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In this paper, we propose a new approach to study the dark sector of the universe by considering the dark energy as an emerging𝑞-deformed bosonic scalar field which is not only interacting with the dark matter, but also nonminimally coupled to gravity, in the
framework of standard Einsteinian gravity. In order to analyze the dynamic of the system, we first give the quantum field theoretical
description of the 𝑞-deformed scalar field dark energy and then construct the action and the dynamical structure of this interacting
and nonminimally coupled dark sector. As a second issue, we perform the phase-space analysis of the model to check the reliability
of our proposal by searching the stable attractor solutions implying the late-time accelerating expansion phase of the universe.

1. Introduction

The dark energy is accepted as the effect of causing the late-
time accelerated expansion of universe which is experienced
by the astrophysical observations such as Supernova Ia [1, 2],
large-scale structure [3, 4], the baryon acoustic oscillations
[5], and cosmic microwave background radiation [6–9].
According to the standardmodel of cosmological data 70% of
the content of the universe consists of dark energy. Moreover,
the remaining 25% of the content is an unknown form of
matter having a mass but in nonbaryonic form that is called
dark matter and the other 5% of the energy content of the
universe belongs to ordinary baryonic matter [10]. While the
dark energy spread all over the intergalactic media of the uni-
verse and produces a gravitational repulsion by its negative
pressure to drive the accelerating expansion of the universe,
the dark matter is distributed over the inner galactic media
inhomogeneously and it contributes to the total gravitational
attraction of the galactic structure and fixes the estimated
motion of galaxies and galactic rotation curves [11, 12].

Miscellaneous dark models have been proposed to
explain a better mechanism for the accelerated expansion of
the universe.Thesemodels include interactions between dark
energy, dark matter, and the gravitational field. The coupling
between dark energy and dark matter seems possible due to

the equivalence of order of themagnitudes in the present time
[13–22]. On the other hand, there are also models in which
the dark energy nonminimally couples to gravity in order
to provide quantum corrections and renormalizability of the
scalar field in the curved spacetime. Also the crossing of the
dark energy from the quintessence phase to phantom phase,
known as the Quintom scenario, can be possible in the mod-
els where the dark energy interactswith the gravity. If the dark
energy minimally couples to gravity, the equation of state
parameter of the dark energy cannot cross the cosmological
constant boundary 𝜔 = 1 in the Friedmann-Robertson-
Walker (FRW) geometry; therefore it is possible to emerge the
Quintom scenario in the model where the dark energy non-
minimally couples to gravity [23–37].

The constitution of the dark energy can be alternatively
the cosmological constant Λ with a constant energy density
filling the space homogeneously [38–41]. As the varying
energy density dark energy models, instead of the cosmo-
logical constant, quintessence, phantom, and tachyon fields
can be considered. However, all these different dark energy
models are the same in terms of the nondeformedfield consti-
tuting the dark energy. There is no reason to prevent us from
assuming that the dark energy is a deformed scalar field, hav-
ing a negative pressure, too, as expected from the dark energy.
Therefore, we propose that the dark energy considered in
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this study is formed of the deformed scalar field whose field
equations are defined by the deformed oscillator algebras.

The quantum algebra and quantum group structure
were firstly introduced by Kulish et al. [42–44], during the
investigations of integrable systems in quantum field theory
and statistical mechanics. Quantum groups and deformed
boson algebras are closely related terms. It is known that the
deformation of the standard boson algebra is first proposed
by Arik-Coon [45]. Later on, Macfarlane and Biedenharn
have realized the deformation of boson algebra in a different
manner from Arik-Coon [46, 47]. The relation between
quantum groups and the deformed oscillator algebras can
be constructed obviously with this study by expressing the
deformed boson operators in terms of the 𝑠𝑢𝑞(2) Lie algebra
operators.Therefore, the construction of the relation between
quantum groups and deformed algebras leads the deformed
algebras of great interest with many different applications.
The deformed version of Bardeen-Cooper-Schrieffer (BCS)
many-body formalism in nuclear force, deformed creation,
and annihilation operators are used to study the quantum
occupation probabilities [48]. As another study, in Nambu-
Jona-Lasinio (NJL) model, the deformed fermion operators
are used instead of standard fermion operators and this leads
to an increase in the NJL four-fermion coupling force and
the quark condensation related to the dynamical mass [49].
The statistical mechanical studies of the deformed boson
and fermion systems have been familiar in recent years [50–
60]. Moreover, the investigations on the internal structure of
composite particles involve the deformed fermions or bosons
as the building block of the composite structures [61, 62].
There are also applications of the deformed particles in black
hole physics [63–66]. The range of the deformed boson and
fermion applications diverses from atomic-molecular physics
to solid state physics in a widespread manner [67–72].

The ideas on considering the dark energy as the deformed
scalar field have become common in the literature [73–76]. In
this study, we then take into account the deformed bosons
as the scalar field dark energy interacting with the dark
matter and also nonminimally coupled to gravity. In order to
confirm our proposal that the dark energy can be considered
as a deformed scalar field, we firstly introduce the dynamics of
the interacting and nonminimally coupled dark energy, dark
matter, and gravity model in a spatially flat FRW background
and then perform the phase-space analysis to check whether
it will provide the late-time stable attractor solutions implying
the accelerated expansion phase of the universe.

2. Dynamics of the Model

The field equations of the scalar field dark energy are
considered to be defined by the 𝑞-deformed boson fields in
our model. Constructing a 𝑞-deformed quantum field theory
after the idea of 𝑞-deformation of the single particle quantum
mechanics [45–47] has naturally been nonsurprising [77–79].
The bosonic part of the deformed particle fields corresponds
to the deformed scalar field and the fermionic counterpart
corresponds to the deformed vector field. In this study, we
consider the 𝑞-deformed bosonic scalar field as the 𝑞-deformed

dark energy under consideration. In our model, the 𝑞-
deformed dark energy interacts with the darkmatter and also
nonminimally couples to gravity.

Early Universe scenarios can be well understood by
studying the quantum field theory in curved spacetime. The
behavior of the classical scalar field near the initial singularity
can be translated to the quantumfield regime by constructing
the coherent states in quantummechanics for anymode of the
scalar field. It is now impossible to determine the quantum
state of the scalar field near the initial singularity by an
observer, at the present universe. In order to overcome the
undeterministic nature, Hawking proposes to take the ran-
dom superposition of all possible states in that spacetime.
It has been realized by Berger with taking random super-
position of coherent states. Also the particle creation in
an expanding universe with a nonquantized gravitational
metric has been investigated by Parker. It has been stated by
Goodison and Toms that if the field quanta obey the Bose or
Fermi statistics, when considering the evolution of the scalar
field in an expanding universe, then the particle creation does
not occur in the vacuum state. Their result gives signification
to the possibility of the existence of the deformed statistics in
coherent or squeezed states in the Early Universe [79–84].

Motivated by this significant possibility, we propose that
the dark energy consists of a 𝑞-deformed scalar field whose
particles obey the 𝑞-deformed algebras. Therefore, we now
define the 𝑞-deformed scalar field constructing the dark
energy in our model. The field operator of the 𝑞-deformed
scalar field dark energy can be given as [79]𝜙𝑞 (𝑥) = ∫ 𝑑3𝑘(2𝜋)3/2 1(2𝑤𝑘)1/2 [𝑎𝑞 (𝑘) 𝑒𝑖𝑘𝑥 + 𝑎∗𝑞 (𝑘) 𝑒−𝑖𝑘𝑥] . (1)

The following commutation relations for the deformed anni-
hilation operator 𝑎𝑞(𝑘) and creations operator 𝑎∗𝑞 (𝑘) in 𝑞-
bosonic Fock space are given by [45]𝑎𝑞 (𝑘) 𝑎∗𝑞 (𝑘󸀠) − 𝑞2𝑎∗𝑞 (𝑘󸀠) 𝑎𝑞 (𝑘) = 𝛿 (𝑘 − 𝑘󸀠) ,𝑎𝑞 (𝑘) 𝑎𝑞 (𝑘󸀠) − 𝑞2𝑎𝑞 (𝑘󸀠) 𝑎𝑞 (𝑘) = 0, (2)

where 𝑞 is a real deformation parameter in interval 0 < 𝑞 < ∞
and [𝑁̂(𝑘)] = 𝑎∗𝑞 (𝑘)𝑎𝑞(𝑘) is the deformed number operator of𝑘th mode whose eigenvalue spectrum is given as[𝑁 (𝑘)] = 1 − 𝑞2𝑁(𝑘)1 − 𝑞2 . (3)

