
Role of Left-Hand Cut Contributions on Pole Extractions from Lattice Data:
Case Study for Tccð3875Þ +

Meng-Lin Du ,1 Arseniy Filin ,2 Vadim Baru ,2 Xiang-Kun Dong ,3,4 Evgeny Epelbaum ,2 Feng-Kun Guo ,3,4,5

Christoph Hanhart ,6 Alexey Nefediev ,7,8 Juan Nieves ,9 and Qian Wang 10,11,12

1School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
2Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

3CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences,
Beijing 100190, China

4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
5Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China

6Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics,
Forschungszentrum Jülich, D-52425 Jülich, Germany

7Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
8CeFEMA, Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico,
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We discuss recent lattice data for the Tccð3875Þþ state to stress, for the first time, a potentially strong
impact of left-hand cuts from the one-pion exchange on the pole extraction for near-threshold exotic states.
In particular, if the left-hand cut is located close to the two-particle threshold, which happens naturally in
the DD� system for the pion mass exceeding its physical value, the effective-range expansion is valid only
in a very limited energy range up to the cut and as such is of little use to reliably extract the poles. Then, an
accurate extraction of the pole locations requires the one-pion exchange to be implemented explicitly into
the scattering amplitudes. Our findings are general and potentially relevant for a wide class of hadronic
near-threshold states.

DOI: 10.1103/PhysRevLett.131.131903

Introduction.—The past two decades have witnessed the
discovery of a large number of the so-called exotic hadronic
states in the heavy-quark sector that do not fit into the
scheme of simple quark models [1–9]. For some of them
only particular properties like masses or decays strongly
deviate from expectations, for others already the quantum
numbers unambiguously indicate their multiquark content—
the most prominent representatives of this class are the
isotriplet Zc and Zb states that decay to a heavy quarkonium
plus a single pion. For an overview of the experimental
situation see, e.g., [7].

The pressing theoretical question is what clusters the
quarks form in these exotic hadrons. One popular scenario is
that diquarks and antidiquarks emerge as relatively compact
building blocks carrying a color charge [1,2]. Then, if
there are light quarks in the system, the size of the emerging
states is governed by the confinement radius, ∼1=ΛQCD

(ΛQCD ∼ 300 MeV), and does not depend on the binding
energy Eb defined as the difference between the mass of the
state and the energy of the closest threshold. Alternatively,
the building blocks could be color-neutral conventional
hadrons. Then, the size of these so-called hadronic mole-
cules is given by the inverse of the binding momentum
γ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2μEb
p

≪ ΛQCD, with μ for the reducedmass, resulting
in large radii of near-threshold states. Thus, the size
of hadronic molecules is limited by the binding
momentum rather than by the structure of the interaction.
This difference in size leads to significant differences in
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some observables [4]. Because of confinement, only color
singlet multihadron intermediate states can go on shell,
thereby generating a unitarity or right-hand cut (rhc) in the
amplitude. The argument can be further generalized to
unstable constituents [10,11], as long as they are not too
broad [12], with lifetime larger than the range of forces [13].
So far little is known about the potential that leads to

exotics—this changes with identifying the potentially
strong impact of left-hand cuts (lhcs) from the one-pion
exchange (OPE) on the pole extraction for doubly heavy
near-threshold states, which is demonstrated here for the
first time. For concreteness, we present our findings with
the focus on the double-charm meson Tþ

cc reported in
[14,15] and treated as a DD� molecule. Among many
exotic candidates, the Tþ

cc is of particular interest since its
width, apart from a tiny electromagnetic contribution,
stems almost entirely from the only available strong decay
channel DDπ. Then, the only relevant cut of the amplitude
on the real axis is the three-body DDπ cut (blue dashed
vertical lines in Fig. 1), while the DD� branch cut (green
dashed vertical line) splits into a pair of cuts on the second
sheet in the complex energy plane [16,17]. The branch
point of the DDπ cut is located below the nominal DD�
threshold.
The cut structure of the amplitude severely changes for a

