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In this note, we revisit the 4-dimensional theory of massive gravity through compactification of an extra 
dimension and geometric symmetry breaking. We dimensionally reduce the 5-dimensional topological 
Chern-Simons gauge theory of (anti) de Sitter group on an interval. We apply non-trivial boundary 
conditions at the endpoints to break all of the gauge symmetries. We identify different components of the 
gauge connection as invertible vierbein and spin-connection to interpret it as a gravitational theory. The 
effective field theory in four dimensions includes the dRGT potential terms and has a tower of Kaluza-
Klein states without massless graviton in the spectrum. The UV cut of the theory is the Planck scale of the 
5-dimensional gravity l−1. If ζ is the scale of symmetry breaking and L is the length of the interval, then 
the masses of the lightest graviton m and the level n (for n < Ll−1) KK gravitons m(n)

KK are determined as 
m = (ζ L−1)

1/2 � m(n)
KK = nL−1. The 4-dimensional Planck mass is mPl ∼ (Ll−3)

1/2 and we find the hierarchy 
ζ < m < L−1 < l−1 < mPl.

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The conventional Lorentz covariant formulation of fields in ten-
sorial representations demands special effort. The action terms 
and the coefficients must be wisely picked so that the redun-
dant unphysical ghost-like degrees of freedom are not propagating. 
The highest helicity modes get propagation through the derivative 
terms and the lower ones from the non-derivative terms. A gauge 
symmetry is emerged as a result of physical consistency conditions 
which is useful to check consistencies, even if it is softly broken, 
throughout computations.

The General Relativity is the unique consistent interacting the-
ory of massless spin-2 particles. It is an effective field theory valid 
up to the 4-dimensional Planck scale mPl. It is invariant under 
active diffeomorphisms of the dynamical metric through which 
only the transverse helicity-2 modes propagate. The longitudinal 
modes in a massive spin-2 particle get propagation by the poten-
tial terms. The Fierz-Pauli mass terms excite longitudinal modes 
yet, with a tuning of parameters, the ghost-like sixth mode is 
kept non-dynamical [1]. It took a long time to construct a ghost-
free non-linear completion of massive gravity which is known as 
the de Rham-Gabadadze-Tolley (dRGT) potential terms [2–11]. It 
is a 2-parameter family of effective field theories with a UV cut-
off �3 = (mPlm2)

1/3 [12–14]. We note that it is proportional to the 
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graviton mass m which modifies gravity at long distances. For cos-
mologically interesting value of graviton mass of order the present 
Hubble rate m ∼ H0 ∼ 10−33 eV we find �3 ∼ 10−13 eV. However, 
we expect that �UV � 10−3 eV from sub-millimeter tests of gravity 
which is parametrically close to the naive expectation for a would-
be UV cutoff �2 = (mPlm)

1/2 (see [15–17] for reviews on massive 
gravity).

The �3 cutoff is computed via the unitarity bound from 
the tree-level scattering amplitudes before the theory becomes 
strongly coupled. In fact, the longitudinal modes pose a serous 
difficulty, as they are derivatively-coupled, when the scattering 
amplitudes are calculated. The amplitudes rapidly grow with (the 
center of) energy s and quickly hit the unitarity bound. In the dRGT 
theory the amplitudes grow like s3 and thus the theory is applica-
ble below �3. We expect that it is UV completed in a theory with 
more particles/interactions such that the cutoff is, parametrically 
close to mPl. Although not yet achieved, there are extensive stud-
ies which show that massive spin-2 theory admit a perturbative 
local Lorentz invariant UV completion [18–28].

We recall that in massive spin-1 theory, the high energy be-
havior of a scattering amplitude involving longitudinal modes can 
be improved by the exchange of a scalar (a.k.a. the Higgs) field. 
The massive spin-1 is perturbatively UV completed and the masses 
and the couplings are determined through the mechanism of spon-
taneous symmetry breaking. We might imagine a similar scenario 
for massive spin-2 theory. Indeed in [29], we attempted to build 
the dRGT theory as a result of spontaneous symmetry breaking 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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(see [30–36] for earlier studies of Higgs-like mechanism in grav-
ity). We proposed a topological gauge theory with ISO(1,3) gauge 
group (or a limit of SO(1,4) group) which could be interpreted 
as a gravitational theory in the space of invertible gauge connec-
tions. There is a symmetry breaking phase with residual diago-
nal SO(1,3) global symmetry in the vacuum. The effective theory 
around this minimum is precisely the dRGT theory plus an addi-
tional interacting Higgs field. Although we succeeded to construct 
the ghost-decoupling structure of the dRGT theory and determined 
its parameters from top-down, further analysis showed that the 
extra scalar mode cannot improve the UV behavior. Remarkably 
in [37], it was argued that the �3 is the highest cutoff scale if no 
other massive spin-2 excitations are present. In the other words, in 
contrast to the spin-1 case, the exchange of any number of scalar 
and vector fields cannot ameliorate the rapid growth of the scatter-
ing amplitudes (see [38–40] for attempts to scale up the UV cutoff 
in different approaches).

