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We consider two-dimensional N = (2, 2) supersymmetric gauge theory on discretized Rie-
mann surfaces. We find that the discretized theory can be efficiently described by using
graph theory, where the bosonic and fermionic fields are regarded as vectors on a graph and
its dual. We first analyze the Abelian theory and identify its spectrum in terms of graph the-
ory. In particular, we show that the fermions have zero modes corresponding to the topology
of the graph, which can be understood as kernels of the incidence matrices of the graph and
the dual graph. In the continuous theory, a scalar curvature appears as an anomaly in the
Ward–Takahashi identity associated with a U(1) symmetry. We find that the same anomaly
arises as the deficit angle at each vertex on the graph. By using the localization method, we
show that the path integral on the graph reduces to an integral over a set of the zero modes.
The partition function is then ill-defined unless suitable operators are inserted. We extend
the same argument to the non-Abelian theory and show that the path integral reduces to
multiple integrals of Abelian theories at the localization fixed points.
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1. Introduction
Gauge theory has been recognized as the most fundamental theory describing the interaction
of elementary particles. However, in recent years, the importance of gauge theory has been
extended and it has come to be recognized as a powerful tool for approaching the quantum
theory of gravity through the gauge/gravity duality [1–3]. In particular, the gauge/gravity du-
ality predicted by superstring theory provides a clear dictionary between the gauge and gravity
theories with supersymmetry. Since supersymmetric gauge theories can give mathematically
accurate descriptions for some physical quantities by using strong constraints based on super-
symmetry, they have traditionally been studied in analytic ways. However, the prediction of
the gauge/gravity duality should also be applied to dynamical quantities. To approach quan-
tum gravity through supersymmetric gauge theories, therefore, we need to have the means to
analyze their dynamics in a non-perturbative way.

One of the most effective non-perturbative approaches to gauge theories is lattice gauge the-
ory, which regularizes gauge field theory on a finite lattice and defines the continuous theory
as the continuum limit of the discretized theory. Various attempts have been made to construct
lattice gauge theories that preserve some of the supersymmetries on the square lattice [4–22].
The relations between these models were investigated in Refs. [23–27], and several numerical
computations based on these models have been carried out [28–42]. In two dimensions, the the-
ory is super renormalizable, and numerical calculations can be performed without maintaining
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supersymmetry with a small number of fine-tunings [29]. In Ref. [43], two-dimensional N =
(2, 2) supersymmetric SU(2) Yang–Mills theory was investigated numerically using a lattice
theory with a conventional Wilson fermion. For reviews, see Refs. [44–49].

Among these lattice theories, the models constructed by Sugino (Sugino models) [4–8] have
the gauge group SU(N), while the gauge group of the other models is inevitably U(N). As a
result, the link variables in the Sugino models are expressed by compact unitary matrices as
in conventional lattice gauge theories. In the Sugino models, the action is written by an exact
form of scalar supercharges constructed by topological twisting. These scalar supersymmetries
are then manifestly preserved even if the translational symmetry is explicitly broken by the
discretization of space-time. The problem of vacuum degeneracy of a lattice gauge field has
been solved without using an admissibility condition [50], and tree-level improvement has been
proposed [51].

In Ref. [52], the Sugino model defined on the usual square lattice was extended to a theory
on a discrete space-time where the two-dimensional Riemann surface is divided by polygons.
This model (the generalized Sugino model) has been subjected to rigorous analysis using the
method of localization [53] and numerical calculations [54].

In this paper, we reconstruct and analyze the generalized Sugino model in two-dimensional
supersymmetric gauge theories by using graph theory. (For an introduction to graph theory, see,
e.g., Ref. [55].) We regard the vertices and edges of the polygons on the discretized Riemann
surface as a graph. We assume that the graph is a directed graph with an edge orientation. We
also assume that faces are assigned to the vertices of the dual graph. The directed graph can
introduce a “difference” between adjacent vertices, and the difference operator expressed by a
matrix is called an incidence matrix. Using this incidence matrix, it is possible to construct a
field theory on the discrete space-time represented by the graph, including supersymmetry.

The generalized Sugino model has been analyzed using the method of localization owing to
supersymmetry in Ref. [53], but the use of graph theory makes it possible to discuss things more
clearly. In particular, we can see the structure of the zero modes, which play an important role
in the localization. The zero modes appear as a kernel of the incidence matrix in the context
of graph theory, and thus we can use linear algebra to understand their properties. In addition,
analysis by graph theory is also beneficial in understanding the anomaly since the zero modes
are important in understanding the anomaly of the theory even in the discretized theory. For
analysis of field theories and quantum mechanics on the graph, including supersymmetry from
other viewpoints, see Refs. [56–58]. See also Ref. [59] for localization in the quiver gauge theory
using the technology of graph theory.

The organization of this paper is as follows. In Sect. 2 we briefly review the construction of
N = (2, 2) supersymmetric Yang–Mills theory on the smooth Riemann surface by using differ-
ential forms. The formulation with differential forms makes the relation to the graph structure
clearer later. We also derive the currents and the Ward–Takahashi (WT) identities correspond-
ing to the global symmetry of the theory. In Sect. 3 we prepare some basics of graph theory for
the discretization of the Riemann surface. We also introduce some useful matrices, including
the incidence matrix, and summarize their properties in graph theory. In Sect. 4 we formulate
a supersymmetric Abelian gauge theory using graph theory and discuss the properties of the
fermion zero modes. We derive the chiral anomaly on the graph and show that the fermion
zero modes play an important role. We see that the anomaly in the WT identity, which appears
as the scalar curvature in the continuous theory, appears as the deficit angle in the theory on
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the graph. In Sect. 5 we perform the path integral for the Abelian theory using the localization
method. We see that a residual integral exists over the zero modes after integrating out the non-
zero modes. The integral over the zero modes makes the partition function itself ill-defined, but
we also discuss a remedy for this problem by inserting operators including bi-linear terms of
the fermions. In Sect. 6 we generalize the localization arguments to non-Abelian theory. By the
saddle point approximation in the localization method, non-zero modes give a Vandermonde-
type measure and the path integral reduces to multiple integrals of the Abelian theory one. We
see that the zero modes play an important role for the non-Abelian as well as the Abelian the-
ory. Section 7 is devoted to conclusions and discussion. In the appendix we give some concrete
examples of the graph structure and properties of the incidence matrix and Laplacian. We also
give the convention of Weyl–Cartan bases, which are used for non-Abelian theory.

2. Supersymmetric gauge theory on the Riemann surface
2.1 Action and currents in supersymmetric gauge theory
We start with a review of supersymmetric gauge theory on the smooth Riemann surface �h

(continuous space-time) with genus (handles) h. The theory considered here is essentially ob-
tained by dimensional reduction from four-dimensional N = 1 supersymmetric gauge theory
with four supercharges, namely two-dimensional N = (2, 2) supersymmetric gauge theory. In
general, however, when one simply constructs this theory on a curved manifold, the supersym-
metry is completely broken. The point is that part of the supersymmetry can be restored by
introducing a specific U(1) gauge field as a background in accordance with the spin connection
of the background space-time. The supersymmetric theory obtained by this procedure naturally
becomes a topologically twisted theory on the curved space-time, and half of the supersymme-
try is recovered in general. Among the possible topological twistings, which depend on how to
turn on the background gauge field, we choose the so-called topological A-model throughout
this paper. (See also Refs. [59,60] for a more detailed construction.)

Because of the topological twisting, not only the bosonic fields but also the fermion fields
have integer spins. It is therefore convenient to express the fields in this theory by differential
forms: the 0-form scalar fields are �, �̄, and η; the 1-form vector fields are A ≡ Aμdxμ and λ

≡ λμdxμ; and the 2-form fields are Y ≡ 1
2Yμνdxμ ∧ dxν and χ ≡ 1

2χμνdxμ ∧ dxν , where �, �̄,
A, and Y are bosons, and η, λ, and χ are fermions (Grassmann valued).

We write Q for one of the supercharges, which transforms the fields as1

Q� = 0,

Q�̄ = 2η, Qη = i
2 [�, �̄],

QA = λ, Qλ = −dA�,

QY = i[�, χ ], Qχ = Y,

(1)

where dA� ≡ d� + i[A, �] is a covariant exterior derivative for the adjoint scalar field. We
can see that the square of Q generates the gauge transformation with a parameter �, which is
denoted by Q2 = δ�.

Using this supercharge, we can write the action of the theory in Q-exact form:

S = − 1
2g2

Q
∫

�h

Tr
{

i
2
η[�, �̄]ω + dA�̄ ∧ ∗λ + χ∗(Y − 2F )

}
, (2)

1The notation of the Q transformation has been slightly changed from Refs. [52–54].
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where ω is a volume (Kähler) form on �h, ∗ represents the Hodge star operation which maps
from an n-form to a (2 − n)-form, and

F ≡ dA + iA ∧ A (3)

is a field strength, which will give a kinetic term of the gauge field after integrating out the
auxiliary field Y.

More concretely, after applying the Q transformation, the bosonic and fermionic parts of the
action are given by

SB = 1
2g2

∫
�h

Tr
{

1
4

[�, �̄]2ω + dA�̄ ∧ ∗dA� − Y ∗(Y − 2F )
}
, (4)

SF = 1
2g2

∫
�h

Tr
{

iη[�, η]ω + 2ηdA∗λ − iλ ∧ ∗[�̄, λ] + iχ∗[�, χ ] − 2χ∗dAλ

}
, (5)

respectively.
For later convenience, we define a vector of fermionic fields in the order

� ≡

⎛
⎜⎝η

χ

λ

⎞
⎟⎠. (6)

Then, the fermionic part of the action in Eq. (5) reduces to

SF = 1
2g2

Tr
∫

�h

�T ∧ ∗ (i /DA + M�

)
�, (7)

where /DA and M� are the Dirac operator and the mass matrix depending on � and �̄, respec-
tively:

/DA ≡

⎛
⎜⎝ 0 0 id†

A

0 0 idA

−idA −id†
A 0

⎞
⎟⎠, M� ≡

⎛
⎜⎝i[�, ·] 0 0

0 i[�̄, ·] 0
0 0 −i[�, ·]

⎞
⎟⎠. (8)

Here,

d†
A ≡ −∗dA∗ (9)

is the co-differential operator, which maps from an n-form to an (n − 1)-form on �h, and [�, · ]
represents an adjoint action induced by �.

Let us now consider yet another supercharge Q̃. Since there are two preserved supercharges on
the curved Riemann surface, we have the supercharge Q̃ in addition to Q. The supersymmetry
transformation for the vector multiplet is given by

Q̃� = 0,

Q̃A = ∗λ, Q̃λ = ∗dA�,

Q̃�̄ = 2∗χ, Q̃χ = i
2 [�, �̄]ω,

Q̃Y = −i[�, η]ω, Q̃η = −∗Y .

(10)

Roughly speaking, Q̃ swaps the role of the 0-form η and the 2-form χ against the action of Q.
We can also see that the square of Q̃ becomes the gauge transformation, namely Q̃2 = δ�, and
Q and Q̃ anti-commute with each other:

{Q, Q̃} = 0. (11)

Using the transformation of Q̃, we can also write the action in the Q̃-exact form

S = − 1
2g2

Q̃
∫

�h

Tr
{

i
2
χ [�, �̄] + λ ∧ dA�̄ − η(Y − 2F )

}
, (12)

4/40



PTEP 2022, 043B01 S. Matsuura and K. Ohta

so the action is also invariant under Q̃. This comes from the fact that the action is written by

S = 1
4g2

[Q, Q̃]
∫

�h

Tr
{
�̄F + ηχ

}
. (13)

Using also the anti-commuting relation between Q and Q̃, we can find that the action is written
in both Q- and Q̃-exact forms. Note also that the part acting the supercharges in Eq. (13) is
invariant under swapping (a rotation of) η and χ .

