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1 Introduction

Recently, the application of resurgence theory and exact-WKB analysis to quantum theory
has been attracting a great deal of attention. The main statement of the resurgence theory
in quantum theory is that the perturbative and non-perturbative contributions have a non-
trivial relation and one can understand many aspects of non-perturbative physics just from
the perturbative series. The resurgence theory has been intensively investigated in terms of
mathematics [1], quantum mechanics [2–21], matrix models and string theory [22–34] and
quantum field theory [35–43]. The resurgent structure and the related Stokes phenomena
are understood by two different methods including semi-classical analysis and the exact-
WKB analysis [44–68]. In our previous work [64], we obtained the unified understanding
of the two Stokes phenomena in semi-classical description of path integral and exact-WKB
analyses. The Stokes phenomenon leading to the ambiguous contribution by the structure
of Lefschetz thimble for the quasi-zero mode direction for instanton-antiinstanton critical
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point at infinity corresponds to the change of the “topology” of the Stoke curves in the
exact-WKB analysis. We also found the relation between Maslov index and the intersec-
tion number of Lefschetz thimble. The results we obtained in [64] is summarized in the
flowchart figure 1.

In this paper, we study quantum mechanics of a particle on S1 in the presence of
periodic potential. We consider N -minima on the circle where N = 1, 2, . . .. The ap-
plication of the exact-WKB analysis to these systems is of great importance in terms of
understanding resurgent structure in theories with topological θ angle, discrete ’t Hooft
anomaly [69], quantization conditions [7, 13], the Mathieu equation [53] and TBA equa-
tions [56, 59, 60, 65]. Furthermore, these QM systems provide a simpler prototype for
circle compactified CPN−1 on R × S1 [35, 38, 40] and deformed Yang-Mills theory on
R3 × S1 [70, 71]. We show that the quantization condition for the system with N minima
on S1 factorizes according to the N -Bloch momenta (or equivalently, N discrete θ angles),
corresponding to decomposition of Hilbert space H = ⊕N−1

p=0 Hp. By obtaining the ex-
act partition function of the system based on the exact-WKB analysis, we show that the
resurgent structure is closed in each Hp, the eigenspace of the shift operator. This implies
that, by a Fourier transform, the topological sectors Q ∈ Z which correspond to columns of
resurgence triangle, are also closed under Stokes automorphisms and resurgence. We also
show that quantization condition for N even model at θ = π becomes a perfect square,
corresponding spectral doubling, and produce the mixed ’t Hooft anomaly between ZN
translation symmetry and C charge conjugation symmetry [69].

We elucidate the Stokes graphs of the system. For a classical potential problem, we
describe how Stokes graphs can be expressed as a network of Airy type or degenerate
Weber type building blocks. We show how the perturbative and non-perturbative cycles
are related in terms of the resurgent structures. The resultant quantization condition
is in exact agreement to the conjectured one by Zinn-Justin-Jentschura [7] and Dunne-
Unsal [13]. We also exhibit the dictionary to connect the cycles of the Airy-type (E0 6= 0)
and degenerate Weber-type (E0 = 0) Stokes graphs, where the latter is more suitable for
merging pair of turning points.

This paper is constructed as follows: in section 1.2, we review the exact WKB analysis,
with emphasis on its relation to the resurgence theory and the known quantization condi-
tions, based on our previous work. In section 2, we study the quantum mechanical systems
on S1 (periodic-potential systems) by the exact-WKB method with the Airy-type Stokes
graph, and obtain the conjectured quantization condition. In section 3, we introduce the
Hilbert-space perspective and discuss the gauging of ZN symmetry, with emphasis on its
relation to TQFT. In section 4, we study the S1 quantum mechanical systems by the
degenerate Weber-type Stokes graph instead of the Airy type, and obtain the quantiza-
tion condition without any approximation, leading to the partition function with the exact
resurgent structure. Section 5 is devoted to the summary and the discussion.

1.1 Three related theories

There are few quantum mechanical systems whose local dynamics are identical, but global
structure and Hilbert space structures are different. These can be related to each other in

– 2 –



J
H
E
P
0
7
(
2
0
2
1
)
0
9
6

4

⇣
�~2

2
d2

dx2 + V (x)
⌘
 (x) = E (x)

Schrödinger eq.

D(E) = 0

exact quantization condition

1
2⇡i

H
pdx ' (N + 1

2 ) +O(e�
S
~ )

generalized Bohr-Sommerfeld

G(E) = � @
@E logD(E)

G(E) '
X

n

X

p.p.o.

(�1)nein
H
pdx

Gutzwiller trace formula

Z(�) = 1
2⇡i

R ✏+i1
✏�i1 G(E)e��EdE

Z(�) =
X

n

e��En

spectral summation form

Z(�) =
X

n

an~n + e�
S1
~
X

n

bn~n + e�
S2
~
X

n

cn~n + ...

path integral(trans-series) form

exact-WKB

expand

inverse Laplace transform

calculate the residues

integral by parts and expand logD(E)

FIG. 1. The relation among several quantization methods. We can identify the resurgent structure of each

case without approximation from the exact-WKB.

III. S1 QUANTUM MECHANICAL SYSTEM

A. Quantization condition

We here discuss the exact-WKB analysis for the 2⇡-periodic potential, V (x) = 1� cos(x) as an

typical case of S1 quantum mechanical systems. We will obtain the Gutzwiller trace formula of

this system too.

Figure 1. The relation among several quantization methods(ZN -shift symmetry given by x →
x+ 2pπ/N .). We can identify the resurgent structure of each case without approximation from the
exact-WKB.

a precise way, and our analysis, with some modifications, obviously apply to all three. For
clarity, we briefly describe these three systems and their salient features.

• Particle on a line x ∈ R in the presence of a periodic potential V (x + 2π) = V (x).
This system has a Z translation symmetry. Hilbert space is composed of the bands
and each band has infinitely many states labelled by Bloch momenta ka ∈ [−π, π]
(we set lattice spacing a = 1 in general.) In this construction, there is no theta angle.

• Gauging Z translation symmetry completely, we end up with particle on a circle,
x ∈ S1 = R/2πZ. Now, x ∼ x + 2π are physically identified (due to gauging), and
there is only one minimum of the potential in the fundamental domain, x ∈ S1. In
this system, translation is no longer a global symmetry, it is fully gauged. Only one
state from each band of particle on an infinite line R is present in the Hilbert space.

– 3 –



J
H
E
P
0
7
(
2
0
2
1
)
0
9
6

One can add a theta angle to this system. Theta angle determines which Bloch state
of the energy band survives in the Hilbert space upon gauging, with identification
ka ≡ θ. We can call the Hilbert space based on this theta vacuum as Hθ. In the
exact WKB analysis, we generally use this set-up.

• Gauging NZ subgroup of Z translation symmetry, we end up with particle on a circle,
x ∈ S1 = R/2πNZ. Now, x ∼ x + 2πN are physically identified and there are N
perturbative minima of the potential in the fundamental domain x ∈ S1. This system
has a genuine global ZN translation symmetry. Now, N states from each band are
present in the Hilbert space, and these are labelled by N distinct discrete Bloch
momenta (also called discrete theta angle in this context). One can add a continuous
theta angle to this system as well. We use this system in exact WKB analysis to
probe mixed anomalies. We call this system TN model for brevity. This set-up can
be used to extrapolate between N = 1 particle on S1 case and particle on an infinite
line x ∈ R.

These systems possess exactly the same local dynamics. Their perturbation theories,
instanton and bion data are completely equivalent. But their Hilbert spaces and global
symmetries are distinct. As emphasized, the first system has infinitely many states per
band, the second system has one state per band, and the third system has N states per
band. Yet, one can obtain the whole spectral data of the first system from second and third.
In the exact WKB analysis, we first use the second setup to derive quantization condition
for a particular theta angle, and build Hilbert space on top of a certain theta vacuum
|θ〉, Hθ. We also prove that quantization condition that produces Spec[Hθ] is invariant
under Stokes automorphism, and DDP formula. By a Fourier transform, this shows that
traditional resurgence (relating late terms with early terms) is also closed on the fixed
topological charge sectors, which are the columns of resurgence triangle [13]. Finally, we
use the third set-up to demonstrate the emergence of mixed anomalies at θ = π for even N .

1.2 Review of exact-WKB and general strategy

We first briefly review the exact-WKB analysis and its relation to resurgence theory, see [64]
for details. One of the most important advantages of the exact-WKB analysis is that we
obtain the quantization condition from the normalization condition of the wavefunctions
in x→ ±∞ limits of the Stokes graph. The quantization condition is regarded as the zero
condition of the Fredholm determinant as

D(E) = det
(
Ĥ − E

)
= 0 , (1.1)

where D(E) denotes the Fredholm determinant. It enables us to derive exact energy
eigenvalues in principle. Furthermore, once we obtain the Fredholm determinant, we also
have the resolvent G(E) and the partition function Z(β) straightforwardly as

G(E) = tr 1
Ĥ − E

= − ∂

∂E
logD(E) , (1.2)

Z(β) = tr e−βĤ = 1
2πi

∫ ε+i∞

ε−i∞
G(E)e−βEdE . (1.3)
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In the previous work [64], we make use of these facts and show that the Stokes phenomena
in the semiclassical path-integral analysis (bion analysis [72–81]) are realized as the global
alternation of the Stokes graph in the exact-WKB analysis, where the perturbative and
nonperturbative contributions correspond to the different cycles crossing the Stokes curves.

In the exact-WKB analysis, the Stokes phenomenon and the related resurgent structure
between the perturbative and nonperturbative contributions are determined by the Stokes
curve and its associated monodromy matrix. It is notable that the Stokes curve is uniquely
determined by the lowest order of the WKB expansion, i.e., the classical potential.

Earlier work [64] also brought an understanding of the relation between the exact-WKB
analysis and the other known quantization methods. In particular, the trace of resolvent
G(E) gives the Gutzwiller trace formula [82],

G(E) = tr 1
Ĥ − E

= i
∑
p.p.o.

∞∑
n=1

T (E) ein
∮
p.p.o.

pdx(−1)n
(∣∣∣∣∣det δ2S

δxδx

∣∣∣∣∣
)−1/2

. (1.4)

This form is interpreted as the intermediate quantization method between the path integral
and the Bohr-Sommerfeld quantizations. This method gives the resolvent of the system by
summing up periodic classical solutions.

These facts are summarized in the flowchart shown in figure 1. It is important to note
that, since the Fredholm determinant D(E) obtained by the exact-WKB analysis is exact,
what follows from there, e.g. the trace of resolvent G(E) and the partition function Z(β)
are also exact.