On the other hand, the 4-dimensional spacetime might be a 
subspace of a higher-dimensional spacetime. Theories in higher 
dimensions provide a simpler (and often geometric) explanation 
of physics in lower dimensions. For instance, the Kaluza-Klein 
(KK) dimensional reduction offers a mechanism to build theories 
of interacting massive spin-1 and spin-2 particles with control-
lable scattering amplitudes without a Higgs excitations. As ex-
pected, it is shown that the scattering amplitudes of longitudinal 
modes of massive spin-1 particles would not grow like s [41,42]. 
Cancellation occurs by the exchange of massive spin-1 KK states 
and the unitarity is guaranteed by the presence of the entire KK 
tower. Indeed, this results from the gauge symmetry of the higher-
dimensional theory. The UV cutoff of the lower-dimensional theory 
is that of the higher-dimensional gauge theory and we say that the 
theory with all KK states is UV completed in higher dimensions. 
Recently, it is argues that the high energy conduct of scattering 
amplitudes of massive spin-2 particles are similarly improved if 
the whole tower of KK modes are included [43–45]. Dimensional 
reduction of General Relativity gives General Relativity in lower 
dimensions plus interacting massive modes whose coupling are 
dictated by the Einstein-Hilbert action in higher dimensions. The 
spectrum is composed of massless spin-2, spin-1 and spin-0 parti-
cles and their massive KK counterpart. The UV cutoff of the lower-
dimensional gravity is the Planck scale in higher dimensions.

Moreover, extra dimensions not only naturally introduces mas-
sive states by compactification, but also can be applied to break all 
or some of gauge symmetries in lower dimensions. For instance, 
if the Yang-Mills theory is compactified on an interval, non-trivial 
boundary conditions at endpoints can reduce the gauge symmetry 
in the lower-dimensional theory [46]. Interestingly, it was shown 
that this geometric symmetry breaking is soft and, given the entire 
KK modes, the scattering amplitude of longitudinal modes is well-
behaved [47]. The symmetry is broken by boundary conditions on 
gauge fields, the massive spin-1 appears in the spectrum by di-
mensional reduction and unitarity is preserved by the exchange of 
massive vectors. The choice of boundary condition can be such that 
the gauge symmetry is completely broken in lower dimensions and 
no massless gauge field appears. The gauge symmetry is a useful 
concept to get control of propagation and interactions of physical 
modes. When it is softly broken (to give more interesting physics) 
its virtues is descended to the broken phase.

Motivated by the above results, in this paper we construct a 
theory of massive spin-2 particles from compactification of an ex-
tra dimension and geometric symmetry breaking. We choose the 
boundary conditions at the endpoint of an interval such that there 
is no massless spin-2 mode in the spectrum. That makes the the-
ory similar to the dRGT construction. Massive spin-2 KK states 
improving the high energy behavior of the scattering amplitudes. 
Besides the interaction terms induced by the Einstein-Hilbert ac-
2

tion, there are interactions from the dRGT-like terms. However, as 
the symmetry breaking by these contributions are soft, we expect 
that the scattering amplitudes of 2-to-2 gravitons are not divergent 
worse than s.

It has long been known that the first-order formalism of grav-
itational theories in odd dimensions admit gauge theory formula-
tions in terms of Chern-Simons (CS) theories [48–50] (see [51,52]
for more recent studies). Different components of the gauge con-
nection can be identified as geometrical quantities such the viel-
beins and the spin-connection to define the metricity and affinity. 
Then, the d-dimensional diffeomorphism invariance Diff(d) in the 
metric theory is descended from the topological structure of the 
gauge theory.

In the present study, we start from a 5-dimensional topolog-
ical CS theory of (anti) de Sitter gauge group. Then to get a 4-
dimensional theory, we compactify the extra dimension on an in-
terval. By varying the action in the presence of endpoints, we find 
the bulk equations of motion and the boundary terms that must 
be simultaneously vanishing. As we will see, different choices for 
different components of gauge fields implies different physics in 
lower dimensions. After identification of geometrical connections, 
we obtain the General Relativity plus KK modes for one choice and 
the dRGT theory with KK states for the other option. In high energy 
limit with all KK modes included, the 4 dimensional scattering am-
plitude must match that of 5 dimensional theory and perturbative 
unitarity is guaranteed from contributions from different KK states. 
Therefore, the UV cutoff of the effective theory in 4-dimensions is 
the 5-dimensional Planck scale (see also [53,54] where boundary 
conditions of a spurious extra dimension induce a mass term).