2.2 Symmetries and relations among conserved currents
We next consider the global symmetries of this theory and the associated Noether currents. In
general, if a theory is invariant under a certain global transformation, the infinitesimal trans-
formation of the action can be written as

δξ S = ξ sS =
∫

�h

(
dξ ∗ J̃s + ξdIs

)
, (14)

where s is the generator of this transformation, ξ is a position-dependent parameter, and J̃s and
Is are both one-forms. Then, the corresponding Noether current is defined by

Js = J̃s + ∗Is, (15)

which is conserved, at least classically:

d†Js = 0. (16)

Note that this current is invariant if we add any s-invariant total derivative term to the action.
Using this prescription, the Noether current corresponding to the Q and Q̃ symmetries are

respectively constructed as

JQ = 1
g2

Tr
{

dA�η + ∗dA�∗χ − i
2

[�, �̄]λ − ∗Y ∗λ

}
, (17)

JQ̃ = 1
g2

Tr
{
−∗dA�η + dA�∗χ − i

2
[�, �̄]∗λ + ∗Y λ

}
. (18)

The theory also possesses two global U(1) symmetries, U(1)A and U(1)V. The U(1)A symmetry
transforms the fields as

δAA = 0, δA� = 2iθA�, δA�̄ = −2iθA�̄, δ� = iθAγA�, (19)

where

γA ≡

⎛
⎜⎝−1 0 0

0 −1 0
0 0 1

⎞
⎟⎠, (20)

and the U(1)V symmetry transforms the fields as

δV A = 0, δV � = 0, δV �̄ = 0, δV � = iθV γV �, (21)

where

γV ≡ −i

⎛
⎜⎝ 0 ∗ 0

−∗ 0 0
0 0 ∗

⎞
⎟⎠. (22)

The corresponding Noether currents are given by

JA = i
g2

Tr
(−�̄dA� + �dA�̄ + ηλ − ∗λ ∗ χ

)
, (23)
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JV = 1
g2

Tr (η ∗ λ + λ ∗ χ ) . (24)

Note that γ A and γ V satisfy γ 2
A = γ 2

V = 1. We will soon see that the U(1)A symmetry is anoma-
lous quantum mechanically.

We point out that there are important relationships among the supercurrents JQ, JQ̃, and the
current JV [36]:

QJV = −JQ̃, (25)

Q̃JV = JQ. (26)

This means that the conservation law of the U(1)V symmetry guarantees the conservation law
of the Q̃ symmetry:

d†JV = 0 ⇒ d†JQ̃ = 0, (27)

if the Q symmetry is preserved.

2.3 Ward–Takahashi identities and anomaly
We next consider the WT identities. In the path integral formalism, the WT identity is derived
from the obvious invariance under a change of variables,∫

dX O(x0)e−S[X ] =
∫

dX ′ O′(x0)e−S[X ′], (28)

where X expresses the fields of the theory, X ′ the transformed fields of X,2 and O(x0) is a
local operator at a position x0. Note that this identity can be applied regardless of whether
or not the classical action is invariant under the transformation. So, if we consider a general
transformation with parameter ξ (x) and generator s, the infinitesimal transformations of the
action S and the operator O are given by

δS =
∫

�h

dx ξ (x)Ks(x), (29)

δO(x0) = ξ (x0) sO(x0). (30)

In addition, we assume that the integration measure transforms as

dX ′ = dX
(

1 +
∫

�h

dx ξ (x)As(x)
)

. (31)

Then, from Eq. (28), we obtain the identity for the vacuum expectation value (vev),∫
�h

dx ξ (x)
〈
sO(x0)δ(x − x0) − O(x0) (Ks(x) − As(x))

〉 = 0, (32)

where the vev is defined by

〈O(x)〉 ≡ Z−1
∫

dX O(x)e−S[X ], (33)

with the partition function Z = ∫ dX e−S[X ]. In particular, if we assume that the parameter ξ (y)
takes the form ξ (y) = ξδ(y − x) for a specific coordinate x and constant parameter ξ , we obtain
the identity for the vev of local variables:〈

O(x0) (Ks(x) − As(x))
〉 = δ(x − x0)

〈
sO(x0)

〉
. (34)

2We assume that the ranges of the integrations by X and X ′ are identical.
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Let us return to the supersymmetric gauge theory that we are considering. As discussed in
the previous subsection, the action of the supersymmetric theory is invariant under the two
supersymmetry transformations generated by Q and Q̃, and the two U(1) transformations U(1)A

and U(1)V. Therefore, the transformation of the action in Eq. (2) is given by

δsS =
∫

�h

dx ξ (x)d†Js(x)ω (35)

up to total derivative, where Js(x) is the corresponding Noether current.
Although it is sufficient only to consider the action in Eq. (2) of the continuous theory, we

add a further supersymmetry-breaking term to lead to the discussion in the next section:

Sμ =
∫

�h

dxLμ(x), (36)

which is typically assumed to be mass terms. For the total action S + Sμ, Ks(x) is given by

Ks(x) = d†Js(x)ω + sLμ(x). (37)

Since the integration measure is invariant under the supersymmetry transformations Q and
Q̃, the corresponding WT identities are given by〈

O(x0)d†JQ(x)ω
〉 = −〈O(x0)QLμ(x)

〉+ δ2(x − x0)
〈
QO(x0)

〉
, (38)

〈
O(x0)d†JQ̃(x)ω

〉 = −〈O(x0)Q̃Lμ(x)
〉+ δ2(x − x0)

〈
Q̃O(x0)

〉
. (39)

For the U(1)A symmetry we have to be more careful since the integration measure is not in-
variant under the U(1)A transformation. Using the so-called Fujikawa’s method, we see that

dX ′ = dX exp
(

i
dim G

4π

∫
�h

θA(x)R(x)ω
)

, (40)

where R(x) is the scalar curvature of �h. This is the case where As 
= 0 and is nothing but the
U(1) anomaly. Thus, we obtain the WT identity for the U(1)A symmetries,〈

O(x0)
(

d†JA(x) + dimG
4π

R(x)
)

ω

〉
= −〈O(x0)sALμ(x)

〉+ δ2(x − x0)
〈
sAO(x0)

〉
, (41)

where sA are the generators of the U(1)A transformation. In particular, by integrating Eq. (41)
over �h with O = 1, we obtain∫

�h

〈
d†JAω

〉 = −dimG
4π

∫
�h

Rω = −dimG χh, (42)

where χh ≡ 2 − 2h is the Euler characteristic of �h. Therefore, we see that no anomaly appears
on the torus T2 (h = 1).

On the other hand, since the integration measure is invariant under the U(1)V transformation,
the U(1)V symmetry is not anomalous and the corresponding WT identity symmetry is given
by 〈

O(x0)d†JV (x)ω
〉 = −〈O(x0)sVLμ(x)

〉+ δ2(x − x0)
〈
sVO(x0)

〉
, (43)

where sV is the generator of the U(1)V transformation.

3. Graph theory for discretized supersymmetric gauge theory
In this section we consider discretization of the Riemann surface in order to regularize the
supersymmetric gauge theory discussed in the previous section. Although the discretization
method is identical to the model given in Ref. [52], we will reconstruct it from the perspective
of graph theory.
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Fig. 1. A piece of the directed graph. s(e) and t(e) represent the “source” and “target” vertices for a given
edge e.

f + (e)f − (e)

Fig. 2. Another piece of the directed graph. f+(e) and f−(e) represent the faces that contain the common
edge e in the same direction and the opposite direction for a given edge e.

3.1 Discretized Riemann surface as a graph
To regularize the supersymmetric gauge theory considered in the previous section we divide
the Riemann surface into polygons, i.e. the continuous Riemann surface is approximated by
an object consisting of polyhedra glued together without gaps. We assume that the polyhedra
are connected by edges, and that there are no vertices in the middle of the edges. We call each
polyhedron that constitutes a polygon a face. As a result, a discretized Riemann surface is
labeled by a set of vertices V = {v1, . . . , vnV }, a set of edges E = {e1, . . . , enE }, and a set of
faces F = { f1, . . . , fnF }, where nV, nE, and nF are the numbers of vertices, edges, and faces,
respectively. For simplicity, we will consider only Riemann surfaces without boundaries in this
paper.

The number of faces that a vertex v shares is equal to the number of edges one of whose
ends is v, which we call the degree of the vertex v and denote by deg(v). Similarly, the number
of vertices that a face f shares is equal to the number of edges that consist of f, which we call
the degree of the face f and denote by deg(f). We can assign a direction to every edge. We thus
express the edge e starting from vertex vs and ending at vertex vt as e = {vs, vt}. We call vs the
source of e and vt the target of e, and also write vs = s(e) and vt = t(e) for given e (see Fig. 1).

Since Riemann surfaces are orientable by definition, we can also consider orientations for
the surface f. Here we adopt the right-handed system and define the direction of the face as
the counter-clockwise rotation when we see the Riemann surface from the outside. Then, the
surface f can be expressed as f = {ei1, . . . , eideg( f )} as a list of its constituent edges along the
direction of f. Since we assume no boundary, every edge is shared by two faces, and these two
faces contain a common edge in opposite directions by construction. We then write f+(e) for
the face that contains the edge e in the same direction and f−(e) for the face that contains it in
the opposite direction (see Fig. 2).

The observation is that the discretized Riemann surface constructed in this way can be nat-
urally interpreted as a pair of a graph � and its dual graph �̌. A directed graph is defined as
a triple (V, E, ϕ) where V is a set of vertices, E a set of edges, and ϕ a map V × V → E. By
considering the relation between V and E constructed above as a map ϕ: V × V → E, we can
naturally regard the triple (V, E, ϕ) as a directed graph �. Note that in general graphs it is pos-
sible to draw two or more edges between two definite vertices, or to draw an edge that returns
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to the same vertex, but the graph we are considering here has at most one edge between two
definite vertices, and does not allow edges connecting the same vertex.

On the other hand, the relationship between the faces and edges constructed above can be
regarded as a map ϕ̌ : F × F → E , thus (F, E, ϕ̌) can also be regarded as a graph, which is the
dual graph �̌ of �. Therefore, the polygon partition of the Riemann surface considered above
can be regarded as a pair (�, �̌) of a graph and its dual graph.

3.2 Matrices describing a graph
We introduce some useful matrices which describe the structures, and examine their properties.
These matrices are used not only to define the graph structures, but also to make it possible to
use linear algebra to treat the graph. In the following we denote the nV-, nE-, and nF-dimensional
vector spaces on V, E, and F as VV , VE , and VF , respectively. We consider only directed simple
graphs.

3.2.1 Incidence matrix. The incidence matrix L is a matrix of size nE × nV whose elements
are given by

Le
v =

⎧⎪⎨
⎪⎩

+1 if t(e) = v,
−1 if s(e) = v,
0 otherwise,

(44)

which gives a linear mapping VV → VE and can be generated uniquely from the mapping ϕ: V
× V → E in the triple of the graph. Note that L is essentially the charge matrix of the quiver
theory. The matrix L acts on a vector x = (x1, . . . , xnV )T ∈ VV as

Lx = (xt(e1 ) − xs(e1 ), . . . , xt(enE ) − xs(enE ) )T ∈ VE , (45)

which is a generalization of the forward difference in terms of lattice gauge theory. By regarding
VV and VE as analogs of the spaces of 0-forms and 1-forms, L and LT can be seen as analogs
of the exterior derivative d and its adjoint d† in differential geometry.

We see that the equation Lx = 0 has the unique solution xv1 = · · · = xvnV = c, since this equa-
tion is equivalent to xs(e) = xt(e) and all the vertices are assumed to be connected. Therefore, for
a connected graph the rank of the incidence matrix L is nV − 1 and ker L = {c1nV | c ∈ C}, where
1nV = (1, . . . , 1)T in general. This is the analog of the fact that the unique solution of df = 0 is
f = const. in differential geometry. In the following we denote the normalized zero mode of L
as

v0 ≡ 1√
nV

1nV . (46)

To specify ker LT, we consider a closed loop C made of edges with a direction. Correspond-
ingly, we define the vector wC ∈ VE whose elements are given by

(wC )e =

⎧⎪⎨
⎪⎩

1 if C includes e in the same direction,

−1 if C includes e in the opposite direction,

0 otherwise,
(47)

which we call the loop vector associated with the loop C. The loop vector wC satisfies LTwC = 0
since, for a fixed vertex v in the loop C, there are two edges e1 and e2 in C which have an end on
v, and the values of the products LTv

e1 (wC )e1 and LTv
e2 (wC )e2 are always opposite and cancel

with each other by construction. Therefore, all the loop vectors wC are elements of ker LT.
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Furthermore, by counting the dimension we see that ker LT is generated by linearly independent
loop vectors. First of all, we can construct nF loop vectors w f associated with each face f ∈ F.
They are not linearly independent but have one dependence,

∑
f ∈F w f = 0, so we can construct

nF − 1 linearly independent loop vectors. In addition, there are 2h independent non-contractible
cycles on the genus-h Riemann surface. Since the loop vectors wI (I = 1, …, 2h) corresponding
to the cycles cannot be constructed from w f , the nF + 2h − 1 vectors {w f , wI} are linearly
independent. Recalling here that the rank of L is nV − 1, we find dim ker LT = nE − nV + 1 =
nF + 2h − 1. Therefore, we can conclude that {w f , wI} could form a basis of ker LT.