2 S1 quantum mechanical system with Airy-type Stokes graphs

2.1 Quantization condition

We here discuss the exact-WKB analysis for the particle on a circle, x ∈ S1, where x ∼
x + 2π are physically identified, in the presence of the potential, V (x) = 1 − cos(x).
Since the target space is S1, we can turn on topological θ angle, which correspond to
the insertion of the Aharanov-Bohm flux through the circle. Our main purpose is to
derive the quantization condition from the periodicity condition of the system and WKB-
wave function ψ(x + 2π) = e−iθψ(x). In the sequential subsections, we will obtain the
Gutzwiller trace formula of this system, then we will extend our analysis to the cases with
V (x) = 1− cos(Nx), corresponding to N -minima in the fundamental domain.

We begin with Schrödinger equation(
−~2

2
d2

dx2 + V (x)
)
ψ(x) = Eψ(x) . (2.1)

Set Q(x) = 2(V (x)− E), rewrite the equation as(
− d2

dx2 + ~−2Q(x)
)
ψ(x) = 0 . (2.2)
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In the WKB analysis, we consider the ansatz given by

ψ(x, ~) = e
∫ x

S(x,~)dx , (2.3)

which leads to the to the non-linear Riccati equation

S(x)2 + ∂S

∂x
= ~−2Q(x) (2.4)

Next, we assume that S(x, ~) has a formal power series expansion in expansion parameter ~,

S(x, ~) = ~−1S−1(x) + S0(x) + ~S1(x) + ~2S2(x) + . . . , (2.5)

where Sn(x) are functions of x. This leads to recursive equation

S2
−1 = Q(x) , 2S−1Sn +

n−1∑
j=0

SjSn−j + ∂Sn−1
∂x

= 0 (n ≥ 0) . (2.6)

Since Sn is recursively determined from S−1 = ±
√
Q, Sn has two independent solutions:

S±(x, ~) = ~−1S±−1(x) + S±0 (x) + ~S±1 (x) + ~2S±2 (x) + . . .

= ±~S+
−1 + S+

0 ± ~S+
1 + ~2S+

2 + . . .

= ±Sodd + Seven . (2.7)

Then the WKB wave functions can be expressed as

ψ±a (x) = e
∫ x

S±dx = 1√
Sodd

e±
∫ x
a
Sodddx , (2.8)

with a being an integral constant. For later calculations, we choose it as a turning point,
which is a solution of Q(x) = 0.

Since we have derived the WKB wave function recursively, it is regarded as a formal
series in ~

ψ±a (x) = e±
1
~

∫ x
a

√
Q(x)dx

∞∑
n=0

ψ±a,n(x)~n+ 1
2 , (2.9)

Sodd =
∞∑
n=0

S2n−1~2n−1 . (2.10)

Here, both of these series turn out to be asymptotic expansions with respect to ~. The
exact-WKB analysis considers the Borel summation of each series and their Stokes phe-
nomena [64].

From now on, we focus on the periodic potential V (x) = 1 − cos(x), and x ∈ S1. We
now determine the Stokes curve, which dictates where the Stokes phenomenon of WKB
wave function occurs. Let a be a turning point (a solution of Q(x) = 0). The Stokes curve
associated with a is defined as

Im 1
~

∫ x

a

√
Q(x)dx = 0 . (2.11)
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Figure 2. The Stokes curve for the two periods of the potential 1−cos(x) for Im(~) > 0 and Im(~) <
0, respectively. We also depict the branch cut, the turning points and the path corresponding to
the single period.
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Figure 3. The Stokes curve for the two periods of the potential 1− cos(x), with the cycles A and
B being depicted.

Each segment of the Stokes curve has an index, ±. This index indicates which one of the
ψ+ and ψ− pair increases exponentially when moving from the point a to infinity along
the Stokes curve. When the index of the corresponding Stokes curve is +, ψ+ increases
exponentially with

Re 1
~

∫ x

a

√
Q(x)dx > 0 . (2.12)

When the index is −, then ψ− increases exponentially with

Re 1
~

∫ x

a

√
Q(x)dx < 0 . (2.13)

In the present case, the Stokes curve is depicted in figures 2 and 3. In figure 2 we de-
pict Stokes curves for the two periods of the potential, exhibiting four turning points
a1, a2, a3, a4 and the path corresponding to a single period by a blue line. In figure 3 we
also exhibit the perturbative cycle A = e

∮
A
Sodd = e

2
∫ a2
a1

Sodd = e
2
∫ a4
a3

Sodd , and the non-
perturbative cycle B = e

∮
A
Sodd = e

2
∫ a3
a2

Sodd , in the same figure. The nonperturbative
cycle B corresponds to the single bion contribution ∝ e−Sbion/~. We note that, although
this Stokes curve is specific to the potential V (x) = 1− cos(x), any periodic potential has
one with the same topological property.

– 7 –



J
H
E
P
0
7
(
2
0
2
1
)
0
9
6

Based on the Stokes graph, we derive the quantization condition below for the present
potential. We here consider the single-period path depicted in figure 3. What we have
to do is just to find out the monodromy matrices appearing when the path is crossing
the Stokes curves. As we cross the Stokes graph through the full period, the monodromy
matrices for Im ~ > 0 are given as(

ψ+
a1(x)

ψ−a1(x)

)
= M+TNa1a2M−Na2a3M−

(
ψ+
a3=a1(x+ 2π)

ψ−a3=a1(x+ 2π)

)
(2.14)

≡M+
(
ψ+
a1(x+ 2π)

ψ−a1(x+ 2π)

)
, (2.15)

and these for Im ~ < 0 are given as(
ψ+
a1(x)

ψ−a1(x)

)
= M+TNa1a2M−M+Na2a3

(
ψ+
a3=a1(x+ 2π)

ψ−a3=a1(x+ 2π)

)
(2.16)

≡M−
(
ψ+
a1(x+ 2π)

ψ−a1(x+ 2π)

)
. (2.17)

Here, M± acts while passing ± labelled Stokes line in the counter-clockwise direction, T
acts on the crossing of the branch cut in the counter-clock-wise direction, Na1a2 is the
Voros multiplier accounting the change of turning points entering the WKB wave-function.
These are explicitly given by:

M+ :=
(

1 i

0 1

)
, M− :=

(
1 0
i 1

)

T :=
(

0 −i
−i 0

)
, Na1a2 :=

e+
∫ a2
a1

Sodd 0
0 e

−
∫ a2
a1

Sodd

 . (2.18)

We now impose a boundary condition on the above wave-function specific to the
periodic potential. Because of the 2π periodicity of x, the wave-function must satisfy
ψ(x+ 2π) = e−iθψ(x). We then have the condition

M±
(
ψ+
a1(x)

ψ−a1(x)

)
= eiθ

(
ψ+
a1(x)

ψ−a1(x)

)
. (2.19)

This is nothing but the eigenvalue equation ofM±. Therefore, we obtain

det
(
M± − eiθI

)
= 0, (2.20)

where I is a 2× 2 unit matrix. This result means that the Fredholm determinant D(E) in
the quantization condition D(E) = 0 is D± = 1

eiθ
det
(
M± − eiθI

)
, where ± indicates the

sign of imaginary term of ~. We now write down the quantization condition for the present
periodic potential as1

D±(E) = 1√
A∓1B

(
1 +A∓1 +A∓1B − 2

√
A∓1
√
B cos θ

)
= 0 . (2.21)

1The overall constant doesn’t affect the quantization condition and chosen for simplicity.
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This result agrees with [53] where quantization condition for Mathieu equation was obtained
by use of the exact-WKB method as well. For our purpose, (2.21) is a building block, as it
will become manifest in our treatment of a potential with N -minima instead of one in the
fundamental domain, as discussed in section 2.3. This generalization will allow us to make
a precise link between exact WKB method and mixed ’t Hooft anomalies. Furthermore, we
will use (2.21) to prove that fixed topological charge sectors of the theory (corresponding
to the columns of resurgence triangle) are closed under Stokes automorphism.

The resurgent structure of D±(E) is determined by Delabaere-Dillinger-Pham (DDP)
formula [44, 52].

S+[
√
A] = S−[

√
A](1 + S[B]) (2.22)

where S± is directional/lateral Borel summation2 for sign(Im ~) = ±1. (B cycle does not
have Borel singularity so S+[B] = S−[B] = S[B].) The DDP formula states that the
left/right Borel resummation of the perturbative A-cycle is dictated by the Borel resum-
mation of the non-perturbative B cycle. Using DDP formula, we can show that left/right
Borel resummation of the exact quantization condition are equal:

S+[D+] = S−[D−]. (2.23)

Therefore, the Fredholm determinant is invariant under the change of directions (left or
right) in the Borel summation or equivalently, under Stokes automorphism.

We can show a physical meaning of this condition. To show the non-perturbative
contribution to the ground state energy, we consider the asymptotic form of A, which does
not include non-perturbative contribution before being Borel-resummed. It is written as

A→ e
−2πi E

~ωA(E,~) , (2.24)

where ωA(E, ~) is an asymptotic expansion with respect to ~. In the low-energy limit, it
is regarded as a harmonic frequency of the classical vacuum as

ωA(E, ~)2 =
∞∑
n=0

cn(E)~n (2.25)

lim
E→0

c0(E) = V ′′(xvac) , (2.26)

where xvac is a minimum of the potential. This expression corresponds to taking the
Borel-resummed A back to its asymptotic expansion form. We now express the energy
eigenvalues as E = ~ωA(1

2 + δ). Then, the non-perturbative energy deviation δ from the
harmonic oscillator is

sin(πδ) = ±i12Be
±πiδ −

√
B cos θ , (2.27)

2The Borel summation is a homomorphism, so that the following algebraic properties hold: S[A+B] =
S[A] + S[B],S[AB] = S[A]S[B].
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and it is approximated as

δ ∼ − 1
π

√
B cos θ ± i 1

2πB . (2.28)

We note that
√
B corresponds to the instanton contribution ∝ e−(Sbion/2)/~ = e−SI/~, with

SI being the instanton action. One finds that this expression of the ground state energy
indicates the instanton contribution shifts the energy by an amount dictated by θ angle,
while the bion contribution leads to the imaginary ambiguity associated with the Stokes
phenomena. The ambiguity cancels against the Borel resummation of perturbation theory.
The meaning of (2.23) is that this type of resurgent cancellation takes place to all non-
perturbative orders.