heavier pion, which can be studied using lattice QCD and
chiral effective field theories. As soon as the pion mass mπ

exceeds the D�-D mass difference, ΔM ¼ MD� −MD, the
Tþ
cc is stable with respect to the strong interaction, theDDπ

three-body cut branch point appears above the DD� two-
body threshold, and the pion exchange induces the lhc
(the red dashed horizontal line in Fig. 1) [18,19]. Since the
location of the branch point is related to the range of
the potential and the discontinuity depends on its strength,
the lhc is also called dynamical [20]. Other relevant cuts
present in the system are discussed below.
The Tþ

cc was recently studied in lattice QCD [21–23].
The last work employs the HAL QCDmethod to extract the

DD� scattering potential and then use it to calculate the
phase shifts above the two-body threshold. Our consid-
eration does not directly apply to that approach. In the first
two works the Lüscher method is employed to extract the
DD� phase shifts δðEÞ at mπ ¼ 280 and 350 MeV, respec-
tively. However, in [22], there is only one data point in the
near-threshold region and only a single lattice volume is
investigated, so the authors themselves argue that a proper
discussion of the pole structure of the amplitude is not
possible yet. Therefore, we stick to the phase shifts
extracted in [21] and related to the scattering T matrix as

−
2π

μ
T−1ðEÞ ¼ p cot δ − ip; ð1Þ

with E and p the energy and the magnitude of the relative
momentum in the center-of-mass (c.m.) frame, respectively.
A pole of the T matrix appears if

p cot δ ¼ ip: ð2Þ

To exploit condition (2), the phase shifts extracted from
the lattice calculations were parametrized retaining the first
two terms in the effective range expansion (ERE) [24],

p cot δ ¼ 1

a
þ 1

2
rp2 þOðp4Þ; ð3Þ

where a and r are the scattering length and effective range,
respectively. However, the convergence radius of ERE is set
by the location of the nearest singularity irrespective of its
origin. We argue that, in the settings of [21], the physics
related to the lhc is relevant and cannot be ignored. In
particular, we demonstrate that the simple approximation
(3) has to be abandoned in favor of the exact solution of the
dynamical equation in the presence of pions, which have a
strong effect on both p cot δ and the extracted pole. Thus,
the physics discussed in this Letter is related to the lhcs
from long-range potentials and is quite general.
Importantly, the phase shifts extracted from the lattice

data and employed in our analysis may need to be revisited
since the presence of the lhc requires a modification of the
Lüscher method [27,28] and may induce sizable partial-
wave mixing effects [29]. Being unable to assess quanti-
tatively the importance of these effects, we take the phase
shifts extracted above the lhc for granted.
Cut structure of the DD� amplitude.—In line with the

lattice setting employed to analyze the DD� system, we
work in the isospin limit and use isospin-averaged masses
for all mesons. Then the Tccð3875Þþ is a purely isoscalar
state. The relevant degrees of freedom are DD� and DDπ,
introducing two- and three-body branch points in the
amplitude, respectively. For the physical pion mass, pions
contribute to the DD� dynamics in two ways: through the
D� self-energy and DD� scattering potential. Both induce
rhcs to the amplitude (upper and lower blue dashed vertical

= +

= +

FIG. 1. The cut structure in theDD� system. (i) The blue dotted
vertical lines (c3) indicate the three-body right-hand cuts, (ii) the
green dotted vertical line (c2) shows the two-body cut, and
(iii) the red dotted horizontal line (cL) is for the left-hand
cut. T and V denote the amplitude and interaction potential,
respectively.
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lines in Fig. 1, respectively). The three-body DDπ Green’s
function generating the most relevant cut in the DD�
scattering amplitude reads [30–33] (for details on time-
ordered perturbation theory see, e.g., [34–36])

G−1
π ðE; k0; kÞ ¼ E − EDðk2Þ − EDðk02Þ − ωπðq2Þ

≈ E − 2MD −
k2 þ k02

2MD
− ωπðq2Þ; ð4Þ

where E is the total energy, k (k0) is the incoming (out-
going)DD� relative momentum in the c.m. frame, EDðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