The rest of this paper is organized as follows. In the next sec-
tion we briefly review the CS gauge theory in five dimensions in 
different representations and perform partial gauge fixing. Then, 
we find the equations of motion, determined the boundary terms 
and present consistent boundary conditions. Then, we compactify
the theory to four dimensions where we find, besides the Einstein-
Cartan action, the dRGT potential terms in the first order formal-
ism. We identify the parameters of massive gravity in terms of the 
fundamental parameters of the compactified CS theory. Next, we 
compute the coupling constants of interaction induced by the po-
tential terms. Finally, we conclude the results in the last section.

2. Chern-Simons theory in 5 dimensions

We start by considering the CS topological gauge theory in 
5 dimension. The gauge connection 1-form A = 1

2 AI J t I J is val-
ued in so(1,5) or so(2,4) Lie algebras with generators t I J with 
I, J = 1, . . . , 6. We define a topological gauge theory on a five di-
mensional manifold M5 by the integral of the CS 5-form L5

S = α

∫
M5

L5 = α

∫
M5

tr[F ∧ F ∧ A − 1
2 F ∧ A ∧ A

+ 1
10 A ∧ A ∧ A ∧ A ∧ A], (1)

where α is an arbitrary constant and F is the curvature 2-form 
F = dA + A ∧ A. The CS 5-form satisfies

dL5 = tr[F ∧ F ∧ F] = εI J K LMN F I J ∧ F K L ∧ F MN , (2)

where ε is the group invariant tensor. The action, by construction, 
is invariant (up to a boundary term) under the following gauge 
transformations with parameters �I J

A I J → AI J + d�I J + AI
K �K J − A J

K �K I . (3)

The equations of motion are computed as
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εI J K LMN F K L ∧ F MN = 0. (4)

If the five dimensional manifold has boundaries, boundary terms 
must be vanishing too. We note that this gauge theory has 13 
propagating degrees of freedom.

Group decomposition: For later application, we decompose of the 
gauge connection in SO(1,4) (or SO(2,3)) covariant form which is 
represented as

AI J =
[

ωAB e A

−eB 0

]
, (5)

where A, B = 1, 2, . . . , 5. Then, the curvature is

F I J =
[

R AB ∓ e A ∧ eB De A

−DeB 0

]
, (6)

where the upper sign is for the dS and the lower sign is for the 
adS group. Moreover, the covariant derivative is

(De)A = de A + ωA
B eB . (7)

We write the action in S O (1, 4)(or S O (2, 3)) notation

L5 = 3αεABC D E
[

R AB ∧ RC D ∧ eE ∓ 2
3 R AB ∧ eC ∧ eD ∧ eE

+ 1
5 e A ∧ eB ∧ eC ∧ eD ∧ eE]

. (8)

Interpretation as a theory of gravity There is no dimensional pa-
rameter in the action (1) or (8). After splitting the gauge con-
nection A to ω and e we introduce a scale l through e → l−1e
redefinition so that the connection e is dimensionless. Then, we 
identify ω as the spin-connection and e as funfbein. In the space 
of invertible funfbeins, we can define metric structure and inter-
pret (8) as special case of Lovelock action for gravity in five di-
mensions with the Planck mass M5 = (∓4α)1/3l−1. Through taking 
limits l → ∞ or l → 0 and properly rescaling α we respectively 
find the Gauss-Bonnet gravity (with contracted ISO(1,4) symmetry) 
and non-dynamical cosmological constant term. However, there is 
no limit where we find solely the Einstein-Cartan term.

Further group decomposition: We split the connection 1-form in 
terms of SO(1,3) representations as

ωAB =
[

ωab f a

− f b 0

]
, (9)

where now a, b = 1, 2, 3, 4. Thus, the curvature will be

R AB =
[

Rab − f a ∧ f b D f a

−D f b 0

]
, (10)

where now the covariant derivative is defined as

(D f )a = d f a + ωa
b f b. (11)

The SO(1,4) vector is also decomposed

e A =
[

ea

ẽ

]
. (12)