Here 𝑁̂(𝑘) = 𝑎∗𝑠 (𝑘)𝑎𝑠(𝑘) is the standard nondeformed num-
ber operator. By using (2) in (1), we can obtain the commu-
tation relations and planewave expansion of the 𝑞-deformed
scalar field 𝜙𝑞(𝑥), as follows:𝜙𝑞 (𝑥) 𝜙∗𝑞 (𝑥󸀠) − 𝑞2𝜙∗𝑞 (𝑥󸀠) 𝜙𝑞 (𝑥) = 𝑖Δ (𝑥 − 𝑥󸀠) , (4)

where Δ (𝑥 − 𝑥󸀠) = −1(2𝜋)3 ∫ 𝑑3𝑘𝑤𝑘 sin𝑤𝑘 (𝑥 − 𝑥0) . (5)
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Themetric of the spatially flat FRW spacetime in which the 𝑞-
oscillator algebra represents the 𝑞-deformed scalar field dark
energy is defined by𝑑𝑠2 = −𝑑𝑡2 + 𝑎2 (𝑡) [𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2sin2𝜃𝑑𝜙2] , (6)

and for a FRWmetric𝑤2𝑘 = 𝑔(∑
𝑖

𝑘2𝑖𝑎2 + 𝑚) , (7)

where 𝑔 = det𝑔𝜇]. Also the relation between deformed and
standard annihilation operators 𝑎𝑞 and 𝑎𝑠 [85] is given as

𝑎𝑞 = 𝑎𝑠√ [𝑁̂]𝑁̂ , (8)

which is used to obtain the relation between deformed and
standard bosonic scalar fields by using (3) in (8) and (1):

𝜙𝑞 = 𝜙√ 1 − 𝑞2𝑁̂(1 − 𝑞2) 𝑁̂ . (9)

Here we have used theHermiticity of the number operator 𝑁̂.
Now the Friedmann equations will be derived for

our interacting dark matter and nonminimally coupled 𝑞-
deformed dark energy model in a FRW spacetime by using
the scale factor 𝑎(𝑡) in Einstein’s equations. In order to obtain
these equations, we relate the scale factor to the energy-
momentum tensor of the objects in the model under con-
sideration. We use the fluid description of the objects in our
model by considering energy and matter as a perfect fluid,
which are dark energy and matter in our model. An isotropic
fluid in one coordinate frame leads to an isotropic metric in
another frame coinciding with the frame of the fluid. This
means that the fluid is at rest in commoving coordinates.
Then the four velocities of the fluid are given as [52]𝑈𝜇 = (1, 0, 0, 0) , (10)

and the energy-momentum tensor follows as

𝑇𝜇] = (𝜌 + 𝑝)𝑈𝜇𝑈] + 𝑝𝑔𝜇] =(𝜌 0 0 000 𝑔𝑖𝑗𝑝0 ). (11)

A more suitable form can be obtained by raising one, such
that 𝑇𝜇] = diag (−𝜌, 𝑝, 𝑝, 𝑝) . (12)

Since we have two constituents, 𝑞-deformed dark energy and
the darkmatter in ourmodel, the total energy density and the
pressure are given by 𝜌tot = 𝜌𝑞 + 𝜌𝑚,𝑝tot = 𝑝𝑞 + 𝑝𝑚, (13)

where 𝜌𝑞 and 𝑝𝑞 are the energy density and the pressure of
the 𝑞-deformed dark energy and 𝜌𝑚 and 𝑝𝑚 are the energy
density and the pressure of the dark matter, respectively. The
equation of state of the energy-momentum carrying cosmo-
logical fluid component under consideration in the FRW
universe is given by𝑝 = 𝜔𝜌which relates the pressure and the
energy density and𝜔 is called the equation of state parameter.
We then express the total equation of state parameter, such
that 𝜔tot = 𝑝tot𝜌tot = 𝜔𝑞Ω𝑞 + 𝜔𝑚Ω𝑚, (14)

where Ω𝑞 = 𝜌𝑞/𝜌tot and Ω𝑚 = 𝜌𝑚/𝜌tot are the density param-
eters for the 𝑞-deformed dark energy and the dark matter,
respectively. Then the total density parameter is defined asΩtot = Ω𝑞 + Ω𝑚 = 𝜅2𝜌tot3𝐻2 = 1. (15)

We now turn to Einstein’s equations of the form 𝑅𝜇] =𝜅2(𝑇𝜇] − (1/2)𝑔𝜇]𝑇). Then, by using the components of the
Ricci tensor for a FRWspacetime (6) and the energy-momen-
tum tensor in (12), we rewrite Einstein’s equations, for𝜇] = 00
and 𝜇] = 𝑖𝑗, as follows: −3 𝑎̈𝑎 = 𝜅22 (𝜌 + 3𝑝) , (16)𝑎̈𝑎 + 2 ( 𝑎̇𝑎)2 = 𝜅22 (𝜌 − 𝑝) , (17)

respectively. Here dot also represents the derivative with
respect to cosmic time 𝑡. Using (16) and (17) gives the
Friedmann equations for the FRWmetric as𝐻2 = 𝜅23 (𝜌𝑞 + 𝜌𝑚) ,𝐻̇ = −𝜅22 (𝜌𝑞 + 𝑝𝑞 + 𝜌𝑚 + 𝑝𝑚) , (18)

where𝐻 = 𝑎̇/𝑎 is the Hubble parameter. From the conserva-
tion of energy, we can obtain the continuity equations for the𝑞-deformed dark energy and the dark matter constituents in
the form of evolution equations, such as𝜌̇𝑞 + 3𝐻(𝜌𝑞 + 𝑝𝑞) = −𝑄, (19)𝜌̇𝑚 + 3𝐻 (𝜌𝑚 + 𝑝𝑚) = 𝑄, (20)

where 𝑄 is an interaction current between the 𝑞-deformed
dark energy and the dark matter which transfers the energy
and momentum from the dark matter to dark energy and
vice versa. 𝑄 vanishes for the models having no interaction
between the dark energy and the dark matter.

Now we will define the Dirac-Born-Infeld type action
integral of the interacting dark matter and 𝑞-deformed dark
energy nonminimally coupled to gravity in the framework of
Eisteinian general relativity [86–88]. After that we will obtain
the energy-momentum tensor 𝑇𝜇] for the 𝑞-deformed dark
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energy and the dark matter in order to get the energy density𝜌 and pressure 𝑝 of these dark objects explicitly. Then the
action is given as𝑆 = ∫𝑑4𝑥√−𝑔 [ 𝑅2𝜅2 − 12𝑔𝜇]𝜕𝜇𝜙𝑞𝜕]𝜙𝑞 − 𝑉− 𝜉𝑓 (𝜙𝑞) 𝑅 + 𝐿𝑚] , (21)

where 𝜉 is a dimensionless coupling constant between 𝑞-
deformed dark energy and the gravity, so 𝜉𝑓(𝜙𝑞)𝑅 denotes
the explicit nonminimal coupling between energy and the
gravity. Also 𝐿𝑞 = −(1/2)𝑔𝜇]𝜕𝜇𝜙𝑞𝜕]𝜙𝑞 − 𝑉 − 𝜉𝑓(𝜙𝑞)𝑅 and𝐿𝑚 are the Lagrangian densities of the 𝑞-deformed dark
energy and the dark matter, respectively. Then the energy-
momentum tensors of the dark energy constituent of our
model can be calculated, as follows [89]:𝑇𝑞𝜇] = −2 𝜕𝐿𝑞𝜕𝑔𝜇] + 𝑔𝜇]𝐿𝑞= 𝜕𝜇𝜙𝑞𝜕]𝜙𝑞 + 2𝜉𝑓 (𝜙𝑞) 𝜕𝑅𝜕𝑔𝜇]− 12𝑔𝜇] [𝑔𝛼𝛽𝜕𝛼𝜙𝑞𝜕𝛽𝜙𝑞 + 2𝑉] − 𝑔𝜇]𝜉𝑓 (𝜙𝑞) 𝑅.

(22)

In order to find the derivative of the Ricci scalar with respect
to themetric tensor, we use the variation of the contraction of
the Ricci tensor identity 𝛿𝑅 = 𝑅𝜇]𝛿𝑔𝜇] + 𝑔𝜇]𝛿𝑅𝜇]. This leads
us to finding the variation of the contraction of the Riemann
tensor identity, as follows: 𝛿𝑅𝜇] = 𝛿𝑅𝜌𝜇𝜌] = ∇𝜌(𝛿Γ𝜌]𝜇) −∇](𝛿Γ𝜌𝜌𝜇). Here ∇𝜇 represents the covariant derivative and Γ𝜌]𝜇
represents the Christoffel connection. By using the metric
compatibility and the tensor nature of 𝛿Γ𝜌]𝜇, we finally obtain𝛿𝑅𝛿𝑔𝜇] = 𝑅𝜇] + 𝑔𝜇]◻ − ∇𝜇∇], (23)

where ◻ = 𝑔𝛼𝛽∇𝛼∇𝛽 is the covariant d’Alembertian. Using
(23) in (22) gives𝑇𝑞𝜇] = 𝜕𝜇𝜙𝑞𝜕]𝜙𝑞 − 12𝑔𝜇] [𝑔𝛼𝛽𝜕𝛼𝜙𝑞𝜕𝛽𝜙𝑞] − 𝑔𝜇]𝑉+ 2𝜉 [𝑅𝜇] − 12𝑔𝜇]𝑅]𝑓 (𝜙𝑞) + 2𝜉◻𝑓 (𝜙𝑞)− 2𝜉∇𝜇∇]𝑓 (𝜙𝑞) .

