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As our recent quark model calculation [S. Noh and W. Park, Phys. Rev. D 108, 014004 (2023)] suggests
a strong possibility of a compact Tcc that closely reproduces experimental mass, we have a strong incentive
to extend our work to investigate the possible compact configuration of a pentaquark udccs̄, which is
related to the structure of the doubly charmed tetraquark Tcc. Since the introduction of a complete set of
three-dimensional harmonic oscillator bases to a spatial wave function in solving a quark model-based
Hamiltonian with variational method leads to a more accurate value of the mass, it seems natural that future
studies of the pentaquark should be treated with the same elaborate technical approach. To attain such
precision for the ground state energy, we utilize a complete set of three-dimensional harmonic oscillator
base up to the sixth quanta. Before carrying out this process, one important thing that has to be taken into
account is to find out the color ⊗ spin states of the pentaquark for the evaluation of the color and spin
interaction most essential to the quark model configuration. To easily identify the suitable configuration,
we make a systematic analysis of SUð6ÞCS irreducible representation of the pentaquark, from which we find
that there is a correspondence between the color⊗ spin states obtained from their coupling scheme and the
multiplet of the SUð6ÞCS irreducible representation of the pentaquark. We find that the energy of the
pentaquark configuration is þ18.5 MeV above the lowest threshold for decay into Ξcc and K, suggesting
that this configuration is not stable against its decay. Nonetheless, while we used a Gaussian hyperfine
potential, it was recently found that a Yukawa form leads to a stronger attraction for the Tcc configuration.
Therefore, it is important to study the same configuration using the latter potential.

DOI: 10.1103/PhysRevD.108.014026

I. INTRODUCTION

Since the discovery of X(3872) [1], many theoretical
works have been devoted to understand the structure of
exotic hadrons. However, the results are rather controver-
sial and vary depending on the models. Above all, it is an
important fact that a fundamental understanding of the
internal structure of X(3872) is as crucial as the contro-
versies surrounding it. This will provide a way to advance
our physical investigation of the properties of other exotic
hadrons.
On the other hand, amidst such controversies, the recent

discovery of Tcc [2] which has an open charm quark in its
flavor structure distinct as the X(3872) with a hidden charm

quark may provide a good opportunity to understand other
exotic hadrons, including X(3872).
In particular, for the case of the Tcc, even before the

experimental discovery of Tcc there have been many theo-
retical studies for the Tcc as another candidate of exotic
particle in several branches of hadron physics [3–31].
However, most of these results have shown significant
discrepancies not only in themass of the discovered particles
but also in describing their binding structures.
Recently, we have improved our quark model calculation

for themass ofTcc given inRefs. [15,21] to take into account
a complete set of harmonic oscillator basis in variational
method.We found in Ref. [30] that with such a complete set,
themass is found to be almost near that of the experiment, but
not a bound state in contrast to the experiment. Furthermore,
according to our recent calculation [32], we find a stable
compact Tcc configuration with a positive slightly binding
energy below the lowest threshold. Such binding was
possible due to the strength of Yukawa type of hyperfine
potential, which provides more attraction at short range than
the Gaussian type as used in the previous work [30].
On the other hand, we estimated the binding energy of

pentaquark states of all the possible configurations with
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respect to the isospin I ¼ 0; 1=2, 1 and the spin S ¼
1=2; 3=2; 5=2 in Ref. [33]. In that study, we adopted the
simplified form expressed as the matrix element of only the
color-spin interaction using all the possible color ⊗ spin
state. From the strength of attraction of the color-spin
interaction, this approach provides an important criterion
on the stability of pentaquark states, in spite of this
simplified quark model. This work [33] shows that of all
the possible pentaquark configurations udccs̄ with ðI; SÞ ¼
ð0; 1=2Þ is the most probable stable pentaquark state. Thus,
we further attempt to investigate the possibility of the
existence of a bound state in that pentaquark configuration,
udccs̄, including ud with I ¼ 0 and two open charms
similar to Tcc by performing the full model calculations
with a complete set of harmonic oscillator bases.
To obtain convergence in solving a quark model-based

Hamiltonian for the ground state of the pentaquark, it is
essential to introduce a complete set of three-dimensional
harmonic oscillator bases to the spatial wave function using
the variational method. To attain such precision for the
ground state energy, we utilize a complete set of three-
dimensional harmonic oscillator base up to the sixth
quanta. The configuration we are studying here is calcu-
lated by considering a Gaussian type of hyperfine potential
rather than a Yukawa type of hyperfine potential. Due to
its higher degree of freedom compared to tetraquarks,
calculating the pentaquark is a highly challenging task.
Furthermore, the presence of a Yukawa-type potential
further adds to greatly the complexity of such calculations,
owing to its intricate form.
The main purpose of our present work is to calculate the

mass of the pentaquark with a high level of precision for the
first time, in order to understand its structure and inves-
tigate its stability, using a complete set of an harmonic
oscillator basis in variational method.
In performing this, one of the difficulties which has to be

taken into account is that for the evaluation of the color and
spin interaction most essential to the quark model, the color
⊗ spin states of the pentaquark has to be classified
according to SUð6ÞCSÞ to better understand mathematically
than in the previous work [34].
For this purpose, we first find the color ⊗ spin states of