Despite the elegance of the Airy-type analysis of exact-WKB, this formalism is not
always most suitable, especially when the turning points merge. This limit requires some
extra work to get the spectral information correctly, and this task does not seem to be very
insightful. Instead, we discuss the method of degenerate Weber-type exact-WKB. The
formalism we already built-in for Airy will be quite useful there, and we will also provide
a dictionary between these two types of exact-WKB. Weber-type exact-WKB produce
spectral data correctly as discussed in section 4.

2.2 Gutzwiller trace formula

The Gutzwiller trace formula is a semiclassical construction that express the quantum me-
chanical density of states (the resolvent, G(E)), in terms of periodic orbits, which is called
prime periodic orbit (p.p.o.). It is generally difficult to determine what the p.p.o. are and
how they are added. But this data can be easily extracted by using the quantization con-
dition obtained by exact-WKB, as shown in [64]. In this subsection, we show the structure
of Gutzwiller trace formula of S1 system and how Stokes phenomenon corresponding to
the imaginary term of ~ appears in this formalism.

D± ∝ 1 +A∓1 +A∓B − 2(
√
A)∓1√B cos θ

= (1 +A∓1)

1 + B

1 +A±1 −
√
B√

A+ 1√
A

(eiθ + e−iθ)

 (2.29)

Using G±(E) = − ∂
∂E logD±,

G±pt(E) = −
(
∂

∂E
A∓1

) ∞∑
n=0

(−1)nA∓n

G±np(E) = −
(
∂

∂E
K

) ∞∑
m=0

(−1)mKm

K = B
∞∑
n=0

(−1)nA±n −
√
B
∞∑
n=0

(−1)nA±(n+ 1
2 )(eiθ + e−iθ) (2.30)

Now A = e
∮
A
Sodddx ' e

i
~

∮
A
|p|dx and B ' e−

1
~

∮
B
|p|dx. From (2.30), we can identify

the Gutzwiller trace formula and p.p.o., which includes the non-perturbative contribution
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BAn

√B√A・An

Figure 4. To be periodic, BAn and
√
BAn+ 1

2 is the unit of nonperturbative contribution. The
Stokes phenomenon corresponding to the bion ambiguity is regarded as A→ A−1.

in a periodic system. The derivative term ∂
∂EA = 1

~(
∮
A

1√
2(V (x)−E)

dx + O(~))A = i
~TAA

gives the period.3 The (−1)n associated with each periodic orbit is the Maslov index.4 The
physical meaning of the form of K, which is the unit of the non-perturbative contribution,
can also be understood by considering its orbit. There are two kinds of fundamental
nonperturbative periodic orbits, BAn and

√
BAn+ 1

2 in the periodic potential as shown in
figure 3. Actually, the infinite number of A cycle attached to B or

√
B in the expression

of K is regarded as quasi-moduli integral in terms of the path integral method [64] and we
show it explicitly in 4.2.

2.3 For V (x) = 1 − cos(Nx)

For more generic cases V (x) = 1 − cos(Nx) (N ∈ N.), we can also obtain the Fredholm
determinant and the quantization condition. The monodromy matrix unit M± is diago-
nalized as

U−1M±U =
(
ξ −

√
ξ2 − 1 0
0 ξ +

√
ξ2 − 1

)
=
(
α 0
0 β

)
, (2.31)

with ξ = 1
2
√
A±1B

(1 +A±1 +B). Here α, β are the roots of x2−2ξx+ 1 = 0, where we have
α+ β = 2ξ, αβ = 1. We then have the quantization condition as

det
(
(M±)N − eiθI

)
= det

(
(U−1M±U)N − eiθI

)
= eiθ(2 cos θ − αN − βN ) = 0 , (2.32)

3This period includes quantum fluctuation O(~). The original Gutzwiller trace formula is derived with
semi-classical approximation, so such the fluctuation term (including the higher order in A, B) gives the
correction for the Gutzwiller trace formula.

4More precisely, the Maslov index is α, where (−1)n = eiαπ.
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which is rewritten as

D±(E) = αN + βN − 2 cos θ

=

2
bN2 c∑
`=0

(
N

N − 2`

)(
1 +A± +B

2
√
A±B

)N−2`((1 +A± +B)2

4A±B − 1
)`

2

− 2 cos θ

= 1
(A∓1B)N/2

N−1∏
p=0

[
1 +A∓1 (1 +B)− 2

√
A∓1B cos

(
θ + 2πp
N

)]

≡
N−1∏
p=0

D±p (E) (2.33)

where bxc is the floor function and
(

N

N − 2`

)
is the binomial coefficient. This is one

of the most important results in this paper. First, it shows that the exact quantization
condition factorizes to N-building blocks. These building blocks are labelled by a Bloch
momentum (discrete theta angle). This factorization is due to the fact that Hilbert space
decompose to eigenstates of ZN translation operator, and we explain the details of this in
the next section.

When N = 2K (K ∈ N) and θ = π, the exact quantization condition (2.33) becomes
a perfect square:

D(E) = (αK + βK)2

= 1
(A∓1B)K

K−1∏
p=0

[
1 +A∓1 (1 +B)− 2

√
A∓1B cos

(
π(2p+ 1)

2K

)]2
. (2.34)

This indicates that all the energy eigenvalues are doubly degenerate (Kramers doubling).
This degeneracy is regarded as a result of ’t Hooft anomaly between ZN discrete translation
symmetry and C = Z2 charge conjugation symmetry. The existence of ’t Hooft anomaly
means that a trivial gap with a unique ground state is prohibited. Thus, the ground state
should be degenerate if a mixed ’t Hooft anomaly exists of the quantum mechanical models.
In the next section, we will discuss the gauging of ZN symmetry, and the result of the mixed
’t Hooft anomaly in detail.

When N = 2K + 1 (K ∈ N) and θ = 0, π, the exact quantization condition (2.33)
becomes

D(E, θ = 0) = Dp=0(E, θ = 0)
K∏
p=1

[
Dp(E, θ = 0)

]2

D(E, θ = π) = Dp=K(E, θ = π)
K−1∏
p=0

[
Dp(E, θ = π)

]2
. (2.35)

There are K pairs, and a singlet sector. The sector that is not paired up at θ = 0 and
θ = π are distinct, and they are not continuously connected. This is the global inconsistency
condition [84]. It is slightly milder condition than mixed anomaly, but essentially plays
similar role. Exact quantization naturally captures global inconsistency condition as well.
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3 Hilbert space perspective and ZN gauging

In this section we introduce the Hilbert-space perspective and interpret our result of the
quantization condition in eq. (2.33). We also discuss the gauging of ZN symmetry and
show that the mixed ’t Hooft anomaly is encoded in our result in eq. (2.33).

3.1 Factorization of exact quantization condition from Hilbert space perspec-
tive

Consider quantum mechanics of a particle on a circle with the potential

V (x) = 1− cos(Nx), x ∼ x+ 2π (3.1)

For brevity, we call it TN model [83]. This theory has a discrete ZN translation symmetry,

ZN : x 7→ x+ 2π
N

(3.2)

whose generator we denote with U. Since [H,U] = 0, eigenstates of Hamiltonian are also
eigenstates of discrete translation operator. Denote eigenstates as |n, p〉 where n is band
label and p is the label of the Bloch momentum associated with ZN symmetry, obeying

H|n, p〉 = En,p|n, p〉, U|n, p〉 = ei2πp/N |n, p〉 (3.3)

The U operator obeys ZN group multiplication law:

U`1U`2 = U`1+`2 mod N (3.4)

Given the U operator, we can built projection operator to Bloch momentum p states that
is useful to decompose the Hilbert space into Bloch sectors:

Πp = 1
N

N−1∑
`=0

ω`pU` (3.5)

The projection operators satisfy the standard relations:

N−1∑
p=0

Πp = 1, Π2
p = Πp, Πp1Πp2 = 0 if p1 6= p2 mod N (3.6)

and can be used to decompose the Hilbert space of the theory into sectors

H =
N−1⊕
p=0
Hp (3.7)

according to Bloch momenta. This decomposition is one reason for the factorization of the
exact quantization condition (2.33). Relatedly, Hp subspaces in this decomposition will
emerge naturally as we gauge ZN symmetry, as the full Hilbert space of (TN/ZN )p models.
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H0 H1 H2 H3H�1H�2H�3

n = 0

n = 1

Band label

Figure 5. The Hilbert space of the original TN model can be decomposed according to ZN quantum
numbers associated with Bloch momenta p. θp = 2πp

N can be viewed as a discrete theta angle, or
the coefficient of Chern-Simons term in topological gauge theory. Hp acquires an interpretation as
Hilbert space of (TN/ZN )p theory. The exact quantization conditions of the TN theory factorizes
into the quantization conditions for the (TN/ZN )p models.

We can see the implication of the (3.7) in the partition function. The partition function
of the TN model can be written as

Z0(β) = tr
[
e−βH

]
=

N−1∑
p=0

(∑
n

e−βEn,p

)
≡

N−1∑
p=0

Z̃p(β) (3.8)

where Z̃p(β) is the partition function of the sub-system with fixed Bloch momentum p. Let
us also define the partition function with the insertion of translation operator,

Z`(β) = tr
[
e−βHU`

]
=

N−1∑
p=0

ei2πp`/N Z̃p(β) (3.9)

This is just regular partition function for ` = 0. Z`(β) and Z̃p(β) are related via a discrete
Fourier transformation.

Now, we can describe in an elementary way gauging of ZN symmetry, see [69, 84].
Physically, gauging translation symmetry is the declaration that x and x+ 2π

N are physically
equivalent points. So, the size of the S1 circle is reduced from 2π down to 2π

N . Hence, there
is only one minimum on the fundamental domain of gauged TN/ZN theory. This means,
on each band on the Hilbert space, instead of N states, only one state survives, i.e. each
band is diluted by a factor of N .