Therefore, the CS 5-form is represented as follows

L5 = 3αεabcd
[

R ab ∧ Rcd ∧ ẽ

− 2Rab ∧ f c ∧ f d ∧ ẽ

+ 2Rab ∧ ec ∧ D f d

∓ 2Rab ∧ ec ∧ ed ∧ ẽ

+ f a ∧ f b ∧ f c ∧ f d ∧ ẽ

− 2ea ∧ f b ∧ f c ∧ D f d
3

± 2ea ∧ eb ∧ f c ∧ f d ∧ ẽ

∓ 2
3 ea ∧ eb ∧ ec ∧ D f d

+ ea ∧ eb ∧ ec ∧ ed ∧ ẽ
]
. (13)

The above action is invariance under the following SO(1,5) (or 
SO(2,4)) gauge transformations

δωab = (Dλ)ab − f [aκb] ∓ e[aεb], (14a)

δ f a = (Dκ)a + f bλb
a ∓ eaε ± ẽεa, (14b)

δea = (Dε)a + ebλb
a + f aε − ẽκa, (14c)

δẽ = dε − f aκa + eaεa, (14d)

where �ab = λab are parameters of SO(1,3) transformations and we 
define �a6 = εa , �a5 = κa and �56 = ε.

In the final step, we split the fifth dimension from the other 
four and express the dynamical fields as

ωab = ωab
μ (x, y)dxμ + ωab

y (x, y)dy, (15a)

f a = f a
μ(x, y)dxμ + f a

y(x, y)dy, (15b)

ea = ea
μ(x, y)dxμ + ea

y(x, y)dy, (15c)

ẽ = ẽμ(x, y)dxμ + ẽ y(x, y)dy. (15d)

Then, the action is rewritten

L5 = 3α εabcd

[
Rab ∧ Rcd ∧ ẽ y + 6Rab ∧ ẽ ∧ Rcd

y

− 2Rab ∧ f c ∧ f d ∧ ẽ y + 4Rab ∧ f c ∧ ẽ ∧ f d
y

− 2 f a ∧ f b ∧ ẽ ∧ Rcd
y + 2Rab ∧ ec ∧ (D f )d

y

− 6Rab ∧ (D f )c ∧ ed
y + 2ea ∧ (D f )b ∧ Rcd

y

∓ 2Rab ∧ ec ∧ ed ∧ ẽ y ± 4Rab ∧ ec ∧ ẽ ∧ ed
y

∓ 2ea ∧ eb ∧ ẽ ∧ Rcd
y + f a ∧ f b ∧ f c ∧ f d ∧ ẽ y

− 4 f a ∧ f b ∧ f c ∧ ẽ ∧ f d
y − 2ea ∧ f b ∧ f c ∧ (D f )d

y

+ 4ea ∧ f b ∧ (D f )c ∧ f d
y + 2 f a ∧ f b ∧ (D f )c ∧ ed

y

± 2ea ∧ eb ∧ f c ∧ f d ∧ ẽ y ∓ 4ea ∧ eb ∧ f c ∧ ẽ ∧ f d
y

∓ 4ea ∧ f b ∧ f c ∧ ẽ ∧ ed
y ∓ 2

3 ea ∧ eb ∧ ec ∧ (D f )d
y

± 2ea ∧ eb ∧ (D f )c ∧ ed
y + ea ∧ eb ∧ ec ∧ ed ∧ ẽ y

− 4ea ∧ eb ∧ ec ∧ ẽ ∧ ed
y

]
, (16)

where the subscript y means that the differential forms have one 
leg along the 5th direction. In particular

R y = Rab
yμdxμ ∧ dy,

(D f )y = D y f a
μdxμ ∧ dy + Dμ f a

y dy ∧ dxμ. (17)

The equations of motion of ẽ y, ea
y, f a

y , ωab
y , ̃eμ, ea

μ, f a
μ and ωab

μ are 
computed respectively as follows

0 = ε · (R − f ∧ f ∓ e ∧ e) ∧ (R − f ∧ f ∓ e ∧ e), (18)

0 = ε · (R − f ∧ f ∓ e ∧ e) ∧ (D f ± 2e ∧ ẽ), (19)

0 = ε · (R − f ∧ f ∓ e ∧ e) ∧ (De + 2 f ∧ ẽ), (20)

0 = ε · [(dẽ − f ∧ e) ∧ (R − f ∧ f ∓ e ∧ e)

−2(D f ± 2e ∧ ẽ) ∧ (De + 2 f ∧ ẽ)], (21)

0 = ε · (R − f ∧ f ∓ e ∧ e) ∧ (R y − 2 f ∧ f y ∓ 2e ∧ e y), (22)

0 = ε · (R − f ∧ f ∓ e ∧ e) ∧ ((D f )y ∓ 2e ∧ ẽ y ∓ 2e y ∧ ẽ)
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+ ε · (R y − 2 f ∧ f y ∓ 2e ∧ e y) ∧ (D f ± 2e ∧ ẽ), (23)