(24)

Then the 𝜇] = 0, 0 component of the energy-momentum
tensor leads to the energy density 𝜌𝑞:𝜌𝑞 = 𝑇𝑞00 = 12 𝜙̇2𝑞 + 𝑉 + 6𝜉𝐻2𝑓 (𝜙𝑞) + 6𝜉𝐻𝑓󸀠 (𝜙𝑞) 𝜙̇𝑞, (25)

where prime refers to derivative with respect to the field 𝜙𝑞
and we use ◻ = −𝜕20 − 3𝐻𝜕0, because of the homogeneity
and the isotropy for 𝜙𝑞 in space. Also 𝑅00 = −3𝑎̈/𝑎 and

𝑅 = 6[𝑎̈/𝑎 + 𝑎̇2/𝑎2] is used for the FRW geometry. The𝜇] = 𝑖, 𝑖 components of 𝑇𝑞𝜇] also give the pressure 𝑝𝑞 as𝑝𝑞 = 𝑔𝑖𝑖𝑇𝑞𝑖𝑖 = 12 𝜙̇2𝑞 − 𝑉 − 2𝜉 [2𝐻̇𝑓 (𝜙𝑞) + 3𝐻2𝑓 (𝜙𝑞)+ 𝑓󸀠󸀠 (𝜙𝑞) 𝜙̇2𝑞 + 𝑓󸀠 (𝜙𝑞) 𝜙̈𝑞 + 2𝐻𝑓󸀠 (𝜙𝑞) 𝜙̇𝑞] , (26)

wherewe use (∇𝑖∇𝑖)𝑓(𝜙𝑞) = (𝜕𝑖∇𝑖−Γ𝜆𝑖𝑖∇𝜆)𝑓(𝜙𝑞) = −Γ011𝜕0𝑓(𝜙𝑞)
with Γ011 = 𝑎̇𝑎 for the FRW spacetime. We can now obtain the
equation ofmotion for the 𝑞-deformed dark energy by insert-
ing (25) and (26) into the evolution equation (19), such that𝜙̈𝑞 + 3𝐻𝜙̇𝑞 + 𝜕𝑉𝜕𝜙𝑞 + 𝜉𝑅𝑓󸀠 (𝜙𝑞) = − 𝑄̇𝜙𝑞 . (27)

The usual assumption in the literature is to consider the cou-
pling function as 𝑓(𝜙𝑞) = 𝜙2𝑞/2 [90] and the potential as 𝑉 =𝑉0𝑒−𝜅𝜆𝜙𝑞 [91–93]. In order to find the energy density, pressure,
and equation of motion in terms of the deformation parame-
ter 𝑞, we use the above coupling function and potential with
the rearrangement of equation (9) as 𝜙𝑞 = Δ(𝑞)𝜙 in the
equations (25)–(27) and obtain𝜌𝑞 = 12Δ2𝜙̇2 + 𝑒−𝜅𝜆Δ𝜙 + 3𝜉𝐻2Δ2𝜙2 + 6𝜉𝐻Δ2𝜙𝜙̇+ 12Δ̇2𝜙2 + ΔΔ̇𝜙𝜙̇ + 6𝜉𝐻ΔΔ̇𝜙2, (28)

𝑝𝑞 = 12Δ2𝜙̇2 − 𝑒−𝜅𝜆Δ𝜙− 2𝜉Δ2 [𝐻̇𝜙2 + 32𝐻2𝜙2 + 𝜙̇2 + 𝜙𝜙̈ + 2𝐻𝜙𝜙̇]+ (1 − 8𝜉) ΔΔ̇𝜙𝜙̇ + (12 − 2𝜉)Δ2𝜙2 − 2𝜉ΔΔ̈𝜙2− 4𝜉𝐻𝜙𝜙̇ΔΔ̇𝜙2,
(29)

Δ𝜙̈ + 3Δ𝐻𝜙̇ − 𝜅𝜆𝑒−𝜅𝜆Δ𝜙 + 𝜉Δ𝑅𝜙̇ + 2Δ̇𝜙̇ + Δ̈𝜙+ 3𝐻Δ̇𝜙 = −𝛽𝜅𝜌𝑚. (30)

Here we consider that the particles in each mode
can vary by creation or annihilation in time forΔ = √(1 − 𝑞2𝑁)/(1 − 𝑞2)𝑁; therefore its time derivatives are
nonvanishing. On the other hand, the common interaction
current in the literature 𝑄 = 𝛽𝜅𝜌𝑚𝜙̇𝑞 is used here [17].

Now the phase-space analysis for our interacting dark
matter and nonminimally coupled 𝑞-deformed dark energy
model will be performed, whether the late-time stable attrac-
tor solutions can be obtained, in order to confirm our model.

3. Phase-Space and Stability Analysis

The cosmological properties of the proposed 𝑞-deformed
dark energy model can be investigated by performing the
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phase-space analysis. Therefore, we first transform the equa-
tions of the dynamical system into its autonomous form by
introducing the auxiliary variables [15, 94–98], such as𝑥 = 𝜅Δ𝜙̇√6𝐻 = Δ𝑥𝑠,

𝑦 = 𝜅√𝑒−𝜅𝜆Δ𝜙√3𝐻 = √𝑒−𝜅𝜆𝜙(Δ−1)𝑦𝑠,
𝑧 = 𝜅Δ̇𝜙√6𝐻, 𝑧𝑠 = 0𝑢 = 𝜅Δ𝜙 = Δ𝑢𝑠,

(31)

where 𝑥𝑠, 𝑦𝑠, 𝑧𝑠, and 𝑢𝑠 are the standard form of the auxiliary
variables in 𝑞 → 1 limit.We nowwrite the density parameters
for the dark matter and 𝑞-deformed scalar field dark energy
in the autonomous system by using (28) with (36):Ω𝑚 = 𝜅2𝜌𝑚3𝐻2 , (32)

Ω𝑞 = 𝜅2𝜌𝑞3𝐻2= 𝑥2 + 𝑦2 + 𝜉𝑢2 + 2√6𝜉𝑥𝑢 + 𝑧2 + 2𝑥𝑧+ 2√6𝜉𝑧𝑢. (33)

Then the total density parameter readsΩtot = 𝜅2𝜌tot3𝐻2= 𝑥2 + 𝑦2 + 𝜉𝑢2 + 2√6𝜉𝑥𝑢 + 𝑧2 + 2𝑥𝑧+ 2√6𝜉𝑧𝑢 + Ω𝑚 = 1. (34)

We should also obtain the 𝜅2𝑝𝑞/3𝐻2 in the autonomous form
to write the equation of state parameters, such that𝜅2𝑝𝑞3𝐻2 = (1 − 4𝜉) 𝑥2 − 𝑦2 + (23𝜉 + 4𝜉2) 𝑠𝑢2+ (8𝜉2 − 𝜉) 𝑢2 + 2√63 𝜉𝑥𝑢 + (1 − 4𝜉) 𝑧2

+ 2 (1 − 4𝜉) 𝑥𝑧 + 2√63 𝜉𝑧𝑢 + 2𝜉𝛽𝑢Ω𝑚− 2𝜉𝜆𝑦2𝑢,
(35)

where 𝑠 = −𝐻̇/𝐻2. Using (33) and (35), we find the equation
of state parameter for the dark energy as𝜔𝑞 = 𝑝𝑞𝜌𝑞 = [(1 − 4𝜉) 𝑥2 − 𝑦2 + (23𝜉 + 4𝜉2) 𝑠𝑢2+ (8𝜉2 − 𝜉) 𝑢2 + 2√63 𝜉𝑥𝑢 + (1 − 4𝜉) 𝑧2

+ 2 (1 − 4𝜉) 𝑥𝑧 + 2√63 𝜉𝑧𝑢 + 2𝜉𝛽𝑢Ω𝑚 − 2𝜉𝜆𝑦2𝑢]⋅ [𝑥2 + 𝑦2 + 𝜉𝑢2 + 2√6𝜉𝑥𝑢 + 𝑧2 + 2𝑥𝑧+ 2√6𝜉𝑧𝑢]−1 .
(36)

