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Abstract In this article, we apply the Finsler spacetime to
develop the Einstein field equations in the extension of modi-
fied geometry. Following Finsler geometry, which is focused
on the tangent bundle with a scalar function, a scalar equation
should be the field equation that defines this structure. This
spacetime maintains the required causality properties on the
generalized Lorentzian metric manifold. The matter field is
coupled with the Finsler geometry to produce the complete
action. The developed Einstein field equations are employed
on the strange stellar system to improve the study. The inte-
rior of the system is composed of a strange quark matter,
maintained by the MIT bag equation of state. In addition, the
modified Tolman–Oppenheimer–Volkov (TOV) equation is
formulated. In particular, the anisotropic stress attains the
maximum at the surface. The mass-central density variation
confirms the stability of the system.

1 Introduction

General relativity (GR) is based on a spacetime manifold
furnished with a metric tensor consisting of the Lorentzian
signature. The Einstein equations are determined from the
metric. The geodesic equation of the system helps to deter-
mine the motion of the particles. Different characteristics
and behaviour of spacetime in four dimensions together with
higher dimensions, have been studied by several theoreti-
cal physicists [1–5]. Most investigations are concentrated
on spacetime, and specifically the Einstein field equations.
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There are a variety of reasons for investigating gravitational
theories. Many of them utilize theoretical predictions, and
have pointed out that GR should be superseded in a more
general aspect, and a few have tested results. In addition to
astrophysical relevance, there are vast applications of space-
time to de Sitter gauge theory, induced gravity, string theory,
and anti-de Sitter/conformal field theory (ADS/CFT) corre-
spondence [6–8].

Various observational, simulation, and experimental stud-
ies are being pursued to understand the formation and evo-
lution of galaxies, the dynamics and morphology of galax-
ies, early-stage formation of the universe, reionization of the
universe, rotational curves of galaxies, formation of stars,
different stages of stars, and the merger of binary compact
objects [9–16]. The parametrized post-Newtonian (PPN) for-
malism is a mathematical mechanism to determine the devi-
ation of GR and experimental results [17–19]. However, the
PPN formalism is confined to metric theories of gravitation.
Observations and measurements of the magnitude and red-
shift of supernovas are also innovative studies [20–22]. The
outcomes of the data analysis of supernovae reveal that at
present, the decelerating parameter (q) lies in the domain of
−1.0 ≤ q ≤ −0.5 [23,24]. The accelerating phase of the
universe is confirmed by the negative values of the deceler-
ating parameter. The net outcomes of these results are the
contrary behaviour described by GR.

The observation of the motion of point particles provides
an adept explanation of the physical properties of spacetime.
The geodesic of the geometry of spacetime can be consid-
ered as the observed trajectory. The appropriateness of the
geometry can be verified from the matching of a predicted
geodesic with the observed curve. Finsler geometry is where
the manifold is accounted for with a Finsler function. It has
a 1-homogeneous function on the tangent bundle of space-
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time, and the length measure for curves is associated with the
Lorentzian metric. The generalized expression for the length
of a curve on a manifold generalized metric geometry [25–
27]

S[γ ] =
∫

dτF (x(τ ), ẋ(τ )).

The Lorentzian metric gab determines the function F as
F (x, ẋ) = |gab(x)ẋa ẋb|1/2. Here, x and ẋ stand for posi-
tion vector and tangent vector, respectively. According to the
definition, the geometric fields and the objects depend not
only on the points of the manifold but also on its tangent
directions.

It is impossible to describe the dynamic physical processes
without a clock. Due to the versatility of the Finsler clock pos-
tulate, Finsler geometry has emerged in different contexts to
describe physics. The importance of Finsler geometry has
been realized and explored from the viewpoint of fundamen-
tal approaches of theoretical physics: from various aspects
of different gravity theories; from hyperbolic polynomials
defined in the generalized backgrounds [28]; for defining
the modified dispersion relations of the Planck scale in the
effective classical geometry and the corresponding breaking
of local Lorentz invariance [29–31]; and in both linear and
nonlinear optical media of covariant formulations for elec-
trodynamical systems [32,33]. The Finslerian extension also
provides an acceptable explanation of the anomaly that GR
does not fulfil for the phenomenological level, astronomical
and cosmological data, dark matter, and dark energy [34–36].