0 = ε · (R − f ∧ f ∓ e ∧ e) ∧ ((De)y − 2 f ∧ ẽ y − 2 f y ∧ ẽ)

+ ε · (R y − 2 f ∧ f y ∓ 2e ∧ e y) ∧ (De + 2 f ∧ ẽ), (24)

0 = ε · [(dẽ y − f ∧ e y + f y ∧ e) ∧ (R − f ∧ f ∓ e ∧ e) (25)

+(dẽ − f ∧ e) ∧ (R y − 2 f ∧ f y ∓ 2e ∧ e y)

+2((D f )y ± 2e ∧ ẽ y ∓ 2e y ∧ ẽ) ∧ (De + 2 f ∧ ẽ)

−2((De)y + 2 f ∧ ẽ y − 2 f y ∧ ẽ) ∧ (D f ± 2e ∧ ẽ)].
Partial gauge fixing: The action is invariant under fifteen gauge 

transformations (14a) through (14d). The parameters of transfor-
mations (�(x, y) = {λab, κa, εa, ε}) can be expanded as follows

�(x, y) = λ(x) + ∑
iλi(x)ϕi(y), (26)

where ϕi are complete orthonormal functions in one dimensions. 
We use some part of the gauge transformations to fix the fifth 
components of the gauge fields everywhere in the bulk. However, 
for later application, we require that the gauge fixed action is still 
invariant under SO(1,3) gauge symmetries. Thus, we fix a gauge as

ea
y(x, y) = 0, (27)

f a
y(x, y) = 0, (28)

ωab
y (x, y) = 0. (29)

Moreover, ẽ y can be fixed to by the remaining gauge transforma-
tion (14d). It is in scalar representation of 4-dimensional Lorentz 
transformations. Thus, it can be fixed to either zero or a non-zero 
value. We are interested in non-zero value as it break the scale 
symmetry of the theory by introducing a dimensionful constant l
as

ẽ y(x, y) = l−1. (30)

In this gauge, the 5-dimensional Lagrangian is given by

L5 = 3αεabcd
[

l−1 Rab ∧ Rcd

−2l−1 Rab ∧ f c ∧ f d

+2Rab ∧ ec ∧ ∂y f d

+2ea ∧ D f b ∧ ∂yω
cd

+2Rab ∧ ẽ ∧ ∂yω
cd

−2 f a ∧ f b ∧ ẽ ∧ ∂yω
cd

∓2ea ∧ eb ∧ ẽ ∧ ∂yω
cd

∓2l−1 Rab ∧ ec ∧ ed

+l−1 f a ∧ f b ∧ f c ∧ f d

−2ea ∧ f b ∧ f c ∧ ∂y f d

±2l−1ea ∧ eb ∧ f c ∧ f d

∓ 2
3 ea ∧ eb ∧ ec ∧ ∂y f d

+l−1ea ∧ eb ∧ ec ∧ ed] ∧ dy. (31)

Needless to say, in a gauge with ẽ y = 0 (l → 0) we find a different 
theory that we abandon to study in this paper.
4

3. Symmetry breaking by boundary conditions

We assume that the 5-dimensional manifold has boundaries 
along the fifth direction. The bulk equations of motions for respec-
tively ẽ, ea , f a and ωab are

0 = εabcd(Rab ∓ ea ∧ eb − f a ∧ f b) ∧ ∂yω
cd, (32)

0 = εabcd(Rbc ∓ eb ∧ ec − f b ∧ f c) ∧ (∓2ed + ∂y f d)

+ εabcd(D f )b ∧ ∂yω
cd, (33)

0 = εabcd(Rbc ∓ eb ∧ ec − f b ∧ f c) ∧ (−2 f d + ∂yed)

+ εabcd(De)b ∧ ∂yω
cd, (34)

0 = ±εabcdec ∧ (De)d + εabcd f c ∧ (D f )d

− 1
2εabcd(De)c ∧ ∂y f d − 1

2εabcd(D f )c ∧ ∂yed. (35)

A simple familiar class of solutions are given by

(De)a = 0, (36)

(D f )a = 0, (37)

Rab ∓ ea ∧ eb − f a ∧ f b = 0. (38)

Moreover, the variation of the action gives the boundary terms 
that must be vanishing

∫
M4

y=L∫
y=0

∂y

[ ∂L
∂(∂y f a)

δ f a + ∂L
∂(∂yωab)

δωab
]

= 0. (39)

In the following, we assume that each term in (39) is vanishing 
independently on the endpoints which yield the following condi-
tions

0 = εabcdea ∧ (Rbc ∓ 1/3eb ∧ ec − f b ∧ f c) ∧ δ f d
∣∣y=L

y=0, (40)

0 = εabcd(ea ∧ D f b + Rab ∓ ea ∧ eb − f a ∧ f b) ∧ δωcd
∣∣y=L

y=0.