Also from (33) and (36), the total equation of state parameter
can be obtained as𝜔tot = 𝜔𝑞Ω𝑞 + 𝜔𝑚Ω𝑚= (1 − 4𝜉) 𝑥2 − 𝑦2 + (23𝜉 + 4𝜉2) 𝑠𝑢2+ (8𝜉2 − 𝜉) 𝑢2 + 2√63 𝜉𝑥𝑢 + (1 − 4𝜉) 𝑧2

+ 2 (1 − 4𝜉) 𝑥𝑧 + 2√63 𝜉𝑧𝑢 + 2𝜉𝛽𝑢Ω𝑚− 2𝜉𝜆𝑦2𝑢 + (𝛾 − 1)Ω𝑚,
(37)

where 𝛾 = 1 + 𝜔𝑚 is defined to be the barotropic index. We
need to give the junk parameter 𝑠 in the autonomous form,
such that

𝑠 = − 𝐻̇𝐻2 = 32 (1 + 𝜔tot) = 32 [1 + (1 − 4𝜉) 𝑥2 − 𝑦2+ (23𝜉 + 4𝜉2) 𝑠𝑢2 + (8𝜉2 − 𝜉) 𝑢2 + 2√63 𝜉𝑥𝑢
+ (1 − 4𝜉) 𝑧2 + 2 (1 − 4𝜉) 𝑥𝑧 + 2√63 𝜉𝑧𝑢
+ 2𝜉𝛽𝑢Ω𝑚 − 2𝜉𝜆𝑦2𝑢 + (𝛾 − 1)Ω𝑚] .

(38)

Pulling 𝑠 from the right-hand side of (38) to the left-hand side
gives

𝑠 = [1 + (1 − 4𝜉) 𝑥2 − 𝑦2 + (8𝜉2 − 𝜉) 𝑢2 + 2√63 𝜉𝑥𝑢
+ (1 − 4𝜉) 𝑧2 + 2 (1 − 4𝜉) 𝑥𝑧 + 2√63 𝜉𝑧𝑢
+ 2𝜉𝛽𝑢Ω𝑚 − 2𝜉𝜆𝑦2𝑢 + (𝛾 − 1)Ω𝑚] [23 − 23𝜉𝑢2− 4𝜉2𝑢2]−1 .

(39)
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Table 1: Critical points and existence conditions.

Label 𝑥 + 𝑧 𝑦 𝑢 𝜔tot 𝑞𝐷 Existence𝐴 0 1 0 −1 −1 𝜆 = 0, Ω𝑚 = 0𝐵 0 −1 0 −1 −1 𝜆 = 0, Ω𝑚 = 0𝐶 0 √(4𝜉/𝜆) (−2/𝜆 + √4/𝜆2 + 1/𝜉) (−2/𝜆 + √4/𝜆2 + 1/𝜉) −1 −1 𝜆 ̸= 0, Ω𝑚 = 0𝐷 0 −√(4𝜉/𝜆) (−2/𝜆 + √4/𝜆2 + 1/𝜉) (−2/𝜆 + √4/𝜆2 + 1/𝜉) −1 −1 𝜆 ̸= 0, Ω𝑚 = 0
While 𝑠 is a junk parameter alone, it gains physical meaning
in the deceleration parameter 𝑞𝐷, such that𝑞𝐷 = −1 + 𝑠 = −1 + [1 + (1 − 4𝜉) 𝑥2 − 𝑦2

+ (8𝜉2 − 𝜉) 𝑢2 + 2√63 𝜉𝑥𝑢 + (1 − 4𝜉) 𝑧2
+ 2 (1 − 4𝜉) 𝑥𝑧 + 2√63 𝜉𝑧𝑢 + 2𝜉𝛽𝑢Ω𝑚 − 2𝜉𝜆𝑦2𝑢+ (𝛾 − 1)Ω𝑚] [23 − 23𝜉𝑢2 − 4𝜉2𝑢2]−1 .

(40)

Nowwe convert the Friedmann equations (18), the continuity
equation (20), and the equation of motion (30) into the
autonomous system by using the auxiliary variables in (31)
and their derivatives with respect to 𝑁 = ln 𝑎. For any
quantity 𝐹, this derivative has the relation with the time
derivative as 𝐹̇ = 𝐻(𝑑𝐹/𝑑𝑁) = 𝐻𝐹󸀠. Then we will obtain𝑋󸀠 = 𝑓(𝑋), where 𝑋 is the column vector including the
auxiliary variables and 𝑓(𝑋) is the column vector of the
autonomous equations. We then find the critical points 𝑋𝑐
of 𝑋, by setting 𝑋󸀠 = 0. We then expand 𝑋󸀠 = 𝑓(𝑋) around𝑋 = 𝑋𝑐 + 𝑈, where 𝑈 is the column vector of perturbations
of the auxiliary variables, such as 𝛿𝑥, 𝛿𝑦, 𝛿𝑧, and 𝛿𝑢 for each
constituent in our model. Thus, we expand the perturbation
equations up to the first order for each critical point as 𝑈󸀠 =𝑀𝑈, where 𝑀 is the matrix of perturbation equations. The
eigenvalues of perturbationmatrix𝑀 determine the type and
stability of each critical point [99–108].Then the autonomous
form of the cosmological system is𝑥󸀠 = −3𝑥 − 3𝑧 + 𝑠𝑥 − 𝑧󸀠 + 𝑠𝑧 + √6𝜉𝑠𝑢 − 2√6𝜉𝑢+ √62 𝜆𝑦2 − √62 𝛽Ω𝑚, (41)

𝑦󸀠 = 𝑠𝑦 − √62 𝜆𝑦𝑥 − √62 𝜆𝑦𝑧, (42)𝑧󸀠 = −3𝑥 − 3𝑧 + 𝑠𝑥 − 𝑥󸀠 + 𝑠𝑧 + √6𝜉𝑠𝑢 − 2√6𝜉𝑢+ √62 𝜆𝑦2 − √62 𝛽Ω𝑚, (43)

𝑢󸀠 = √6𝑥 + √6𝑧. (44)

Here (41) and (43) in fact give the same autonomous equa-
tions, which means that the variables 𝑥 and 𝑧 do not form an

orthonormal basis in the phase-space. However, +𝑧, 𝑦, and 𝑢
form a complete orthonormal set for the phase-space. There-
fore, we set (41) and (43) in a single autonomous equation as𝑥󸀠 + 𝑧󸀠 = −3𝑥 − 3𝑧 + 𝑠𝑥 + 𝑠𝑧 + √6𝜉𝑠𝑢 − 2√6𝜉𝑢+ √62 𝜆𝑦2 − √62 𝛽Ω𝑚. (45)

The autonomous equation system (42), (44), and (45) repre-
sents three invariant submanifolds +𝑧 = 0, 𝑦 = 0, and 𝑢 = 0
which, by definition, cannot be intersected by any orbit. This
means that there is no global attractor in the deformed dark
energy cosmology [109]. We will make finite analysis of the
phase space. The finite fixed points are found by setting the
derivatives of the invariant submanifolds of the auxiliary vari-
ables. We can also write these autonomous equations in 𝑞 →1 limit in terms of the standard auxiliary variables, such as

𝑥󸀠𝑠 = −3𝑥𝑠 + 𝑠𝑠𝑥𝑠 + √6𝜉𝑠𝑠𝑢𝑠 − 2√6𝜉𝑢𝑠 + √62 𝜆𝑦2𝑠− √62 𝛽Ω𝑚,𝑦󸀠𝑠 = 𝑠𝑠𝑦𝑠 − √62 𝜆𝑦𝑠𝑥𝑠,𝑢󸀠𝑠 = √6𝑥𝑠.
(46)

Here we need to get the finite fixed points (critical points)
of the autonomous system in (41)–(45), in order to perform
the phase-space analysis of the model. We will obtain these
points by equating the left-hand sides of the equations (42),
(44), and (45) to zero, by using Ωtot = 1 in (34) and also by
assuming 𝜔tot = −1 and 𝑞𝑑 = −1 in (37) and (40), for each
critical point. After some calculations, four sets of solutions
are found as the critical points which are listed in Table 1
with the existence conditions. The same critical points are
also valid for 𝑥𝑠, 𝑦𝑠, and 𝑢𝑠 instead of 𝑥 + 𝑧, 𝑦, and 𝑢, in the𝑞 → 1 standard dark energy model limit.

