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p
ð4t2 − r2ÞfWðtÞ: ðA15Þ

It is worth noting that if fWðtÞ practically vanishes
beyond a distances t1, then for jxj ≫ t1,

H1ðjxjÞ ≃
4

9πjxj
Z

∞

0

dt fWðtÞ; ðA16Þ

H2ðjxjÞ ≃
−2
9πjxj

Z
∞

0

dt fWðtÞ: ðA17Þ

Therefore, these weight functions have a long tail, unlike
fWðtÞ. Still, the 1=jxj behavior amounts to a suppression
compared to the weight functions for ahvpμ , which grow like
x2 at large jxj. In the specific case of the “window quantity,”
numerical integration of Eqs. (A14) and (A15) yields the
weight functions displayed in Fig. 8.
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FIG. 8. The weight functions for obtaining the intermediate
window aWμ (defined by t0 ¼ 0.4 fm, t1 ¼ 1.0 fm, Δ ¼ 0.15 fm)
in the CCS method.
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APPENDIX B: DETERMINING THE FINITE-SIZE
CORRECTION USING SAKURAI’S

FIELD THEORY

In this section we discuss some features of the Sakurai
QFT in details, with special focus on its renormalization to
one-loop and numerical applications to the finite-size
correction. Recall that in the original basis of fields, the
Euclidean spacetime Lagrangian of the theory is given in
Eq. (35). We use dimensional regularization in the follow-
ing. Thus we are in

d ¼ 2λþ 2 ¼ 4 − ε ðB1Þ

dimensions. The massive scalar propagator reads

GmðxÞ ¼
mλ

ð2πÞλþ1

KλðmjxjÞ
jxjλ ¼d¼4 m

4π2jxjK1ðmjxjÞ; ðB2Þ

and the massive vector propagator

GμνðxÞ≡ hρμðxÞρνð0Þi ¼
Z

ddk
ð2πÞd e

ikx δμν þ kμkν=m2
ρ

k2 þm2
ρ

¼
�
δμν −

1

m2
ρ
∂μ∂ν

�
Gmρ

ðxÞ: ðB3Þ

We begin by determining the couplings g and gγ ,
working at tree-level. The kinematic mixing term between
rho and photon can be removed at the cost of generating a
direct coupling of the rho to electrons, and it is instructive
to work in this new basis. We set

ϵ ¼ e
gγ

ðB4Þ

and remove the kinetic mixing term by a field trans-
formation,

�
Aμ

ρμ

�
¼

� 1 − ϵffiffiffiffiffiffiffi
1−ϵ2

p

0 1ffiffiffiffiffiffiffi
1−ϵ2

p

��
Ãμ

ρ̃μ

�
ðB5Þ

The square-mass for the ρ̃μ field is

m̃2
ρ ¼

m2
ρ

1 − ϵ2
: ðB6Þ

The covariant derivative takes the form

Dμ ¼ ∂μ − ieAμ − igρμ ¼ ∂μ − ieÃμ − ig̃ρ̃μ; ðB7Þ

g̃ ¼ g − eϵffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p : ðB8Þ

Thus

LE ¼ 1

4
FμνðÃÞ2 þ

1

4
Fμνðρ̃Þ2 þ

1

2
m̃2

ρρ̃
2
μ

þ ðDμπÞ†ðDμπÞ þm2
ππ

†π: ðB9Þ

While the form of the Lagrangian is now simpler, in the
new basis of fields the electromagnetic current of the
electron couples not only to Ãμ, but also directly to ρ̃μ.
Explicitly, the coupling to the electron reads

LE¼ ēðð∂μ− ieAμÞγμþmeÞe

¼ ē

��
∂μ− ieÃμþ ie

ϵffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2

p ρ̃μ

�
γμþme

�
e ðB10Þ

From here, one calculates the tree-level decay width for
ρ̃ → eþe− by standard QFT methods (similar to the
calculation Z0 → l̄l) and finds, neglecting the electron
mass,

Γeþe− ¼ 1

3
α

ϵ2

1 − ϵ2
m̃ρ: ðB11Þ

From the PDG, we set

m̃ρ ¼ 775.26ð23Þ MeV; ðB12Þ

Γeþe− ¼ ð4.72 × 10−5Þ × 149.1 MeV ¼ 7.04 keV; ðB13Þ

and from here find

ϵ ¼ 0.0610; gγ ¼
ffiffiffiffiffiffiffiffi
4πα

p

ϵ
¼ 4.97: ðB14Þ

From the value of ϵ, one sees that one could have dropped
the factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
.