Buchdahl [37] proposed a modification of GR by intro-
ducing the Ricci scalar R as an arbitrary function f (R) in
the Einstein–Hilbert action, which was further investigated in
similar research [38,39]. Different modifications were sub-
sequently achieved by modifying the geometric term of the
action: f (G) gravity [40,41], f (T) gravity [42,43], f (R,G)

gravity [44], and so on (where G and T are the Gauss–
Bonnet scalar and torsion scalar, respectively). Regarding the
validation of f (R) gravity, it fails to uphold the solar system
tests [45,46]. Such gravity theory is also unaccounted for in
the stable stellar configuration [47,48]. In addition, scalar-
tensor gravity and f (R) gravity are classically equivalent to
each other [49,50]. Several studies have investigated strange
stellar objects in a non-modified frame [51–55].

Harko et al. [1] defined f (R,T ) gravity by including the
matter Lagrangian with any arbitrary form of the Ricci scalar
(R) as well as the trace of the energy–momentum tensor (T ).
Theoretical divisions of cosmology and astrophysics have
successfully studied f (R,T ) gravity [56–62]. For the self-
gravitating, spherically symmetric system, the effects of sta-
bility for the locally isotropic system was explored by Sharif
et al. [63]. Noureen et al. introduced perturbation effects in
the system. Several scientists have also studied different char-
acteristics of dynamical instability of spherically symmetric

anisotropic collapsing stars [64–67]. The Palatini approach
of f (R,T ) gravity, independent of a metric, is presented in
the literature [68,69]. The hydrostatic equation for a stellar
system was reviewed for isotropic and anisotropic systems
by Moraes et al. [70] and Deb et al. [71]. Coupling of matter
with a curvature reveals that the energy–momentum tensor
is non-conserved (∇μTμν �= 0) [1,72], i.e., the presence of
the additional force is due to the coupling. Hence, it can be
concluded that gravity violates the equivalence principle of
GR [73].

Interestingly, Chakraborty [74], considering the coupling
of matter and geometry, applied the restriction to the case
where the test particle moves along a geodesic. As a conse-
quence, it was shown that the matter originating from two
non-interacting fluids within the stellar system conserves the
effective energy–momentum tensor. From the modification
of gravitation, the Lagrangian introduces a supplementary
force in f (R,T ) gravity, which is used to stabilize the stel-
lar system in addition to the hydrodynamic force, anisotropic
force, and gravitational force [71]. Shabani and Farhaudi [59]
provide the consequences of a cosmological and solar sys-
tem in f (R,T ) gravity, which were consistent with the
observational data. Confirmation of the dark matter galac-
tic effects and gravitational lensing also support the valid-
ity of the modified theory [75]. The application of modified
gravity in Finsler spacetime has also been studied in the lit-
erature [76,77].

In this article, we define the Finsler structure based on the
following characteristics:

(i) The Finsler function is the fundamental variable of the
geometry that has a homogeneous scalar equation on the
tangent bundle.

(ii) The geometric structure is constructed from the Finsler
function and is of simplified form.

(iii) The fundamental dynamical variable is no longer the met-
ric in Finsler geometry as it is in semi-Riemannian geom-
etry.

(iv) By the variation of the action integral, the field equation
is obtained.

(v) For pseudo-Riemannian geometry, the Finslerian space-
time geometry becomes similar to the dynamics deter-
mined from the Einstein field equations.

(vi) The modified gravity maintains the system.
(vii) The interior of the stellar system is composed of up (u),

down (d), and strange (s) quarks, and the matter distri-
bution is maintained by the phenomenological MIT bag
equation of state (EOS).