Now we should find 𝛿𝑠 from (39), which will exist in the
perturbations 𝛿𝑥󸀠 + 𝛿𝑧󸀠, 𝛿𝑦󸀠, and 𝛿𝑢󸀠, such that

𝛿𝑠 = [2 (1 − 4𝜉) (𝑥 + 𝑧) + 2√63 𝜉𝑢] 1𝑃 (𝛿𝑥 + 𝛿𝑧)+ [−2𝑦 − 4𝜉𝜆𝑦𝑢] 1𝑃𝛿𝑦 + [(8𝜉2 − 𝜉) 2𝑢
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+ 2√63 𝜉 (𝑥 + 𝑧) + 2𝜉𝛽Ω𝑚 − 2𝜉𝜆𝑦2+ (43𝜉 + 8𝜉2) 𝑠𝑢] 1𝑃𝛿𝑢,
(47)

where 𝑃 = 2/3 − (2/3)𝜉𝑢2 − 4𝜉2𝑢2. Then the perturbations𝛿𝑥󸀠 +𝛿𝑧󸀠, 𝛿𝑦󸀠 and 𝛿𝑢󸀠 for each phase-space coordinate in our
model can be found by using the variations of (42), (44), and
(45), such that𝛿𝑥󸀠 + 𝛿𝑧󸀠 = [2 (1 − 4𝜉) (𝑥 + 𝑧)2 + (−𝑠 + 3) 𝑃 + 4𝜉2𝑢2

+ (83𝜉 − 8𝜉2)√6 (𝑥 + 𝑧) 𝑢] 1𝑃 (𝛿𝑥 + 𝛿𝑧)+ [(−2 (𝑥 + 𝑧) + √6𝜆𝑃) 𝑦 − 4𝜉𝜆 (𝑥 + 𝑧) 𝑦𝑢− 2√6𝜉𝑦𝑢 − 4√6𝜉2𝜆𝑦𝑢2] 1𝑃𝛿𝑦+ [(10𝜉2 − 𝜉) 2 (𝑥 + 𝑧) 𝑢 + 2√63 𝜉 (𝑥 + 𝑧)2
+ 2𝜉𝛽 (𝑥 + 𝑧)Ω𝑚 − 2𝜉𝜆 (𝑥 + 𝑧) 𝑦2+ (43𝜉 + 8𝜉2) (𝑥 + 𝑧) 𝑠𝑢 + (8𝜉2 − 𝜉) 2√6𝜉𝑢2+ 2√6𝜉2𝛽𝑢Ω𝑚 − 2√6𝜉2𝜆𝑦2𝑢+ (43𝜉 + 8𝜉2)√6𝜉𝑠𝑢2 + √6𝜉 (𝑠 − 2) 𝑃] 1𝑃𝛿𝑢,𝛿𝑦󸀠 = [2 (1 − 4𝜉) (𝑥 + 𝑧) 𝑦 + 2√63 𝜉𝑢𝑦 − √62 𝜆𝑦𝑃]⋅ 1𝑃 (𝛿𝑥 + 𝛿𝑧) + [−2𝑦2 − 4𝜉𝜆𝑦2𝑢 + 𝑠𝑃− √62 𝜆 (𝑥 + 𝑧) 𝑃] 1𝑃𝛿𝑦 + [(8𝜉2 − 𝜉) 𝑢𝑦+ 2√63 𝜉 (𝑥 + 𝑧) 𝑦 + 2𝜉𝛽𝑦Ω𝑚 − 2𝜉𝜆𝑦3
+ (43𝜉 + 8𝜉2) 𝑠𝑦𝑢] 1𝑃𝛿𝑢,𝛿𝑢󸀠 = √6 (𝛿𝑥 + 𝛿𝑧) .

(48)

From (48), we find the 3 × 3 perturbation matrix𝑀 whose
elements are given as

𝑀11 = [2 (1 − 4𝜉) (𝑥 + 𝑧)2 + (−𝑠 + 3) 𝑃 + 4𝜉2𝑢2+ (83𝜉 − 8𝜉2)√6 (𝑥 + 𝑧) 𝑢] 1𝑃 ,𝑀12 = [(−2 (𝑥 + 𝑧) + √6𝜆𝑃) 𝑦 − 4𝜉𝜆 (𝑥 + 𝑧) 𝑦𝑢− 2√6𝜉𝑦𝑢 − 4√6𝜉2𝜆𝑦𝑢2] 1𝑃 ,𝑀13 = [(10𝜉2 − 𝜉) 2 (𝑥 + 𝑧) 𝑢 + 2√63 𝜉 (𝑥 + 𝑧)2+ 2𝜉𝛽 (𝑥 + 𝑧)Ω𝑚 − 2𝜉𝜆 (𝑥 + 𝑧) 𝑦2+ (43𝜉 + 8𝜉2) (𝑥 + 𝑧) 𝑠𝑢 + (8𝜉2 − 𝜉) 2√6𝜉𝑢2+ 2√6𝜉2𝛽𝑢Ω𝑚 − 2√6𝜉2𝜆𝑦2𝑢+ (43𝜉 + 8𝜉2)√6𝜉𝑠𝑢2 + √6𝜉 (𝑠 − 2) 𝑃] 1𝑃 ,𝑀21 = [2 (1 − 4𝜉) (𝑥 + 𝑧) 𝑦 + 2√63 𝜉𝑢𝑦 − √62 𝜆𝑦𝑃]⋅ 1𝑃 ,𝑀22 = [−2𝑦2 − 4𝜉𝜆𝑦2𝑢 − +𝑠𝑃 − √62 𝜆 (𝑥 + 𝑧) 𝑃] 1𝑃 ,𝑀23 = [(8𝜉2 − 𝜉) 𝑢𝑦 + 2√63 𝜉 (𝑥 + 𝑧) 𝑦 + 2𝜉𝛽𝑦Ω𝑚
− 2𝜉𝜆𝑦3 + (43𝜉 + 8𝜉2) 𝑠𝑦𝑢] 1𝑃 ,𝑀31 = √6,𝑀32 = 𝑀33 = 0.

(49)

We insert the linear perturbations (𝑥 + 𝑧) → (𝑥𝑐 + 𝑧𝑐) +(𝛿𝑥 + 𝛿𝑧), 𝑦 → 𝑦𝑐 + 𝛿𝑦, and 𝑢 → 𝑢𝑐 + 𝛿𝑢 about the
critical points in the autonomous system (42), (44), and
(45), in order to calculate the eigenvalues of perturbation
matrix 𝑀 for four critical points given in Table 1, with the
corresponding existing conditions.Therefore, we first give the
four perturbation matrices for the critical points𝐴, 𝐵, 𝐶, and𝐷 with the corresponding existing conditions, such that

𝑀𝐴 = 𝑀𝐵 = (−3 0 −2√6𝜉0 −3 0√6 0 0 ) , (50)
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=(
(

4𝜉2𝑢2𝐶𝑃 − 3 −4√6𝜆𝑢2𝐶𝜉2𝑃 − 2√6𝜉𝑦𝐶𝑢𝐶𝑃 + √6𝑦𝐶𝜆 −√6 (2𝜉2 − 16𝜉3) 𝑢2𝐶𝑃 − 2√6𝜉2𝜆𝑦2𝐶𝑢𝐶𝑃 − 2√6𝜉2√6𝜉𝑦𝐶𝑢𝐶3𝑃 − √6𝜆𝑦𝐶2 −2𝑦2𝐶𝑃 − 4𝜉𝜆𝑦2𝐶𝑢𝐶𝑃 −2𝜉𝜆𝑦3𝐶𝑃 − (2𝜉 − 16𝜉2) 𝑢𝐶𝑦𝐶𝑃√6 0 0
)
)

, (51)

where 𝑦𝐶 = √4𝜉/𝜆(−2/𝜆 + √4/𝜆2 + 1/𝜉) and 𝑢𝐶 = −2/𝜆+√4/𝜆2 + 1/𝜉,
𝑀𝐷
=(
(

4𝜉2𝑢2𝐷𝑃 − 3 4√6𝜆𝑢2𝐷𝜉2𝑃 + 2√6𝜉𝑦𝐷𝑢𝐷𝑃 − √6𝑦𝐷𝜆 −√6 (2𝜉2 − 16𝜉3) 𝑢2𝐷𝑃 − 2√6𝜉2𝜆𝑦2𝐷𝑢𝐷𝑃 − 2√6𝜉√6𝜆𝑦𝐷2 − 2√6𝜉𝑦𝐷𝑢𝐷3𝑃 −2𝑦2𝐷𝑃 − 4𝜉𝜆𝑦2𝐷𝑢𝐷𝑃 −2𝜉𝜆𝑦3𝐷𝑃 − (2𝜉 − 16𝜉2) 𝑢𝐷𝑦𝐷𝑃√6 0 0
)
)

, (52)

where 𝑦𝐷 = −√4𝜉/𝜆(−2/𝜆 + √4/𝜆2 + 1/𝜉) and 𝑢𝐷 = −2/𝜆 +√4/𝜆2 + 1/𝜉. Also by using 𝑥𝑠, 𝑦𝑠, and 𝑢𝑠 instead of 𝑥 + 𝑧, 𝑦,
and 𝑢 in the perturbation matrix elements above, we obtain
the standard perturbation matrix elements in 𝑞 → 1 limit.
Then substituting the standard critical points we again obtain
the same matrices 𝑀𝐴, 𝑀𝐵, 𝑀𝐶, and 𝑀𝐷. Therefore the
stability of the standard model agrees with the stability of the
deformed model.