D þ k2
p

, ωπðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q2
p

, with q ¼ k − k0, and
kð0Þ ¼ jkð0Þj, q ¼ jqj.
For the physical pion mass, mπ < ΔM, and one can find

real values of k and k0 such that G−1
π ¼ 0 for each energy E

above the three-body threshold Ethr ≡ 2MD þmπ , with the
interpretation of the DDπ state going on shell. At the same
time, the DD� Green’s function has two branch points in
the complex s plane (s ¼ E2), giving rise to the two-body
unitarity cuts in the scattering amplitude; see Fig. 2(b).
If mπ increases, ΔM, governed by heavy-quark spin

symmetry violation and not chiral dynamics, changes very
little, but the phase space for the DDπ state shrinks. For
mπ > ΔM, D� becomes stable (its radiative decays are not
considered in lattice calculations, so we neglect them too),
and theDD� branch cut moves to the real axis. We measure
the energy relative to the DD� threshold to write E ¼
MD� þMD þ p2=ð2μÞ, where μ ¼ MD�MD=ðMD� þMDÞ.
The two-body branch point is located at E ¼ MD þMD� ,
which implies

p2
rhc2

¼ 0: ð5Þ

Then,

G−1
π ðE; k0; kÞ ¼ ΔM þ p2

2μ
−
k2 þ k02

2MD
− ωπðq2Þ; ð6Þ

so the three-body branch point (we set k ¼ k0 ¼ 0) is

p2
rhc3

¼ 2μðmπ − ΔMÞ: ð7Þ

In addition, new singularities emerge from (6) in the on-
shell partial-wave amplitudes at imaginary values of the
momenta, k2 ¼ k02 ¼ p2 < 0. The smallest in magnitude
value of p2 where this happens (μ ≈MD=2) is given by
ωπð4p2Þ ≈ ΔM (backward scattering):

ðp1π
lhcÞ2 ≈

1

4
½ðΔMÞ2 −m2

π�: ð8Þ

This sets the location of the branch point for the lhc nearest
to the threshold. The other, remote, end point of this lhc is
set by forward scattering [36]. The cut structure in the
complex s plane for mπ > ΔM (stable D�) is shown in
Fig. 2(a) with the lhc located below the two-body DD�
threshold. Decreasing mπ , the lhc shrinks and moves
toward the threshold. For mπ ¼ ΔM both branch points
of the lhc and three-body rhc [see (7)] hit the threshold.
After that, as the D� becomes unstable, the only relevant
cut left on the real axis is the three-body DDπ cut; see
Fig. 2(b). Meanwhile, the other possible lhcs from the two-
pion or heavier meson exchanges may still be present.
Those are much farther away from the threshold and
irrelevant to the discussion here.
A lhc introduces nonanalyticity to p cot δ defined in (1)

and, accordingly, sets the upper bound on the convergence
radius of ERE (3). For the case at hand, p cot δ acquires an
imaginary part for energies below the lhc and cannot be
treated as real valued.
Results and discussion.—For an illustration of the general

concept, we focus on the lattice data from [21] collected at
mπ ¼280MeV, MD ¼ 1927 MeV, and MD� ¼ 2049 MeV
(the second dataset provided in [21] leads to analogous
results [36]). Then, with ΔM ¼ 122 MeV < mπ , we find

ðp1π
lhcÞ2 ¼ −ð126 MeVÞ2 ⇒

�
p1π
lhc

EDD�

�
2

¼ −0.0010; ð9Þ

where EDD� ¼ MD þMD� . In Fig. 3 the location of this lhc
branch point is indicated with the dashed vertical line. The
DDπ rhc branch point is located far away,

p2
rhc3

¼ ð552 MeVÞ2 ⇒
�
prhc3

EDD�

�
2

¼ þ0.019; ð10Þ

and is irrelevant for the current analysis.
In [21] the T-matrix pole is extracted from the lattice data

using a linear (in p2) fit, as defined in (3), in the full energy
range, thereby yielding a pole location at p2