the pentaquark directly from a coupling scheme between a
color and a spin state,and next illuminate the subject
extensively with the help of the related formula, by
categorizing those states into the multiplet of SUCSð6Þ
irreducible representation containing SUCð3Þ × SUSð2Þ as
its subgroup. This makes it possible ultimately to build a
full wave function which satisfies the Pauli principle, by
combining these states with a spatial function.
Our paper is organized as follows; in Sec. II, we present

the color and spin states of pentaquark; in Sec. III, we
present the Hamiltonian of the pentaquark and discuss
about the effect of a complete set of harmonic oscillator
bases in variational method upon the practical calculation

of the Hamiltonian; in Sec. IV, we deal with the wave
function of a pentaquark required to describe the
Hamiltonian; in Sec. V, we discuss about a numerical
analysis; and in the Appendix, we deal with the color ⊗
spin states, from the coupling of color and spin state. We
then analyze the SUCSð6Þ irreducible representation of a
pentaquark. We also present the color⊗ spin states in terms
of a specific Young-Yamanouchi basis for particles 1–4
corresponding to the Young diagram of the SUð6ÞCS
irreducible representation of the pentaquark. In particular,
we examine the method of calculating the expectation
values of λci λ

c
j σ⃗i · σ⃗j for each spin state of the pentaquark.

II. THE FLAVOR, COLOR, AND SPIN STATES
OF PENTAQUARK

In this section, we discuss about the property of the
configurations of the pentaquark, which is based on the
constituent quark model, involving a chromomagnetic one
gluon interaction. Since the chromomagnetic interaction is
determined by the color ⊗ spin states of the pentaquark,
which comprises parts of its wave functions, it is obviously
essential to make a systematic analysis of those states. In
analyzing both the characteristics and structure of the color
⊗ spin states of the pentaquark, we adopt the SUð6ÞCS
representation, which is useful to perceive the property of
the chromomagnetic interaction.
We will first present the structure of q4q̄ consisting of

SUð3ÞF symmetry for q4 and an antiquark for q̄, for the
time being, assuming that the spatial wave function for all
the quarks is in the S wave, because this assumption later
allows us to find out the color ⊗ spin states of the
pentaquark from the SUð6ÞCS representation point of view,
using the related formula, which is very useful to a
certain full symmetric wave function. Then, we must
consider the flavor ⊗ color ⊗ spin states of the penta-
quark that are allowed to the Pauli principle. We now
investigate the flavor, color, and spin states of the penta-
quark system, which have to be considered as a prelimi-
nary step.

A. The flavor states for q4

In order to describe the flavor states for q4, we present
the SUð3ÞF multiplets, which are classified by the decom-
position of 3F ⊗ 3F ⊗ 3F ⊗ 3F, given as the correspond-
ing Young diagram,

(i) 15 multiplets: One basis function with Young
diagram [4],

ð1Þ

(ii) 150 multiplets: Three basis functions with Young
diagram [31],
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ð2Þ
(iii) 3 multiplets: Three basis functions with Young

diagram ½212�,

ð3Þ
(iv) 6̄ multiplets: Two basis functions with Young

diagram ½22�,

ð4Þ

B. The color singlets

Since the observable hadron states must be in a color
singlet, we have to choose only the color singlet states of
the pentaquark system. One way of constructing the color
singlet is to combine the color antitriplet of the antiquark q̄
with the color triplet of q4, which can be obtained from the
decomposition of 3C ⊗ 3C ⊗ 3C ⊗ 3C for the four quarks.
The color triplets of q4, which correspond to Young
diagram ½212�, are given as follows:

ð5Þ

Here, the subscript on the right-hand side of Eq. (5)
indicates the irreducible representation of SUð3ÞC. Then,
one can construct three orthogonal color singlets by
combining the color antitriplet of the antiquark with the
color triplet of q4, given as follows:

ð6Þ

C. The spin states

The spin states of the pentaquark system consisting of
S ¼ 1=2, S ¼ 3=2, and S ¼ 5=2 are also obtained from the
decomposition of 2S ⊗ 2S ⊗ 2S ⊗ 2S ⊗ 2S into the irre-
ducible representation of SUð2ÞS, as follows:

(i) S ¼ 1=2 states: Five basis functions with a Young
diagram [32],

ð7Þ
When we investigate the properties of the pentaquark

against the strong decay into a baryon and a meson, it is
very useful to describe the spin 1=2 states associated with
the decay mode. We denote the five spin states by

jχ1i ¼ ½fð12Þ13g3
2
ð45Þ1�1

2
; jχ2i ¼ ½fð12Þ13g1

2
ð45Þ1�1

2
;

jχ3i ¼ ½fð12Þ03g1
2
ð45Þ1�1

2
; jχ4i ¼ ½fð12Þ13g1

2
ð45Þ0�1

2
;

jχ5i ¼ ½fð12Þ03g1
2
ð45Þ0�1

2
; ð8Þ

where the subscript indicates the spin state. The bases set of
Eq. (8) is transformed into the bases set of Eq. (7) through
the following orthogonal transformation:

0
BBBBBB@

jχ1i
jχ2i
jχ3i
jχ4i
jχ5i

1
CCCCCCA

¼

0
BBBBBBBB@

1 0 0 0 0

0 1
2

0
ffiffi
3

p
2

0

0 0 1
2

0
ffiffi
3

p
2

0
ffiffi
3

p
2

0 − 1
2

0

0 0
ffiffi
3

p
2

0 − 1
2

1
CCCCCCCCA

0
BBBBBBBB@

jS1=21 i
jS1=22 i
jS1=23 i
jS1=24 i
jS1=25 i

1
CCCCCCCCA
: ð9Þ

(i) S ¼ 3=2 states: Four basis functions with a Young
diagram [41],

ð10Þ

The spin 3=2 states related to the decay mode for the
separation of a baryon and a meson are denoted by the
following:

jϕ1i¼½fð12Þ13g3
2
ð45Þ0�3

2
; jϕ2i¼½fð12Þ13g3

2
ð45Þ1�3

2
;

jϕ3i¼½fð12Þ13g1
2
ð45Þ1�3

2
; jϕ4i¼½fð12Þ03g1

2
ð45Þ1�3

2
: ð11Þ
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Then, the orthogonal matrix, which transforms the bases set
of Eq. (11) into the bases set of Eq. (10), is given as follows:

0
BBB@

jϕ1i
jϕ2i
jϕ3i
jϕ4i

1
CCCA ¼

0
BBBBBB@

ffiffi
5
8

q
−

ffiffi
3
8

q
0 0ffiffi

3
8

q ffiffi
5
8

q
0 0

0 0 1 0

0 0 0 1

1
CCCCCCA

0
BBBBB@

jS3=21 i
jS3=22 i
jS3=23 i
jS3=24 i

1
CCCCCA: ð12Þ

(i) S ¼ 5=2 states: One basis function with a Young
diagram [5],

ð13Þ

III. HAMILTONIAN

For the purpose of investigating the stability of a
pentaquark system against the strong decay, we present
a nonrelativistic Hamiltonian in a constituent quark model,
which includes one gluon exchange potential. This model is
an effective tool for describing a multiquark configuration
involving the short-range interaction of the potentials. The
Hamiltonian is given by

H ¼
X5
i¼1

�
mi þ

p2
i

2mi

�
−
3

4

X5
i<j

λci
2

λcj
2
ðVC

ij þ VCS
ij Þ; ð14Þ

where mi is the quark mass and λci =2 is the SU(3) color
operator for the i-th quark. In Hamiltonian in Eq. (14), VC

ij

and VCS
ij are a confinement and a hyperfine potential,

respectively. VC
ij consist of a linear rising and a coulomb in

a potential form, and VCS
ij is chosen to be entirely a delta

function in the limit of two extremely heavy quarks. These
are given as the follows:

VC
ij ¼ −

κ

rij
þ rij

a20
−D; ð15Þ

VCS
ij ¼ ℏ2c2κ0

mimjc4
e−ðrijÞ2=ðr0ijÞ2

ðr0ijÞrij
σi · σj: ð16Þ

Here,

r0ij ¼ 1=

�
αþ β

mimj

mi þmj

�
; ð17Þ

κ0 ¼ κ0

�
1þ γ

mimj

mi þmj

�
; ð18Þ

where rij ¼ jri − rjj is the relative distance between the i
and j quarks, and σi is the spin operator. The parameters
appearing in Eqs. (15)–(18) are determined by fitting them

to the experimental value of both mesons and baryons,
demanding the requirement that χ2 should be minimized for
a number of set of fitting parameters [30]. These fitting
parameters are given as follows:

κ ¼ 120.0 MeVfm; a0 ¼ 0.0334066 ðMeV−1 fmÞ1=2;
D¼ 917 MeV;

mu ¼ 342 MeV; ms ¼ 642 MeV;

mc ¼ 1922 MeV; mb ¼ 5337 MeV;

α¼ 1.0749 fm−1; β ¼ 0.0008014 ðMeVfmÞ−1;
γ ¼ 0.001380 MeV−1; κ0 ¼ 197.144 MeV: ð19Þ

We use a complete set of harmonic oscillator bases as a
spatial function to calculate the masses of mesons and
baryons within our quark model. We employ the variational
method to obtain their exact ground states as accurately as
possible. In fact, the variational method for the calculation
of the Hamiltonian in Eq. (14) by the complete set of
harmonic oscillator bases is a tool of great significance, in
the sense that it provides a uniform convergence of the
ground state mass in terms of ideal methodology. The direct
consequence is that in doing so, an exact solution on the
part of variational method in a given quark model enables
us to understand the property of the structure of a multi-
quark system, such as tetraquark, pentaquark, and so on.
Indeed, one can attain ultimately its convergence of the

value, only if a sufficient number of harmonic oscillator
bases is considered as a spatial function with which the
variational method is concerned. To carry out this with a
higher level of precision than in the previous works [30,32],
it is necessary to consider an additionally higher quanta of
harmonic oscillator bases. The result is that the ground state
becomes very close to a convergent state to the system. The
detailed explanation about the quanta will be added in the
next section.
In our present work, we fit the masses of mesons and

baryons using the variational method and a complete set of
harmonic oscillator bases up to the sixth quanta. The fitted
values are presented in Tables I and II, respectively, which
show slight differences in the fitted values compared to our
previous work [30]. The overall fitted value to baryons has
improved, resulting in a very slight reduction of the χ2

value in this case.