Similarly, the ρ̃ππ decay is driven at leading order by the
interaction ΔLE ¼ g̃ρ̃μjμ. Here, if p and q are respectively
the final-state momenta of the πþ and π−, we have

iMðσÞ ¼ g̃ϵðσÞν ðpν − qνÞ; ðB15Þ

and

1

3

X
σ¼0;�

jMðσÞj2 ¼ 2g̃2

3
ðp · q −m2

πÞ: ðB16Þ

In the CM frame, where the norm of the pion spatial
momentum is pπ , one obtains

Γπþπ− ¼ pπ

8πm2
ρ

1

3

X
σ¼0;�

jMðσÞj2 ¼ g̃2p3
π

6πm2
ρ
: ðB17Þ

Setting this equal to the experimental value of 149.1 MeV,
one extracts
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g̃ ¼ 5.976; g ¼ 5.984: ðB18Þ

For orientation, we note that the contribution of a narrow
resonance to the R-ratio reads

RðsÞ ¼ 9π

α2
ΓðmV → eþe−Þ

mV
m2

Vδðs −m2
VÞ: ðB19Þ

With the expression of the ρ electronic width above,
ignoring the fact that it is rather broad, this becomes

RðsÞ ¼ 12π2

g2γ
m2

Vδðs −m2
VÞ: ðB20Þ

Given that ahvpμ ¼ R
∞
0 dswðsÞRðsÞ with wðm2

ρÞ ¼ 1.624×
10−8 GeV−2, one obtains the fairly realistic number

ahvpμ ðρÞ ¼ 468 × 10−10: ðB21Þ

In the following, we consider the implications of one-
loop corrections.

1. The photonless Lagrangian including explicit
counterterms

We work in the theory without a photon (Aμ ¼ 0) and
renormalize it at one-loop order. The Lagrangian is then

LE ¼ 1

4
FμνðρÞ2 þ

1

2
m2

ρρ
2
μ þ ðDμπÞ†ðDμπÞ þm2

ππ
†π þ 1

4
ðZ3 − 1ÞF2

μν þ
1

2
δm2

ρρ
2
μ þ gðZ1 − 1Þρμjμ

þ ðZ2 − 1Þð∂μπ†∂μπ þm2
ππ

†πÞ þ Z2δm2
ππ

†π: ðB22Þ

The pion-loop contribution Πðk2Þ appears in the two-point function of the ρμ field. To one-loop order, ignoring the
counterterms for now,

hρμðxÞρνðyÞi ¼ GμνðxÞ þ
g2

2

�
ρμðxÞ

Z
z
ρλðzÞjλðzÞ

Z
w
ρσðwÞjσðwÞρνðyÞ

	
− g2

�
ρμðxÞ

Z
z
ρλðzÞρλðzÞπ†ðzÞπðzÞρνðyÞ

	

¼
Z

ddk
ð2πÞd e

ikðx−yÞ


δμν þ kμkν=m2

ρ

k2 þm2
ρ

þ δμλ þ kμkλ=m2
ρ

k2 þm2
ρ

g2Πðk2Þ k
2δλν − kλkν
k2 þm2

ρ

�
: ðB23Þ

Performing the resummation of the geometric series,

hρμðxÞρνðyÞi ¼
Z

ddk
ð2πÞd e

ikðx−yÞ


δμν þ kμkν=m2

ρ

k2 þm2
ρ

þ δμλ þ kμkλ=m2
ρ

k2 þm2
ρ

g2Πðk2Þ k
2δλν − kλkν
k2 þm2

ρ

þ δμλ þ kμkλ=m2
ρ

k2 þm2
ρ

�
g2Πðk2Þ k

2δλν − kλkν
k2 þm2

ρ

�
2

þ…

�

¼
Z

ddk
ð2πÞd e

ikðx−yÞðMðkÞð1 − TðkÞÞ−1Þμν; ðB24Þ

where

MμνðkÞ ¼
δμν þ kμkν=m2

ρ

k2 þm2
ρ

; ðB25Þ

TλνðkÞ ¼ g2Πðk2Þ k
2δλν − kλkν
k2 þm2

ρ
: ðB26Þ

Since 1 − T is of the form

1−T¼ 1−fþfk̂k̂⊤; f¼ g2Πðk2Þ k2

k2þm2
ρ

ðB27Þ

(k̂ ¼ k=jkj), its inverse is given by

ð1 − TÞ−1 ¼ 1 − fk̂k̂⊤: ðB28Þ

Thus one finds

ðMðkÞð1 − TðkÞÞ−1Þμν ¼
δμν þ kμkνð1 − g2Πðk2ÞÞ=m2

ρ

k2ð1 − g2Πðk2ÞÞ þm2
ρ

:

ðB29Þ

Taking into account the counterterms, one finds
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Z
ddxeikðx−yÞhρμðxÞρνðyÞi

¼ δμν þ kμkνðZ3 − g2Πðk2ÞÞ=ðm2
ρ þ δm2

ρÞ
k2ðZ3 − g2Πðk2ÞÞ þm2

ρ þ δm2
ρ

: ðB30Þ

The renormalization conditions we impose on the denom-
inator are,

0 ¼ ðk2ðZ3 − g2ReΠðk2ÞÞ þm2
ρ þ δm2

ρÞk2¼−m2
ρ
; ðB31Þ

1 ¼ d
dk2

ðk2ðZ3 − g2ReΠðk2ÞÞ þm2
ρ þ δm2

ρjk2¼−m2
ρ
Þk2¼−m2

ρ
:

ðB32Þ

These conditions lead to the finite ρ mass shift

δm2
ρ ¼ m2

ρg2
�
k2

d
dk2

ReΠðk2Þ
�

k2¼−m2
ρ

; ðB33Þ

and the wave-function renormalization

Z3 − 1 ¼ g2
�
1þ k2

d
dk2

�
ReΠðk2Þjk2¼−m2

ρ
: ðB34Þ

2. Counterterm for the kinetic mixing term

In addition to the counterterms treated above, the g−1γ
coupling gets renormalized by the pion-loop. Thus we must
add the counterterm

δLE ¼ e
2
δ
1

gγ
FμνðAÞFμνðρÞ ðB35Þ

to the Lagrangian of Eq. (35). Starting from that
Lagrangian, one obtains to one-loop order

hAμðxÞρνðyÞi

¼ −e
2

�
AμðxÞ

�
1

gγ
þ δ

1

gγ

�Z
z
FλσðAÞzFλσðρÞzρνðyÞ

	
0

þ
�
AμðxÞe

Z
z
AλðzÞjλðzÞg

Z
w
ρσðwÞjσðwÞρνðyÞ

	

þ
�
AμðxÞð−2egÞ

Z
z
AλðzÞρλðzÞπ�ðzÞπðzÞρνðyÞ

	

¼ e
Z

ddk
ð2πÞd

eikðx−yÞ

k2ðk2 þm2
ρÞ
ðδμνk2 − kμkνÞ

×

�
−

1

gγ
− δ

1

gγ
þ gΠðk2Þ

�
: ðB36Þ

Here, we require that at k2 ¼ −m2
ρ, the correlation function

be given by its tree-level value, and therefore set

δ
1

gγ
¼ gReΠð−m2

ρÞ: ðB37Þ

Having determined all the required counterterms at one-
loop order, we consider the quantity that is computed in
lattice QCD, namely the photon two-point function, evalu-
ated at Aμ ¼ 0.

3. The current-current correlator

The current-current correlator computed in lattice QCD

corresponds to δ2 logZ½A�
∂AμðxÞ∂AνðyÞ, and this must be matched to the

Sakurai QFT. In this context we regard AμðxÞ as a back-
ground field for the remaining degrees of freedom, π and
ρ̃μ. We note

δS
δAμðxÞ

¼ e
gγ
∂αFμαðρÞ − ieðπ∂μπ� − π�∂μπÞ

þ 2egρμπ�π þ 2e2Aμπ
�π: ðB38Þ

Let

jμ ¼ −iðπ∂μπ� − π�∂μπÞ ðB39Þ

be the electromagnetic current carried by the charged pions.
Then

δ2 logZ½A�
∂AμðxÞ∂AνðyÞ

����
A¼0

¼
�

δS
δAμðxÞ

δS
δAνðyÞ

	
conn

−
�

δ2S
∂AμðxÞ∂AνðyÞ

	����
A¼0

¼ e2
��

jμþ
1

gγ
∂αFμαðρÞþ 2gρμπ�π

�
x

×

�
jνþ

1

gγ
∂βFνβðρÞþ 2gρνπ�π

�
y

	