For later use, we also introduce a matrix (unoriented incidence matrix) of size nE × nV:

Ke
v ≡ |Le

v| =
{

1 if t(e) = v or s(e) = v,
0 otherwise.

(48)

3.2.2 Dual incidence matrix. We can also define the incidence matrix Ľ for the dual graph �̌,
which is a matrix of size nE × nF whose elements are given by

Ľ
e

f =

⎧⎪⎨
⎪⎩

+1 if the edge e on the face f is in the forward direction,

−1 if the edge e on the face f is in the reverse direction,

0 otherwise.
(49)

We call this matrix the dual incidence matrix. As well as the incidence matrix, if we restrict our-
selves to the relationship between E and F, Ľ and ĽT correspond to d† and d in the differential
geometry. By repeating the same discussion as for L, we see that ker Ľ is the one-dimensional
vector space generated by the constant vector, ker Ľ = {c1nF | c ∈ C}, and ker ĽT is generated
by independent dual loop vectors whose dimension is nV + 2h − 1. We denote the normalized
zero mode of Ľ by

u0 ≡ 1√
nF

1nF , (50)

as in the case of the incidence matrix.
We also introduce the unoriented dual incidence matrix by

Ǩe
f ≡ |Ľe

f | =
{

1 if the face f includes the edge e,
0 otherwise.

(51)

3.2.3 Laplacian matrices. The Laplacian (Kirchhoff) matrix �V acting on the vertex is an nV

× nV matrix defined by

(�V )v
v′ = LTL =

⎧⎪⎨
⎪⎩

deg(v) if v = v′,
−1 if v 
= v′ and v is adjacent to v′,
0 otherwise,

(52)

which is also known as the Cartan matrix on the Dynkin diagram (graph) for the Lie algebra.
Note that this matrix is called “Laplacian” since it acts on x like

xT�V x =
∑
e∈E

(xt(e) − xs(e) )2, (53)

which is nothing but a second-order difference operator for the “field” xv. This also supports
the analogy L↔d and LT↔d† because the Laplacian acting on a 0-form f is �f = d†df in
differential geometry.
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We also define the face Laplacian matrix �F by

(�F ) f
f ′ = ĽTĽ =

⎧⎪⎨
⎪⎩

deg( f ) if f = f ′,
−1 if f and f ′ share the same edge,
0 otherwise,

(54)

and the edge Laplacian by

�E ≡ LLT + ĽĽT. (55)

3.2.4 Cohomology of L and Ľ and the eigenvalues of the Laplacian matrices. The incidence
and dual incidence matrices represent maps from VV to VE and from VF to VE , respectively.
Furthermore, the incidence and dual incidence matrices are orthogonal to each other,

LTĽ = ĽTL = 0, (56)

which holds for the same reason that the loop vectors belong to the kernel of LT. This is an ana-
log of the nilpotency (exactness) of the differential d and d†. This means that we can construct
the following exact sequences:

0 → VV
L−→ VE

ĽT−→ VF → 0,

0 ← VV
LT←− VE

Ľ←− VF ← 0. (57)

Because of this nilpotency, we can define the cohomology group HV = ker L, HE =
ker ĽT/ im L, and HF = VF / im ĽT.

Similar to Hodge’s theorem on a compact orientable Riemannian manifold, the cohomology
group is isomorphic to a set of the kernel of the Laplacian (harmonic forms). As mentioned in
the previous subsection, dim ker L = dim ker Ľ = 1 and thus we see that

dim ker �V = dim HV = 1, (58)

dim ker �F = dim HF = 1. (59)

More explicitly, ker �V and ker �F are generated by v0 and u0, respectively. Similarly, since
dim ker ĽT = nV + 2h − 1 and dim imL = nV − 1, we see that

dim ker �E = dim HE = 2h. (60)

Note that these results are consistent with the definition of the Euler characteristic of the graph
�,

χh = dim HV − dim HE + dim HF = 2 − 2h. (61)

In the following argument, the eigenvectors of the Laplacian matrices play important roles.
Since rank L = nV − 1 and rank Ľ = nF − 1, the ranks of �V and �F are nV − 1 and nF − 1,
respectively. Therefore, in addition to the normalized zero modes v0 and u0 given by Eqs. (46)
and (50), �V and �F have respectively nV − 1 and nF − 1 linearly independent eigenvectors with
non-zero eigenvalues. We then denote the orthonormal eigenvectors of �V and �F as {v0, vi} (i
= 1, …, nV − 1) and {u0, ua} (a = 1, …, nF − 1), with

�V v0 = 0, �V vi = λivi (λi 
= 0),
�F u0 = 0, �F ua = μaua (μa 
= 0),

(62)

respectively.
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Lvi and Ľua become simultaneously eigenvectors of �E with eigenvalues λi and μa, respec-
tively, since

�E (Lvi) = L�V vi = λi(Lvi),

�E (Ľua) = Ľ�F ua = μa(Ľua), (63)

where we have used the relation in Eq. (56). We then normalize them by

ei ≡ Lvi/|Lvi|, ea ≡ Ľua/|Ľua|, (64)

which are orthogonal vectors in VE . To complete the orthonormal basis of VE , we need to add
2h independent normalized vectors {eI

0} (I = 1, …, 2h), which belong to ker �E , since dimVE =
nE = (nV − 1) + (nF − 1) + 2h and dim ker �E = 2h. Therefore, the orthonormal eigenvectors
of �E are spanned by {eI

0, ei, ea}, which satisfy

�E eI
0 = 0, �E ei = λiei, �E ea = μaea. (65)

From the argument below Eq. (47), we find that the zero eigenvectors eI
0 correspond to the

independent non-contractible cycles on the graph �. Note also that the non-zero eigenvalues
of �E are common with those of �V and �F, namely

Spec′ �V ⊕ Spec′ �F = Spec′ �E , (66)

where Spec′ stands for a set of non-zero eigenvalues (spectrum) of the Laplacian.

4. Abelian gauge theory on the graph
In this section we formulate a supersymmetric Abelian gauge theory on the discretized Riemann
surface by using graph theory. We will see that restricting the theory to Abelian makes it easier
to see the zero mode structure of the theory, but will also give us important insights into the
relationship between anomalies and zero modes.

4.1 Definition of the model
We define several vectors on the vertices, edges, and faces, which are regarded as fields. To
define a covariant theory using these fields, we have to consider a metric structure. To this end,
we introduce contravariant and covariant vectors, which are expressed as vectors with upper
and lower indices, respectively.

We consider an nV-dimensional bosonic vector φ = (φ1, φ2, . . . , φnV )T and the complex con-
jugate φ̄ = (φ̄1, φ̄2, . . . , φ̄nV )T, whose elements φv and φ̄v are regarded as complex bosonic vari-
ables (fields) living on the vertex v ∈ V. Note that the positioning of the indices is important: the
elements of φ and φ̄ have upper indices that indicate they are contravariant vectors. If we take
the transpose, they become covariant vectors, which have lower indices: φT = (φ1, φ2, . . . , φnV )

and φ̄
T = (φ̄1, φ̄2, . . . , φ̄nV ).

We also consider an nE-dimensional bosonic vector U = (U 1,U 2, . . . ,U nE )T, which will be
gauge fields, whose elements are assumed to take the values in U(1). In this case, we can write
U by exp{iA}, where A = (A1, A2, . . . , AnE )T, whose elements are real variables. Furthermore,
we introduce an nF-dimensional bosonic vector Y = (Y 1,Y 2, . . . ,Y nF )T whose elements are
assumed to be real. In addition to the bosonic fields, we also consider the fermionic fields η =
(η1, η2, . . . , ηnV )T ∈ VV , λ = (λ1, λ2, . . . , λnE )T ∈ VE , and χ = (χ1, χ2, . . . , χnF )T ∈ VF .
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We define the supersymmetry transformations of these fields by

Qφv = 0,

Qφ̄v = 2ηv, Qηv = 0,

QAe = λe, Qλe = −Le
vφ

v,

QY f = 0, Qχ f = Y f .

(67)

Using this symmetry, we write the action of the model in the Q-exact form as

S = − 1
2g2

Q
{
φ̄vLTv

eλ
e + χ f (Y f − 2μ(P f ))

}
, (68)

where Pf are the plaquette variables associated with the face f, defined by

P f ≡
∏
e∈ f

(U e)ĽT f
e = exp

{
iĽT f

eAe
}

, (69)

and μ(Pf) is a function called the moment map, which becomes the field strength F in the
continuum limit.

There are several candidates for the moment map. The moment map used in the original
Sugino model is

μ(P) = 1
2i

P − P†

1 − 1
ε2 ||1 − P||2 , (70)

where || · || is a matrix norm defined by ||A|| ≡
√

tr(AA†), which is now simply ||A|| = |A|2 in
the Abelian theory, and ε is a positive constant parameter chosen in the range 0 < ε < 2. If we
do not introduce the denominator, the vacuum condition μ(P) = 0 has two solutions P = ±1
which contain an unphysical vacuum at P = −1. The denominator is necessary to avoid it. See
Ref. [5] for more detail.

Another candidate is the tangent-type function

μ(P) = 1
2i

P − P†

P + P† (71)

proposed in Ref. [50]. P = −1 is on the pole of this function and thus μ(P) = 0 has a unique
solution at the physical vacuum.

In addition, in Abelian theory we can use a logarithmic-type moment map,

μ(P) = −i log(P). (72)

Although this suffers from the mathematical difficulty of defining the log of a matrix in non-
Abelian theory, there is no ambiguity in Abelian theory by choosing the branch of the loga-
rithmic function as −π < arg z ≤ π for z ∈ C.

After eliminating the auxiliary field Yf , the bosonic part of the action becomes

SB = 1
2g2

{
φ̄vLTv

eLe
v′φv′ + μ(P f )2

}
= 1

2g2

{
φ̄

T
�V φ + |μ|2

}
, (73)

where we have used the definition of the graph vertex Laplacian �V = LTL and defined
μ ≡ (μ(P f1 ), . . . , μ(P fnF ))T. This action describes the free complex scalar field decoupling from
Maxwell theory in the continuum limit.

The fermionic part of the action becomes

SF = − 1
g2

{
ηvLTv

eλ
e + χ f

δμ f

δAe
λe
}

= − 1
g2

{
ηTLTλ + χT δμ

δA
λ

}
, (74)
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where δμ

δA is an nF × nE matrix and is proportional to the transpose of the dual incidence matrix
ĽT. Indeed, for each component, we find

δμ(P f )
δAe

= iμ′(P f )P f ĽT f
e, (75)

where μ′ stands for a derivative of the function μ with respect to the argument.
This model is nothing but the Abelian version of the generalized Sugino model constructed

in Ref. [52]. Repeating the discussion in Ref. [52], we see that this model is a discretization
of the N = (2, 2) supersymmetric Abelian gauge theory discussed in Sect. 2. Because of the
discretization, the Q̃ symmetry and the U(1)V symmetries are explicitly broken, while the Q
symmetry and the U(1)A symmetry are still preserved after discretization, at least classically.

4.2 Fermion zero modes
Here we will examine the structure of the fermions in this theory. We first redefine χ f by

ρ f ≡ iμ′(P f )P f χ f , (76)

where we assume that the prefactor iμ′(P f )P f is non-vanishing and non-singular everywhere.3

Then we combine all the fermionic variables into a single (nV + nF + nE)-dimensional vector
such that

� =

⎛
⎜⎝η

ρ

λ

⎞
⎟⎠. (77)

Then, the fermionic part of the action in Eq. (74) can be written as

SF = 1
g2

�Ti /D�, (78)

where /D is a matrix of size (nV + nF + nE),

/D =
(

0 iDT

−iD 0

)
, (79)

with

D =
(

L Ľ
)
. (80)

We examine the zero modes of the matrix /D, which can be obtained from the zero modes of D
and DT.