0=ð2μÞ ¼
−9.9 MeV [ðp0=EDD� Þ2 ¼ −0.0012], on the second
Riemann sheet of the complex s plane. In Fig. 3 this fit
is shown as the gray line including its 1σ uncertainty band

(a) (b)

FIG. 2. Sketch of the locations of various branch cuts and poles
in the complex s plane for (a) mπ ¼ 280 MeV and (b) the
physical pion mass. The left-hand, two-body DD�, and three-
body DDπ cuts are shown in red, green, and blue, respectively.
The black symbols show typical locations for the Tþ

cc poles: they
can correspond to a pair of virtual states (dots) or a resonance
(stars) in case (a) and to a quasibound state, which would be a
bound state for stable D�, in case (b). In cases (a) and (b), the
poles are on the second and first Riemann sheets, respectively,
with respect to the DD� cut.

PHYSICAL REVIEW LETTERS 131, 131903 (2023)

131903-3



in light gray. Thus, the pole extracted using only the first
two terms in ERE is located below the lhc. However, since
the lhc sets the radius of convergence of ERE, the latter is
only valid in a small range jðp=EDD� Þ2j < 0.0010, where
no lattice data exist. Furthermore, the central values of the
two data points crucial for the fit lie below the lhc, though
p cot δ should be complex in this case. Therefore, this pole
extraction procedure cannot be regarded as reliable.
To improve on the extraction of the pole parameters from

the phase shifts, we fit the lattice data from [21] with an
amplitude that includes the lhc [37]. More precisely, we
solve theDD� scattering equation employing a potential that
incorporates the OPE and two contact terms (one momen-
tum independent and one momentum dependent) treated as
fitting parameters. This is a simplified version of the full
amplitude of [33], whereDwaves are now switched off to be
in line with [21]. The chiral extrapolation of the pion decay
constant is considered using chiral perturbation theory [40]
and the extrapolation of the D�Dπ coupling is taken
from [41,42]. To reliably extract the T-matrix pole, the
amplitude needs to be put into a finite volume to determine
the parameters directly from a fit to the lattice energy levels;
however, to demonstrate the effect of the lhc, it is sufficient
to fit to the existing lattice data. The results are shown in
Fig. 3 in red with orange uncertainty band [43]. Uncertainty
in [21] is given by the probability distribution for each phase
shift data point. The nonzero probability of real phase shift
data below the lhc is an artifact of the lhc being ignored in
[21]. Therefore, the lowest data point in [21] is discarded in
our analysis. We perform two fits: onewherewe use the part
of the second data point that is above the lhc (left-hand panel
of Fig. 3) and the other one where we ignore it (right-hand
panel of Fig. 3). The upper three data points are included in
both fits.

The poles of the T matrix are now extracted using (2).
From the left-hand panel of Fig. 3 we conclude that, for the
majority of the 1σ parameter space including the best fit,
the amplitude contains two virtual states, both residing
closer to the DD� threshold than the pole extracted in [21],
where only a single virtual state was found. Those fits
within the 1σ band, where p cot δ does not cross the ip
curve above the lhc, describe the presence of a very narrow
resonance showing up as a pair of complex poles below the
DD� threshold. The appearance of a pair of virtual states is
natural near the point where they are about to turn to a
narrow resonance, as discussed in detail in [44–47]. The
position of the lhc sets the upper bound on the virtual pole
binding energy—the collision between the virtual pole and
its counterpart always takes place between the lhc branch
point and the two-body threshold. The fit results presented
in the right-hand panel of Fig. 3 are also consistent with the
picture just drawn, with the narrow resonance scenario
preferred.
In both fits p cot δ contains a near-threshold pole as a

result of a subtle interplay of the repulsive OPE and the
attractive short-range interaction. According to (1), this
pole manifests itself as a zero in the T matrix and provides
yet another illustration that, in the current setting, p cot δ
cannot be approximated by a polynomial with a finite
number of terms. Moreover, it emphasizes the important
role played by the OPE for understanding the analytic
structure of the scattering amplitude. The existence of such
a pole in p cot δ for the neutron-deuteron scattering was
already investigated half a century ago [48,49]. Here the
location of the pole in p cot δ very close to the lhc branch
point is dictated by the particular lattice data points taken
from [21]. Indeed, while the lhc branch point depends only
on the masses involved, the exact location of the pole is