− 2e2δμνδðx− yÞhπ�πi; ðB40Þ

where the expectation value is now in the theory without the
field Aμ. Evaluating the expectation value to order g0,
counting gγ=g to be O(1), yields
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1

e2
δ2 logZ½A�

∂AμðxÞ∂AνðyÞ
����
A¼0

¼ 1

g2γ
h∂αFμαðρÞx∂βFνβðρÞyi0 þ hjμðxÞjνðyÞisQED − 2δμνδðx − yÞGmπ

ð0Þ

þ 2
g
gγ
Gmπ

ð0Þðh∂αFμαðρÞxρνðyÞi0 þ hρμðxÞ∂βFνβðρÞyi0Þ

þ 1

2

g2

g2γ

�
∂αFμαðρÞx

Z
z
ρσðzÞjσðzÞ

Z
w
ρλðwÞjλðwÞ∂βFνβðρÞy

	
0

−
g2

g2γ

�
∂αFμαðρÞx

Z
z
ρσðzÞρσðzÞπ�ðzÞπðzÞ∂βFνβðρÞ

	
0

−
g
gγ

�
∂αFμαðρÞx

Z
z
ρσðzÞjσðzÞjνðyÞ

þ jμðxÞ
Z
z
ρσðzÞjσðzÞ∂βFνβðρÞy

	
0

: ðB41Þ

For the first line of Eq. (B41), one derives from the massive
vector propagator expression (B3)

h∂αFμαðxÞρνð0Þi ¼ δμνδðxÞ −m2
ρGμνðxÞ ðB42Þ

and

h∂αFμαðxÞ∂βFνβð0Þi
¼ m4

ρGμνðxÞ þ ð∂μ∂ν − ð△þm2
ρÞδμνÞδðxÞ: ðB43Þ

Second, the scalar QED contribution reads

hjμðxÞjνð0ÞisQED
¼ 2ð∂μGmπ

ðxÞ∂νGmπ
ðxÞ −Gmπ

ðxÞ∂μ∂νGmπ
ðxÞÞ: ðB44Þ

Now to the one-loop contribution of the last line of
Eq. (B41), along with the corresponding tadpole contribu-
tion of the third line. Noting that

ΠsQED
μν ðkÞ≡

Z
ddxeikxðhjμðxÞjνð0ÞisQED−2δμνδðxÞGmπ

ð0ÞÞ

¼ ðδμνk2−kμkνÞΠðk2Þ ðB45Þ

with

Πðk2Þ ¼ −
1

ð4πÞd=2 Γ
�
2 −

d
2

�

×
Z

1

0

dx
ð1 − 2xÞ2

ðxð1 − xÞk2 þm2Þ2−d=2 ; ðB46Þ

we obtain

2
g
gγ
Gmπ

ð0Þh∂αFμαðρÞxρνðyÞi0

−
g
gγ

�
∂αFμαðρÞx

Z
z
ρσðzÞjσðzÞjνðyÞ

	
0

¼ 2
g
gγ
Gmπ

ð0Þδμνδðx − yÞ − g
gγ
hjμðxÞjνðyÞisQED

þm2
ρ
g
gγ

Z
ddk
ð2πÞd

eikðx−yÞ

k2 þm2
ρ
ðδμνk2 − kμkνÞΠðk2Þ;

ðB47Þ

The other terms on line three and on the last line of Eq. (B41)
simply correspond to the exchange ðx;μÞ↔ðy;νÞ, thus
simply leading to doubling the contribution of Eq. (B47).
Lines four and five of Eq. (B41) are best handled

together and we find

1

2

g2

g2γ

�
∂αFμαðρÞx

Z
z
ρσðzÞjσðzÞ

Z
w
ρλðwÞjλðwÞ∂βFνβðρÞy

	
0

−
g2

g2γ

�
∂αFμαðρÞx

Z
z
ρσðzÞρσðzÞπ�ðzÞπðzÞ∂βFνβðρÞ

	
0

¼ g2

g2γ



hjμðxÞjνðyÞisQED − 2Gmπ

ð0Þδμνδðx − yÞ

− 2m2
ρ

Z
ddk
ð2πÞd

eikðx−yÞ

k2 þm2
ρ
ðδμνk2 − kμkνÞΠðk2Þ

þm4
ρ

Z
ddk
ð2πÞd

eikðx−yÞ

ðk2 þm2
ρÞ2

ðδμνk2 − kμkνÞΠðk2Þ
�
:

ðB48Þ

Altogether, we have
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1

e2
δ2 logZ½A�

∂AμðxÞ∂AνðyÞ
����
A¼0

¼m4
ρ

g2γ
Gμνðx−yÞþ 1

g2γ
ð∂μ∂ν−ð△þm2

ρÞδμνÞδðx−yÞ

þ
�
1−

g
gγ

�
2

ðhjμðxÞjνðyÞisQED−2δμνδðx−yÞGmπ
ð0ÞÞ

þ2m2
ρ
g
gγ

�
1−

g
gγ

�
ð∂μ∂ν−δμν△Þ

Z
ddk
ð2πÞd

eikðx−yÞ

k2þm2
ρ
Πðk2Þþg2

g2γ
ð∂μ∂ν−δμν△Þm4

ρ

Z
ddk
ð2πÞd

eikðx−yÞ

ðk2þm2
ρÞ2

Πðk2Þ:

ðB49Þ

Each term is transverse, i.e., yields zero when ∂
ðxÞ
μ is applied to it; for the first term, note that

∂νGμνðxÞ ¼
1

m2
ρ
∂μδðxÞ: ðB50Þ

a. Contribution of counterterms to the current-current correlator

The contribution of the counterterm (B35) amounts to replacing g−1γ by ðg−1γ þ δg−1γ Þ. Since the counterterm represents a
relative correction of order g2, this correction needs be applied only to the leading terms, namely those of order g−2γ . Thus we
obtain the contribution

1

e2
δ2 logZ½A�

∂AμðxÞ∂AνðyÞ
����
A¼0

¼ …þ 2

gγ
δ
1

gγ
m4

ρGμνðx − yÞ þ 2

gγ
δ
1

gγ
ð∂μ∂ν − ð△þm2

ρÞδμνÞδðx − yÞ þ… ðB51Þ

The contribution of the counterterms proportional to ðZ3 − 1Þ and δm2
ρ reads

1

g2γ
h∂αFμαðxÞ∂βFνβðyÞic:t: ¼−

1

g2γ

�
∂αFμαðxÞ

Z
z

δm2
ρ

2
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: ðB52Þ

Thus we have the final result, now including all counterterm contributions,
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4. Finite-size effects on the current-current correlator

Let

CμνðxÞ ¼ −hjμðxÞjνð0Þi ðB54Þ

be the Euclidean position-space vector correlator.
Consider the case of g ¼ gγ . Then the only term

contributing to finite-size effects which is not suppressed
by e−mVL=2 is

CðLÞ
μν ðxÞ ¼ m4

ρ

V

X
k

eikx
Π̄ðLÞ

μν ðkÞ
ðk2 þm2

ρÞ2
; ðB55Þ

where Π̄ðLÞ
μν ðkÞ is the finite-volume renormalized vacuum

polarization tensor; note that the renormalization is always
performed in infinite volume. It is useful to decompose the
latter into its infinite-volume counterpart, plus a remainder,

Π̄ðLÞ
μν ðkÞ¼ ðδμνk2−kμkνÞðΠðk2Þ− ðZ3−1Þ=g2ÞþΔΠðLÞ

μν ðkÞ;
ðB56Þ

because the remainder is ultraviolet finite. We can then
write

CðLÞ
μν ðxÞ−Cð∞Þ

μν ðxÞ
¼

X
n∈Z4nf0g

Cð∞Þ
μν ðxþnLÞ

þ
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Z
d4k
ð2πÞ4 e

ikðxþnLÞ m4
ρ

ðk2þm2
ρÞ2

ΔΠðLÞ
μν ðkÞ: ðB57Þ

It is instructive and useful to compute CμνðxÞ in infinite
volume,

Cð∞Þ
μν ðxÞ¼ ð∂μ∂ν−δμν△Þ

Z
d4k
ð2πÞ4 e

ikx m4
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�
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�
Πð0Þ−Z3−1

g2

��
: ðB58Þ

It is clear that the ðΠð0Þ − Z3−1
g2 Þ term is rapidly decaying in

position space, being O(e−mV jxj). To calculate the position-
space dependence of the other term, insert the spectral
representation