IV. WAVE FUNCTION

In this section, we discuss about the wave function of the
pentaquark, primarily involving the spatial function. In our
present paper, we deal with a pentaquark system consisting
of uð1Þdð2Þcð3Þcð4Þs̄ð5Þ, which is in S wave for the total
angular momentum, L, S ¼ 1=2 for the total spin, and
I ¼ 0 for the isospin. Generally, in setting up the
Hamiltonian by means of a spatial function in the form
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of a Gaussian, we adopt Jacobian coordinates in the center
of mass frame. For the pentaquark system, there are several
sets of four Jacobi coordinates available, depending on the
method of connecting the position vectors of the constituent
quarks. In our study, we choose a specific set of Jacobi
coordinates that provides an effective description for our

purpose to investigate the stability of the pentaquark
configuration. These are given as follows:

x1 ¼
1ffiffiffi
2

p ðr1 − r2Þ; x2 ¼
1ffiffiffi
2

p ðr3 − r4Þ;

x3 ¼
ffiffiffi
2

3

r �
r5 −

1

2
r1 −

1

2
r2

�
;

x4 ¼ μ

�
mur1 þmur2 þmsr5

2mu þms
−
1

2
r3 −

1

2
r4

�
;

μ ¼
ffiffiffi
2

p ðms þ 2muÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ms

2 þ 4msmu þ 8mu
2

p : ð20Þ

In order to obtain a more precise value for a solution of
the Hamiltonian in Eq. (14), it is essential to understand a
three-dimensional harmonic oscillator system by using the
variational method. One of the most important features
that are found in a complicated system like our own is that
one should manifestly use the wave function of a three-
dimensional harmonic oscillator system for describing the
exact solution and for investigating the property of its
structure.
The wave function of a three-dimensional harmonic

oscillator system is well known as consisting of the
associated Laguerre polynomials for a radial part and the
spherical harmonics for the angular part,

ψðr; θ;ϕÞ ¼ RðrÞn;lYm
l ðθ;ϕÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γðnþ 1Þ
Γðnþ lþ 3

2
Þ

s
rl exp

�
−
r2

2

�
L
lþ1

2
n ðr2ÞYm

l ðθ;ϕÞ:

ð21Þ

However, in applying this to the variational method, it is
necessary to rescale the argument of the exponential in the
radial part to become the wave function appropriate for our
scheme. This is achieved by replacing the radial distance r
with

ffiffiffiffiffiffi
2a

p
x, where x is the magnitude of the position vector

similar to those in Eq. (20) and a is the variational
parameter. Unlike the wave function in Eq. (21), the
modified wave function in a three-dimensional harmonic
oscillator system is useful to deal with a multiquark system,
such as Tcc through the variational method. In addition,
introducing several variational parameters corresponding to
the Jacobian coordinates is the best optimum tool for
making such a system converge faster. Finally, for the
main purpose of carrying out the variational method, we
search for the variational parameter, which gives a minimal
value of the diagonalized Hamiltonian represented by the
complete set of harmonic oscillator bases.
In particular, concerning the convergence, it is conven-

ient to use the concept of quanta, which appears in the
expectation value of kinetic term with respect to the
complete set of harmonic oscillator bases. In the extreme

TABLE I. The masses of mesons obtained (column 3) with the
fitting parameters set given in Eq. (19). Column 4 shows the
variational parameter a.

Particle
Experimental
value (MeV)

Mass
(MeV)

Variational
parameter
(fm−2)

D 1864.8 1853.83 a ¼ 7.5
D� 2007.0 2006.22 a ¼ 5.7
ηc 2983.6 2985.97 a ¼ 25.2
J=Ψ 3096.9 3118.36 a ¼ 19.7
Ds 1968.3 1963.58 a ¼ 12.1
D�

s 2112.1 2109.16 a ¼ 9.3
K 493.68 498.318 a ¼ 7.7
K� 891.66 874.664 a ¼ 4.1
B 5279.3 5301.22 a ¼ 7.3
B� 5325.2 5360.45 a ¼ 6.5
ηb 9398.0 9327.06 a ¼ 100.2
ϒ 9460.3 9456.56 a ¼ 81.9
Bs 5366.8 5375.25 a ¼ 13.0
B�
s 5415.4 5439.34 a ¼ 11.5

Bc 6275.6 6268.41 a ¼ 38.7
B�
c � � � 6361.84 a ¼ 32.6

TABLE II. Same as Table I but for baryons. In column 4, a1 and
a2 are the variational parameters.

Particle
Experimental
value (MeV) Mass (MeV)

Variational
parameters
(fm−2)

Λ 1115.7 1111.21 a1 ¼ 4.3, a2 ¼ 3.9
Λc 2286.5 2269.04 a1 ¼ 4.4, a2 ¼ 5.0
Ξcc 3621.4 3620.81 a1 ¼ 11.8, a2 ¼ 4.6
Λb 5619.4 5634.20 a1 ¼ 4.5, a2 ¼ 5.6
Σc 2452.9 2438.13 a1 ¼ 3.0, a2 ¼ 5.7
Σ�
c 2517.5 2523.1 a1 ¼ 2.7, a2 ¼ 4.9