We need to obtain the four sets of eigenvalues and inves-
tigate the sign of the real parts of eigenvalues, so that we can
determine the type and stability of critical points. If all the real
parts of the eigenvalues are negative, the critical point is said
to be stable.Thephysicalmeaning of the stable critical point is
a stable attractor; namely, the Universe keeps its state forever
in this state and thus it can attract the universe at a late time.
Here an accelerated expansion phase occurs because 𝜔tot =−1 < −1/3. However, if the suitable conditions are satisfied,
there can even exist an accelerated contraction for 𝜔tot =−1 < −1/3 value. Eigenvalues of the four𝑀matrices and the
stability conditions are represented in Table 2, for each critical
point𝐴,𝐵,𝐶, and𝐷. FromTable 2, the first two critical points𝐴 and 𝐵 have the same eigenvalues, as 𝐶 and 𝐷 have the
same eigenvalues, too. Here the eigenvalues and the stability
conditions of the perturbation matrices for critical points𝐶 and 𝐷 have been obtained by the numerical methods,
due to the complexity of the matrices (51) and (52). The
stability conditions of each critical point are listed in Table 2,
according to the sign of the real part of the eigenvalues.

Now we will study the cosmological behavior of each
critical point by considering the attractor solutions in scalar
field cosmology [110]. We know that the energy density of a
scalar field has a role in the determination of the evolution of

Universe. Cosmological attractors provide the understanding
of evolution and the factors affecting on this evolution, such
that, from the dynamical conditions, the evolution of scalar
field approaches a particular type of behavior without using
the initial fine tuning conditions [111–121]. We know that the
attractor solutions imply a behavior in which a collection of
phase-space points evolve into a particular region and never
leave from there. In order to solve the differential equation
system (42), (44), and (45) we use adaptive Runge-Kutta
method of 4th and 5th order, in MATLAB programming.
We use the present day values for the dark matter density
parameter Ω𝑚 = 0.3, interaction parameter 𝛽 = 14.5, and0 < 𝛾 < 2 values in solving the differential equation system
[94, 122]. Then the solutions with the stability conditions of
critical points are plotted for each pair of the solution set
being the auxiliary variables 𝑥 + 𝑧, 𝑦, and 𝑢.
Critical Point A. This point exists for 𝜆 = 0 which means
that the potential 𝑉 is constant. Acceleration occurs at this
point because of 𝜔tot = −1 < −1/3, and it is an expansion
phase since𝑦 is positive, so𝐻 is positive, too. Point𝐴 is stable
meaning that Universe keeps its further evolution, for 0 <𝜉 ≤ 3/16 with 𝜆, 𝛽 ∈ R, but it is a saddle point meaning the
universe evolves between different states for 𝜉 < 0. In Figure 1,
we illustrate the 2-dimensional projections of 4-dimensional
phase-space trajectories for the stability condition 𝜉 = 0.15
and for the present day values𝛽 = 14.5, 𝛾 = 1.5, andΩ𝑚 = 0.3
and three auxiliary 𝜆 values.This state corresponds to a stable
attractor starting from the critical point 𝐴 = (0, 1, 0), as seen
from the plots in Figure 1.

Critical Point B. Point 𝐵 also exists for 𝜆 = 0meaning that the
potential𝑉 is constant. Acceleration phase is again valid here
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Table 2: Eigenvalues and stability of critical points.

Critical
points Eigenvalues 𝜉 𝜆 Stability

A and B −3.0000 −(1/2)√9 − 48𝜉 − 3/2 (1/2)√9 − 48𝜉 − 3/2 Stable point for 0 < 𝜉 ≤ 3/16
with 𝜆, 𝛽 ∈ R

Saddle point for 𝜉 < 0 with𝜆, 𝛽 ∈ R

C and D

−1.0642 −1.5576 −5.5000 0.1000 1.0000

Stable point for 0 < 𝜉, 𝜆 = 1 and𝛽 ∈ R
Saddle point, if 𝜉 < 0 and 𝜆 ̸= 1

−1.0193 −1.0193 −7.2507 1.0000 1.0000−0.8407 −0.8407 −7.7519 2.0000 1.0000−0.7080 −0.7080 −8.0701 3.0000 1.0000−0.6014 −0.6014 −8.3107 4.0000 1.0000−0.5121 −0.5121 −8.5060 5.0000 1.0000−0.4353 −0.4353 −8.6709 6.0000 1.0000−0.3680 −0.3680 −8.8136 7.0000 1.0000−0.3082 −0.3082 −8.9395 8.0000 1.0000−0.2544 −0.2544 −9.0520 9.0000 1.0000−0.2055 −0.2055 −9.1535 10.0000 1.0000
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Figure 1: Two-dimensional projections of the phase-space trajectories for stability condition 𝜉 = 0.15 and for present day values 𝛽 = 14.5,𝛾 = 1.5, and Ω𝑚 = 0.3. All plots begin from the critical point 𝐴 being a stable attractor.

since 𝜔tot = −1 < −1/3, but this point refers to contraction
phase because 𝑦 is negative here. For the stability of the point𝐵, it is again stable for 0 < 𝜉 ≤ 3/16 with 𝜆, 𝛽 ∈ R, but it is a
saddle point for 𝜉 < 0. Therefore the stable attractor behavior
is represented for contraction starting from the critical point𝐵 = (0, −1, 0), as seen from the graphs in Figure 2. We plot
phase-space trajectories for the stability condition 𝜉 = 0.15

and for the present day values𝛽 = 14.5, 𝛾 = 1.5, andΩ𝑚 = 0.3
and three auxiliary 𝜆 values.
Critical Point C. Critical point 𝐶 occurs for 𝜆 ̸= 0 meaning
a field dependent potential 𝑉. The cosmological behavior is
again an acceleration phase since 𝜔tot < −1/3 and an expan-
sion phase since𝑦 is positive. Point𝐶 is stable for 0 < 𝜉,𝜆 = 1,



10 Advances in High Energy Physics

B

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0−0.8

x + z

−1.4
−1.3
−1.2
−1.1
−1

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4

y

(a)

B

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0−0.8

x + z

−1.5

−1

−0.5

0

u

(b)

B

−1.2
−1

−0.8
−0.6
−0.4
−0.2

0

u

−1.15 −1.05 −1−1.1 −0.95 −0.85−1.25 −1.2−1.3 −0.8−0.9
y

(c)

Figure 2: Two-dimensional projections of the phase-space trajectories for stability condition 𝜉 = 0.15 and for present day values 𝛽 = 14.5,𝛾 = 1.5, and Ω𝑚 = 0.3. All plots begin from the critical point 𝐵 being a stable attractor.

and𝛽 ∈ R and saddle point if 𝜉 < 0 and 𝜆 ̸= 1. 2-dimensional
projections of phase-space are represented in Figure 3, for the
stability conditions 𝜉 = 2, 𝜆 = 1 and for the present day values𝛽 = 14.5,Ω𝑚 = 0.3, and three auxiliary 𝛾 values in the present
day value range.The stable attractor starting from the critical
point 𝐶 can be inferred from the plots in Figure 3.

Critical Point D. This point exists for 𝜆 ̸= 0 meaning a field
dependent potential 𝑉. Acceleration phase is again valid due
to 𝜔tot < −1/3, but this point refers to a contraction phase
because 𝑦 is negative. Point 𝐷 is also stable for 0 < 𝜉, 𝜆 = 1,
and 𝛽 ∈ R. However, it is a saddle point, while 𝜉 < 0 and𝜆 ̸= 1. 2-dimensional plots of phase-space trajectories are
shown in Figure 4, for the stability conditions 𝜉 = 2, 𝜆 = 1
and for the present day values 𝛽 = 14.5, Ω𝑚 = 0.3 and three
auxiliary 𝛾 values in the present day value range. This state
again corresponds to a stable attractor starting from the point𝐷, as seen from the plots in Figure 4.

All the plots in Figures 1–4 have the structure of stable
attractor, since each of them evolves to a single point which
is in fact one of the critical points in Table 1. The three-
dimensional plots of the evolution of phase-space trajectories
for the stable attractors are given in Figure 5.These evolutions
to the critical points are the attractor solutions of our
cosmological model: interacting darkmatter and 𝑞-deformed
dark energy nonminimally coupled to gravity, which imply
an expanding universe. On the other hand, the construction
of the model in the 𝑞 → 1 limit reproduces the results of
the phase-space analysis for the nondeformed standard dark
energy case.The critical points and perturbationmatrices are

the same for the deformed and standard dark energy models
with the equivalence of the auxiliary variables as 𝑥 + 𝑧 = 𝑥𝑠,𝑦 = 𝑦𝑠, and 𝑢 = 𝑢𝑠. Therefore, it is confirmed that the
dark energy in our model can be defined in terms of the 𝑞-
deformed scalar fields obeying the 𝑞-deformed boson algebra
in (2). According to the stable attractor behaviors, it makes
sense to consider the dark energy as a scalar field defined by
the 𝑞-deformed scalar field, with a negative pressure.