From the physics point of view, the geometry is a non-
metric spacetime geometry, but the main motivation for con-
sidering it is that it introduces an intrinsic local anisotropy.
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This anisotropy contributes to the structure of astrophysical
objects through the so-called Finslerian parameter.

The manuscript is organized as follows: A concise defini-
tion of the Finsler spacetime is given in Sect. 2.1. In Sect. 2.2
we introduce the action principle and complete the gravity
equation including matter and as the stage where we develop
the Einstein field equation for modified gravity with a Fins-
lerian background. The quadratic form of the Finsler struc-
ture is a semi-definite Riemannian structure, and we show
its consistency with the Einstein field equations. We review
the formation of the stellar system and hydrostatic equation
with the MIT bag model equation of state (EOS) in Sect.
3. Section 4 is devoted to a discussion of the stellar system
and the generalized mass-radius limit for strange stellar con-
figurations. In Appendix 1, we explain the constant flag in
two-dimensional Finsler space.

2 Finsler spacetime

The generalization of modified gravity presented in this arti-
cle is based on the description of spacetime. In Sect. 2.1, we
follow up the basic notion of geometry on the Finsler space-
time [78]. The generation of the Lorentzian metric space-
time is introduced here. In Sect. 2.2, we develop the Ein-
stein field equations for the modified theory of gravity, i.e.,
the Lagrangian density is any arbitrary function of the Ricci
scalar and trace of the energy–momentum tensor in the Fins-
lerian extension. The field equation is developed from the
action principle, where the total action is a combination of
matter and geometry.

2.1 The definition

The definition of Finsler spacetime has been generalized
in the literature [4,79–81] from the original definition by
Beem [82]. It has been formulated and employed to describe
a variety of indefinite Finsler lengths.

A Finsler spacetime (M, L) is a four-dimensional smooth
manifold. Here L : TM → R is a continuous function on
the tangent bundle, known as the Finsler–Lagrange function,
which satisfies the following criteria:

(i) L is positively homogeneous of degree 2 with respect to
the fibre coordinates of TM.

(ii) L is reversible in the sense |L(x,−y)| = |L(x, y)|.
(iii) The Euler–Lagrange equation d

dT ∂̇i L − ∂i L = 0. For
every initial condition (x, ẋ) ∈ T ∪ N , there exists a
unique solution, with N the kernel of L .

(iv) L is smooth, and in respect to the fibre coordinate, the
Hessian gLab of L so that gLab = 1

2∂a∂bL .

(v) For the preimage L−1(0,∞) ⊂ TM, there is a connected
componentT , such that onT , the smooth gL exists with
a Lorentzian signature (+, −, −, −).

The essence of four conical sub-bundles of TM\{0} origi-
nated from the difficulty in defining Finsler spacetime. This
characterizes the properties of the indefinite Finsler geometry
as follows:

(a) N is the sub-bundle where L = 0 and the fibre Nx =
N ∩ TxM .

(b) A is the sub-bundle with a smooth L and non-degenerate
gL where the fibre is Ax = A ∩ TxM and is known as
the set of admissible vectors.

(c) A0 = A \N is the sub-bundle where L is used for nor-
malization with the fibre A0x = A0 ∩ TxM .

(d) T is the conic sub-bundle where L > 0 and the fibre
Tx = T ∩ TxM . The signature of the L metric is the
Lorentzian signature (+, −, −, −).

The extensive section is the assurance of the existence of the
convex cone Tx in each tangent space TxM from the defi-
nition of T . The convexity of the Tx is elaborately studied
in the literature [4]. The interrelations, such as A0 ⊂ A
and T ⊂ A0, differentiate the earlier definitions of Finsler
spacetime. There is no correlation between N and A ; thus
we can consider that the L is not differentiable along the
direction L(x, ẋ) �= 0 and L(x, ẋ) = 0 [81].

2.2 Basic formalism

The Einstein field equations can be derived from the action
principle. The action is the integral of the Lagrangian density
over spacetime. Total action can be defined as a combination
of the matter and the Einstein–Hilbert action, which couples
gravity to matter as follows:

S = kSEH + SM .