Σb 5811.3 5841.38 a1 ¼ 2.9, a2 ¼ 6.1
Σ�
b 5832.1 5874.89 a1 ¼ 2.8, a2 ¼ 5.7

Σ 1192.6 1191.78 a1 ¼ 3.0, a2 ¼ 5.0
Σ� 1383.7 1395.70 a1 ¼ 2.4, a2 ¼ 3.4
Ξ 1314.9 1326.58 a1 ¼ 4.6, a2 ¼ 4.6
Ξ� 1531.8 1540.28 a1 ¼ 4.3, a2 ¼ 2.9
Ξc 2467.8 2471.60 a1 ¼ 4.9, a2 ¼ 6.6
Ξ�
c 2645.9 2649.58 a1 ¼ 3.5, a2 ¼ 6.3

Ξb 5787.8 5823.74 a1 ¼ 5.0, a2 ¼ 7.9
Ξ�
b 5945.5 5988.91 a1 ¼ 3.6, a2 ¼ 7.8

p 938.27 936.67 a1 ¼ 2.8, a2 ¼ 2.8
Δ 1232 1242.1 a1 ¼ 1.9, a2 ¼ 1.9
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case of which the constituent quarks and all the variational
parameters are identical, the expectation value of kinetic
term increases directly as the value of quanta increases. The
diagonal term, denoted by hTci, is given by

hTci ¼
ℏ2c2a
m

��
2n1 þ l1 þ

3

2

�
þ
�
2n2 þ l2 þ

3

2

�

þ
�
2n3 þ l3 þ

3

2

�
þ
�
2n4 þ l4 þ

3

2

��

¼ ℏ2c2a
m

½2n1 þ l1 þ 2n2 þ l2 þ 2n3 þ l3

þ 2n4 þ l4 þ 6�: ð22Þ
Here, m1 ¼ m2 ¼ m3 ¼ m4 ¼ m5 ≡m, and a1 ¼ a2 ¼

a3 ¼ a4 ≡ a. For a given set of quantum numbers,
ðn1; n2; n3; n4; l1; l2; l3; l4Þ that specifies the spatial func-
tions of the pentaquark, the quanta defined in our previous
work [30] can be expressed as

Q≡ 2n1 þ 2n2 þ 2n3 þ 2n4 þ l1 þ l2 þ l3 þ l4: ð23Þ
It shows that the diagonal term inEq. (22) remains unchanged
for the same quanta, even though there are enumerable sets of
the quantum numbers that comprise the same quanta.
Moreover, in this concept of quanta, it is remarkable that
the value of the Hamiltonian tends to decrease markedly with
each step of increasing quanta. Thus, instead of counting up
all the spatial functions, using quanta as a criterion to gauge
the extent of convergence is more convenient.
In our investigation of Tcc, composed of two light quarks

and two heavy antiquarks, we observed a noticeable
decrease in the mass of the system with each quanta,
leading to its convergence of the ground state. This finding
highlights the usefulness of the quanta as a standard for
analyzing the convergence process. Therefore, in our
present work, we employ the concept of quanta to facilitate
the analysis of the entire convergence process.
Now, for the first time, to investigate the existence of the

pentaquark and enhance the precision of calculating the
Hamiltonian in a variational method, we use the complete
set of harmonic oscillator basis, which can be generally
expanded in terms of three Jacobian coordinates in
Eq. (20). In particular, in the absence of any internal
orbital angular momentum, the complete set of harmonic
oscillator for S wave can be generated by Laguerre
polynomials in the form of the square of a single
Jacobian coordinate. In this case, the simplest spatial
function of the pentaquark is given by

8a13=4a23=4a33=4a43=4

π3

× exp½−ða1x1
2 þ a2x2

2 þ a3x3
2 þ a4x4

2Þ�; ð24Þ

where aiði ¼ 1; 2; 3; 4Þ is the variational parameter. This
spatial function in Eq. (24), where each quantum number

ni ¼ 0 in the Laguerre polynomials, gives relatively the
largest contribution to the value of the mass of the
pentaquark. This only represents the lowest quanta.
The next highest contribution to the mass of the

pentaquark comes from a spatial function obtained by
increasing the quantum number, ni, of the Laguerre
polynomials in any one of the four by one. In this case,
the value of quanta Q in Eq. (23) is equal to 2.
On the other hand, given two nonzero internal orbital

angular momentum associated with any two Jacobian
coordinates, it is possible to construct the spatial function
of the pentaquark for S wave from a general theory of
angular momentum addition. Such a spatial function plays
an important role in inducing the value of the Hamiltonian
to converge uniformly. We also consider the possible
combination of L ¼ 0 of the pentaquark among any non-
zero four internal orbital angular momenta, which in some
case have complicated patterns to establish.
Nonetheless, it is easy to build the spatial function of the

pentaquark for the S wave, as these wave functions are
invariant forms under a rotation group whose types are
scalar, such as x1 · x2, x1 · x3, x2 · x3, x1 · ðx2 × x3Þ, and
etc., in a three-dimensional vector space. For instance, in
the case of x1 · x2, where both l1 and l2 are equal to 1, the
value of quantaQ in Eq. (23) is equal to 2. Apart from such
scalars as the inner product between two Jacobian coor-
dinates, there remains another kind of scalar, x1 · ðx2 × x3Þ,
where l1, l2, and l3 are all equal to 1, respectively. In this
case, the value of quanta Q in Eq. (23) is equal to 3.
However, since such scalars do contribute little to the value
of the off diagonal Hamiltonian matrix element, the kind of
spatial function which contains those types in the angular
part is completely neglected. Thus, the quanta only takes on
even values.
In an analogy with the case of color ⊗ spin states