More formal description of gauging is as follows. Global symmetry generators are a
set of codim- 1 defects, (point defects in the present case). We can gauge the discrete
global symmetries by summing over all possible networks of such codim-1 defects, namely,
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summing over `,

Z̃0(β) ≡ Z(TN/ZN )0 = tr
[
e−βHΠ0

]
≡ 1
N

N−1∑
`=0

Z` (3.10)

The projection to zero Bloch momentum states guarantees this partition function corre-
sponds to the Hilbert space H0 in the Bloch decomposition (3.7). However, this is not the
only possibility for gauging. The gauging procedure admits the freedom to add a topologi-
cal phase, a discrete topological theta angle, θp = 2πp

N to each network configuration of the
topological defects. This is equivalent to the insertion of other projection operators (3.5)
into the state sum. Hence,

Z̃p(β) ≡ Z(TN/ZN )p = tr
[
e−βHΠp

]
≡ 1
N

N−1∑
`=0

e−i 2π`p
N Z` (3.11)

Using the fact that Z` = ∑
n

∑N−1
k=0 ei 2π`k

N e−βEn,k where n is band and k is Bloch momentum
label, we can immediately deduce that the sum reduce to

Z̃p(β) ≡ Z(TN/ZN )p =
∑

|n,p〉∈Hp

e−βEn,p (3.12)

This is just the set of states in the Hilbert space Hp in the decomposition (3.7).
As a result of decomposition of Hilbert space according to discrete theta angle θp, the

quantization condition in the TN model with topological theta angle θ and the one in the
(TN/ZN )p theories must be related by the factorization formula:

DTN (E) =
N−1∏
p=0

D(TN/ZN )p (E) (3.13)

in exact agreement with the formula (2.33) obtained from exact WKB analysis.

3.2 Factorization of exact quantization from path integral description

There is also some benefit to be gained to present this construction in path integral, espe-
cially, for the identification of Bloch momentum (which acts as a label in the decomposition
of Hilbert space), which in turn is a discrete theta angle. The origin of this term is a topo-
logical Chern-Simons term in quantum mechanics [85, 86]. This discussion is slightly more
abstract compared to our explicit Hilbert space construction, but it generalize more natu-
rally to QFT. For this reason, we provide a short over-view of the path integral formulation
of coupling of QM to ZN topological gauge theory.

Since we will ultimately gauge the ZN global symmetry (3.2) in our quantum mechan-
ical system, it is first useful to describe ZN topological gauge theory. The ZN gauge field
can be described by a pair of fields (A(1), A(0)), which obeys

NA(1) = dA(0),

∫
A(1) = 1

N

∫
dA(0) = 2π

N
`, ` ∈ Z (3.14)
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proper ZN quantization. The fact that we denoted the holonomy of
∫
A(1) field as ` is

not an accident, and is tied with the insertion of ZN generators U` into the partition
function (3.9). The partition function of ZN topological gauge theory can be written as

Ztop,p =
∫
DA(1)DA(0)DF (0) ei

∫
F (0)∧(NA(1)−dA(0))+ip

∫
A(1) (3.15)

where F (0) is Lagrange multiplier, which forces (3.14), and ip
∫
A(1) is the Chern-Simons

term in 1d. The action has gauge redundancy A(1) 7→ A(1) + dλ(0), A(0) 7→ A(0) + Nλ(0)

and F (0) 7→ F (0).
To couple dynamical field x to the ZN background field, we declare

x 7→ x− λ(0). (3.16)

As a result, the gauge invariant combinations are Nx + A(0), dx + A(1), and only they
can appear in the Lagrangian with a classical ZN background. Indeed, the insertion of
translation generator (3.9) needs to be identified with Z[(A(1), A(0))] where background
ZN field is given in (3.14).

Z[(A(1), A(0))] =
∫

pbc
Dx e

− 1
g

∫
dτ

(
1
2 (ẋ+Aτ )2−cos(Nx+A(0))

)
+ iθ

2π

∫
(dx+A(1))

δ(NA(1) − dA(0))

=
∫
x̃(β)=x̃(0)+ 2π

N
`
Dx̃ e

− 1
g

∫
dτ

(
1
2 ( ˙̃x)2−cos(Nx̃)

)
+ iθ

2π

∫
dx̃

= tr
[
e−βHU`

]
= Z`(β) (3.17)

where pbc denotes periodic boundary conditions x(β) = x(0). In the second line, we
converted the background ZN gauge field into a twisted boundary condition for the path
integral, by a field redefinition. In the semi-classical description, this guarantees that the
leading saddle configuration that contributes to this sum is a fractional instanton with
topological charge `/N .

As described above, gauging ZN symmetry amounts to summing over all topologi-
cal gauge theory backgrounds. Moreover, we are allowed to add a topological phase to
each network configuration of the topological defects, which is 1d Chern-Simons term. As
a result,

Z̃p(β) ≡ Z(TN/ZN )p =
∫
DA(1)DA(0) δ(NA(1) − dA(0)) Z[(A(1), A(0))] eip

∫
A(1)

= 1
N

N−1∑
`=0

e−i 2π`p
N Z` (3.18)

This corresponds to the path integral formulation for the theory with the discrete theta
angle θp or equivalently, the Hilbert space projected to Hp, p = 0, 1, . . . , N − 1.

The p label that permeates the discussion has multiple equivalent and useful interpre-
tations [69, 83, 84]. 1) Discrete theta angle θp, 2) Level of Chern-Simons term 3) Decom-
position of Hilbert space using projection operators Πp, where p is Bloch momenta. The
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factorized terms in the exact quantization condition in the TN model can be interpreted
as the exact quantization for the (TN/ZN )p models.

It is important to note that the local dynamics and saddles in the original TN model
whose target space is S1 and gauged (TN/ZN )p models whose target space is S1/ZN are
same. An instanton with winding number 1 and action S0 in the (TN/ZN ) model is what
we would call a fractional instanton with winding number 1

N and the same action S0 in
the original TN model. In this sense, it is natural that exact quantization conditions
and perturbative/non-perturbative relations are related in a precise sense. One utility
of this perspective is that the mixed anomalies are naturally encoded into exact WKB
analysis. Another utility is the perspective that resurgence is valid within the semi-classical
description of each Z̃p(β) ≡ Z(TN/ZN )p , and this implies that resurgence is closed within
each fixed topological sector Z` as discussed in section 4.3.

4 Analysis of the degenerate Weber-type Stokes graphs

4.1 Relation between Airy-type and degenerate Weber-type Stokes graphs

In this section, we investigate the quantization condition for the periodic potential (the
S1 system) by use of the degenerate Weber(DW)-type Stokes graph. The DW-type Stokes
graph should be used under the assumption that the energy spectrum is classically zero
(E0 = 0). Here, E0 is a control parameter of the Stokes graph, and the picture of the Airy-
type Stokes graph is not naively applicable when taking E0 = 0 where two turning points
merge into one. Due to the dependence of the Stokes graph on the value of E0, two turning
points giving a primary perturbative cycle in the Airy-type Stokes graph collides with each
other and merge into a single turning point. The perturbative cycles are given by a residue
integration around the merged turning points consequently, while nonperturbative cycles
is defined in the same manner as that of the Airy-type graph. For the DW-type Stokes
graph, one has to employ the connection formula obtained by the DW-type Schrödinger
equation given by [

−~2 ∂
2

∂y2 + y2

4 − ~κ
]
ψ̂(y, ~) = 0, (4.1)

with κ being determined by the global potential.
Let us address the relation between the quantization conditions based on the Airy-type

and the DW-type Stokes graphs. By rescaling the energy as E → ~E in the Schrödinger
equation, the Stokes graph of the system transforms from the Airy-type to the DW-type
as discussed in [8, 45], and the monodromy matrix in the DW-type leads to a different
connection formula from the Airy-type. The derivation of the connection formula of the
DW-type is given in appendix A.1, which is obtained by starting with the DW equation
and performing the coordinate transformation.

The connection formula in the Airy- and DW-type seem to be different from each
other, but the most important fact we show in this section is that there is a dictionary to
translate expressions of cycles from one into the other, which we derive in appendix A.2.
Owing to the dictionary, one can immediately find, not only that the DDP formula and
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Figure 6. The local degenerate Weber-type Stokes graph is depicted. We here consider two different
A cycles for generality, but they are identical for our present system with periodic potential.

the resurgent structure are unchanged, but also that the techniques such as the resolvent
method and the Gutzwiller formula can be performed just by the substitution:

Airy : (A,B) −→ Degenerate Weber : (A,B) (4.2)

and following the dictionary shown in table. 1.
Although the two expressions of D(E) derived from Airy-type and DW-type Stokes

graphs give equivalent Fredholm determinants, they have their own advantages and disad-
vantages due to simple fact that different information are encoded in different places. The
former gives a clear Gutzwiller representation and makes it easier to see the relationship
between the respective quantization methods, but to solve D(E) = 0 for E accurately is
difficult. The latter gives an accurate expression of quasi-moduli-integral and bion ampli-
tude because the construction zoom into (E0 = 0) accurately, but the connection formula
becomes relatively complicated.

In the next subsection, we discuss the quantization condition by the exact-WKB anal-
ysis with the degenerate-Weber-type(DW-type) Stokes graph.

4.2 From quantization condition to partition function

Let us begin with showing the connection formula of the DW Stokes graph. We now
consider the local Stokes graph as shown in figure 6, where the cycles are denoted as A
and B. For generality, we denote two different A as A1 and A2, but they are identical in
our present problem with the periodic potential.

From now, we consider the potential V (x) = 1− cos(Nx), which has ZN symmetry. In
the DW type Stokes graph, the region around a turning point is separated to four regions,
that we denote as I, II, III and IV, as shown in figure 7. This is unlike Airy type graphs
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Figure 7. The Stokes curve for the degenerate Weber equation. ± labels the asymptotics of
Ŝodd,−1(y).

which splits to three regions. The monodromy matrices are given by [44, 48]

MIV→I
	 =

(
1 0

iC−(E,~)
C+(E,~)

√
2π e+πiF (E,~) ~+F (E,~)

Γ(1/2−F (E,~)) 1

)
,

MI→II
⊕ =

(
1 iC+(E,~)

C−(E,~)

√
2π ~−F (E,~)

Γ(1/2+F (E,~))
0 1

)
,

MII→III
	 =

(
1 0

iC−(E,~)
C+(E,~)

√
2π e−πiF (E,~) ~+F (E,~)

Γ(1/2−F (E,~)) 1

)
,

MIII→IV
⊕ =

(
1 iC+(E,~)

C−(E,~)

√
2π e−2πiF (E,~) ~−F (E,~)

Γ(1/2+F (E,~))
0 1

)
,

(4.3)

The derivation of monodromy matrices is given in appendix A. Here, F (E, ~) are C±(E, ~)
are defined as

F (E, ~) := Resx=0 S
DW
odd (x,E, ~) ≈ −E

N
, (4.4)

C±(E, ~) := lim
x→0

(
∂y(x,E, ~)

∂x

)1/2 ψ±(x,E, ~)
ψ̂±(y(x,E, ~), E, ~)