(41)

There are variety of choices for boundary conditions so that they 
satisfy the above requirements. The simplest ones are that either 
the variations of the fields f a and ωab vanish at both endpoints

δ f d
∣∣

y=0 and π L = 0, (42)

δωcd
∣∣

y=0 and π L = 0, (43)

or so do their coefficients

Rab ∓ 1/3ea ∧ eb − f a ∧ f b
∣∣

y=0 and π L = 0, (44)

ea ∧ D f b + Rab ∓ ea ∧ eb − f a ∧ f b
∣∣

y=0 and π L = 0. (45)

We limit ourselves to these simplest conditions.
The general solution to (42) is

f a
μ(x, y = 0) = ζ a

μ , f a
μ(x, y = L) = ζ̃ a

μ, (46)

ωab
μ (x, y = 0) = ζ ab

μ , ωab
μ (x, y = L) = ζ̃ ab

μ , (47)

where ζ and ζ̃ are constants vectors/tensors with mass dimension 
one. We note that for ζ = ζ̃ = 0 all gauge symmetries are pre-
served in lower dimensions.

Generic choices of constants (ζ, ̃ζ �= 0) break all or some of the 
gauge symmetries. However, there is a particular non-trivial choice 
that a global diagonal S O (1, 3) symmetry is preserved. We recall 
that the Lagrangian (31) is invariant under S O (1, 3) of internal 
gauge transformation and another S O (1, 3) × U (1) ⊂ Diff(5) which 
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originated from the topological invariance of the CS action. Bound-
ary conditions at the endpoints that satisfies the first equation in 
(40) can be chosen so that a diagonal S O (1, 3) is preserved as fol-
lows

f a
μ(x, y = 0) = ζ δa

μ and

f a
μ(x, y = π L) = ζ̃ δa

μ, (48)

where ζ is a dimensional constant of either sign. Equivalently, it 
can be represented in terms of differential forms

f a(x, y = 0) = ζ1a and f a(x, y = π L) = ζ̃1a, (49)

where 1a are constant 1-forms. We emphasis that ζ and ζ̃ are 
order parameters of symmetry breaking.

The second condition in (41) can be satisfied given that

ωab(x, y = L) = ωab(x, y = 0) = 0. (50)

Alternatively, one can choose to satisfy (41) by admitting to (45)
and demands

(D f )a
∣∣

y=0 and L = 0, (51)

Rab ∓ ea ∧ eb − f a ∧ f b
∣∣

y=0 and L = 0. (52)

The first constrain implies that the Lorentz vector f a is covariantly 
constant at endpoints.

In the following, we choose (48) and (50). Moreover, there is 
enough residual gauge freedom to require that

∂μ f a
μ(x, y) = 0. (53)

In fact, we applied gauge transformation (14b) to fix the fifth com-
ponent of f a as in (28). However, we can add to the gauge param-
eters in (14b) some functions of 4-dimensional coordinates xμ so 
that the gauge in (28) is preserved. This freedom is enough to sat-
isfy (53). For ζ �= 0 there are three choices for ζ̃ so that S O (1, 3) is 
preserved, namely ζ̃ = 0, ζ̃ = −ζ and ζ̃ = ζ . The KK decomposition 
of f a

μ fields for three choices are

f a
μ(x, y) = ζ δa

μ cos(cL−1 y), (54)

where c is either of 1/2, 1, 2 for different choices of ζ̃ . Without loss 
of generality, we choose c = 1 in the following analysis.

The KK expansion of ea and ωab fields are periodic on the in-
terval as written as

ea
μ(x, y) = ea

μ(x) + ∑
n=1 ea,n

μ (x) cos(nL−1 y), (55)

ωab
μ (x, y) = ωab

μ (x) + ∑
n=1 ωab,n

μ (x) cos(nL−1 y). (56)

Finally, we note that when we assign a coordinate system to 
the 5-dimensional manifold, we can fix four coordinates (by infi-
nite dimensional diffeomorphisms) so that ẽμdxμ = 0. The other 
freedom along the fifth coordinate solely rescales the gauge choice 
in (30). Therefore using all the above freedom, we are allowed to 
greatly simplify the action and (ignoring a shift by real numbers) 
as

L5 = 3αεabcd
[ ∓2l−1 Rab ∧ ec ∧ ed

−2ea ∧ f b ∧ f c ∧ ∂y f d

±2l−1ea ∧ eb ∧ f c ∧ f d

∓ 2
3 ea ∧ eb ∧ ec ∧ ∂y f d

+l−1ea ∧ eb ∧ ec ∧ ed] ∧ dy. (57)
5

3.1. Dimensional reduction in 4 dimensions

Now, we are ready compactify the simplified 5-dimensional CS 
theory to get an effective 4-dimensional theory. The fifth dimen-
sion is compactified on a line segment of length L so that 

∫
dy = L. 