D is a linear mapping from VV ⊕ VF to VE which transforms (η, ρ)T ∈ VV ⊕ VF as

D

(
η

ρ

)
= Lη + Ľρ. (81)

Recalling that dim ker L = dim ker Ľ = 1, we can immediately see that D has one zero mode in
η and ρ, each4 proportional to v0, Eq. (46), and u0, Eq. (50), respectively. Therefore, we find
that rank D = nV + nF − 2 = nE − 2h, where we have used the definition χh = nV − nE + nF =
2 − 2h.

3The argument in this subsection always holds for χ f itself in the saddle point approximation, where
ρf ∼ iχ f with Pf ∼ 1. In the localization method, the zero modes of χ f play the same role as the zero
modes of ρf .

4Note that the equation Lη + Ľρ = 0 leads to Lη = Ľρ = 0 because of the orthogonality in Eq. (56).
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On the other hand, DT is a linear mapping from VE to VV ⊕ VF which transforms λ ∈ VE as

DTλ =
(

LTλ

ĽTλ

)
. (82)

Then, the zero modes of DT are the common zero modes of LT and ĽT, which are the same as
the zero modes {eI

0} of �E. This is a direct result of the isomorphism ker LT/ im Ľ � ker �E ,
i.e. ker LT is spanned by the nF + 2h − 1 linearly independent loop vectors {eI

0, wa}, where wa

(a = 1, …, nF − 1) are linearly independent loop vectors corresponding to the faces, and im Ľ
is spanned by {wa} by construction. Therefore, ker �E is spanned by {eI

0}.
In summary, /D has one zero mode η0 in η, one zero mode ρ0 in ρ, and 2h zero modes λI

0 (I =
1, …, 2h) in λ, which can be written explicitly as

η0 = v0 · η, ρ0 = u0 · ρ, λI
0 = eI

0 · λ. (83)

Note that the vertex zero mode η0 and the edge zero modes λI
0 are Q-invariant, while the face

zero mode ρ0 is not. The Q-invariance of η0 is trivial from Eq. (67), and λI
0 is Q-invariant since

the loop vector eI
0 belongs to ker LT. However, Q transforms χ ′

0 as

Qρ0 = 1√
nF

∑
f ∈F

Q(iμ′(P f )P f χ f )

= 1√
nF

∑
f ∈F

{
− (μ′′(P f )(P f )2 + μ′(P f )P f ) λeĽe

f χ
f + iμ′(P f )P f Y f

}
, (84)

which does not vanish in general.

4.3 Heat kernel and dimensionality
We can examine the analytic behavior of the fermion spectrum by using the heat kernel. In the
continuous theory, the heat kernel is defined by the following heat equation:(

∂

∂t
+ /D2

)
h(x, y; t) = 0, (85)

which is formally solved as

h(x, y; t) = e−t /D2

. (86)

In particular, the regularized U(1)A current is evaluated by the heat kernel:∫
�h

〈
d†JAω

〉
reg = − Tr γAe−t /D2 = − ind /D. (87)

We can extend the definition of the heat kernel to the Dirac operator on the graph. The heat
kernel on the graph is simply defined by

h(t)i
j ≡ (e−t /D2)i

j (88)

using the matrix /D defined by Eq. (79). Correspondingly, we define the quantity

I (t) ≡ TrV ⊕F⊕E γAe−t /D2

= TrV e−t�V + TrF e−t�F − TrE e−t�E

=
nV∑
l=1

e−tλV
l +

nF∑
m=1

e−tλF
m −

nE∑
n=1

e−tλE
n , (89)

where λV
l , λF

m, and λE
n are eigenvalues for the Laplacians �V, �F, and �E, respectively.
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In the large-t limit, the contribution of the non-zero modes (eigenvalues) to I(t) disappears
and the difference in the number of zero modes survives as the index. Moreover, the contribu-
tions from the non-zero modes cancel each other even when the value of t is finite because there
is a one-to-one correspondence between the non-zero modes of {�V, �F} and �E as shown in
Sect. 3.2.4. Therefore, I(t) is independent of t, i.e. I(t) gives the index of /D which is equal to the
Euler characteristic of the graph, as well as in the continuous theory.

It is instructive to give some concrete examples of the trace of heat kernels. The simplest
example of a graph with genus zero is the tetrahedron ((nV, nF, nE) = (4, 4, 6)). The eigenvalues
of the Laplacians are given by

Spec �V = {4, 4, 4, 0},
Spec �F = {4, 4, 4, 0},
Spec �E = {4, 4, 4, 4, 4, 4}. (90)

Then, we get

Tr γAe−t /D2 = (3e−4t + 1) + (3e−4t + 1) − 6e−4t = 2, (91)

where the non-zero modes cancel each other order by order.
Similarly, for the hexahedron ((nV, nF, nE) = (8, 6, 12)) we obtain

Spec �V = {6, 4, 4, 4, 2, 2, 2, 0},
Spec �F = {6, 6, 4, 4, 4, 0},
Spec �E = {6, 6, 6, 4, 4, 4, 4, 4, 4, 2, 2, 2}, (92)

and we get

Tr γAe−t /D2 = (e−6t + 3e−4t + 3e−2t + 1) + (2e−6t + 3e−4t + 1)

− (3e−6t + 6e−4t + 3e−2t ) = 2. (93)

For genus 1, the spectrum of the Laplacians of the 3 × 3 torus are

Spec �V = {6, 6, 6, 6, 3, 3, 3, 3, 0},
Spec �F = {6, 6, 6, 6, 3, 3, 3, 3, 0},
Spec �E = {6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0}, (94)

and the index becomes

Tr γAe−t /D2 = (4e−6t + 4e−3t + 1) + (4e−6t + 4e−3t + 1) − (8e−6t + 8e−3t + 2) = 0, (95)

as expected.
Furthermore, the behavior of the heat kernel for each Laplacian (not the square of the Dirac

operator) also represents the dimensionality of the graph structure. If we take the continuum
limit of the graph discretization (lattice), we expect that the space-time goes to the smooth
Riemann surface. The heat kernel on the Riemann surface, which satisfies the heat equation(

∂

∂t
+ �x

)
h(x, y; t) = 0 (96)

with the Laplacian �x, behaves as

h(x, y; t) = 1
4πt

e−|x−y|/2t + · · · (97)
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Fig. 3. Plots of the heat kernel. If the number of vertices (or faces) of the geodesic polyhedra is large,
the behavior of the heat kernel becomes very close to that of the smooth two-dimensional sphere. (The
“div” in the legend stands for the number of times the triangular faces of the tetrahedron or octahedron
are divided into smaller triangles.).

for small t, while the index in Eq. (87) is independent of t. In particular, the trace of the heat
kernel behaves as

h̃(t) ≡
∫

�h

dx h(x, x; t) = Vol(�h)
4πt

+ · · · , (98)

and, in the large-t limit, the trace of the heat kernel tends to the number of zero modes,

lim
t→∞ h̃(t) = lim

t→∞

∑
n

e−tλn = dim ker �V . (99)

On the general D-dimensional space-time, the trace of the heat kernel is proportional to 1/tD/2

for small t. So, if we investigate the small-t behavior of the heat kernel for the graph Laplacian,
we can confirm how the dimensionality of the graph discretization is close to the Riemann
surface.

We construct the heat kernels of the graph Laplacian for several geodesic polyhedrons with
genus 0 (subdivisions of the tetrahedron and octahedron) and plot them in Fig. 3. We find that
the behavior of the heat kernel approaches that of the two-dimensional sphere (1/t behavior)
as the number of vertices increases and the discretization becomes finer. We also find that the
trace of the heat kernel represents the number of zero modes in the large-t limit.

4.4 Uplifting the fermion zero modes
Due to the existence of these zero modes, the discretized theory with the action in Eq. (68) is
not well-defined since the partition function trivially vanishes. we expand the fermion fields by

17/40



PTEP 2022, 043B01 S. Matsuura and K. Ohta

the eigenvectors of the Laplacian matrices as

η = η0v0 +
nV −1∑
i=1

ηivi,

χ = χ0u0 +
nF −1∑
a=1

χaua,

λ =
2h∑

I=1

λI
0eI

0 +
nV −1∑
i=1

λiei +
nF −1∑
a=1

λaea (100)

and write the integration measure for the modes as dBdFdF0, where

dB =
(

nV∏
v=1

dφvd φ̄v

)(
nE∏

e=1

dUe

)
, (101)

dF =
(

nV −1∏
i=1

dηidλi

)(
nF −1∏
a=1

dχadλa

)
, (102)

dF0 =
(

2h∏
I=1

dλ2h−I+1
0

)
dχ0dη0. (103)

Evaluating the vev of a (not necessarily local) operator O[X ], which is a functional of the col-
lective expression of all the fields X and does not include any fermion zero mode, the integration∫

dBdFdF0 O[X ]e−S[X ] trivially vanishes.
To avoid this, we need to insert all the fermion zero modes in the background, like

IO ≡
∫

dBdFdF0

(
η0χ0

2h∏
I=1

λI
0

)
O[X ]e−S[X ]. (104)

The inserted zero modes are integrated by the measure dF0, and then

IO =
∫

dBdF O[X ]e−S[X ] (105)

becomes well-defined since the measure no longer includes the fermion zero modes.
The straightforward way to achieve this automatically is to add mass terms of the fermion

zero modes to the action as

Sμ = μ0

g2
(η0χ0) + μ1

g2

h∑
k=1

λ2k−1
0 λ2k

0 ≡ 1
2g2

�TM�. (106)

These terms not only make the Dirac matrix invertible but also supply the necessary fermion
zero modes in evaluating correlation functions as∫

dBdFdF0 O[X ]e−S[X ]−Sμ = μ0μ
h
1

g2h+2
IO. (107)

The necessary fermion zero modes are supplied by expanding e−Sμ by the parameters μ0 and μ1

as the term with the coefficient μ0μ
h
1, and the other terms vanish as a lack or excess of fermion

zero modes. Note that the situation is the same when the operator O includes all or some of
the fermion zero modes, where only the term including all the fermion zero modes survives.

Here we note that the zero modes supplied from e−Sμ break the U(1)A symmetry unless h = 1,
reflecting the quantum anomaly discussed below. We also note that the mass terms in Eq. (106)
also break the Q symmetry softly since χ0 is not Q-invariant, as shown in Eq. (84). As discussed
in the next section, it is possible to construct such mass terms that cancel the fermion zero modes
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while preserving the Q symmetry. In this sense, although the mass term constructed here is
simple, it is not the only option. In particular, when discussing situations where supersymmetry
plays an important role, we should use the Q-invariant mass terms. However, the choice of mass
term is not so important in discussing the anomalous U(1)A current, as long as the partition
function is well-defined. Therefore, in this section we will use the regularized action

S = 1
2g2

{
φ̄

T
�V φ + |μ|2 + �T (i /D + M) �

}
(108)

for a while.

4.5 Chiral anomaly on the graph
We next consider the WT identity corresponding to the U(1)A symmetry. To this end, we con-
sider the local U(1)A transformation

ηv → e−iθ v
Aηv, λe → eiθ e

Aλe, χ f → e−iθ f
A χ f . (109)

This local transformation is not the symmetry of the theory in general, but it makes the action
invariant if the transformation is global (independent of the positions), namely θ v

A = θ e
A = θ

f
A .

We are now dealing with the graph � and the dual graph �̌ on an equal footing, where one edge
is shared by two vertices and two faces. To respect this structure, we take the transformation
parameters θ e

A of the edge e to be the average of the transformation parameters of the vertices
θ v
A and faces θ

f
A ,

θ e
A = 1

4

(
θ

s(e)
A + θ

t(e)
A + θ

f+(e)
A + θ

f−(e)
A

)
, (110)

where s(e), t(e), and f±(e) are defined in Sect. 3.1. Then, the infinitesimal transformation of the
action becomes

δS =
∑
e∈E

{(
Le

vθ
v

A

)
J (V )

e +
(

Ľe
f θ

f
A

)
J (F )

e +
((

Ke
vθ

v
A

)−
(

Ǩe
f θ

f
A

))
Ge

}
, (111)

where K and Ǩ are the matrices given by Eqs. (48) and (51), respectively, and

J (V )
e ≡ i

g2

(
−φ̄t(e)φs(e) + φ̄s(e)φt(e) + 1

2
λe

∑
v∈V

Ke
vη

v

)
, (112)

J (F )
e ≡ i

2g2
λe

∑
f ∈F

Ǩe
f χ̂

f , (113)

Ge ≡ i
4g2

λe

(∑
v∈V

(
Le

vη
v)−

∑
f ∈F

(
Ľe

f χ̂
f
))

, (114)

which are defined on each edge e ∈ E and thus the index e is not contracted.
Recalling that the mass terms in Eq. (106) effectively supply all the fermion zero modes to the

integration, we have also to evaluate the transformation of the integral measure dBdFdF0 and
the inserted fermion zero modes. The infinitesimal transformation of the measure becomes

dBdFdF0 →
(

1 +
∑

v

(
iθ v

A

) (
1 − 1

4 deg (v)
)+
∑

f

(
iθ f

A

) (
1 − 1

4 deg ( f )
) )

dBdFdF0, (115)

and that of each fermion zero mode is

η0 → η0 − i
∑
v∈V

θ v
A (v0)v ηv, χ0 → χ0 − i

∑
f ∈F

θ
f

A (u0) f χ̂ f , λI
0 → λI

0 + i
∑
e∈E

θd
A

(
eI

0

)
e λe.