≈
(32
N

)∓ E
2N
, (4.5)

respectively, where a` is a turning point connecting with its Stokes line. C`±(E, ~)
comes from the local coordinate transformation from the DW-type Schrödinger equation
in eq. (4.1). F (E, ~) is directly related with the “quantum” frequency as ωA(E, ~) =
−E/F (E, ~) and ωA(E, ~) = N +O(~) in the present system. We also define the normal-
ization matrix (Voros multiplier, which accounts the change of turning points in the WKB
wave-function) and the branch-cut matrix as

Na1,a2 :=

e+ 1
~

∫ a2
a1

dxSDW
odd,−1(x) 0

0 e
− 1

~

∫ a2
a1

dxSDW
odd,−1(x)

 , (4.6)

T :=
(

0 −i
−i 0

)
, (4.7)

respectively, where a1 and a2 are turning points as a2 = a1 + 2π ∼ a1.
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Airy-type degenerate Weber-type

A` = e

∮
A`
dxSodd A` = e

− 2πiE
ωA`(E,~) ≈ e

− 2πiE
ωA`

B = e
∮
B
dxSodd

B = 2πe−
SB
~

2∏
`=1

C`−(E, ~)
C`+(E, ~)

e
(−1)` πiE

ωA`
(E,~)~

− E
ωA`

(E,~)

Γ(1
2 + E

ωA` (E,~))

≈ 2πe−
SB
~

2∏
`=1

e
(−1)` πiE

ωA`

Γ(1
2 + E

ωA`
)

(
N~
32

)− E
ωA`

Table 1. Dictionary of A and B cycles between the Airy-type and the DW type. The quantum
frequency ωA(E, ~) has the relationship with F (E, ~) in eq. (4.4) as ωA(E, ~) = −E/F (E, ~) ≈
ωA+O(~). Furthermore, SB = 2

∫ a2
a1

√
2V (x)dx ∈ R>0 is the classical bion action. For the periodic

potential, all of A-cycles are identical.

The quantization condition for the TN model with ZN global symmetry is expressed as

D(N)± = det
[(
M±

)N − Ieiθ] = 0, (4.8)

where θ is the contribution from the θ-angle (or the twisted boundary condition applied to
WKB wave-function), and

M+ =MIII→IV
⊕ Na1,a2 T MII→III

	 , M− =MIII→IV
⊕ MIV→I

	 Na1,a2 T . (4.9)

Thus, D(N)± can be expressed as

D(N)± = 1
(A∓1B)N/2

N−1∏
p=0

[
1 +A∓1 (1 + B)− 2

√
A∓1B cos

(
θ + 2πp
N

)]
. (4.10)

Here, the symbolic notation of cycles, A and B, are expressed as

A := e2πiF ≈ e−2πiE/N , (4.11)

B :=
(
C−
C+

)2 2πB0~2F

Γ
(

1
2 − F

)2 ≈
2πB0

Γ
(

1
2 + E

N

)2

(
N~
32

)− 2E
N

, (4.12)

where B0 = e−
16
N~ denotes the exponential of (minus) action of the bion.

Now, we discuss the relation between the Airy- and the DW-type quantization condi-
tions. Comparing Airy-type and DW type quantization conditions, one finds the dictionary
in table 1, where D±(E) obtained from Airy-type and D±(E) obtained from DW-type are
symbolically identical. In other words, if we apply the dictionary in table 1 to D(E)±
obtained from Airy-type, we easily obtain the Weber-type one. The derivation of the
dictionary is reviewed in appendix A.2. This dictionary is applicable to the generic one-
dimensional potentials, not only periodic ones.

We here investigate the DW type quantization condition in eq. (4.10) in detail. We
first derive the nonperturbative contribution to the ground state energy. Based on the

– 20 –



J
H
E
P
0
7
(
2
0
2
1
)
0
9
6

approximations in eqs. (4.11) and (4.12), the quantization condition for N = 1, 2 are
expressed as

D(1)±(E) ≈ 1
√
B0Γ

(
1
2 − E

) ( ~
32

)E
+
√
B0e

±πiE

Γ
(

1
2 + E

) ( ~
32

)−E
−
√

2
π

cos θ = 0, (4.13)

D(2)±(E) ≈

 1
√
B0Γ

(
1
2 −

E
2

) ( ~
16

)E
2

+
√
B0e

±πiE2

Γ
(

1
2 + E

2

) ( ~
16

)−E2
+
√

2
π

cos θ2


·

 1
√
B0Γ

(
1
2 −

E
2

) ( ~
16

)E
2

+
√
B0e

±πiE2

Γ
(

1
2 + E

2

) ( ~
16

)−E2
−
√

2
π

cos θ2

 = 0, (4.14)

up to an irrelevant overall factor. Now, we would set the energy as E/N = 1/2 + δ with
0 < |δ| � 1. Solving the quantization condition in terms of δ yields

δN=1 = −
√

64B0
π~

cos θ + 64B0
π~

[
cos2 θ ·

(
γ − log ~

32

)
± πi

2

]
+O(B3/2

0 ) (4.15)

δN=2 = −(−1)p
√

32B0
π~

cos θ2 + 32B0
π~

[
cos2 θ

2 ·
(
γ − log ~

16

)
± πi

2

]
+O(B3/2

0 ), (4.16)

where γ is the Euler constant, and p ∈ {0,+1} is the eigenvalue of the Z2-shift symmetry
generator. For N = 1, the first term is the contribution of instanton [I] and anti-instanton
[Ī]. The second term can be viewed as the contributions of correlated events, [II], [Ī Ī], and
[IĪ]±. The imaginary ambiguity originates in O(B0) and is sourced by the [IĪ]± critical
point at infinity. This contribution is cancelled with the same ambiguity that arise from the
lateral Borel resummation of perturbation theory. the quantization condition for N = 1 in
the low energy limit in eq. (4.13) is in exact agreement with the result by Zinn-Justin and
Jentsuchura [8] up to rescaling parameters in the theory.

For N = 2, there are two types of fractional instantons, [I1], [I2] and [Ī1], [Ī2], and
at second order, there are [I1I2], [Ī1Ī2], [I1Ī1]±, [I2Ī2]± critical points at infinity, whose
manifestation in (4.16) is clear. In addition to these similar effects with the N = 1 case,
there is one more interesting phenomenon. At θ = π, degenerate energies independent
of p is obtained. In fact, the whole Hilbert space is two-fold degenerate. As discussed
in the previous section, this is a manifestation of mixed anomaly between the two global
symmetries of the theory, Z2×Z2, translation and charge conjugation, and anomaly implies
the spontaneous breaking down to Z2 leading to two-vacua.

Let us now express the partition function by use of the resolvent method. We restrict
to N = 1 case for simplicity. We separate the partition function into the perturbative and
nonperturbative parts as

Z(~, β) = Zpt(~, β) + Znp(~, β). (4.17)

Since one finds that

D(1)± ∝ 1 +A∓1 [1 + B]− 2
√
A∓1B cos θ

= D∓A

1 + A
∓1

D∓A
B − 2

√
A∓1

D∓A

√
B cos θ

 , (4.18)
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where

D±A(E, ~) = 1 +A(E, ~)±1 = 1 + e
∓2πi E

ωA(E,~) = 2πe∓πi
E

ωA(E,~)

Γ(1
2 + E

ωA(E,~))Γ(1
2 −

E
ωA(E,~))

. (4.19)

The perturbative part can be found easily as

ZN=1
pt (~, β) = 1

2πi

∫ ε+i∞

ε−i∞

[
−∂ logD∓A

∂E

]
e−βEdE, (4.20)

and the nonperturbative part can be written as the expanded form in terms of the instanton
and bion contributions as:

ZN=1
np (~,β) = 1

2πi

∫ ε+i∞

ε−i∞

[
− ∂

∂E
log
(

1+A
∓1

D∓A
B− 2

√
A∓1

D∓A

√
B cosθ

)]
e−βEdE

= β

2πi

∫ ε+i∞

ε−i∞

∞∑
n=1

n∑
m=0

1
n

(
n

m

)(
−A

∓1

D∓A
B
)m(√A∓1

D∓A

√
B
(
eiθ+e−iθ

))n−m
e−βEdE

=
∑

(Q,K)∈Z⊗N0
|Q|+K>0

ZN=1
np (~,β;{Q,K}), (4.21)

ZN=1
np (~,β;{Q,K}) := β

2πi

∫ ε+i∞

ε−i∞

1
|Q|+K

(
|Q|+K
K

)( B
K2

)|Q|/2+K

· 2F1
(
1−K,−K; |Q|+1;−A±1

)(
−A∓1

)K
e−βE+iQθdE,

(4.22)

where Q and K are the topological charge and the number of bions, respectively, and

K :=
√
A

+1 +
√
A
−1 = D±A

√
A
∓1
. (4.23)

Using table 1, we can get the quasi-moduli-integral (QMI) form:

ZN=1
np (~,β;{Q,K}) = β

2πi

∫ ε+i∞

ε−i∞

(−1)K

|Q|+K

(
|Q|+K
K

)[
e−

SB
~

2π Γ
(1

2−
E

ωA

)2( ~
32

)− 2E
ωA

]|Q|/2+K

· 2F1

(
1−K,−K; |Q|+1;−e∓2πi E

ωA

)(
e
±2πi E

ωA

)K
e−βE+iQθdE.

(4.24)

The physical meaning of each term is as follows: β is the exact zero mode of the bion and

instanton, (−1)K is the Maslov index,
(
|Q|+K

K

)
and 1

|Q|+K are combination and cyclic

permutation of K-bions and Q-instantons,
(
e
−
SB
~

2π Γ
(

1
2 −

E
ω

)2( ~
32

)− 2E
ω

)|Q|/2+K

is nothing

but the bion (and instanton) amplitude and QMI integral. Notice that the label of phase
ambiguity is K, which is the number of (neutral) bions, not the instanton.

For generic N , the partition function can be written in the way parallel to the case of
N = 1. Since both of perturbative and nonperturbative contributions is N -times of that
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for the single-periodic case, the nonperturbative part can be written as

Znp(~, β) =
N−1∑
p=0

∑
(Qp,Kp)∈Z⊗N0
|Qp|+Kp>0

Znp(~, β; {p,Qp,Kp}) (4.25)

= N
∑

(Q,K)∈Z⊗N0
|Q|+K>0

Znp(~, β; {0, NQ,K}), (4.26)

Znp(~, β; {p,Qp,Kp}) := β

2πi

∫ ε+i∞

ε−i∞

e2πipQp/N

|Qp|+Kp

(
|Qp|+Kp

Kp

)( B
K2

)|Qp|/2+Kp

· 2F1
(
1−Kp,−Kp; |Qp|+ 1;−A±1

) (
−A∓1

)Kp
e−βE+iQpθ/NdE.