We know that the deformed dark energy model is a
confirmed model since it reproduces the same stability
behaviors, critical points, and perturbation matrices with
the standard dark energy model, but the auxiliary variables
of deformed and standard models are not the same. The
relation between deformed and standard dark energy can be
represented regarding auxiliary variable equations in (31):𝑥 = √ 1 − 𝑞2𝑁(1 − 𝑞2)𝑁𝑥𝑠,

𝑦 = √exp(−𝑐(√ 1 − 𝑞2𝑁(1 − 𝑞2)𝑁 − 1))𝑦𝑠,
𝑢 = √ 1 − 𝑞2𝑁(1 − 𝑞2)𝑁𝑢𝑠,

(53)

where 𝑐 is a constant. From the equations (53) we now illus-
trate the behavior of the deformed and standard dark energy
auxiliary variables with respect to the deformation parameter𝑞 in Figure 6. We infer from the figure that the value of the
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Figure 3: Two-dimensional projections of the phase-space trajectories for stability conditions 𝜉 = 2,𝜆 = 1 and for present day values𝛽 = 14.5,Ω𝑚 = 0.3. All plots begin from the critical point 𝐶 being a stable attractor.
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Figure 6: Behavior of the auxiliary variables 𝑥, 𝑦, and 𝑢 with respect to the deformation parameter 𝑞 and the particle number𝑁.
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deformed𝑥,𝑦, and𝑢 decreaseswith decreasing 𝑞 for the 𝑞 < 1
interval for large particle number, and the decrease in the
variables𝑥,𝑦, and 𝑢 refers to the decrease in deformed energy
density. Also, we conclude that the value of the auxiliary
variables 𝑥, 𝑦, and 𝑢 increases with increasing 𝑞 for the 𝑞 > 1
interval for large particle number. In 𝑞 → 1 limit deformed
variables goes to standard ones.

4. Conclusion

In this study, we propose that the dark energy is formed of the
negative-pressure 𝑞-deformed scalar field whose field equa-
tion is defined by the 𝑞-deformed annihilation and creation
operators satisfying the deformed boson algebra in (2), since
it is known that the dark energy has a negative pressure—
like the deformed bosons—acting as a gravitational repulsion
to drive the accelerated expansion of universe. We consider
an interacting dark matter and 𝑞-deformed dark energy
nonminimally coupled to the gravity in the framework of
Einsteinian gravity in order to confirm our proposal. Then
we investigate the dynamics of the model and phase-space
analysiswhether it will give stable attractor solutionsmeaning
indirectly an accelerating expansion phase of universe.There-
fore, we construct the action integral of the interacting dark
matter and 𝑞-deformed dark energy nonminimally coupled
to gravity model in order to study its dynamics. With this the
Hubble parameter and Friedmann equations of themodel are
obtained in the spatially flat FRW geometry. Later on, we find
the energy density and pressure with the evolution equations
for the 𝑞-deformed dark energy and dark matter from the
variation of the action and the Lagrangian of the model.
After that we translate these dynamical equations into the
autonomous form by introducing the suitable auxiliary vari-
ables, in order to perform the phase-space analysis of the
model. Then the critical points of autonomous system are
obtained by setting each autonomous equation to zero and
four perturbation matrices are obtained for each critical
point by constructing the perturbation equations. We then
determine the eigenvalues of four perturbation matrices to
examine the stability of the critical points. We also calculate
some important cosmological parameters, such as the total
equation of state parameter and the deceleration parameter to
check whether the critical points satisfy an accelerating uni-
verse. We obtain four stable attractors for the model depend-
ing on the coupling parameter 𝜉, interaction parameter𝛽, and
the potential constant𝜆. An accelerating universe exists for all
stable solutions due to𝜔tot < −1/3.The critical points𝐴 and𝐵
are late-time stable attractors for 0 < 𝜉 ≤ 3/16 and 𝜆, 𝛽 ∈ R,
with the point𝐴 referring to an expansion with a stable accel-
eration, while the point 𝐵 refers to a contraction. However,
the critical points 𝐶 and 𝐷 are late-time stable attractors for0 < 𝜉, 𝜆 = 1, and 𝛽 ∈ R, with the point 𝐶 referring to an
expansion with a stable acceleration, while the point𝐷 refers
to a contraction. The stable attractor behavior of the model
at each critical point is demonstrated in Figures 1–4. In order
to solve the differential equation system (42), (44), and (45)
with the critical points and plot the graphs in Figures 1–4,
we use adaptive Runge-Kutta method of 4th and 5th order, in

MATLAB programming.Then the solutions with the stability
conditions of critical points are plotted for each pair of the
solution set being the auxiliary variables in 𝑥 + 𝑧, 𝑦, and 𝑢.

These figures show that, by using the convenient param-
eters of the model according to the existence and stability
conditions and the present day values, we can obtain the
stable attractors as 𝐴, 𝐵, 𝐶, and𝐷.

The 𝑞-deformed dark energy is a generalization of the
standard scalar field dark energy. As seen from (9) in the𝑞 → 1 limit, the behavior of the deformed energy density,
pressure, and scalar field functions with respect to the
standard functions all approach the standard corresponding
function values. Consequently, 𝑞-deformation of the scalar
field dark energy gives a self-consistent model due to the
existence of standard case parameters of the dark energy in
the 𝑞 → 1 limit and the existence of the stable attractor
behavior of the accelerated expansion phase of universe for
the considered interacting and nonminimally coupled dark
energy and dark matter model. Although the deformed dark
energy model is confirmed through reproducing the same
stability behaviors, critical points, and perturbation matrices
with the standard dark energy model, the auxiliary variables
of deformed and standard models are of course different.
By using the auxiliary variable equations in (31), we find
the relation between deformed and standard dark energy
variables. From these equations, we represent the behavior
of the deformed and standard dark energy auxiliary variables
with respect to the deformation parameter for 𝑞 < 1 and 𝑞 > 1
intervals in Figure 6. Then, the value of the deformed 𝑥, 𝑦,
and 𝑢 or equivalently deformed energy density decreases with
decreasing 𝑞 for the 𝑞 < 1 interval for large particle number.
Also the value of the auxiliary variables 𝑥, 𝑦, and 𝑢 increases
with increasing 𝑞 for the 𝑞 > 1 interval for large particle
number. In 𝑞 → 1 limit all the deformed variables transform
to nondeformed variables.

The consistency of the proposed 𝑞-deformed scalar field
dark energy model is confirmed by the results, since it gives
the expected behavior of the universe.The idea of considering
the dark energy as a 𝑞-deformed scalar field is a very recent
approach. There are more deformed particle algebras in
the literature which can be considered as other and maybe
more suitable candidates for the dark energy. As a further
study for the confirmation of whether the dark energy can
be considered as a general deformed scalar field, the other
interactions and couplings between deformed dark energy
models, dark matter, and gravity can be investigated in the
general relativity framework or in the framework of other
modified gravity theories, such as teleparallelism.

Competing Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] S. Perlmutter, G. Aldering, G. Goldhaber et al., “Measurements
ofΩ and 𝜆 from 42 high-redshift supernovae,”TheAstrophysical
Journal, vol. 517, no. 2, pp. 565–586, 1999.



14 Advances in High Energy Physics

[2] A. G. Riess, A. V. Filippenko, P. Challis et al., “Observational
evidence from supernovae for an accelerating universe and a
cosmological constant,”Astronomical Journal, vol. 116, no. 3, pp.
1009–1038, 1998.

[3] U. Seljak, A. Makarov, P. McDonald et al., “Cosmological
parameter analysis including SDSS Ly𝛼 forest and galaxy
bias: constraints on the primordial spectrum of fluctuations,
neutrino mass, and dark energy,” Physical Review D, vol. 71, no.
10, Article ID 103515, 2005.

[4] M. Tegmark, M. A. Strauss, M. R. Blanton et al., “Cosmological
parameters from SDSS andWMAP,” Physical Review D, vol. 69,
no. 10, Article ID 103501, 2004.

[5] D. J. Eisenstein, I. Zehavi, D. W. Hogg et al., “Detection of the
baryon acoustic peak in the large-scale correlation function of
SDSS luminous red galaxies,” Astrophysical Journal Letters, vol.
633, no. 2, pp. 560–574, 2005.

[6] D. N. Spergel, L. Verde, H. V. Peiris et al., “First-year wilkinson
microwave anisotropy probe (WMAP)∗ observations: deter-
mination of cosmological parameters,” Astrophysical Journal,
Supplement Series, vol. 148, no. 1, pp. 175–194, 2003.