represented by the SUð6ÞCS representation presented in
Appendixes C, D, and E, the spatial function of the
pentaquark for the S wave has a certain symmetry between
two light quarks and two heavy quarks, respectively. From
the Jacobian coordinates in Eq. (20), we find the following
symmetry properties for the Jacobian coordinates: x1 is
antisymmetric for the two light quarks and x2 is antisym-
metric for the two heavy quarks. x3 is symmetric for the
two light quarks and x4 is symmetric for the two light
quarks and for the two heavy quarks, respectively. From the
standpoint of the quantum number, all the possible spatial
functions characterized by only a quantum number, ni
(i ¼ 1, 2, 3, 4), are symmetric between two light quarks and
two heavy quarks, respectively, because the power of the
Jacobian coordinate corresponding to the quantum number
ni in the Laguerre polynomials is always even. However,
for the spatial functions of the pentaquark involved in the
quantum number, li (i ¼ 1, 2, 3, 4), the symmetry proper-
ties depend entirely upon whether li is even or odd. This is
because the increase in li is attended by the same increase
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in the number of the power of the corresponding Jacobian
coordinate. In general, we can easily deduce this rule from
the condition where the spatial function should be a scalar
form for a given relative orbital angular momentum
quantum number.
We are now in a position to organize the fullwave function

for the pentaquark consisting of uð1Þdð2Þcð3Þcð4Þs̄ð5Þ,
which is used to calculate the Hamiltonian in Eq. (14) using
the variational method. Since the Pauli principle restricts the
full wave function to be antisymmetric between the two light
quarks and the two heavy quarks, respectively, we have to
choose the fullwave function that satisfies these symmetries.
Such full wave functions can be constructed straightfor-
wardly by combining the symmetry properties of both the
color ⊗ spin states and the spatial functions.
In particular, for the symmetry between the third and

fourth quarks, there are some considerations regarding the
color ⊗ spin states obtained from either the coupling
scheme or the SUð6ÞCS representation. One can determine
definitely the symmetry property between the first and
second quarks, but not that between the third and fourth
quarks: for examples, as can be seen in Eq. (A7), we cannot
determine the symmetry between the third and fourth
quarks for the second and third Young-Yamanouchi bases
in Eq. (A7) since they are not neighboring. However, the
symmetry between the third and fourth quarks can be
directly determined for the first Young-Yamanouchi basis
since they are neighboring.
Fortunately, it is well known that the method for

constructing either symmetry or antisymmetry between
two non-neighboring particles is to combine two related
Young-Yamanouchi bases. For example, the symmetries
between the third and fourth quarks depend entirely on how
to combine the first and second states in Eq. (A97).

V. NUMERICAL ANALYSIS

In this section, we analyze the pentaquark system
consisting of uð1Þdð2Þcð3Þcð4Þs̄ð5Þ with a total spin of
S ¼ 1=2 and isospin I ¼ 0 in the S wave. We investigate
the convergence of the expectation value of the
Hamiltonian with each quanta and also discuss the numeri-
cal results regarding the stability of the system against
strong decay into a baryon and a meson.
Calculating the pentaquark system is technically more

challenging than a tetraquark due to the vast number of
numerical inputs required. Our approach method makes it
possible to achieve a precise assessment of the calculation
despite these technical difficulties. However, this technical
method may still be a decisive factor in obtaining the exact
solution for the pentaquark system.
In addition, according to our work [32], it should be

noted that the study for the tetraquarks shows that the
structure depends critically upon the functional form of the
hyperfine potential. In particular, we found that a Yukawa
type, rather than a Gaussian type, is necessary to describe

the compact bound state in Tcc. Therefore, the former
potential should be adopted to investigate the stability as
well as the structure even in the pentaquark system.
In the pentaquark system, the precise calculation of the

Hamiltonian requires a vast number of the spatial functions
of the pentaquark within the sixth quanta. Specifically, for
the first six quanta, the number of spatial functions in the
pentaquark system is estimated to be more than 1800.
However, due to the enormous time-consuming model
calculation, we limit it to only 1356 in the actual calcu-
lation. This limitation on the number of spatial functions
may lead us to overlook the possibility of at least 3 MeV
drop in the mass of the pentaquark.
On the other hand, in carrying out the expectation

value of the Hamiltonian using the variational method,
we have to search for exact four variational parameters in
such a way that minimize the eigenvalue of the diagonal-
ized Hamiltonian represented by the full wave functions.
However, due to the complexity of the system, it is
challenging to achieve this perfectly for higher quanta.
For this reason, we find the exact four variational param-
eters only up to the fourth quanta.
In our practical evaluation, we first find the exact

four variational parameters, which give the diagonalized
Hamiltonian its minimum eigenvalue with the fourth quanta
of the spatial bases. Subsequently, we calculate the eigen-
value with the fifth quanta and sixth quanta simply by putting
the fixed values of the four variational parameters obtained
from the evaluation with the fourth quanta. However, up to
the fifth quanta, we consider all possible spatial functions,
whereas for the sixth quanta, we only select a limited number
of spatial functions that are expected to relatively contribute
to the mass value. This selection of spatial functions allows
for reducing the computational burden.
As can be seen in Table III, we find that there is a