Basically, the kinetic terms and interactions among different KK 
modes are obtained by substituting fields expansion into the ac-
tion and integrating over the extra dimension.

Interpretation as a 4-dimensional theory of gravity In order to in-
terpret the reduced theory as a gravitational theory, we take ea

μ as 
invertible vierbeins and rescale to make them dimensionless

ea → l−1ea. (58)

Consequently, we can endow the manifold with a metric defined 
by gμν = ea

μeb
νηab and the general covariance is descended from 

the topological invariance.
Then apparently, the first term in (57) yields the Einstein-

Hilbert action which gives the kinetic terms, mass terms and some 
part of interactions among KK states. The 4-dimensional Planck 
mass is identified as

m2
Pl = ∓24αl−3L. (59)

From above, we can identify the scale l we the 5-dimensional 
Planck length and in order for geometry to make sense we must 
have L < l and so mPl > l−1. We recall that the free parameter α
can be of either sign.

Before we continue, we point out that the mass of level n KK 
modes are given by

m(n)
KK = nL−1. (60)

The validity of the lower-dimensional effective field theory re-
quires that m(n)

KK < l−1. Consequently, the 4-dimensional theory in-
cludes KK modes up to level n given by n < Ll−1.

Now we work out the potential terms by substituting the fields 
expansion (54) and (55) and integrate over the extra dimension. 
On zero modes we find

V ⊃ −(3αl−5L)εabcdea ∧ eb ∧ ec ∧ ed

∓(4αζ l−3)εabcdea ∧ eb ∧ ec ∧ 1d

∓(3αζ 2l−3L)εabcdea ∧ eb ∧ 1c ∧ 1d

−(4αζ 3l−1)εabcdea ∧ 1b ∧ 1c ∧ 1d. (61)

We read the cosmological constant from the first term as

� = −3αl−5L = ± 1
8 l−2m2

Pl. (62)

Next, we compare this with the 2-parameter family of the dRGT 
potential terms [55]

VdRGT = 1/24(m2m2
Pl)b0ε

abcdea ∧ eb ∧ ec ∧ ed

+ 1/6(m2m2
Pl)b1ε

abcdea ∧ eb ∧ ec ∧ 1d

+ 1/4(m2m2
Pl)b2ε

abcdea ∧ eb ∧ 1c ∧ 1d

+ 1/6(m2m2
Pl)b3ε

abcdea ∧ 1b ∧ 1c ∧ 1d, (63)

where m is the graviton mass. Therefore, we determine the free 
parameters in the dRGT potential in terms of the fundamental pa-
rameters induced by the higher-dimensional theory

b0m2 = ±3l−2

b1m2 = ζ L−1,

b2m2 = 1
2 ζ 2,

b3m2 = ±ζ 3l2L−1. (64)
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The graviton mass m is read through the condition b1 + 2b2 +b3 =
1. Then, we find that

m2 = ζ L−1[1 + ζ L ± (ζ l)2] ≈ ζ L−1(1 + ζ L), (65)

where in the last step we made the natural assumption that the 
scale of symmetry breaking is less than the fundamental scale 
of the gravitational theory in 5-dimensions i.e. ζ � l−1. More-
over comparing the scale of symmetry breaking with the interval 
length, we find that there are two possibilities as follows

m2 ≈ ζ 2 for ζ � L−1, (66)

m2 ≈ ζ L−1 for ζ � L−1. (67)

Therefore, the scales assume two possible hierarchies

ζ < m < L−1 < l−1 < mPl, (68)

L−1 < ζ = m < l−1 < mPl. (69)

In the first case, the massive graviton in the dRGT potential is 
lighter than all of the KK gravitons. In the second case, it is in 
the middle of the spectrum.

Furthermore, in the dRGT theory in order that flat spacetime is 
a solution one demands b0 + 3b1 + 3b2 + b3 = 0. It implies that

[3 + (ζ l)2][2(ζ l)2 ± 3(ζ L)] ∓ 3ζ L = 0. (70)

In the limit ζ � l−1 it has a solution for ζ � L−1 and l ≈ √
6L. 

Therefore, the consistent hierarchy of scales is given by the first 
case.