Let us now consider a Finsler space (M,F ). In Finslerian
language, the Einstein–Hilbert action can be considered over
the sphere bundle � given by

SEH =
∫

�

d4 x̂d3θ
√
g
√
h( fab y

a yb)|�. (1)

No restriction is required of
√
g and

√
h to �. During the

calculation, we omit the subscript |� for the restriction of the
functions to �, and all functions are meant to be evaluated
there.

All quantities in the action are a function of F in respect
of g. The action is varied with respect to F . The dynamics
of F , which describes the equation of motion, are equivalent
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to the Einstein equations:

δSEH =
∫

d4 x̂d3θ
√
g
√
h
(1

2
fabg

abδgab + fRδRab

+1

2
fabh

abδhab − 2 fR Rab
δF

F

+3 fτ (Tab − gabLm))δgab
)
ya yb, (2)

where fR = ∂ f/∂Ric, fτ = ∂ f/∂τ , and the function f =
fab ya yb over the sphere bundle [26,83]. Here,

√
g and Rab

are independent of the variation of θ .
The variation of habδhab can be defined as

habδhab = (gab − ya yb)δgab − 6
δF

F
. (3)

The correlation of δgab and δF
F can be written as

δgab(x̂) = 2gab δF
F . On substituting Eq. (3) and the cor-

relations in the variational Eq. (2), we have

δSEH =
∫

�

d4 x̂d3θ
√
g
√
h
(

2 f gab − 6 fab

+6 fτ (Tab − gabLm)
)
ya yb

δF

F
. (4)

The matter action of the Finsler space is based only on the
Lagrangian density (L) of the system, which is a scalar on
the space. Therefore, we can consider that it depends only on
the manifold geometry. In the Finslerian setting with Finsler
function (F ) considered as a fundamental variable that deter-
mines spacetime, the matter action for matter fields ψi looks
like

SM =
∫

�

d4 x̂d3θ
√
g
√
hL(g, ψi ).

Due to the independence of L and g from θ over the fibre
coordinates, we can integrate the system on the manifold M,
which leads to the standard matter action if we divide out the
volume of the 3-sphere.

The energy–momentum tensor of the matter under con-
sideration can be defined as the calculus of variation of the
matter action with respect to the metric. In the Finsler set-
ting, the variation with respect to the Finsler function leads
to an expression that involves the energy–momentum tensor
of p-form fields on Lorentzian metric spacetime as T ab and
its trace T = T abgab = 4L + 2gab ∂L

∂gab
, following Pfeifer

and Wohlfarth [4]. The variation with respect to the Finsler
function is as follows:

δSM =
∫

�

d4 x̂d3θ
√
g
√
h(12Tab − 2Tgab)y

a yb
δF

F
. (5)

Combining the Einstein–Hilbert action with the matter
leads to the total action that couples gravity to matter as

follows:

S[F, ψi ] = kSEH + SM .

After performing the variation with respect to F ,

δS[F , ψi ] = kδSE H + δSM

=
∫

�

d4 x̂d3θ
√
g
√
h
(
k(2 f gab − 6 fab

+6 fτ (Tab − gabLm)) + (12Tab − 2Tgab)
)

ya yb
δF

F
. (6)

The following equation allows us to determine the struc-
ture of spacetime:(

(3 f + Ric)gab − 6 fab + 6 fτ (Tab − gabLm)
)
ya yb

= −12Tab
k

ya yb. (7)

The tensors in the bracket are y-independent due to con-
sideration of the space with a vanishing Cartan tensor.

We consider f = Ric+2ητ , a linear combination form of
Ric and τ , with a constant η as adopted by Harko et al. [1]. In
this study, we assume Lm = −P , with P = 1

3 (pr + 2pt ),

and set the coupling constant k = c4

4πFG
.