(4.27)

Here, in order to derive eq. (4.26), we have performed the discrete Fourier transform in
eq. (4.25),5 and consequently the contribution from Qp ∈ NZ remains. This fact is directly
seen in the partition function given through the resolvent method. For example, by em-
ploying the result in eq. (4.16), the partition function for N = 2 with the nonperturbative
contribution can be approximately estimated by

ZN=2(~,β)
∣∣∣
ground state

≈
1∑
p=0

e−2β( 1
2 +δN=2

p ) (4.28)

= 2e−β
[
1+ 8βB0

π~

{
(1+cosθ)

(
β+2log ~

16−2γ
)
∓2πi

}]
+O(B2

0).

One can immediately find that there only exists the terms proportional to cos(Qθ) with
Q ∈ N0, which means that the contribution from the Qp /∈ NZ sector is cancelled by
other p-sectors.

4.3 Resurgent structure of the Hilbert space and the partition function

Finally, we comment on the resurgent structure of the quantizaion conditions, the partition
function, and fixed topological charge sectors of the partition function (which are the
columns of resurgence triangle).

We first consider the quantization condition and in order to see the implication of
resurgence in fixed discrete theta angle p, we rewrite eq. (4.10) as

D(N)± = 1
(A∓1B)N/2

N−1∏
p=0
D(N)±
p

= (α±)N
N−1∏
p=0

(
1− β±e+i(θ+2πp)/N

) (
1− β±e−i(θ+2πp)/N

)
, (4.29)

5The subscript p in Qp and Kp is a dummy index.
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where

D(N)±
p := 1 +A∓1(1 + B)− 2

√
A∓1B cos

(
θ + 2πp
N

)
, (4.30)

α± = ξ± +
√

(ξ±)2 − 1, β± = ξ± −
√

(ξ±)2 − 1, ξ± = 1 +A±1 + B
2
√
A±1B

. (4.31)

Since the DDP formula gives

S+[
√
A] = S−S[

√
A] ⇒ S+[ξ+] = S−[ξ−] ⇒

S+[α+] = S−[α−]
S+[β+] = S−[β−]

, (4.32)

where S denotes the Stokes automorphism defined as S[
√
A] = (1 +B)

√
A, one can easily

see that the DDP transformation is closed in each of p-sectors. This is not surprising, as
each one of the p sectors corresponds to N = 1 system with the replacement of θ → θ+2πp

N .
The energy spectrum obtained by solving the quantization condition directly corresponds
to the Hilbert space Hp, and it means that Hp is invariant under the Stokes automorphism
S. At the same time, the partition function can be written through the resolvent method
by keeping (α±, β±) as6

Z±(~,β) = β

2πi

∫ ε+i∞

ε−i∞

−N log
(√
A∓1Bα±

)
+
N−1∑
p=0

∑
Qp∈Z\{0}

(β±)|Qp|

|Qp|
ei(θ+2πp)Qp/N

e−βEdE
(4.33)

= β

2πi

∫ ε+i∞

ε−i∞

−N log
(√
A∓1Bα±

)
+

∑
Q∈Z\{0}

(β±)N |Q|

|Q|
eiQθ

e−βEdE. (4.34)

The first and second terms in eq. (4.33) correspond to the Qp = 0 and Qp 6= 0 sectors,
respectively, and we performed the discrete Fourier transform by summing p up to obtain
eq. (4.34). Notice that the DDP invariance for the Qp = 0 sector can be ensured as

S+[Z+
Qp=0(~, β)] = −Nβ2πi

∫ ε+i∞

ε−i∞
S+
[
log

(√
A−1Bα+

)]
e−βEdE

= −Nβ2πi

∫ ε+i∞

ε−i∞
S−
[
log 1
A(1 + B) + log

(√
ABα−

)]
e−βEdE

= −Nβ2πi

∫ ε+i∞

ε−i∞
S−
[
log

(√
ABα−

)]
e−βEdE = S−[Z−Qp=0(~, β)]. (4.35)

To drive the third line, we have used the fact that log 1
A(1+B) is a holomorphic function of

E. As emphasized earlier, p has few equivalent interpretation. One is the label of Bloch
momentum that is eigenstate of the ZN -translation symmetry given by x → x + 2pπ/N .
The important fact is that the D(N)±

p gives the Qp-summed partition function which is
decomposable into the Qp-sectors for the Stoke automorphism. It can be seen from the fact

6log
√
A∓1B in eq. (4.33) is nothing but a convention to make the perturbative part as D∓A in D(N)±. It

does not affect the resulting partition function because it disappears in the energy integration.
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that∑Kp Z(β; {p,Qp,Kp}) by eq. (4.27) is indeed invariant under the DDP transformation
and irreducible in the sense that Z(β; {p,Qp,Kp}) is not invariant. Therefore, the trans-
series structure of the partition function is characterized not only by the topological charge
but also the ZN translation symmetry. This complete resurgent structure of the partition
function is exhibited in figure 8. We summarize the relationship of the Hilbert space and
the partition function below:

Hp H

Zp,Qp,Kp Zp,Qp Zp Z

Z0,QN

S

⊕
p

Resolvent

S

⊕
Kp

S

⊕
Qp

∑
p

⊕
p

∑
Q

(4.36)

where Z±(~, β; {p,Qp,Kp}) ∈ Zp,Qp,Kp , Z±(~, β) ∈ Z, and

Hp := { |ψ〉 ∈ L2(R) : Ĥ|ψ〉 = En,p|ψ〉 where En∈N0,p are solutions of DN(±)
p (E) = 0 },

Zp,Qp,Kp
:= {C[[~, e

−SB
2~

~1/2 , log ~]] : ei(Qp+2πp)/N
∫ ε+i∞

ε−i∞
dEe−βE B|Qp|/2+KpC[[A∓1]]}. (4.37)

From eq. (4.36) one can immediately claim that the resurgence in eq. (3.18) is closed within
each fixed topological sector of Z̃p (and Z` via the Fourier transform).

Alternative derivation. Consider T1 model with theta angle. Exact quantization condi-
tion for this system is given in (2.21). The solution of the D±(E, θ) = 0 is in correspondence
with the Hilbert space Hθ, based on the θ vacuum,

|Ψθ〉 =
∑
n∈Z

einθ|0n〉 (4.38)

where |0n〉 is the harmonic ground state and its copies under large gauge transformation.
This perspective follows from the fact that to obtain T1 model, we gauged Z translation
symmetry for the particle on a line x ∈ R, and obtained x ∈ S1 = R/2πZ with N = 1.
(For detailed discussion of particle on a line in periodic potential vs. particle on a circle,
see [87])

We showed that the condition D±(E, θ) = 0 is invariant under left/right Borel resum-
mation (2.23). This implies that the partition function of the T1 system

Z(θ) =
∑
Q∈Z

eiθQ
∫
x(β)=x(0)+2πQ

Dx e−S[x] ≡
∑
Q∈Z

eiθQZQ (4.39)
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Qp=0 Qp=1 Qp=2 Qp=3 Qp=4Qp=-1

|QP|+2Kp = 0

|QP|+2Kp = 1

|QP|+2Kp = 2

|QP|+2Kp = 3

|QP|+2Kp = 4

Qp=-2Qp=-3Qp=-4

… …

……

…

Figure 8. Resurgence triangle exhibiting the complete resurgent structure is depicted, where
blue points stand for instantons and red points for anti-instantons. We show the structure for
each p. Thus, there are N copies of this structure in total. By summing up all of the p-sectors,
the cancellation among the p-sectors arises and the contribution only from the Qp-sectors with
Qp ∈ NZ remains.

is invariant under left/right Borel resummation. The Fourier coefficients correspond to the
twisted partition functions,

ZQ = tr
[
(U)Qe−βH

]
= 1

2π

∫ 2π

0
dθ e−iθQZ(θ) (4.40)

which are in one-to-one correspondence with the columns of resurgence triangle. The
linearity of the Fourier transform implies that each column of the resurgence triangle,
i.e, each fixed topological charge sector, is closed under resurgence. Ambiguities of Borel
resummation of perturbation theory around the multi-instanton [Ik] ∼ e−kSI/~P (~) are
cured by the ambiguity in the amplitude of [Ik+1Ī]±, [Ik+2Ī2]±, . . . events etc.

5 Summary and discussion

We have investigated quantum mechanical systems of a particle on S1 in the presence of
a periodic potential with N -minima (N = 1, 2 . . .) by the exact-WKB method. We used
Stokes graphs with both Airy and degenerate Weber type building blocks, and determined
exact quantization conditions. By using the DDP formula that related the perturbative
and non-perturbative cycles, we showed invariance of the quantization condition under
Stokes automorphism. This implies that all orders perturbative/non-perturbative resurgent
cancellations is implicit in the quantization condition and partition function.

The implication of our result for the Gutzwiller trace formula are also discussed. In
particular, our construction identifies prime periodic orbits that enter to the trace formula,
leading to an understanding of its θ dependence. Exact-WKB analysis correctly produces
the conjectured quantization condition for N = 1. The symbolic forms of the Fredholm de-
terminant obtained by Airy-type (2.21) and by degenerate Weber-type (4.12) coincide. Our
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result obtained by the degenerate Weber-type correctly reproduces the energy eigenvalues
conjectured by Zinn-Justin [7], and obtained earlier by using uniform WKB method in [13]
for N = 1. For general N , the resurgent structure is closed in the eigenspaces of ZN -shift
symmetry, i.e, Z̃p associated with Hp subspace of the Hilbert space. The Fourier transform
of this relation gives us the result that resurgent structure is closed in fixed topological
charge sectors. This implies that the ambiguity of perturbation theory around an instan-
ton [I] is cured by [IIĪ]±, [IIIĪĪ]± etc. which lives on the same topological charge sector.
According to DDP formula, this structure is true on all columns of resurgence triangle.

Furthermore, we have also shown that exact quantization condition naturally captures
the mixed ’t Hooft anomaly [69] or global inconsistency between ZN translation symmetry
and charge conjugation symmetry C [84].

Below, we list few topics to which we may be able to apply our methodology:

• Tilted periodic-potential quantum mechanics, including supersymmetric and quasi-
exactly solvable cases.

• Constructive resurgence between perturbative/non-perturbative sectors [6, 11] in S1

quantum mechanics. This type of resurgence connects different topological sectors to
each other, unlike the one we discussed here, which always take place within a fixed
topological sector.

• Compactification of QFTs with background fluxes down to quantum mechanics, such
as the ones discussed in [70].