FIG. 3. Fit results for the lattice data from [21]. The solid and dashed vertical lines indicate theDD� threshold and the lhc, respectively,
while the green dashed curve shows the function ip. The gray line and gray band show the fit and its 1σ uncertainty, respectively, found
in [21] using ERE formula from (3) in the entire energy range both above and below lhc. The red solid line and the orange band show the
best fit and its 1σ uncertainty, respectively, calculated in this work. In the right-hand panel, only the three most right data points were
used in the fit while in the left panel, in addition, a part of the error bar of the fourth (from right to left) point located above the lhc [for
ðp=EDD� Þ2 > −0.0010] is included in the fit for illustrative purpose. Below the lhc, p cot δ acquires an imaginary part, which is shown
as the blue line with the pink uncertainty band.
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sensitive to the interaction strength. If the pion coupling
constant is artificially decreased or increased by some
factor and the lattice data are refitted to fix the contact
terms, the pole in p cot δ either disappears below the lhc or
moves closer to the two-body threshold [36]. In the latter
case, it may impose a stronger constraint on the ERE
convergence radius than the lhc branch point.
Concluding remarks.—An interesting question is what

our findings imply for the nature of the Tþ
cc given an

intriguing relationship between the location of a near-
threshold bound state pole and the size of the molecular
component [50–52]. This formalism relies on the
assumption that the binding momentum γ is by far the
smallest scale in the problem. However, the lhc induces an
additional small scale, which not only strongly limits the
range of applicability of ERE (see [32] for a related
discussion), but also calls for an improvement of the entire
Weinberg approach to describe the compositeness of a
hadronic state [59]. On the other hand, a clear visibility in
the amplitude of the lhc induced by the OPE provides an
additional strong support for the molecular nature of
the Tccð3875Þþ.
In summary, we have demonstrated that the lhcs from the

long-range interactions, with the nearest one originating
from the OPE, strongly restrict the range of validity of ERE
in extracting the pole positions of near-threshold states. In
order to increase this range and thereby extract the poles
reliably, at least the OPE needs to be considered explicitly.
Our findings clearly suggest that a direct comparison of the
below-threshold energy levels predicted by our formalism,
put in a finite volume, with the lattice energy levels should
be made. The described feature is general, and we illus-
trated it by reanalyzing the lattice data of [21] for the
Tccð3875Þþ. The same effect may be operative in other
hadronic systems where the lhc appears within the range
covered by the theory and should be taken into account not
only in lattice studies but also in analytical approaches
already for physical parameters. These might include not

only BB� and BB̄�, but also ΣðΛÞN, Σð�Þ
c D̄ð�Þ,NDð�Þ,ND̄ð�Þ

systems and so forth. Consequently, the effect of the
lhc could be of relevance for probing the Σ hypernuclei,
D-mesic nuclei and the properties of charmed and bottom
mesons in nuclear matter. Moreover, the DD̄� is of
particular interest for its obvious similarity to the Tþ

cc case
studied above. The lattice simulations performed in [60]
predict the Xð3872Þ as a shallow bound state (11� 7) MeV
below the DD̄� threshold. Within the uncertainty, the X
pole may appear either below or above the lhc, so the
influence of the latter is hard to foresee, and a reanalysis of
the system on the lattice seems necessary.
Lattice QCD enters the era of precise calculations for

low-lying near-threshold states, which have been a focus of
experimental and theoretical hadron physics for two dec-
ades and will clearly remain a hot topic in the foreseeable
future. Our finding can be crucial in accurately extracting

the pole locations of the benchmark systems such as DD�

and DD̄� from lattice data. Thus, the consequences of
taking it into account are potentially very important for
understanding various exotic hadrons, e.g., whether they
exist and what their internal structure is, from first
principles of QCD.
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