The second derivative of Eq. (7) with respect to fibre coor-
dinates results in the Einstein equations as follows:

Rab − 1

2
Rgab = 8πFG

c4 Tab + η(τgab + 2gabP). (8)

The effective energy–momentum tensor of the system can
be defined as

T ef f
ab = Tab + ηc4

8πFG
(τgab + 2gabP). (9)

Hereafter, we shall consider the geometrized unit, i.e.,
G = c = 1.

Now, the covariant divergence of the stress–energy tensor
is

∇aTab = − η

8π

{
gab∇aτ + 2∇a(gabP)

}
. (10)

Following the above, we can write

Tef f
a
b;a = 0.

3 Basic equation for the stellar system

To define the stellar structure, we assume the Finsler structure
is of the form

F 2 = −eλ(r)yt yt + eν(r)yr yr + r2F
2
(θ, φ, yθ , yφ). (11)
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The metric structure coefficient can be written as

gμν = ∂

∂yμ

∂

∂yν

(
1

2
F 2

)
,

where (gμν) = (gμν)
−1, and we also note that each gμν is

homogeneous of degree zero in y.
For a non-zero vector y = yμ( ∂

∂xμ ) |p∈ TpM, F induces
an inner product on TpM which is given by

gy(u, v) = gμν(x, y)u
μvν,

where u = uμ( ∂
∂xμ ) |p, v = vμ( ∂

∂xμ ) |p∈ TpM\{0}.
Hence, the metric potential of the system can be defined

as

gμν = diag(−eλ(r), eν(r), r2gi j ),

where the term gi j arises from F
2
.

The energy–momentum tensor of the anisotropic system
can be considered in the following form:

Tμ
ν = −(ρ + pt )u

μuν + ptδ
μ
ν + (pt − pr )v

μvν, (12)

with uν and vν the four-velocity and radial four-vector,
respectively. The energy density, the radial and tangential
pressures of the anisotropic fluid are respectively represented
by ρ, pr , and pt .

The Einstein field equations for an anisotropic stellar sys-
tem are in the form

ν′e−ν

r
− e−ν

r2 + Ric

r2 = 8πF

(
ρ + η

24πF
(3ρ − pr − 2pt )

)

= 8πFρe f f , (13)

λ′e−ν

r
+ e−ν

r2 − Ric

r2 = 8πF

(
pr − η

24πF
(3ρ − pr − 2pt )

)

= 8πF p
ef f
r , (14)

e−ν

[
λ′′

2
+ λ′2

4
− λ′ν′

4
+ λ′ − ν′

2r

]

= 8πF

(
pt − η

24πF
(3ρ − pr − 2pt )

)

= 8πF p
ef f
t , (15)

where Ric represents the Ricci scalar, derived from F
2
.

To define the strange stellar system, we consider mono-
tonically decreasing non-singular matter density within the
spherically symmetric system, as considered by Mak and
Harko [84], in the following form:

ρ(r) = ρc

[
1 −

(
1 − ρ0

ρc

)
r2

R2

]
, (16)

where ρc and ρ0 are the central and surface densities, respec-
tively.

Fig. 1 Variation of the density (ρ) as a function of the fractional radial
coordinate r/R, with bag constant (Bg) = 83 MeV/fm3 and Finsler
parameter (Ric) = 1.2 for the LMC X − 4

Figure 1 shows the variation of density with the fractional
radial function for different coupling constants.

We presume that the internal matter distribution of the
strange stellar system is defined by the phenomenological
MIT bag model EOS followed by Chodos et al. [85]. The
three flavoured quarks considered as the basic foundation of
the bag are regarded as massless and non-interacting. Fol-
lowing this, the total quark pressure can be assumed as

pr =
∑
f

p f − Bg,

where p f represents the pressure of the up (u), down (d),
and strange (s) quarks, respectively, and the vacuum energy
density (also known as bag constant) of the system is B.
Here, the pressure of individual quarks is related to the energy
density ρ f of the individual quarks as p f = 1

3ρ f .
The energy density of each de-confined quark is as fol-

lows:
∑
f

ρ f = ρ + Bg.