(116)
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So, the zero mode integral is evaluated as∫
dF0 δ

(
η0χ0

2h∏
I=1

λI
0

)
=
∑
v∈V

(
iθ v

A

) (− (v0)2
v + 1

4

2h∑
I=1

∑
e∈E

Ke
v

(
eI

0

)2
e

)

+
∑
f ∈F

(
iθ f

A

)(
− (u0)2

f + 1
4

2h∑
I=1

∑
e∈E

Ǩe
f

(
eI

0

)2
e

)
. (117)

Combining Eqs. (111) and (117), we obtain the identities〈∑
e∈E

(
Le

vJ
(V )
e + Ke

vGe

)〉
= − (1 − 1

4 deg(v)
)+
(

(v0)2
v − 1

4

2h∑
I=1

∑
e∈E

Ke
v

(
eI

0

)2
e

)
, (118)

〈∑
e∈E

(
Ľe

f J (F )
e − Ǩe

f Ge

)〉
= − (1 − 1

4 deg( f )
)+
(

(u0)2
f − 1

4

2h∑
I=1

∑
e∈E

Ǩe
f

(
eI

0

)2
e

)
(119)

on each v ∈ V and f ∈ F. These identities are the local WT identities corresponding to Eq. (41) in
the continuous theory. Note that we have two local WT identities for the single U(1)A symmetry
because we are considering the graph and the dual graph at the same time: The transformation
parameters θ v

A and θ
f

A can be assigned independently on the vertices of the graph and the dual
graph, respectively.

Interestingly, the quantities 1 − deg(v)/4 and 1 − deg(f)/4 appearing in the first parentheses
of the right-hand sides correspond to the scalar curvature of the continuum geometry. We can
justify this because they can be regarded as the deficit angle, which is proportional to the scalar
curvature in two-dimensional geometry. To see this, suppose that all the faces are regular n-
polygons of the same size. In this case deg(f) = n and the deficit angle around the vertex v is
given by θv = 2π

(
1 − n−2

2n deg(v)
)
. Then, the average of the quantities around a vertex v becomes

the deficit angle as described,

1 − 1
4 deg(v) +

∑
f ∈Fv

1
deg( f )

(
1 − 1

4 deg( f )
) = θv

2π
, (120)

where Fv denotes the faces touching at the vertex v.
The second parentheses on the right-hand sides of Eqs. (118) and (119) are the contribution

of the inserted fermion zero modes, which are necessary so that these identities are consistent.
This is because, if we take summation over all the vertices of Eq. (118) and all the faces of
Eq. (119) followed by summing these two identities, the terms with Ge trivially cancel and the
remaining terms

∑
v,e Le

vJ
(V )
e and

∑
f ,e Ľe

f J (F )
e vanish because of the structure of the matrices

L and Ľ. This corresponds to the integration over a total derivative vanishing in the continuous
theory. On the other hand, after the same operation the first term of the right-hand side gives

−nV − nF + 1
4

∑
v

deg(v) − 1
4

∑
f

deg( f ) = −nV − nF + nE = −χh, (121)

which is a reproduction of the anomalous WT identity in Eq. (42) in the continuous theory
with G = U(1). However, if the second terms of the right-hand sides are absent, we obtain an
inconsistent expression unless χh = 0 because the left-hand side vanishes. The second terms
cure the situation such that∑

v∈V

(
(v0)2

v − 1
4

2h∑
I=1

∑
e∈E

Ke
v

(
eI

0

)2
e

)
+
∑
f ∈F

(
(u0)2

f − 1
4

2h∑
I=1

∑
e∈E

Ǩe
f

(
eI

0

)2
e

)
= 2 − 2h = χh,

(122)
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which cancels the contribution from the first terms in Eq. (121). This is consistent with the fact
that the left-hand side vanishes.

5. Localization in the Abelian theory
5.1 Saddle point equation
We now apply the localization method to perform the path integral of the Abelian theory ex-
actly.

Let f[X] be a Q-closed operator. Recalling that the action is written in the Q-exact form such
that S = Q�, we see that the integration

〈 f [X ]〉t ≡
∫

dX f [X ]e−tS (123)

is independent of t. If we differentiate it by t, we obtain the vev of a Q-exact operator which
vanishes at a supersymmetric vacuum:

∂

∂t
〈 f [X ]〉t = − 〈Q( f [X ] �)〉t = 0. (124)

The path integral is localized at the saddle points in the limit of t → ∞. Thus, we can evaluate
the vev of a Q-closed operator, which includes the partition function itself, exactly by the saddle
point approximation of the Abelian theory.

From the bosonic action in Eq. (73), we can see that the saddle points are given by

Lφ = 0, μ = 0. (125)

On the connected graph, the former equation always has the solution

φ = φ0v0, (126)

where φ0 ∈ C and v0 is the zero mode of L given by Eq. (46). We then expand the scalar fields
around the saddle point as

φ = φ0v0 + 1√
t
φ̃, φ̄ = φ̄0v0 + 1√

t
˜̄φ, (127)

where we have rescaled the fluctuation by 1/
√

t for later purposes.
For the moment map μ(Pf), the latter saddle point equation just means Pf = 1. Since the

plaquette variable is given by

P f = exp
{
iLT f

eAe}, (128)

the moment map constraint is solved by

ĽT f
eÂe = 2πk f , (129)

where kf are integers. As for the scalar fields, we expand the gauge field around the fixed point
as

A = Â + 1√
t

Ã. (130)

In particular, around the fix points the plaquette variable behaves approximately as

μ ∼ 1√
t

ĽTÃ (131)

up to a linear order of fluctuation Ã. Then, the face part of the bosonic action around the
saddle point becomes

Y T ·
(

Y − 2√
t

ĽTÃ
)

. (132)
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Looking at this expression, we see that the trace mode in the auxiliary field Y is decoupled from
the gauge field at the saddle point. We then separate it from the others as

Y = 1√
t

(
Y0u0 + Ỹ

)
(133)

and rewrite Eq. (132) as
1
t

{
Y 2

0 + Ỹ
T · (Ỹ − 2ĽÃ

)}
. (134)

Note that we have also included the factor 1/
√

t in Y0 because it is not the zero mode in the
action but is just a free mode, as shown above.

After integrating out Ỹ , the 1-loop effective bosonic action becomes

S1-loop
B ≡ lim

t→∞ tSB = 1
2g2

{
−Y 2

0 + ˜̄φT �V φ̃ + Ã
T

ĽĽTÃ
}

. (135)

We can ignore the first term in the present localization argument, since the integral of Y0 is
just Gaussian (by a rotation Y0 → iY0) and irrelevant if any operator coupled with Y is not
inserted. However, we will see later that the existence of Y0 becomes important when inserting
suitable operators including the auxiliary field.

For the fermions, we expand the fields around the fermion zero modes (if they exist) as

η = η0v0 + 1√
t
η̃, χ = χ0u0 + 1√

t
χ̃, λ =

2h∑
I=1

λI
0eI

0 + 1√
t
λ̃. (136)

Then, the 1-loop effective action for the fermions reduces to

S1-loop
F ≡ lim

t→∞ tSF = − 1
g2

{
η̃TLTλ̃ + χ̃TĽTλ̃

}
. (137)

Note here that the fermion zero modes do not appear at all in the effective action since they are
defined as the kernels of L and Ľ.

For the inserted operator f[X], by inserting the expansion in Eqs. (127) and (136), we obtain

lim
t→∞ f [X ] = f [X0], (138)

where X0 is the collective expression of the variables of the saddle points. Therefore, in evalu-
ating the integration we have only to consider the inserted operator only when integrating over
X0.

5.2 Gauge fixing and the 1-loop determinant
The gauge transformation of the edge variable Ae is given by

A′ = A − Lξ, (139)

where ξ ∈ VV is a gauge transformation parameter. We can see immediately (the exponent of)
the plaquette variable

P = exp
[
iĽTA

]
(140)

is invariant under this transformation because of the orthogonality of the incidence matrices in
Eq. (56). This gauge invariance still keeps in the 1-loop effective action of Eqs. (135) and (137).

To proceed with the quantization (path integral) of the 1-loop effective theory, we introduce
a gauge-fixing condition for the fluctuations

LTÃ = 0, (141)

which is an analogy with the Lorentz gauge in the continuous theory.
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Introducing the Faddeev–Popov (FP) ghosts (c, c̄) and the Nakanishi–Lautrup (NL) field B
defined on V that obey the Becchi–Rouet–Stora–Tyutin (BRST) transformations

δBc = 0, δBc̄ = 2B, δBB = 0, (142)

the gauge-fixing and FP term is written by a BRST exact form,

SGF+FP = − 1
4g2

δB

{
c̄T ·

(
B − 2LTÃ

)}
= 1

2g2

{
c̄T�V c − BT ·

(
B − 2LTÃ

)}
, (143)

where �V = LTL and we have used the BRST transformation of the gauge field,

δBÃ = −Lc. (144)

Combining the original action and gauge-fixing terms, we obtain the total action

S′ = S1-loop
B + S1-loop

F + SGF+FP

= 1
2g2

{
˜̄φT�V φ̃ + Ã

T
ĽĽTÃ − 2η̃TLTλ̃ − 2χ̃TĽTλ̃

+ c̄T�V c − BT ·
(

B − 2LTÃ
) }

. (145)

After eliminating the NL field B, we get

S′ = 1
2g2

{
˜̄φT�V φ̃ + c̄T�V c + Ã

T
�E Ã − 2η̃TLTλ̃ − 2χ̃TĽTλ̃

}
, (146)

where �E = LLT + ĽĽT.
From this quadratic 1-loop effective action, we can perform the path integral for the non-zero

modes explicitly; the 1-loop determinant becomes

(1-loop det) = det′ �V

det′ �V

(
det′ �V det′ �F det′ �E

)1/4√
det′ �E

=
(

det′ �V det′ �F

det′ �E

)1/4

= 1 (147)

up to an irrelevant sign factor due to the Pfaffian from the fermions, where the
′

denotes that
the zero modes are omitted in the evaluation of the determinant, and we have used the fact that
the non-zero eigenvalues of �E are identical to those of �V and �F:

Spec′ �V ⊕ Spec′ �F = Spec′ �E . (148)

Since the zero modes are dropped from the 1-loop effective actions S1-loop
B and S1-loop

F , there
exist residual integrals over the zero modes after integrating out the non-zero modes; namely,
the vev reduces to the integral over the zero modes,

〈 f [X ]〉 = N
∫

dφ0d φ̄0dY0

(
2h∏

I=1

dλ2h−I+1
0

)
dχ0dη0 f [X0]e

1
2g2 Y 2

0 , (149)

up to an irrelevant normalization constant N of the path integral measure. Note that this re-
duction works only when f[X] is Q-closed. In particular, by setting f[X] = 1, we again see that
the partition function vanishes due to the Grassmann integral, as pointed out in the previous
subsection.

5.3 Compensating for the zero modes
As discussed above, the vev of the operator reduces to the residual integral over the zero modes
after integrating out the non-zero modes. Therefore, so that the operator has a non-trivial vev,
we need to insert at least suitable fermion zero modes. In the previous subsection we simply
added the mass term of the fermion zero modes in Eq. (106), but such an operator that is not
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Q-invariant is not appropriate in the present situation. Instead, we consider here Q-closed op-
erators in order not to spoil the above localization argument. Such Q-closed operators behave
as mass terms for the fermions, namely an exponential of the fermion bi-linear term, includ-
ing all the fermion zero modes. We call this kind of physical operator the compensator in the
following [54].