tendency for the value of the mass to decrease noticeably in
accordance with each quanta. The result in Table III shows
that the bound pentaquark configuration is less likely to be
found within our quark model, because the mass of the
pentaquark has þ18.5 MeV above its lowest threshold.
However, as pointed out above, it is highly probable

that the value of the mass could be varied within a range of
3–6 MeV, if our technical limitation in the evaluation
process is entirely eliminated. Nonetheless, the possibility
of the existence of the pentaquark system is not still high
due to a repulsion in the energy of at least 12 MeV.
Besides, in the light of the result in Table III, it is

reasonable to expect that the system will converge beyond
the sixth quanta, perhaps in the seventh quanta or beyond.
In this case, the mass of the pentaquark system would be
very close to its threshold value. However, it is important to
note that achieving convergence in higher quanta may pose
additional technical challenges, and it remains to be seen
whether the pentaquark system can be experimentally
observed.
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Here, it is necessary to return to the problem of how a
Yukawa type hyperfine potential affects the organization of
Tcc more attractively than a Gaussian type hyperfine
potential at short range. In the previous work [30] that
used a Gaussian type hyperfine potential, similar to our
present work, there was a significant discrepancy in the
value of the binding energy compared to experimental
results, as the mass of Tcc was found to have about 13 MeV
above its threshold. However, there is a remarkable finding
from the use of the Yukawa type hyperfine potential. The
Tcc in our study [32] forms a compact and bound
configuration, with a mass that is almost identical to the
experimentally observed value. Therefore, it is crucial to
consider the use of a Yukawa type potential to obtain more
accurate results.
Since a similar situation will arise in the pentaquark

system, what is at least as certain is that the choice of the
Yukawa type potential is most preferable to that of the
Gaussian type potential to achieve our purpose. Therefore,
it is probable that the significant characteristics of the
Yukawa type potential in our quark model lead to a
different result from what has been obtained in this work.
To estimate the effect of the Yukawa type potential on

the stability roughly, we calculate the Hamiltonian using
the Yukawa type potential introduced in Ref. [32] up to the

third quanta Q3. The results are presented in Table IV,
which shows that the Yukawa type potential provides a
more attractive binding compared to the Gaussian type.
However, it is difficult to expect whether the Yukawa
type potential will remain more attractive for the quanta
Q6. Consequently, it is necessary to obtain an exact
and fully convergent mass of the pentaquark in the future
work.
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APPENDIX

1. The coupling of color and spin states

Given a flavor multiplet for q4 with a certain symmetry
in terms of the corresponding Young diagram, both the
symmetry and structure of color ⊗ spin states are of great
importance when we choose a certain kind of symmetry of
the full wave function, including a spatial wave function. In
this section, for this purpose, we discuss about the method
of finding out the color ⊗ spin states represented by the
Young diagram for q4; these states can be constructed by
coupling the color and spin states using permutation group
theory.
In order to construct the color⊗ spin states with a certain

symmetry among particles 1–4, it is necessary to look into
the inner product between the Young diagram ½212� of the
color singlets in Eq. (6) and the corresponding Young
diagram for particles 1–4 with respect to each spin state.
When particles 1–4 have spin 0, one can obtain the color

⊗ spin states using the following procedure:

ðA1Þ

TABLE III. Mass of the pentaquark udccs̄ in each step of quanta. The lowest threshold of the pentaquark
configuration for S ¼ 1=2 and I ¼ 0 is ΞccK with a mass of 4119.1 MeV. The masses of Ξcc and K are obtained
from the quark model calculation with the variational method. In each step, the value of Q is obtained from
Q ¼ 2n1 þ 2n2 þ 2n3 þ 2n4 þ l1 þ l2 þ l3 þ l4.

Q Mass (MeV) Variational parameters (fm−2)

The number
of spatial

wave function

The number
of total

wave function
Binding
energy

Q1 ¼ 0 4406.4 a1 ¼ 2.6, a2 ¼ 7.5, a3 ¼ 4.0, a4 ¼ 3.2 1 4
Q2 ¼ 2 4266.9 a1 ¼ 2.4, a2 ¼ 7.3, a3 ¼ 4.0, a4 ¼ 3.0 11 42
Q3 ¼ 4 4196.3 a1 ¼ 2.5, a2 ¼ 7.8, a3 ¼ 4.4, a4 ¼ 2.8 66 250
Q4 ¼ 6 4164.9 a1 ¼ 2.5, a2 ¼ 8.0, a3 ¼ 4.6, a4 ¼ 2.7 282 1064
Q5 ¼ 8 4145.9 a1 ¼ 2.5, a2 ¼ 8.0, a3 ¼ 4.6, a4 ¼ 2.7 916 3452
Q6 ¼ 10 4137.6 a1 ¼ 2.5, a2 ¼ 8.0, a3 ¼ 4.6, a4 ¼ 2.7 1356 5179 þ18.5 MeV

TABLE IV. Mass and binding energy of the pentaquark udccs̄
with ðI; SÞ ¼ ð0; 1=2Þ up to the third quanta Q3 ¼ 4 for the
Gaussian and the Yukawa types of hyperfine potentials, respec-
tively, in MeV unit. The results in columns 4 and 5 are obtained
by using the Yukawa type potential in Ref. [32]. The threshold
ΞccK mass in the Yukawa type of Ref. [32] is 4121.0 MeV.