Hence, the correlation of the energy and pressure inside
the strange stellar system can be interpreted as

pr = 1

3
(ρ − 4Bg). (17)

All the corrections required for the energy and pressure
functions of strange quark matter have been maintained by
introducing the ad hoc bag function.
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Fig. 2 Variation of the radial pressure (pr ) as a function of the frac-
tional radial coordinate r/R, with bag constant (Bg) = 83 MeV/fm3 and
Finsler parameter (Ric) = 1.2 for the LMC X − 4

The radial pressure must be on the surface of a stellar
system; therefore, from Eq. (17) we can conclude

ρ0 = 4Bg,

where ρ0 is the surface density (i.e., at r = R).
Hence, the modified form is as follows:

pr = 1

3
(ρ − ρ0). (18)

Following Moraes et al. [86], we consider that the tangen-
tial component of pressure inside the system is related to the
matter density in the form

pt = ρc1 + c2. (19)

The variations of the physical quantities, like the radial
and tangential pressure shown in Figs. 2 and 3, respectively,
are determined in reference of the fractional radial coordinate
for different coupling constants.

From the conservation equation of the stress–energy ten-
sor, we obtain the hydrostatic equation of the strange stellar
system in the following form:

−p′
r−

λ′

2
(ρ+ pr )+ 2

r
(pt− pr )+ η

24πF

(
3ρ′− p′

r−2p′
t

) = 0.

Now, following Eq. (14), the simplified form of the above
equation can be written as

p′
r = −

[
pr

{(
4πFr

3 + ηr3

6
(ρ + pr ) + 2r Ric − 3m

)}

Fig. 3 Variation of the tangential pressure (pt ) as a function of the
fractional radial coordinate r/R, with bag constant (Bg) = 83 MeV/fm3

and Finsler parameter (Ric) = 1.2 for the LMC X − 4

−2pt (r Ric − m) − ηr3

6
(3ρ − 2pt ) + mρ

− ηr

24πF
(3ρ′ − 2p′

t )(r Ric − m)

]/
(r Ric − m)

×
(
r − ηr

24πF

)
. (20)

The expected result for the hydrostatic equilibrium condi-
tion of the non-modified gravity in the Finslerian background
for the strange stellar system can be obtained from η = 0.

4 Discussion and conclusion

In order to enhance the analysis of a feasible Finslerian gen-
eralization of the Einstein equations, we have developed an
action-based modified Einstein field equation (Eq. 7), eval-
uating the Finsler function of the Finsler spacetime. Our
Finsler gravity theory incorporates the definition of the mat-
ter fields coupled with the Finsler spacetime by the principle
which produces the necessary action from the Lagrangian
norm on Lorentzian spacetime. We have obtained the Ein-
stein field equations through variance with regard to the basic
function of geometry. It suggests that in the metric geometry
limit, it becomes comparable to the Einstein field equations
for coupling variable (η) = 0 [52]. To develop a physically
stable system, we choose Ric ≥ 1.

As a further formal development, we present a model of
the strange stellar system in the modified gravity background
in the extension of the Finslerian structure. The modified
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Fig. 4 Variation of the anisotropic stress (�) as a function of the frac-
tional radial coordinate r/R, with bag constant (Bg) = 83 MeV/fm3 and
Finsler parameter (Ric) = 1.2 for the LMC X − 4

density and pressure are developed from the coupled mat-
ter action, which depends on the behaviour of the coupling
constant.

The overall force operating is the anisotropic flow in addi-
tion to the differential pressure provided by the gravity oper-
ating on the shell by the substance (mass) within it. This deter-
mines the fluid element’s hydrostatic equilibrium, which is
at rest within the structure, and the overlying matter, which
decreases with the radial coordinate. The difference in the
stress of the tangential and radial component of pressures
(anisotropic stress) is displayed in Fig. 4. In particular, the
anisotropic flow is shown to be well defined over the system
and reaches the maximum at the surface of the stellar model.