First, we define a Q-exact operator which includes η and χ,

Oηχ ≡ Q
(
χ f W̄ ′(φ̄ f )

) = Yf W̄ ′(φ̄ f ) + 2W̄ ′′(φ̄ f )η f χ
f , (150)

where W̄ ′(φ̄ f ) is an analytic function of φ̄ f only.5 If we insert the exponential of this operator
into the path integral, all the fields are effectively replaced by their zero modes as mentioned in
the previous subsection and the inserted operator reduces to

e
− 1

g2 Oηλ → − 2
g2
W̄ ′′(φ̄0)η0χ0e

− 1
g2 Y0W̄ ′(φ̄0 ) (151)

in the integrand. This compensates for the zero modes of η and χ as expected.
We next define an operator which includes bi-linear terms of λ to compensate for the zero-

mode integral of λI
0. As one of the candidates of the fermion bi-linear term, we now consider

an operator
1
2
λT�λ, (152)

where � is an anti-symmetric nE × nE matrix, namely �T = −�. The supercharge Q acts on
this by

1
2

Q
(
λT�λ

) = −φTLT�λ. (153)

On the other hand, we consider the operator piece

φ̌
T · ĽTA, (154)

where φ̌ is a dual scalar field on the face F, which is linearly constructed from the original scalar
field φ on V via

φ̌ = Mφ, (155)

where M is an nF × nV matrix. Note here that there are multiple candidates for M; typically, φ̌ f

is determined by φv on the representative point at the boundary of the face.
Substituting Eq. (155) into Eq. (154) and applying the Q-transformation, we find that

Q
(
φTMTĽTA

) = φTMTĽTλ. (156)

Then, using Eqs. (153) and (156), we see that the combined operator

Oλλ = φ̌
T

ĽTA + 1
2λ

T�λ (157)

is Q-closed if there is the following relation between the matrices:

�L + ĽM = 0. (158)

So, the operator Oλλ could become a non-trivial observable. We note here that the operator in
Eq. (157) is Q-closed but is not Q-exact.

As well as Oηχ , if we insert e−iOλλ in the path integral it reduces to an integrand of the zero
modes as a summation over the saddle points,

e−iOλλ →
∑
k∈Z

e−i
(

2πkφ0− 1
2 λI

0(eI
0)

T
�eJ

0λJ
0

)
= C

(
2h∏

I=1

λI
0

)∑
n∈Z

δ(φ0 − n), (159)

5Since we can regard W̄ as the superpotential, the first and second derivatives of W̄ appear here.
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where C is an irrelevant constant and we have used that A satisfies

ĽT f
eÂe = 2πk f (160)

at the saddle point with the total magnetic flux k =∑f ∈ Fkf , and the Poisson summation for-
mula

∑
k∈Z e2π ikx =∑n∈Z δ(x − n). This compensates for the zero modes of λ as expected.

Then, if we insert the compensator e
1

g2 Oηχ e−iOλλ in the path integral, we can compensate for
all the fermion zero modes and make the integration well-defined. However, this is not the only
effect of the compensator: it can handle not only fermion zero modes but also the boson zero
modes at the same time.

To see this, let us consider the vev 〈
f [φ] e

− 1
2g2 Oηχ e−iOλλ

〉
(161)

using the localization method, where f [φ] is an analytic function constructed by φ only and
trivially Q-closed. Using Eq. (149) with Eqs. (151) and (159), we obtain

〈
f [φ] e

− 1
2g2 Oηχ e−iOλλ

〉 = − 2
g2
NC

∫ ( 2h∏
I=1

dλ2h−I+1
0

)
dχ0dη0

(
η0χ0

2h∏
I=1

λI
0

)

×
∫

dφ0d φ̄0dY0 W̄ ′′(φ̄0) f (φ0)e
1

2g2 (Y 2
0 −2W̄ ′(φ̄0 )Y0 )∑

n∈Z

δ(φ0 − n)

= −
√

8π

g
NC

∑
n∈Z

f (n), (162)

where, after eliminating Y0, the integration over φ̄0 becomes just a Gaussian integral by chang-
ing the variable from φ̄0 to W̄ ′(φ̄0). This result of course holds for f[X] = 1, and thus the parti-
tion function is also regularized by inserting the compensators.6 In this sense, the compensators
give a regularization of the zero modes in the Abelian theory.

6. Non-Abelian gauge theory
In this section we generalize our discussion to the non-Abelian gauge group G = U(N). The
bosonic variables (fields) on V, E, and F are denoted by �v, Ue, and Yf , respectively. Also, the
fermionic fields ηv, λe, and χ f exist on V, E, and F, respectively. For the non-Abelian gauge
group, all the fields except for Ue are extended to the adjoint representation of U(N), namely
N × N matrices, while the edge variables Ue are N × N unitary matrices.

The supersymmetry transformation is given by

Q�v = 0,

Q�̄v = 2ηv, Qηv = i
2 [�v, �̄v],

QU e = iλeU e, Qλe = −LU
e

v�
v + iλeλe,

QY f = i[�̌ f , χ f ], Qχ f = Y f ,

(163)

where LU is defined as a gauge covariant incidence matrix,

LU
e

v�
v ≡ U e�t(e)U e† − �s(e), (164)

and f of �̌ f denotes the representative vertex of the face f.
It is sometimes useful to define

�e ≡ λeU e. (165)

6We also have to regularize
∑

n∈Z 1 in some way, though.
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The supersymmetry transformations for Ue and �e become

QU e = i�e, Q�e = −(U e�t(e) − �s(e)U e). (166)

We can construct the supersymmetric action in the Q-exact form

S = − 1
2g2

Q Tr
{

i
2
ηv[�v, �̄v] + (�̄t(e)U †

e − U †
e �̄s(e) )�e + χ f

(
Y f − 2μ(P f )

)}
. (167)

The moment map μ(Pf) in the action is a function of the plaquette variable on each face labeled
by f, which is defined by an ordered product around a face,

P f ≡ (U e1 )ĽT f
e1 (U e2 )ĽT f

e2 · · · (U en )ĽT f
en , (168)

where {e1, e2, …, en} are edges that surround the face f in this order. We choose the function
μ(Pf) so that it has a unique vacuum at Pf = 1 and asymptotically behaves as the field strength
of the gauge field around the vacuum in order to induce the gauge kinetic term after eliminating
the auxiliary field Yf [5,50].

Using the supersymmetry transformations, the bosonic part becomes

SB = 1
2g2

Tr
{

1
4

[�v, �̄v]2 + |U e�t(e) − �s(e)U e|2 − Yf
(
Y f − 2μ(P f )

)}
, (169)

and the fermionic part becomes

SF = − 1
2g2

Tr
{−iηv[�v, ηv] + 2(ηt(e)U †

e − U †
e ηs(e) )�e − i(�̄t(e)U †

e �eU †
e

− U †
e �eU †

e �̄s(e) )�e − iχ f [�̌ f , χ f ] + 2χ f Qμ(P f )
}
. (170)

Using the Q-exact action, the partition function of the non-Abelian gauge theory is given
by

Z =
∫ ∏

v∈V

D�vD�̄vDηv
∏
e∈E

DU eDλe
∏
f ∈F

DY fDχ f e−S. (171)

Under the U(1)A rotation, each field transforms as

�v → e2iθA�v, �̄v → e−2iθA�̄v, U e → U e, Y f → Y f ,

ηv → e−iθAηv, λe → eiθAλe, χ f → e−iθAχ f .
(172)

Then, the path integral measure of the fermions has a U(1)A anomaly∏
v∈V

Dηv
∏
e∈E

Dλe
∏
f ∈F

Dχ f → ei dimU (N )×(nV −nE +nF )θA
∏
v∈V

Dηv
∏
e∈E

Dλe
∏
f ∈F

Dχ f

= eiN2χhθA
∏
v∈V

Dηv
∏
e∈E

Dλe
∏
f ∈F

Dχ f . (173)

We will see later that this U(1)A anomaly essentially comes from the fermion zero modes.
With the usual localization arguments, we can show that the Q-exact action in Eq. (167) is

independent of an overall coupling constant t of the rescaled action S → tS. So, the saddle
point approximation in the limit of t → ∞ becomes exact and the path integral is localized at
the saddle (fixed) points. From the bosonic part of the action SB, we find that the saddle points
(localization fixed points) are given by the equations

[�v, �̄v] = 0, (174)

LU
e

v�
v = 0, (175)

μ(P f ) = 0. (176)
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The first equation, Eq. (174), shows that �v are diagonal. We denote this diagonal solution by

�̂v = diag(φ̂v,1, φ̂v,2, . . . , φ̂v,N ). (177)

Using this diagonal expression, we can solve the second equation, Eq. (175), by

φ̂t(e),πe(i) = φ̂s(e),i, (178)

U e = Û e�e, (179)

where Û e is a diagonal matrix,

Û e = diag(Û e,1, Û e,2, . . . , Û e,N ) (|Û e,i| = 1), (180)

and �e is a permutation matrix which represents the order-N permutation πe ∈ SN on the
edge e.

Since the permutation belongs to the Weyl group of U(N), we can choose �e = 1 without loss
of generality by using a gauge transformation. So the diagonal element of �v on each vertex is
written by a common diagonal element independent of v, that is,

φ̂v,i = φi
0, (181)

which represents a “constant” zero mode.
Finally, Eq. (176) implies a constraint on Ue,i:∏

e∈ f

(
Û e,i)ĽT f

e = 1, (182)

for each f and i.
Now let us consider an effective action near the saddle point. We expand �v and Ue around

the solution to the saddle point equation as

�v = �̂ + 1√
t
�̃v,

U e = e
i√
t
Ãe

Û e �
(

1 + i√
t

Ãe
)

Û e, (183)

where �̂ = diag(φ1
0, φ

2
0, . . . , φ

N
0 ). All the other fields including the fermions are treated as fluc-

tuations and rescaled by 1/
√

t, and we omit the ∼for these fluctuations. Using the Cartan–Weyl
basis (see Appendix B), the Cartan parts are written as

�̂ = φi
0Hi,

ˆ̄� = φ̄i
0Hi, Û e = Û e,iHi, (184)

and the fluctuations and fermions are expanded as follows:

�̃v = φ̃v,iHi + φ̃v,αEα,
˜̄�v = ˜̄φv,iHi + ˜̄φv,αEα, Ãe = Ãe,iHi + Ãe,αEα,

ηv = ηv,iHi + ηv,αEα, χ f = χ f ,iHi + χ f ,αEα, λe = λe,iHi + λe,αEα,
(185)

where the upper and lower indices of i and α are contracted.
Using these expansions, we find that

[�v, �̄v] = 1√
t

(
[�̂, ˜̄�v] + [�̃v, ˆ̄�]

)
+ O(1/t), = 1√

t

(
α(φ0) ˜̄φv,α − α(φ̄0)φ̃v,α

)
Eα + O(1/t),

LU
e

v�
v = 1√

t

(
Le

vφ̃
v,iHi + LÛ

e
vφ̃

v,αEα − iα(φ0)Ãe,αEα

)+ O(1/t),

μ(P f ) = 1√
t

(
ĽT f

eÃe,iHi + Ľ†
Û

f

e
Ãe,αEα

)
+ O(1/t) (186)
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up to the leading order, where

α(φ0) ≡ αiφ
i
0, α(φ̄0) ≡ αiφ̄

i
0. (187)

When we expand the moment map μ(Pf), we require the covariant dual incidence matrix Ľ†
Û

f

e
,

which is defined by

δμ(P f )
∣∣
U e=Û e = i

∑
e∈ f

Ľ†
Û

f

e
δAe ≡ i

∑
e∈ f

Ľ† f
eX̂ f

e δAeX̂ † f
e , (188)

with

X̂ f
ei

=
⎧⎨
⎩Û

Ľ f
e1

e1 Û
Ľ f

e2
e2 · · ·Û Ľ f

ei−1
ei−1 if Ľ f

ei = +1,

Û
Ľ f

e1
e1 Û

Ľ f
e2

e2 · · ·Û Ľ f
ei

ei if Ľ f
ei = −1.