[7] E. Komatsu, K. M. Smith, J. Dunkley et al., “Seven-year
wilkinson microwave anisotropy probe (WMAP*) observa-
tions: cosmological interpretation,” The Astrophysical Journal,
Supplement Series, vol. 192, no. 2, 2011.

[8] G. Hinshaw, D. Larson, E. Komatsu et al., “Nine-year wilkinson
microwave anisotropy probe (WMAP) observations: cosmolog-
ical parameter results,”Astrophysical Journal, Supplement Series,
vol. 208, no. 2, article 19, 2013.

[9] P. A. R. Ade, N. Aghanim, C. Armitage-Caplan et al., “Planck
2013 results. XVI. Cosmological parameters,” Astronomy &
Astrophysics, vol. 571, article A16, 66 pages, 2013.

[10] P. A. R. Ade, N. Aghanim,M. Arnaud et al., “Planck 2015 results.
XIII. Cosmological parameters,”Astronomy&Astrophysics, vol.
594, article A13, 2015.

[11] F. Zwicky, “On themasses of nebulae and of clusters of nebulae,”
The Astrophysical Journal, vol. 86, pp. 217–246, 1937.

[12] H. W. Babcock, “The rotation of the Andromeda nebula,” Lick
Observatory Bulletin, vol. 498, pp. 41–51, 1939.

[13] C. Wetterich, “Cosmology and the fate of dilatation symmetry,”
Nuclear Physics, Section B, vol. 302, no. 4, pp. 668–696, 1988.

[14] B. Ratra and P. J. E. Peebles, “Cosmological consequences of a
rolling homogeneous scalar field,” Physical ReviewD, vol. 37, no.
12, p. 3406, 1988.

[15] E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark
energy,” International Journal ofModern Physics. D. Gravitation,
Astrophysics, Cosmology, vol. 15, no. 11, pp. 1753–1935, 2006.

[16] M. Li, X.-D. Li, S. Wang, and Y. Wang, “Dark energy,” Commu-
nications inTheoretical Physics, vol. 56, no. 3, pp. 525–604, 2011.

[17] C. Wetterich, “The cosmon model for an asymptotically van-
ishing time dependent cosmological ‘constant’,” Astronomy &
Astrophysics, vol. 301, pp. 321–328, 1995.

[18] L. Amendola, “Coupled quintessence,” Physical Review D, vol.
62, no. 4, Article ID 043511, 2000.

[19] N. Dalal, K. Abazajian, E. Jenkins, and A. V. Manohar, “Testing
the cosmic coincidence problem and the nature of dark energy,”
Physical Review Letters, vol. 87, no. 14, Article ID 141302, 2001.

[20] W. Zimdahl, D. Pavón, and L. P. Chimento, “Interacting
quintessence,” Physics Letters, Section B: Nuclear, Elementary
Particle and High-Energy Physics, vol. 521, no. 3-4, pp. 133–138,
2001.

[21] B. Gumjudpai, T. Naskar, M. Sami, and S. Tsujikawa, “Coupled
dark energy: towards a general description of the dynamics,”
Journal of Cosmology and Astroparticle Physics, vol. 506, article
7, 2005.

[22] A. P. Billyard and A. A. Coley, “Interactions in scalar field
cosmology,” Physical Review D, vol. 61, no. 8, Article ID 083503,
2000.

[23] J.-Q. Xia, Y.-F. Cai, T.-T. Qiu, G.-B. Zhao, and X. Zhang,
“Constraints on the sound speed of dynamical dark energy,”
International Journal of Modern Physics D, vol. 17, no. 8, pp.
1229–1243, 2008.

[24] A. Vikman, “Can dark energy evolve to the phantom?” Physical
Review D, vol. 71, no. 2, Article ID 023515, 2005.

[25] W. Hu, “Crossing the phantom divide: dark energy internal
degrees of freedom,” Physical Review D—Particles, Fields, Grav-
itation and Cosmology, vol. 71, no. 4, Article ID 047301, 2005.

[26] R. R. Caldwell and M. Doran, “Dark-energy evolution across
the cosmological-constant boundary,” Physical Review D—
Particles, Fields, Gravitation and Cosmology, vol. 72, no. 4,
Article ID 043527, pp. 1–6, 2005.

[27] G.-B. Zhao, J.-Q. Xia, M. Li, B. Feng, and X. Zhang, “Pertur-
bations of the quintom models of dark energy and the effects
on observations,” Physical Review D, vol. 72, no. 12, Article ID
123515, 2005.

[28] M. Kunz and D. Sapone, “Crossing the phantom divide,”
Physical Review D, vol. 74, no. 12, Article ID 123503, 2006.

[29] B. L. Spokoiny, “Inflation and generation of perturbations in
broken-symmetric theory of gravity,” Physics Letters B, vol. 147,
no. 1-3, pp. 39–43, 1984.

[30] F. Perrotta, C. Baccigalupi, and S. Matarrese, “Extended
quintessence,” Physical Review D, vol. 61, no. 2, Article ID
023507, 2000.

[31] E. Elizalde, S. Nojiri, and S. D. Odintsov, “Late-time cosmology
in a (phantom) scalar-tensor theory: dark energy and the
cosmic speed-up,” Physical Review D, vol. 70, no. 4, Article ID
043539, 2004.

[32] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, “Dark
energy cosmology: the equivalent description via different
theoretical models and cosmography tests,” Astrophysics and
Space Science, vol. 342, no. 1, pp. 155–228, 2012.

[33] O. Hrycyna andM. Szydowski, “Non-minimally coupled scalar
field cosmology on the phase plane,” Journal of Cosmology and
Astroparticle Physics, vol. 2009, no. 4, article no. 26, 2009.

[34] O. Hrycyna and M. Szydłowski, “Extended quintessence with
nonminimally coupled phantom scalar field,” Physical Review
D, vol. 76, no. 12, Article ID 123510, 2007.

[35] R. C. de Souza andG.M.Kremer, “Constraining non-minimally
coupled tachyon fields by the Noether symmetry,” Classical and
Quantum Gravity, vol. 26, no. 13, Article ID 135008, 2009.

[36] A. A. Sen and N. C. Devi, “Cosmology with non-minimally
coupled k-field,” General Relativity and Gravitation, vol. 42, no.
4, pp. 821–838, 2010.

[37] E. Dil and E. Kolay, “Dynamics of mixed dark energy domina-
tion in teleparallel gravity and phase-space analysis,” Advances
in High Energy Physics, vol. 2015, Article ID 608252, 20 pages,
2015.

[38] S. Weinberg, “The cosmological constant problem,” Reviews of
Modern Physics, vol. 61, no. 1, pp. 1–23, 1989.

[39] S. M. Carroll, W. H. Press, and E. L. Turner, “The cosmological
constant,”Annual Review ofAstronomyandAstrophysics, vol. 30,
no. 1, pp. 499–542, 1992.



Advances in High Energy Physics 15

[40] L. M. Krauss and M. S. Turner, “The cosmological constant is
back,”General Relativity andGravitation, vol. 27, no. 11, pp. 1137–
1144, 1995.

[41] G. Huey, L. Wang, R. Dave, R. R. Caldwell, and P. J. Steinhardt,
“Resolving the cosmological missing energy problem,” Physical
Review D - Particles, Fields, Gravitation and Cosmology, vol. 59,
no. 6, pp. 1–6, 1999.

[42] P. Kulish and N. Reshetiknin, “Quantum linear problem for the
Sine-Gordon equation and higher representations,” Journal of
Soviet Mathematics, vol. 23, no. 4, pp. 2435–2441, 1981.

[43] E. Sklyanin, L. Takhatajan, and L. Faddeev, “Quantum inverse
problem method. I,” Theoretical and Mathematical Physics, vol.
40, no. 2, pp. 688–706, 1979.

[44] L. C. Biedenharn and M. A. Lohe, Quantum Group Symmetry
andQ-Tensor Algebras ,World Scientific Publishing, River Edge,
NJ, USA, 1995.

[45] M. Arik and D. D. Coon, “Hilbert spaces of analytic func-
tions and generalized coherent states,” Journal of Mathematical
Physics, vol. 17, no. 4, pp. 524–527, 1976.

[46] A. J. Macfarlane, “On q-analogues of the quantum harmonic
oscillator and the quantum group SUq(2),” Journal of Physics A,
vol. 22, no. 21, pp. 4581–4588, 1989.

[47] L. C. Biedenharn, “Thequantumgroup SU𝑞(2) and a q-analogue
of the boson operators,” Journal of Physics. A: Mathematical and
General, vol. 22, no. 18, pp. L873–L878, 1989.

[48] L. Tripodi and C. L. Lima, “On a q-covariant form of the BCS
approximation,”Physics Letters. B, vol. 412, no. 1-2, pp. 7–13, 1997.
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