The variation of the total mass M in terms of normalized
M� with respect to the radius for a chosen value of Ric =
1.2 and Bg = 83 MeV/fm3 is presented in Fig. 5. The maxi-
mum mass point corresponds to the specific η, and the radius
is marked by a solid circle. An increase in the η increases the
maximum mass and respective radius. We obtain the maxi-
mum mass for η = 0 at 2.788 M�, with a radius of 10.002
km. It is interesting to note that the mass decreases by 6.33%
and the corresponding radius decreases by 6.88% for η = 0.8.
Further, we found that for η = −0.8, the total mass increases
by 7.06% and the radius increases by 7.43%. Therefore, we
can conclude that the higher coupling parameter compacted
the stellar system. All variations for the mass–radius relation
are suitable for the singularity condition.

The essential condition for a stellar system to be stable is
dM
dρc

> 0. The variation of the stellar mass in M� with the
central density ρc is shown in Fig. 6. The variation indicates

Fig. 5 Variation of the mass of a strange star as a function of radius.
Solid circles represent the maximum mass and radius of the respec-
tive curves. Here, curves are drawn for Bg = 83 MeV/fm3 and Finsler
parameter (Ric) = 1.2

Fig. 6 Variation of the mass of a strange star as a function of the central
density (ρc). Solid circles represent the maximum mass and radius of the
respective curves. Curves are drawn for Bg = 83 MeV/fm3 and Finsler
parameter (Ric) = 1.2

the central density attains a value of 1355.445 MeV/fm3 for
the maximum mass 2.788 M�, corresponding to Ric =1.2
and η = 0, whereas the highest values of the central density
are 1602.481 MeV/fm3 and 1149.021 MeV/fm3 for η =
0.8 and −0.8, respectively. Complete circles over the curves
show where the highest mass amounts are found with central
density.

The lower mass gap of 2.5–5 M�, which lies between
the heaviest known neutron star and the lightest defined
black hole, has always astonished scientists. Recent obser-
vations by Advanced LIGO and Virgo have indicated two
events, GW200210 and GW190814 [87–89], where the sec-
ond companion masses of 2.83+0.47

−0.42 M� and 2.6+0.1
−0.1 M�,

respectively, lie within this mass gap. It is possible that the
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Table 1 Numerical values of the physical parameters for different coupling constant η for the strange star LMC X − 4 of mass 1.29M� (1 M� =
1.475 km) with Ric = 1.2 and Bg = 83 Mev/fm3

Value of η η = −0.8 η = −0.4 η = 0.0 η = 0.4 η = 0.8

Predicted radius (km) 9.946 9.708 9.475 9.246 9.021

ρe f f c (g/cm3) 7.694 × 1014 8.366 × 1014 9.106 × 1014 9.923 × 1014 10.830 × 1014

ρe f f o (g/cm3) 5.237 × 1014 5.569 × 1014 5.918 × 1014 6.287 × 1014 6.674 × 1014

Pef f c (dyne/cm2) 8.087 × 1034 8.789 × 1034 9.550 × 1034 10.370 × 1034 11.270 × 1034

2M
R 0.38 0.39 0.40 0.41 0.42

Red shift (Zs ) 0.27 0.28 0.29 0.30 0.31

Table 2 Numerical values of the physical parameters for different Ric
for the strange star LMC X − 4 of mass 1.29M� (1 M� = 1.475 km)
with coupling parameter η = 0.4 and Bg = 83 Mev/fm3

Value of Ric Ric = 1 Ric = 1.1 Ric = 1.2

Predicted radius (km) 9.456 9.349 9.246

ρe f f c (g/cm3) 8.653 × 1014 9.284 × 1014 9.923 × 1014

ρe f f o (g/cm3) 6.731 × 1014 6.290 × 1014 6.287 × 1014

Pef f c (dyne/cm2) 6.731 × 1034 8.541 × 1034 10.370 × 1034

2M
R 0.402 0.407 0.412

Red shift (Zs ) 0.293 0.299 0.304

mass gap does not actually exist but rather is a result of other
restrictions. The secondary companion is typically thought
to be a very light black hole due to the maximum mass
restrictions of known nuclear EOS and the GR relativistic
Tolman–Oppenheimer–Volkov (TOV) equation. Depending
on the coupling parameter and Finsler parameter, the mod-
ified gravity equation for a compact object combined with
a known EOS can result in a more massive stellar structure
than GR. In further work, we are investigating the gravita-
tional echoes and tidal deformity of the structure.