(189)

Using the above expansions up to quadratic order of fluctuations, we obtain the rescaled 1-loop
effective bosonic action:

S1-loop
B ≡ lim

t→∞ tSB = 1
2g2

[
N∑

i=1

{
|Le

vφ̃
v,i|2 − Y i

f (Y f ,i − 2ĽT f
eÃe,i)

}

+
∑

α

{
1
4

∣∣α(φ0) ˜̄φv,α − α(φ̄0)φ̃v,α
∣∣2 + |LÛ

e
vφ̃

v,α|2 + |α(φ0)Ãe,α|2

− Y −α
f (Y f ,α − 2Ľ†

Û

f

e
Ãe,α )

}]
. (190)

Similarly, the fermionic part of the 1-loop effective action becomes

S1-loop
F ≡ lim

t→∞ tSF = − 1
2g2

[
N∑

i=1

{
2ηi

vL
Tv

eλ
e,i + 2χ i

f ĽT f
eλ

e,i
}

+
∑

α

{
2η−α

v L†
Û

v

e
λe,α + 2χ−α

f Ľ†
Û

f

e
λe,α

− iα(φ0)η−α
v ηv,α − iα(φ0)χ−α

f χ f ,α + iα(φ̄0)λ−α
e λe,α

}]
. (191)

This effective action gives the same path integral as the original action owing to the Q-exactness
of the action.

We first integrate over the components of the root vectors. To this end, we fix the gauge
symmetry U(1)N in the 1-loop actions in Eqs. (190) and (191) by introducing the FP ghost
(cv,α, c̄v,α ) and NL field Bv,α. The corresponding BRST transformations are given by

δBcv,α = 0, δBc̄v,α = 2Bv,α, δBBv,α = 0,

δBφ̃v,α = −iα(φ0)cv,α, δB
˜̄φv,α = −iα(φ̄0)cv,α,

δBÃe,α = −LÛ
e

vc
v,α,

(192)

where we assume that the FP ghost and NL field are the same order in t as the fluctuations. We
define the gauge-fixing function for the root vectors by

f v,α ≡ Bv,α − 2L†
Û

v

e
Ãe,α + iα(φ0) ˜̄φv,α + iα(φ̄0)φ̃v,α. (193)
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Then, the gauge-fixing and FP ghost term is given in the BRST exact form by

Sroot
GF+FP = − 1

4g2
δB

∑
α

c̄−α
v f v,α

= 1
2g2

∑
α

[
−B−α

v f v,α + c̄−α
v

(
�V

Û

v

v′ + |α(φ0)|2δv
v′
)

cv′,α
]
, (194)

where

�V
Û

v

v′ ≡ L†
Û

v

e
LÛ

e
v′ . (195)

After eliminating the NL field Bv,α, we get the action for (φ̃v,α, ˜̄φv,α ),

Sroot
(φ̃, ˜̄φ)

= 1
2g2

∑
α

˜̄φ−α
v

(
�V

Û

v

v′ + |α(φ0)|2δv
v′
)

φ̃v′,α, (196)

whose 1-loop determinant is completely canceled with the contribution from the ghost part in
Eq. (194).

In addition, integrating out the auxiliary field Yf,α, the action for the gauge boson reduces
to

Sroot
Ã

= 1
2g2

∑
α

Ã−α
e

(
�E

Û

e

e′ + |α(φ0)|2δe
e′
)

Ãe′,α, (197)

where

�E
Û

e

e′ ≡ LÛ
e

vL
†
Û

v

e′ + ĽÛ
e

vĽ
†
Û

v

e′ . (198)

Then we obtain the 1-loop determinant for the gauge boson Ãe,α,∏
α>0

1

|α(φ0)|2n0
E det′

(
�E

Û
+ |α(φ0)|2) , (199)

where n0
E is the number of zero eigenstates for the edge Laplacian, and the

′
on the determinant

represents omission of the zero eigenvalues.
Next, let us consider the integral of the fermions. We need to take care with the Laplacian

zero modes for the fermions, but we get the 1-loop determinant∏
α>0

α(φ0)n0
V +n0

F α(φ̄0)n0
E

{
det′
(
�V

Û
+ |α(φ0)|2)det′

(
�F

Û
+ |α(φ0)|2)det′

(
�E

Û
+ |α(φ0)|2)}1/2

=
∏
α>0

α(φ0)n0
V +n0

F α(φ̄0)n0
E det′

(
�E

Û
+ |α(φ0)|2), (200)

where we have used that the non-zero eigenvalues of �E
Û

are a combination of the non-zero
eigenvalues of �V

Û
and �F

Û
, namely7

Spec′ �V
Û

⊕ Spec′ �F
Û

= Spec′ �E
Û

. (201)

Combining the 1-loop determinant of the bosons, Eq. (199), and fermions, Eq. (200), we finally
obtain the total 1-loop determinant for the root vector components,∏

α>0

α(φ0)n0
V +n0

F −n0
E =

∏
α>0

α(φ0)χh, (202)

7We can see that the condition in Eq. (182) guarantees the orthogonality like Eq. (56) for LÛ and ĽÛ
in the concrete examples. See Appendix A.
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where we have used the index theorem on the graph Laplacians as well as Abelian theory. Note
here that the above 1-loop determinant has an anomaly phase under U(1)A symmetry as∏

α>0

α(φ0)χh → eiN(N−1)χhθA
∏
α>0

α(φ0)χh . (203)

We next turn to the Cartan part of the fluctuations and fermions. The Cartan part is nothing
but N copies of the Abelian theory discussed in Sect. 5. Introducing the FP ghost (cv,i, c̄v,i), NL
field Bv,i, and gauge-fixing function for the Cartan modes

f v,i = Bv,i − 2LTv
eÃe,i, (204)

the gauge-fixing term for the Cartan modes is given by

SCartan
GF+FP = − 1

4g2
δB

N∑
i=1

c̄i
v f v,i = 1

2g2

N∑
i=1

[−Bi
v f v,i + c̄i

v�V
v

v′cv′,i]. (205)

We find that the 1-loop determinant of the bosons (φ̃v,i, ˜̄φv,i) and (cv,i, c̄v,i) cancel each other.
After eliminating the auxiliary field Yf,i and NL field Bv,i, the integral of the gauge boson Ãe,i

gives the 1-loop determinant
1(

det′�E
)N . (206)

This 1-loop determinant for the bosons cancels with the 1-loop determinant for the fermions,(
det′�V det′�F det′�E

)N/2
, (207)

by using the same fact as Eq. (148) for the Cartan part.
Thus, we finally obtain the path integral measure over the zero modes in the Cartan subalge-

bra,

Z = N
∫ N∏

i=1

dφi
0d φ̄i

0dY i
0

(
2h∏

I=1

dλi,2h−I+1
0

)
dχ i

0dηi
0 e

1
2g2 (Y i

0 )2 ∏
α>0

α(φ0)χh, (208)

up to a normalization constant N . The zero-mode integral is a multiple of the Abelian
gauge theory except for the Vandermonde-type determinant

∏
α>0 α(φ0)χh . This phenomenon

is the same as occurs in continuum field theory localization and is called “diagonalization” or
“Abelianization” (for a review see Ref. [61].) This integral measure has the U(1)A anomaly

N∏
i=1

dφi
0d φ̄i

0

(
2h∏

I=1

dλi,2h−I+1
0

)
dχ i

0dηi
0

∏
α>0

α(φ0)χh

→ eiN2χhθA

N∏
i=1

dφi
0d φ̄i

0

(
2h∏

I=1

dλi,2h−I+1
0

)
dχ i

0dηi
0

∏
α>0

α(φ0)χh, (209)

as expected.
Due to the existence of the fermion zero modes the partition function itself is ill-defined, so

we need to insert an operator which compensates for the fermionic zero modes. As mentioned
above, the path integral reduces to multiple integrals of the Abelian ones, so we can compen-
sate for the fermionic zero modes by inserting the compensator discussed in Sect. 5.3 for each
Cartan part. However, it seems to be difficult to construct a compensator that is invariant under
the non-Abelian gauge group and supersymmetric (Q-closed) prior to the Abelianization. We
leave the construction of the complete compensator in non-Abelian gauge theory as a future
problem.
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7. Conclusion and discussion
In this paper, the properties of the discretized two-dimensional supersymmetric gauge theory
(the generalized Sugino model) given in Ref. [52] have been studied analytically using the tech-
niques of graph theory.

From a graph theory point of view, the model is defined on a two-dimensional graph and its
dual graph, and the action can be efficiently described using the so-called incidence matrix L
and the dual incidence matrix Ľ.

The incidence and dual incidence matrices respectively map from a vector on the vertices to
a vector on the edges and form a vector on the faces to a vector on the edges, and obey the
property that LĽT = 0. Therefore, if we consider the vectors on the vertices, edges, and faces as
analogs of 0-forms, 1-forms, and 2-forms, respectively, we can regard L and ĽT as the exterior
derivatives, and LT and Ľ as their dual. The cohomology can be defined using L and Ľ, and a
parallel argument to Hodge’s theorem on the Riemann surfaces can be developed on the graphs.
In particular, we found that the structure of the kernel of L and Ľ is completely determined by
the topology of the graph.

We used the properties of these matrices to examine the generalized Sugino model with gauge
group U(1) and found that the number of fermion zero modes depends on the topology of the
graph. Since these zero modes make the partition function ill-defined, it is necessary to insert
an appropriate operator including zero modes in the background. We proposed a mass term for
the fermions so that this operation is done automatically. We confirmed that the introduction
of this mass term regularizes the Dirac matrix and makes the theory itself well-defined. We
also derived anomalous WT identities on the graph corresponding to the classical global U(1)
symmetry, which is broken quantum mechanically unless the topology of the graph is the torus.
In the continuous theory, this anomaly appears as the scalar curvature in the WT identity. On
the other hand, in the theory on a graph, a quantity related to the degrees of the vertices and
faces arises instead of the scalar curvature. This corresponds to the fact that the scalar curvature
of a two-dimensional surface is given by the deficit angle.

We examined the generalized Sugino model from the viewpoint of topological field theory by
restricting the physical quantity to Q-cohomology. We used the so-called localization technique
to compute the expected value of a general Q-closed operator. As a result of localization, the
vev can be expressed in terms of the usual integration by the zero modes. In that case, unless
the operator contains all the fermion zero modes, the vev trivially vanishes. We constructed
Q-invariant operators (compensators) that cancel out the fermion zero modes, and gave a pre-
scription for computing the vev for nontrivial values. The compensators introduced here regu-
larize the theory properly.

We also extended the graph-theoretic description to the non-Abelian theory. Reflecting the
non-commutativity of gauge groups, the incidence and dual incidence matrices are transformed
to be covariant differences instead of ordinary differences. This transformation eliminates the
orthogonality of the incidence and dual incidence matrices unless all the plaquette variables are
unity (Pf = 1), and the fermion zero modes that appeared in the Abelian theory are lifted in most
configurations. Therefore, in most configurations the Dirac matrix is regular and the inverse
exists. However, the situation is different around the saddle points of the Q-transformation.
Using the localization technique with an appropriate gauge fixing, the non-Abelian generalized
Sugino model can be effectively reduced to an Abelian theory. As a result, the evaluation of the
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partition function is completely parallel to the calculation of that of the Abelian theory, and the
fermion zero modes arising at the saddle points make an important contribution. In particular,
it is confirmed that the partition function becomes ill-defined unless these fermion zero modes
on the saddle points are properly treated.

The fact that the non-Abelian generalized Sugino model is also affected by the fermion zero
modes is quite important when carrying out numerical simulations. As mentioned above, the
fermion zero modes appear only on the saddle points of the Q-transformation and thus the
Dirac matrix is regular in almost all configurations. Therefore, the numerical simulation pro-
ceeds even without any special treatment for the zero modes. However, since the saddle points
of the Q-transformation are part of the classical configurations, the zero modes would affect
the computation, especially in the region close to the continuum limit, and there is a possibility
that reliable results cannot be obtained. This conclusion holds even in the case of a torus back-
ground where the anomaly is canceled because the fermion zero modes still exist at the saddle
points.

In the case of the torus, the fermion zero modes are completely lifted up by imposing the anti-
periodic boundary condition in the temporal direction to the fermions. Therefore, the numerical
simulations for a system with finite temperature are expected to work well. All the simulations
imposing anti-periodic boundary conditions for the fermions in the temporal direction have
been successfully carried out [30–35].

On the other hand, it was reported in Ref. [32] that numerical calculations did not yield the ex-
pected results for two-point functions in the continuum limit,8 while it was reported in Ref. [35]
that the vevs of Yukawa terms consistently degenerate in the continuum limit.