• Schwinger mechanism for time-dependent electric field [67], where the Klein-Gordon
equation in scalar QED has a Schrödinger-equation form.

Most of readers may be interested in the application of exact-WKB to quantum field
theory (not to the reduced quantum mechanics). Toward this goal, we first need to inves-
tigate the exact-WKB analysis for quantum mechanics with multiple degrees of freedom,
e.g. After completing such extension, we will consider taking the limit of infinite degrees
of freedom, which could have an implication to quantum field theory.
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Wavefunction Classical potential Riccati var. Energy

Global ψ(x, ~) Q(x, ~) = 2(V (x)− E) S(x, ~) E

Local ψ̂(y, ~) Q̂(y, ~) = y2

4 − ~κ Ŝ(y, ~) κ/2

Table 2. Notation table for global and local variables.

the YITP-RIKEN iTHEMS workshop YITP-T-20-03 on “Potential Toolkit to Attack Non-
perturbative Aspects of QFT -Resurgence and related topics-” were useful to complete
this work.

A The degenerate Weber equation

In appendix A.1, we review the derivation of the connection formula for the degenerate-
Weber type Stokes graph. See pages 28-40 of ref. [49] for the proof of this construction for
the Airy type building blocks of Stokes graph (corresponding to Q̂(y(x, ~), ~) = y(x, ~) be-
low). Appendix A.1 is the generalization of that local/global relations by using degenerate
Weber type building blocks of Stokes graph. Appendix A.2 is devoted to the construction
of dictionary between the Airy-type and the degenerate Weber-type building blocks. In
order to avoid confusion, we summarized the notation for global and local variables in
table 2, which are used below.

A.1 Derivation of the connection formula

As we discussed through the paper, given a classical potential, we can immediately obtain
the Stokes graph. The building blocks of the Stokes graph are either Airy type or degenerate
Weber type building blocks. In this appendix, we review the derivation of connection
formula of the degenerate Weber(DW) equation. In the construction of exact quantization
conditions, three important matrices play a role. Connection matrices used for passage
through Stokes line, normalization matrix (or Voros multiplier) which accounts for the
change of turning point, and branchcut matrices which account for the passage through
a branchcut. The combination of these and a global boundary condition on WKB wave
function is the exact quantization condition.

In order to obtain the formula, one has to take the two steps: firstly obtaining the con-
nection formula for the local coordinate, and then lifting them up to the global coordinate.
The following relations which are equivalent to each others are important:

(1) Q(x, ~) =
(
∂y(x, ~)
∂x

)2
Q̂(y(x, ~), ~)− ~2

2 {y(x, ~);x}, (A.1)

(2) S(±)(x, ~) = ∂y(x, ~)
∂x

· Ŝ(±)(y(x, ~), ~)− 1
2

∂2y(x,~)
∂x2

∂y(x,~)
∂x

, (A.2)

(3) Sodd(x, ~) = ∂y(x, ~)
∂x

· Ŝodd(y(x, ~), ~), (A.3)
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where

{y;x} =
∂3y(x,~)
∂x3

∂y(x,~)
∂x

− 3
2

 ∂2y(x,~)
∂x2

∂y(x,~)
∂x

2

, (A.4)

y(x, ~) =
+∞∑
n=0

yn(x)~n, (A.5)

x and y are the global and local coordinates, respectively, and S(x, ~)/Ŝ(y, ~) is the
global/local asymptotic solution of the Riccati equation with a global/local potential
Q(x, ~)/Q̂(y, ~),

S(x, ~) =
∞∑

n=−1
Sn(x)~n, (A.6)

S
(±)
−1 (x) = ±

√
Q0(x), (A.7)

2S(±)
−1 (x)S(±)

n (x) +
k+`=n−1∑
k,`=0

S
(±)
k (x)S(±)

` (x) +
dS

(±)
n−1(x)
dx

= Qn+1(x), n ∈ N0, (A.8)

Sodd(x, ~) = 1
2
(
S(+)(x, ~)− S(−)(x, ~)

)
, Seven(x, ~) = 1

2
(
S(+)(x, ~) + S(−)(x, ~)

)
.

(A.9)

From the above relationships, the global and local wavefunctions, ψ(x, ~) and ψ̂(y, ~), can
be connected as

ψ±(x, ~) = C±(~)
(
∂y(x, ~)
∂x

)−1/2
ψ̂±(y(x, ~), ~), (A.10)

where

C±(~) =
+∞∑
n=0

C±,n~n. (A.11)

Let us start with the degenerate Weber equation given by[
−~2 ∂

2

∂y2 + Q̂(y, ~)
]
ψ̂(y, ~) = 0, Q̂(y, ~) = y2

4 − ~κ, κ ∈ R, (A.12)

where y ∈ C is the local coordinate and ψ̂ is a local wavefunction. By solving the Riccati
equation recursively, the formal solution is defined as

ψ̂±(y, ~) = y∓κe±~
−1y2/4√

Ŝodd(y, ~)
exp

[
±
∫ y

∞
dy
(
Ŝodd(y, ~)− ~−1Ŝodd,−1(y)− Ŝodd,0(y)

)]
,

(A.13)
where

Ŝodd,−1(y) = y

2 , Ŝodd,0(y) = −κ
y
, (A.14)

and other Ŝodd,n>0(y) can be computed in the similar way. In eq. (A.13), we took a reference
point of the normalization at y =∞ for Ŝodd,n>0(y). For convenience, we redefine the wave
function as

û±(y, ~) := ~±κ/2ψ̂±(y, ~). (A.15)
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The asymptotic solution can be obtained as7

û±(y, ~) =
√

2y e±~−1y2/4
+∞∑
n=0

û±n
y1±κ+2n~

(1±κ)/2+n. (A.16)

Substituting eq. (A.16) into eq. (A.12) gives the recursion relation for the coefficients û±n as

2(n+ 1)û±n+1 = ±
(1

2 ± κ+ 2n
)(3

2 ± κ+ 2n
)
û±n with û±0 = 1, (A.17)

and the coefficients are obtained as

û±n = (±2)n−2 (1/2± κ)(3/2± κ)(5/4± κ/2)n−1(7/4± κ/2)n−1
Γ(n+ 1) , (A.18)

where (x)n = Γ(x+ n)/Γ(x) is the Pochhammer symbol. Acting the Borel transform B to
the asymptotic solution expanded by ~ gives

ûB±(y, ξ) := B[û±](y, ξ)

= y−3/221∓κ/2
+∞∑
n=0

û±n

2nΓ
(

1±κ
2 + n

) (2ξ
y2 ±

1
2

)(−1±κ)/2+n
. (A.19)

By taking the summation, it can be expressed as

ûB±(y, ξ) = A±y
−3/2(±s±)−γ∓F (α±, β±; γ±; s±), (A.20)

where F (α, β; γ; s) is the Gauss hypergeometric function and

s± =

s for s+

1− s for s−
with s = 2ξ

y2 + 1
2 , (A.21)

A± = 21/2+γ∓

Γ(γ±) , α± = 1
4 ±

κ

2 , β± = 3
4 ±

κ

2 , γ± = 1
2 ±

κ

2 . (A.22)

From identities of the hypergeometric function, one finds that

F (α±, β±; γ±; s±) = s
−γ±
∓

Γ(γ±)2

Γ(α±)Γ(β±)F (1/4,−1/4; γ∓; s∓)

+ Γ(γ±)Γ(−γ±)
Γ(1/4)Γ(−1/4)F (α±, β±; 1 + γ±; s∓)

= s
−γ±
∓

Γ(γ±)2

21−2α±
√
πΓ(2α±)s

γ∓
± F (α∓, β∓; γ∓; s∓)

+ Γ(γ±)Γ(−γ±)
Γ(1/4)Γ(−1/4)F (α±, β±; 1 + γ±; s∓). (A.23)

7At this stage, it is useful to realize that the construction based on degenerate Weber type building
blocks is intimately related to uniform-WKB approach. In uniform WKB, one starts with an ansatz
ψ(y) = 1√

u′(y)
Dν( 1

~u(y)) where Dν is parabolic cylinder (Weber) function and ν is ansatz parameter.

Then, one expands u(y) to a formal power series u(y) = u0(y) + ~u1(y) + ~2u2(y) + . . ., see e.g. [13]. In
certain sense, these two approach are very similar, both take advantage of the fact that in the ~ → 0
limit, the system would be described by harmonic minima. This is the point that actually generates the
differences compared to Airy-type decomposition of Stokes graph, and makes it more suitable to obtain
spectral information from the Weber type decomposition.
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The second term is irrelevant because it has no singularities. Thus, by picking up only the
first term, one obtains

A±y
−3/2(±s±)−γ∓s−γ±∓

Γ(γ±)2

21−2α±
√
πΓ(2α±)s

γ∓
± F (α∓, β∓; γ∓; s∓)

= A∓y
−3/2(∓s∓)−γ±

√
π(−1)−(1+κ)/2

√
2 cos(πκ/2)Γ(2α±)

F (α∓, β∓; γ∓; s∓)

=
√
π(−1)−(1+κ)/2

√
2 cos(πκ/2)Γ(2α±)

ûB∓(y, ξ). (A.24)

By acting the Laplace integration and taking the Hankel contour, one obtains

∫
C
dξ e−ξηûB±(y, ξ)

=
∫ +∞

±x2/4
dξ e−ξη

√
πeπi(1+κ)/2

√
2 cos(πκ/2)Γ(1/2± κ)

ûB∓(y, ξ)(1− e−πi(1±κ))

=
∫ +∞

±y2/4
dξ e−ξη

i
√

2πe(1∓1)πiκ/2

Γ(1/2± κ) ûB∓(y, ξ) for IV→ I. (A.25)

In order to obtain the connection formula passing other Stokes curve, it is convenient
to consider analytic continuation for y by

û±(y, ~) y→e+πi/2y−−−−−−−→ e−πi(1/2±κ)/2û∓(y, ~), (A.26)

û±(y, ~) y→e−πiy−−−−−−→ e+πi(1/2±κ)û±(y, ~), (A.27)

û±(y, ~) y→e−πi/2y−−−−−−−→ e+πi(1/2±κ)/2û∓(y, ~). (A.28)

By repeating the similar above procedure and taking into account eq. (A.15), the connection
formula for figure 7 is given by

IV→ I : ∆z=±y2/4ψ̂
IV
B±(y, ξ) = i

√
2πe+(1∓1)πiκ/2

Γ(1/2± κ) ~∓κψ̂I
B∓(y, ξ), (A.29)