We have developed a concise study in tabular format
(Table 1) for the observed mass of LMC − X4 of differ-
ent physical parameters. The study is developed for Bg =
83 Mev/fm3, and Ric = 1.2 under the chosen values of η

as −0.8,−0.4, 0.0 , 0.4, and 0.8. On the other hand, Table
2 shows the diversity of the physical parameters with the
variation of the Finsler parameter Ric.

According to the present study, it is clear that with the
increase in the coupling parameter and the Finsler parame-
ter, the radii of the system decrease and the central density
increases significantly, which indicates that the Finslerian
background is a strong candidate for describing the compact
system.
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Appendix: Two-dimensional Finsler space with a con-
stant flag

The appearance of the Finsler spacetime with a Lorentzian
signature is the point of interest. On the Finsler manifold,
every point of the Finsler structureF is not positive-definite.
F=0 for the massless stipulation. Finsler space can be clas-
sified into two types: (i) Riemannian space, where F 2 is
quadratics in y, and (ii) Randers space [90], where

F (x, y) ≡ a(x, y) + b(x, y), (.1)

with a = √
ãμν(x)yμyν , where ãi j is the Riemannian metric,

and b = b̃μ(x)yμ, where b̃μ is a 1 form.
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Let us consider the isometric transformation of x under
the infinitesimal coordinate transformation as follows:

x̃μ = xμ + εṼμ.

The corresponding y transforms as

ỹμ = yμ + ε
∂ Ṽ

∂xν
yν,

with |ε| << 1.
The Finsler structure can be expanded by incorporating

the transformations of x and y. The expansion is considered
up to the first order in |ε| as follows:

F̃ (x̃, ỹ) = F̃ (x, y) + εṼμ ∂F

∂xμ
+ εyν ∂ Ṽμ

∂xμ

∂F

∂yμ
. (.2)

Using the expansion of the structure, the Killing equation
of the space can be expressed as

KV (F ) ≡ Ṽμ ∂F

∂xμ
+ yν ∂ Ṽμ

∂xμ

∂F

∂yμ
= 0. (.3)

By introducing the Randers length element defined in Eq.
(.1), and since the rational and irrational terms of the Killing
equation are independent of each other,

Ṽμ|ν + Ṽν|μ = 0,

Ṽμ ∂ b̃ν

∂xμ
+ b̃μ

∂ Ṽμ

∂xν
= 0. (.4)

In Riemannian background, for a fixed radial coordinate
r , if the metric has the form FRS = √

(yθ )2 + sin η(yφ)2,
then the system can be considered spherical symmetric with
constant curvature. The “Finslerian sphere” is equivalent to
the spherical symmetry of Riemannian space. Most celes-
tial objects should possess spherical symmetry. The “Finsle-
rian sphere” also preserves the maximum possible symme-
try. This is the topological equivalent of a sphere from the
mathematical definition. The flag curvature in Finsler geom-
etry is generally the sectional curvature of the Riemannian
frame. The constant Ricci scalar and the constant flag curva-
ture are equivalent to each other. A two-dimensional Finsler
space has only one independent Killing vector [91]. Bao et
al. [26] provide the two-dimensional Randers–Finsler space
with constant positive flag curvature λ = 1 as follows:

FFS =
√

(1 − ε2 sin2 θ)yθ yθ + sin2 θyφ yφ

1 − ε2 sin2 θ

− ε2 sin2 θ yφ

1 − ε2 sin2 θ
.

with 0 ≤ ε ≤ 1. For ε = 0, the metric returns to the Riemann
sphere.
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