Πðk2Þ − Πð0Þ ¼ k2
Z

∞

0

ds
ρsQEDðsÞ
sðsþ k2Þ ; ðB59Þ

with the spectral function normalized according to

ρðsÞ ¼ RðsÞ=ð12π2Þ ¼sQED 1

48π2
ð1 − 4m2

π=sÞ3=2: ðB60Þ

In this form, the d4k integral can be performed,
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For the second term, we note that

ΔΠðLÞ
μν ðkÞ ¼
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ν≠0

Z
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�
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�
: ðB62Þ

One finds, using a Feynman parameter α,

ΔΠðLÞ
μν ðkÞ ¼

X
ν≠0

ΔΠðLÞ
μν ðk; y ¼ LνÞ; ðB63Þ

ΔΠðLÞ
μν ðk; yÞ ¼ f−ðkþ 2qÞμðkþ 2qÞν þ 2δμνððkþ qÞ2 þm2
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·
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For the next step, the d4k integral can be reduced to a one-dimensional integral,
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Without the ðk2 þm2
ρÞ−2 factor, the k integral could be

performed,

1
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Using this result, the actually required integral can be
brought into the following, nonoscillatory form,

1
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where

γðmÞ
n ðjxj; jujÞ¼ nþ1

2π2jxjjujðθðjxj− jujÞInþ1ðmjujÞKnþ1ðmjxjÞ

þθðjuj− jxjÞInþ1ðmjxjÞKnþ1ðmjujÞÞ ðB68Þ

is the nth coefficient in the Gegenbauer polynomial
expansion of the scalar propagator in four dimensions,

Gmðx − uÞ ¼
X
n≥0

γðmÞ
n ðjxj; jujÞCð1Þ

n ðû · x̂Þ; ðB69Þ

with Cð1Þ
0 ðzÞ ¼ 1, Cð1Þ

1 ðzÞ ¼ 2z, Cð1Þ
2 ðzÞ ¼ 4z2 − 1 etc.

APPENDIX C: TABLES

This section provides tables for the finite-size corrections
applied ensemble-by-ensemble (Table VI), as well as for
the correction to reach the reference point in the ðmπ; mKÞ
plane (Table V).

TABLE V. Corrections to the reference point mπ ¼ 350 MeV mK ¼ 450 MeV determined using calculations
based on the TMR method. All values are in units of 10−10.

Isovector Strange

Id (LL) (CL) (LL) (CL)

H102 0.11(4) 0.12(4) −0.50ð1Þ −0.49ð1Þ
S400 −0.07ð2Þ −0.06ð2Þ −0.27ð1Þ −0.26ð1Þ
N203 −0.74ð5Þ −0.72ð5Þ −0.21ð1Þ −0.20ð1Þ
N302 −0.63ð1Þ −0.62ð1Þ 0.22(0) 0.22(0)

TABLE VI. Results for the corrections for the finite-size effect of discretized momenta calculated in the Sakurai QFT and scalar QED
and truncation of the integrand calculated in the Sakurai QFT. See the text in Sec. IVA for details. All values are in units of 10−10. To get
the FSE correction for N302 with the TL-kernel for example, we have FSE ¼ −1.693 − 1.104 ¼ −2.797 for the central value with an
uncertainty of σFSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.5332 þ ð0.25 · 2.797Þ2

p
¼ 0.879.

Wrap-around-the-world correction Truncation correction

Sakurai QFT Scalar QED Sakurai QFT

Id L [fm] Hμν HTL
μν HXX

μν Hμν HTL
μν HXX

μν HTL
μν

U102 2.1 −3.859ð455Þ −2.834 (962) −5.805ð1865Þ 1.023(320) −6.62ð155Þ −10.099ð177Þ −1.511
H102 2.8 −0.990ð103Þ −0.759ð208Þ −1.243ð308Þ 0.419(9) −1.424ð10Þ −1.577ð8Þ −0.584
S400 2.4 −2.047ð255Þ −1.479ð429Þ −2.677ð719Þ 0.705(28) −3.075ð38Þ −3.897ð35Þ −1.654
N203 3.1 0.114(26) −0.200ð21Þ −0.259ð49Þ 0.266(30) −0.747ð40Þ −0.744ð31Þ −0.200
N302 2.4 −2.396ð310Þ −1.693ð533Þ −3.130ð894Þ 0.714(163) −3.611ð51Þ −4.712ð48Þ −1.104
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