We emphasis that the proposed theory involves four param-
eters α, l, L and ζ . One combination of parameters fixes the 4-
dimensional Planck mass (59), another combination determines 
the graviton mass (65) and the other two independent parame-
ters (counterparts of c3 and d5 in the dRGT model) give interaction 
strengths in the potential terms. It gives two-parameter family of 
the most general ghost free potential terms. The potential terms 
are constructed top-down from a CS gauge theory and coeffi-
cients are determined through symmetry breaking mechanism and 
compactification scale. The UV cutoff of the theory �UV is the 5-
dimensional Planck scale l−1 and it is parametrically much greater 
than the UV cutoff of the dRGT theory �3 as

�UV ∼ l−1 ∼ (L−1m2
Pl)

1/3 � �3 ∼ (mPlζ L−1)
1/3. (71)

Therefore, we say that the 4-dimensional theory of massive spin-2 
is UV completed in five dimensions.

In passing we note that different compactification schemes and 
different choices for the boundary conditions would yield different 
spin-2 field theories.

3.2. Interaction of Kaluza-Klein modes

In order to find the interactions among different KK modes, we 
substitute the field expansions into the higher-dimensional action 
and integrate over the extra dimensions. In this model on top of 
standard interactions from the Einstein-Hilbert action, we find ex-
tra interactions of KK states induced by the dRGT-like terms. Here 
we compute the non-vanishing couplings starting from the sim-
plified action (57). The first class of interactions are computed as 
follows

V ⊃ −(6αζ 3l−1L−1)εabcd1a ∧ 1b ∧ 1c ∧ ∑
ned

n

×
∫

cos2(L−1 y) sin(L−1 y) cos(nL−1 y)

= (12αl−1ζ 3)εabcd
∑

cnea
n ∧ 1b ∧ 1c ∧ 1d, (72)
n

6

where cn are

cn = 1

1 − 4n2

n2−3

, n = 2,4,6, . . . . (73)

The other interactions are given by

V ⊃ ∓(6αζ 2l−1εabcd1a ∧ 1b ∧ ∑
mec

m ∧ ∑
ned

n

×
∫

cos2(L−1 y) cos(mL−1 y) cos(nL−1 y)

= ∓(6αl−1Lζ 2)εabcd
∑

m,ncmnea
m ∧ eb

n ∧ 1c ∧ 1d, (74)

where the coefficient cmn are

cmn = π
8 δm+n,2 + π

8 δm−n,2 + π
4 δm,n. (75)

The lest set of interactions are found as

V ⊃ ∓(2αζ l−3L−1)εabcd1a ∧
∫ [

eb + ∑
meb

m cos(mL−1 y)
]

∧[
ec + ∑

nec
n cos(nL−1 y)

]
∧[

ed + ∑
ped

p cos(nL−1 y)
] × sin(L−1 y)

= ±(12αζ l−3)εabcd
∑

mcmea ∧ eb ∧ ec
m ∧ 1d

±(12αζ l−3)εabcd
∑

m,ncmnea ∧ eb
m ∧ ec

n ∧ 1d

±(αζ l−3)εabcd
∑

m,n,pcmnpea
m ∧ eb

n ∧ ec
p ∧ 1d, (76)

with the following coefficients

cm = 1

m2 − 1
, m = 2,4,6, . . . , (77)

cmn = m2 + n2 − 1

(m2 − n2)2 − 2(m2 + n2) + 1
,

∣∣∣m,n=2,4,6,...

m,n=1,3,5,...
, (78)

cmnp = (−1)m−n−p

m − n − p − 1
+ (−1)m+n−p

m + n − p + 1
+ (−1)m−n+p

m − n + p + 1
. (79)

4. Conclusion

In this paper, we revisited the dRGT interaction terms in a the-
ory of massive gravity in a top-down approach. We built an effec-
tive field theory in four dimensions with massive spin-2 excitations 
and no massless one. We got that by a particular dimensional re-
duction of CS gauge theory in five dimensions. All the parameters 
of the dRGT theory is computed in terms of the fundamental and 
the geometric quantities of the 5-dimensional theory. The extra di-
mension helped to break all the gauge symmetry by appropriate 
boundary conditions and thus explained the absence of the mass-
less spin-2 particle. Moreover, it provided the lower dimensional 
theory with a whole tower of KK states. The exchange of these 
modes improves the high energy behavior of the scattering ampli-
tudes involving the longitudinal modes. Therefore, the UV cutoff 
the effective field theory in four dimensions is the Planck scale 
of the 5-dimensional gravitational theory and, unlike the dRGT 
theory, it is independent of the graviton mass (namely, the IR pa-
rameter). These interesting features are descended from the gauge 
structure of the higher-dimensional theory which is softly broken 
in lower dimensions.
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