I→ II : ∆z=∓y2/4ψ̂
I
B∓(y, ξ) = i

√
2πe+(1±1)πiκ/2

Γ(1/2∓ κ) ~±κψ̂II
B±(y, ξ), (A.30)

II→ III : ∆z=±y2/4ψ̂
II
B±(y, ξ) = i

√
2πe−(3±1)πiκ/2

Γ(1/2± κ) ~∓κψ̂III
B∓(y, ξ), (A.31)

III→ IV : ∆z=∓y2/4ψ̂
III
B−(y, ξ) = i

√
2πe−(3∓1)πiκ/2

Γ(1/2∓ κ) ~±κψ̂IV
B±(y, ξ), (A.32)

where ∆z is the Alien derivative at ξ = z.
(A.29) can be viewed as the connection formula where connection formula for the

Now, we are ready to obtain the global connection formula for a generic potential by using
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eq. (A.10). The result is

For figure 7 (Left) :ψIV
+ (x, ~)

ψIV
− (x, ~)

 =

1 i
CIV→I

+ (~)
CIV→I
− (~)

√
2π~−F (~)

Γ(1/2+F (~))

0 1


ψI

+(x, ~)

ψI
−(x, ~)

 , (A.33)

ψI
+(x, ~)

ψI
−(x, ~)

 =

 1 0

i
CI→II
− (~)

CI→II
+ (~)

√
2πe+πiF (~)~+F (~)

Γ(1/2−F (~)) 1


ψII

+(x, ~)

ψII
−(x, ~)

 , (A.34)

ψII
+(x, ~)

ψII
−(x, ~)

 =

1 i
CII→III

+ (~)
CII→III
− (~)

√
2πe−2πiF (~)~−F (~)

Γ(1/2+F (~))

0 1


ψIII

+ (x, ~)

ψIII
− (x, ~)

 , (A.35)

ψIII
+ (x, ~)

ψIII
− (x, ~)

 =

 1 0

i
CIII→IV
− (~)

CIII→IV
+ (~)

√
2πe−πiF (~)~+F (~)

Γ(1/2−F (~)) 1


ψIV

+ (x, ~)

ψIV
− (x, ~)

 , (A.36)

For figure 7 (Right) :ψIV
+ (x, ~)

ψIV
− (x, ~)

 =

 1 0

i
CIV→I
− (~)

CIV→I
+ (~)

√
2πe+πiF (~)~+F (~)

Γ(1/2−F (~)) 1


ψI

+(x, ~)

ψI
−(x, ~)

 , (A.37)

ψI
+(x, ~)

ψI
−(x, ~)

 =

1 i
CI→II

+ (~)
CI→II
− (~)

√
2π~−F (~)

Γ(1/2+F (~))

0 1


ψII

+(x, ~)

ψII
−(x, ~)

 , (A.38)

ψII
+(x, ~)

ψII
−(x, ~)

 =

 1 0

i
CII→III
− (~)

CII→III
+ (~)

√
2πe−πiF (~)~+F (~)

Γ(1/2−F (~)) 1


ψIII

+ (x, ~)

ψIII
− (x, ~)

 , (A.39)

ψIII
+ (x, ~)

ψIII
− (x, ~)

 =

1 i
CIII→IV

+ (~)
CIII→IV
− (~)

√
2πe−2πiF (~)~−F (~)

Γ(1/2+F (~))

0 1


ψIV

+ (x, ~)

ψIV
− (x, ~)

 , (A.40)

where

F (~) =
+∞∑
n=0

Fn~n, (A.41)

and F (~) and C•→•± (~) can be computed from the details of Q(x, ~).
F (~) directly has the relationship with Sodd(x, ~) as

F (~) = ∓Resx=a`Sodd(x, ~), (A.42)

where a` is a turning point, and the sign depends on the asymptotic behavior around a
turning point in the local and global coordinates. It can be shown as follows: assume that
the asymptotic behavior around a turning point in the local and global Stokes graphs is
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the left panel in figure 7. Since

Ŝodd(y, ~) = ~−1 y

2 −
κ

y
+O(y−3), (A.43)

one finds that
Resy=0Ŝodd(y, ~) = −κ. (A.44)

Suppose a neighborhood around x = a` where y(a`, ~) = 0. From eq. (A.3),

Resy=0Ŝodd(y, ~) = Resx=a`Sodd(x, ~), (A.45)

which gives the translation of κ in the local coordinate to F (~) defined in the global
coordinate. By comparing the local connection formula with the global one, eq. (A.42)
with the minus sign can be obtained. By repeating the same procedure, the relatinship
of F (~) and Sodd(x, ~) when the asymptotic behavour around a turning point in the local
and/or global coordinates change can be obtained. As a result, F (~) = −Resx=a`Sodd(x, ~)
when the asymptotic behavior around a turning point in the local and global coordinate
matches and F (~) = +Resx=a`Sodd(x, ~) if it does not.

In order to obtain C±(~), we use eqs. (A.1), (A.3), and (A.10). From eq. (A.1) with a
fixed order of ~, one finds

y0(x)
2

dy0(x)
dx

= ±
√
Q0(x) = ±Sodd,−1(x),

y0(x)2

2
dy0(x)
dx

dy1(x)
dx

+
(
dy0(x)
dx

)2 y0(x)y1(x)
2 −

(
dy0(x)
dx

)2
κ = Q1(x), (A.46)

...

and recursionally solving them with y(a`, ~) = 0 where a` is a turning point gives the coor-
dinate transformation. Notice that the sign +/− in the first line of eq. (A.46) corresponds
to the left/right panel in figure 7. Furthermore, by combining with (A.3) and (A.10),
one has

C±(~)y∓κ exp
[
±1
~
y2

4 ±
∫ y

∞
dy

(
Ŝodd(y, ~)− 1

~
Ŝodd,−1(y) + κ

y

)]

=

exp
[
±1

~
∫ x
a`
dx
√
Q0(x)±

∫ x
∞ dx

(
Sodd(x, ~)− 1

~Sodd,−1(x)
)]

for +
√
Q0(x)

exp
[
∓1

~
∫ x
a`
dx
√
Q0(x)∓

∫ x
∞ dx

(
Sodd(x, ~)− 1

~Sodd,−1(x)
)]

for −
√
Q0(x)

.

(A.47)

and recursively solve it for C±(~) order by order after obtaining the coordinate transfor-
mation from eq. (A.46). Here, we focus on a` = 0. From eq. (A.46), the 0th and 1st orders
of y are obtained as

y0(x) =


√

2N1/2x− 1
48
√

2N
5/2x3 +O(x5) for +

√
Q0(x)

√
2iN1/2x− i

48
√

2N
5/2x3 +O(x5) for −

√
Q0(x)

, (A.48)

y1(x) =

−
1

16
√

2EN
1/2x− 3

2048
√

2EN
5/2x3 +O(x5) for +

√
Q0(x)

− i
16
√

2EN
1/2x− 3i

2048
√

2EN
5/2x3 +O(x5) for −

√
Q0(x)

, (A.49)
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where κ should be chosen as κ ∼ F0 = ±E/N to cancel divergence. From these results the
leading order of C±(~) is given from eq. (A.47) by8

C±,0 =

limx→0
exp[±

∫ x
∞ Sodd,0(x)]

y0(x)∓κ = exp
[
±πiE

2N

] (
32
N

)± E
2N for +

√
Q0(x)

limx→0
exp[∓

∫ x
∞ Sodd,0(x)]

y0(x)∓κ =
(

32
N

)∓ E
2N for −

√
Q0(x)

. (A.50)

Finally, we define the normalization and branchcut matrices as

Na1,a2 =

e+ 1
~

∫ a2
a1

dxSodd,−1(x) 0

0 e
− 1

~

∫ a2
a1

dxSodd,−1(x)

 , (A.51)

T =

 0 −i

−i 0

 , (A.52)

where it has only Sodd,−1(x) in the normalization matrix because the wavefunction is
normalized at x = ∞ for Sodd,n>−1(x), and the branchcut matrix can be defined by
Sodd(x, ~)→ −Sodd(x, ~) in the wavefunction.

A.2 Construction of the dictionary

We now construct the dictionary translating cycles between the Airy-type and the DW-type
building blocks of the Stokes graph.

A.2.1 A-cycle

For Q(x, ~) = 2[1− cos(Nx)− E], the A-cycle around x = 0 for the Airy-type is given by

A = e

∮ a2
a1

dxSodd(x,~)
, (A.53)

where a1,2 is the turning point given by a2,1 = ±arccos(1−E)
N with 0 < E < 2. For simplicity,

we suppose that a branch-cut connecting with both a1 and a2 as end points exists. When
replacing E → E~ to obtain the A-cycle for the DW-type, the turning points collide with
each other at x = 0. By denoting SDW

odd (x, ~) instead of Sodd(x, ~) for the DW-type, which
is calculated by Q(x, ~) = 2[1− cos(Nx)− E~], the A-cycle is defined as

A = e

∮
|x|�1 dxS

DW
odd (x,~) =: e∓2πiF (~), (A.54)

where F (~) is given by eq. (A.42), and the sign depends on the asymptotic behavior around
a turning point in the global coordinate.

8In this paper, we took the asymptotic behavior around turning points as the right panel in figure 7. If
one takes the left panel, the identification of B-cycle in eq. (A.60) gives a slightly different form. However,
by taking into account the difference of C±(~), the final result is unchanged.

– 34 –
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Figure 9. The orbit we consider to compare the connection formula from Airy-type (left) and the
DW-type (right).

A.2.2 B-cycle

We consider the orbit in figure 9 and compare the monodromy matrix obtained by connec-
tion formula from the Airy-type and the DW-type. Those are calculated by

Airy : ψI = M−Na1,a2TM
−1
− Na2,a1ψIII =: DψIII, (A.55)

DW : ψI =MIV→I
1	 Na1,a2TMII→III

2	 Na2,a1ψIII =: DψIII. (A.56)

Notice that ψ+
I = 0 due to the asymptotic behaviour, thus D21 and D21 are comparable

with each other. Those are obtained as

Airy : D21 = −i(1 +B), (A.57)
DW : D21 = −i(1 + B), (A.58)

where

B = e
2
∫ a2
a1

dxSodd(x,~)
, (A.59)

B = 2πB0

2∏
`=1

C`−(~)
C`+(~)

e(−1)`+1πiF`(~)~F`(~)

Γ(1/2− F`(~)) , (A.60)

with B0 = e
2
~

∫ a2
a1

dxSDW
odd,−1(x), where ` is the label of turning points.
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