At first glance, it seems that the simulation will not work in the presence of fermion zero
modes, but the situation is slightly more complicated. The point is that the theory is expected
to have (at least) two phases: the phase where the eigenvalues of the scalar field form a bound
state, and the phase where they run freely [35]. In the numerical simulation, the flat directions
of the scalar field are controlled by introducing a mass term, and thus the configurations are
all in the phase with the bound state. On the other hand, the partition function in Eq. (208) is
obtained by integrating out all the configurations including both phases. Therefore, although it
is one of the possibilities, if the fermion zero modes are effectively lifted up in the phase with the
bound state, the simulation would work well even if one takes the periodic boundary condition
for the fermions. It will be interesting to check whether the situation changes if we deal with
the fermion zero modes in an appropriate way.

It is only when the background is a torus that the boundary condition can eliminate all the
fermion zero modes. This is because changing the boundary condition is equivalent to trans-
forming D = (L, Ľ). In the case of the torus D is a square matrix, so all zero modes will be
eliminated if we transform it in such a way that the zero modes of L and Ľ are eliminated;
imposing the anti-periodic boundary condition is an example of this kind of modification. On
the other hand, in non-torus cases there are always zero modes no matter how much D is de-
formed since the rank of the rectangular matrix D is at most min (nE, nV + nF). It is therefore
a peculiarity of the torus that the zero modes can be dealt with just by considering the finite
temperature.

8See also Ref. [36], where the WT identity is analytically examined using a “semi-perturbative” treat-
ment.
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In the non-toric cases we have to insert some corrections to the diagonal blocks of /D to elim-
inate all the fermion zero modes. This is equivalent to introducing a mass term to the fermions,
and Eq. (106) is an example of this kind of modification. In the case of non-Abelian theories
it is necessary to introduce such a mass term that appropriately lifts the zero modes arising
on the Q-fixed points without breaking the gauge symmetry and respecting the Q symmetry if
possible. For the zero modes of η and χ , we can simply extend the compensator in Eq. (150)
as

Q tr
(
χ f W̄ ′(φ̄ f )

)
. (210)

For the zero modes of λ, however, it is still an open problem to construct such an operator
that is Q-closed (not Q-exact) and includes bi-linear terms of λ like Eq. (157). Instead, Q-exact
operators like

Q tr
(
λl Pf

)
(211)

may work. It will also be interesting to analyze the properties of non-Abelian compensators.
One problem that has not yet been solved in previous studies is the introduction of matter

fields. In supersymmetric gauge theories, in order to introduce the matter field as a chiral mul-
tiplet, it is essential to consider chiral fermions.

Chiral fermions have been constructed on the regular square lattice by various methods, but
how to construct chiral fermions on a discrete space arbitrarily partitioned by a graph is com-
pletely unknown. However, in this paper we have clarified that the incidence matrix in graph
theory has a deep connection with the Dirac operator, so it seems possible to define chiral
fermions using graph theory. We could use graph theory to introduce chiral fermions on dis-
crete spaces, to construct supersymmetric gauge theories including matter fields, and to analyze
and understand chiral anomalies induced by chiral fermions. These are also important future
issues.

Once the introduction of the matter field is achieved, the interaction with the gauge field
also allows the construction of solitons such as vortices on the discretized Riemann surface.
At present, the construction of solitons on the graph is a novel problem. It will also be very
interesting to understand the non-perturbative effects by such solitons in supersymmetric gauge
theories on the graph.

As mentioned in the introduction, the continuum limit of the generalized Sugino model is a
topologically twisted N = (2, 2) supersymmetric gauge theory, which is a theory on the Rie-
mann surface with a U(1)A background field balanced with the spin connection of the back-
ground space-time, and the fermions behave as fields with integer spins. Interestingly, this prop-
erty is similar to the Kähler–Dirac fermion. In fact, it is argued in Refs. [62,63] that systems
with a Kähler–Dirac fermion have an anomaly proportional to the background Euler num-
ber as well. These approaches would be compatible with lattice gravity, which realizes gravity
via a random triangulation. For example, in the formulation given in Ref. [64], it is essential
to place the gauge field on the edge of the triangulation, and the spin connection on the dual
edge. It is remarkable that in this formulation the action of gravity is written in terms of the
deficit angle of the dual plaquette, whereas the anomaly in the local WT identities appears as
the deficit angle as well. It will be interesting to consider lattice gravity from the viewpoint of
graph theory. In particular, it is suggestive that the construction of the discretized theory with
supersymmetry is possible only when the spin connection and the background gauge field are
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properly balanced. Through research in this direction we expect to obtain new insights from
graph theory for lattice gravity in higher dimensions [64–66].
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Appendix A. Examples of graph data
In this appendix we give concrete examples of the graph data and objects, and check some
properties. We also give plaquette variables on each face and covariantized version of the (dual)
incidence matrix in non-Abelian gauge theory.

A1. Tetrahedron
A directed graph associated with a tetrahedron is shown in Fig. A1. There are four vertices,
labeled by V(�) = {v1, v2, v3, v4}. The directed connectivity for the six edges is given by E(�) =
{e1, e2, e3, e4, e5, e6} = {v1 → v2, v1 → v3, v1 → v4, v2 → v3, v3 → v4, v4 → v2}.

For this directed graph, the incidence matrix is given by

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 0 −1 1
0 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

We can construct the Laplacian matrix for the vertex from the incidence matrix:

�V = LTL =

⎛
⎜⎜⎜⎝

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎞
⎟⎟⎟⎠ . (A2)

Then, the adjacency matrix becomes

K =

⎛
⎜⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎟⎠ . (A3)

The vertex Laplacian has the eigenvalues {4, 4, 4, 0}, which contain one zero.
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Fig. A1. A directed graph for a tetrahedron. There are four vertices and six directed edges.

The four faces are defined by f1 = {e1, e4, ē2}, f2 = {e2, e5, ē3}, f3 = {e3, e6, ē1}, and f3 =
{ē4, ē6, ē5}. The dual incidence matrix is then given by

Ľ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0
−1 1 0 0
0 −1 1 0
1 0 0 −1
0 1 0 −1
0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

We can see that LTĽ = ĽTL = 0.
Using the dual incidence matrix we can construct the Laplacian for the face and edges as

�F = ĽTĽ =

⎛
⎜⎜⎜⎝

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎞
⎟⎟⎟⎠ ,

�E = LLT + ĽĽT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 0 0 0 0 0
0 4 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

which have the eigenvalues {4, 4, 4, 0} and {4, 4, 4, 4, 4, 4}, respectively.
A non-Abelian generalization for the incidence matrix acting on the adjoint representation

is given by

LU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 U 1 · U 1† 0 0
−1 0 U 2 · U 2† 0
−1 0 0 U 3 · U 3†

0 −1 U 4 · U 4† 0
0 0 −1 U 5 · U 5†

0 U 6 · U 6† 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)
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Fig. A2. A directed graph for a 3 × 3 torus. There are 9 vertices, 9 faces, and 18 directed edges.

where · stands for an insertion position of matrices in the adjoint representation when this
covariant incidence matrix acts from the right, for example

(X · Y )A = X AY . (A7)

The conjugate of the dual incidence matrix is derived from the four plaquette variables

P1 = U 1U 4U 2†, P2 = U 2U 5U 3†, P3 = U 3U 6U 1†, P4 = U 4†U 6†U 5†. (A8)

It becomes

Ľ†
U =

⎛
⎜⎜⎜⎝

·P1 −P1· 0 U 1 · U 1†P1 0 0
0 ·P2 −P2· 0 U 2 · U 2†P2 0

−P3· 0 ·P3 0 0 U 3 · U 3†P3

0 0 0 −U 4† · U 4P4 −P4· −P4U 5 · U 5†

⎞
⎟⎟⎟⎠. (A9)

Then, we find that L†
U ĽU = Ľ†

U LU = 0 if and only if Pf = 1.
We can also define the covariant Laplacians by

�V
U = L†

U LU , �F
U = Ľ†

U ĽU , �E
U = LU L†

U + ĽU Ľ†
U , (A10)

which have the same eigenvalues as �V, �F, and �E if and only if Pf = 1.

A2. Torus
A directed graph for a torus is depicted in Fig. A2. The torus is divided into 3 × 3 square faces
(nine faces in total) and the associated graph has a periodicity for two directions.
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We first provide the covariant incidence matrix for this graph. We can immediately reproduce
the usual incidence matrix by setting Ue = 1 for all:

LU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 U 1 · U 1† 0 0 0 0 0 0 0
0 −1 U 2 · U 2† 0 0 0 0 0 0

U 3 · U 3† 0 −1 0 0 0 0 0 0
−1 0 0 U 4 · U 4† 0 0 0 0 0
0 −1 0 0 U 5 · U 5† 0 0 0 0
0 0 −1 0 0 U 6 · U 6† 0 0 0
0 0 0 −1 U 7 · U 7† 0 0 0 0
0 0 0 0 −1 U 8 · U 8† 0 0 0
0 0 0 U 9 · U 9† 0 −1 0 0 0
0 0 0 −1 0 0 U 10 · U 10† 0 0
0 0 0 0 −1 0 0 U 11 · U 11† 0
0 0 0 0 0 −1 0 0 U 12 · U 12†

0 0 0 0 0 0 −1 U 13 · U 13† 0
0 0 0 0 0 0 0 −1 U 14 · U 14†

0 0 0 0 0 0 U 15 · U 15† 0 −1
U 16 · U 16† 0 0 0 0 0 −1 0 0

0 U 17 · U 17† 0 0 0 0 0 −1 0
0 0 U 18 · U 18† 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.s

(A11)

The Laplacian matrix on the vertex is

�V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 −1 0 0 −1 0 0
−1 4 −1 0 −1 0 0 −1 0
−1 −1 4 0 0 −1 0 0 −1
−1 0 0 4 −1 −1 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 −1 −1 4 0 0 −1

−1 0 0 −1 0 0 4 −1 −1
0 −1 0 0 −1 0 −1 4 −1
0 0 −1 0 0 −1 −1 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A12)

which has the eigenvalues {6, 6, 6, 6, 3, 3, 3, 3, 0}.
The covariant dual incidence matrix is made from the plaquette variables, but it is a huge

matrix that does not fit here. To display it we give the incidence matrix by setting Ue = 1:

ĽT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 1 −1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 −1 −1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 1 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 1 −1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 −1 −1 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 −1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 −1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A13)
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The Laplacian matrix on the face �F is the same as �V in Eq. (A12). The Laplacian matrix on
the edge is given by

�E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0
−1 4 −1 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0
−1 −1 4 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0
0 0 0 4 −1 −1 0 0 0 −1 0 0 0 0 0 −1 0 0
0 0 0 −1 4 −1 0 0 0 0 −1 0 0 0 0 0 −1 0
0 0 0 −1 −1 4 0 0 0 0 0 −1 0 0 0 0 0 −1

−1 0 0 0 0 0 4 −1 −1 0 0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 −1 4 −1 0 0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 −1 −1 4 0 0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0 0 4 −1 −1 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0 0 −1 4 −1 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0 0 −1 −1 4 0 0 0 0 0 −1

−1 0 0 0 0 0 −1 0 0 0 0 0 4 −1 −1 0 0 0
0 −1 0 0 0 0 0 −1 0 0 0 0 −1 4 −1 0 0 0
0 0 −1 0 0 0 0 0 −1 0 0 0 −1 −1 4 0 0 0
0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 4 −1 −1
0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 −1 4 −1
0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 −1 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A14)

which has the eigenvalues {6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0}.
We can also show the orthogonality L†

U ĽU = Ľ†
U LU = 0 if and only if Pf = 1 explicitly.

Appendix B. The Cartan–Weyl basis and properties
We denote the generators in the Cartan subalgebra u(N ) byHi (i = 1, …, N) and the root vectors
(Weyl generators) by Eα. These generators obey the commutation relations

[Hi,H j ] = 0, [Hi,E±α] = ±αiE±α, [Eα,E−α] =
N∑

i=1

αiHi, [Eα,Eβ ] = Nα,βEα+β, (B1)

and have the properties

E†
α = E−α, TrEαEβ = δα+β,0, TrHiH j =

∑
α

αiα j = δi j . (B2)

Any adjoint representation of the U(N) group (generators of the Lie algebra) can be expanded
by

X =
N∑

i=1

xiHi +
∑

α

xαEα. (B3)

We use these conventions in the manuscript.
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