Gaussian Yukawa

Type Mass Binding energy Mass Binding energy

Q1 ¼ 0 4406.4 þ287.27 4394.2 þ273.26
Q2 ¼ 2 4266.9 þ147.77 4258.0 þ137.05
Q3 ¼ 4 4196.3 þ77.17 4191.6 þ70.55
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This inner product between the color and the spin state for
four quarks is only applied to jS1=24 i and jS1=25 i in Eq. (7)
because the spin state among particles 1–4 for these two
is 0, as indicated by the Young diagram of spin state
in Eq. (A1).
When particles 1–4 have spin 1,

ðA2Þ

This holds good for the case of S ¼ 1=2 and S ¼ 3=2 states
in Eqs. (7) and (10), respectively, where the spin state
among particles 1–4 is 1.
When particles 1–4 have spin 2,

ðA3Þ

The last is applied to the case of S ¼ 3=2 and S ¼ 5=2
states in Eqs. (10) and (13), respectively, where the spin
state among particles 1–4 is 2.
To obtain the combinative coefficients in the coupling

scheme of color and spin states, we calculate the Clebsch-
Gordan (CG) coefficients of the permutation group Sn,
where n is the number of particles. The CG coefficients can
be factorized into the K matrix and the CG coefficients of
Sn−1, which can be found using the reduction property. This
approach allows us to determine the proper combination of
color and spin states that satisfy the desired symmetry of
the full wave function. The reduction property is given by
Ref. [35],

Sð½f0�p0q0y0½f00�p00q00y00j½f�pqyÞ
¼ Kð½f0�p0½f00�p00j½f�pÞ
× Sð½f0p0 �q0y0½f00p00 �q00y00j½fp�qyÞ; ðA4Þ

where S in the left-hand (right-hand) side is a CG
coefficient of Sn (Sn−1), and n is the number of the
participant particles.

Before completing the coupling scheme of the color
and spin state, it is necessary to investigate the color ⊗
spin states of q4. This can be done by considering the
direct product of the fundamental representation of
SUð6ÞCS for q4, which is decomposed into the direct
sum of the irreducible representations of SUð6ÞCS, as the
following:

ðA5Þ

We further divide the SUð6ÞCS representation for q4 in
Eq. (A5) into the direct sum of SUð3ÞC ⊗ SUð2ÞS multip-
lets, represented by both a color and a spin state. This
allows us to establish the correspondence between the
SUð6ÞCS representation and the color ⊗ spin state
obtained from the coupling scheme and thereby, obtain a
better understanding of the symmetry properties of the
system.
In Table V, the fourth column indicates the eigenvalues

of the quadratic Casimir operator of the SUð6ÞCS repre-
sentation for q4 and the first column the Young diagram of
the irreducible representation of SUð6ÞCS. The eigenvalues
of the quadratic Casimir operator for the SUð6ÞCS repre-
sentation in Table V can be easily obtained using a
formula [36] given by

280

72Dð6Þ
X
j

Dð3Þjð2Sj þ 1ÞSjðSj þ 1Þ; ðA6Þ

where Dð6Þ is the dimension of the SUð6ÞCS representa-
tion, and Dð3Þ is the dimension of the SUð3ÞC representa-
tion contained in the composition of SUð3ÞC and SUð2ÞS
multiplets. For a given SUð6ÞCS irreducible representation,
the subscript j indicates the different SUð3ÞC ⊗ SUð2ÞS
composite states that compose the irreducible representa-
tion of SUð6ÞCS. Our overall normalization is different
from that used in Ref. [36].
Moreover, since the symmetry property for three quarks

is apparently given to the color ⊗ spin states of the
coupling scheme from a Young diagram for four quarks,
we also examine the SUð6ÞCS representation for three
quarks, which can be expressed by the corresponding
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Young diagram for three quarks in the same method.
Similarly, by decomposing the SUð6ÞCS representation into
the sum of SUð3ÞC ⊗ SUð2ÞS, we find the composition of
SUð3ÞC and SUð2ÞS for the SUð6ÞCS representation for
three quarks, and the eigenvalue of the quadratic Casimir
operator of SUð6ÞCS for q3 using Eq. (A6). The results are
summarized in Table VI. It should be noted that the
symmetry property for three quarks is apparent in the
color ⊗ spin states of the coupling scheme, as it is derived
from the Young diagram for four quarks.

a. The Young-Yamanouchi bases of coupling
scheme for S= 1=2

Now, we present the Young-Yamanouchi bases from
the coupling scheme for the total S ¼ 1=2 state in detail.
The coupling scheme in Eq. (A1) results in the Young
diagram ½212� with the total S ¼ 1=2 and S ¼ 0 among
particles 1–4,

ðA7Þ

In the left-hand side of Eq. (A7), the superscript of S after
CS1=2 in the Young-Yamanouchi bases indicates the total

spin of particles 1–4. Also, the explicit product of the
antiquark state is neglected as the Young-Yamanouchi
bases represent a certain symmetry properties for q4 but
the total spin of particles 1–5 is given in the superscript of
CS. It should be noted that these states in Eq. (A7) belong
to the multiplet of the SUð6ÞCS representation ½212� for q4,
as can be seen in Table V. This is so because first, it is
obvious that the color state for q4 in Eq. (6) is in a triplet
state; second, the spin state for q4 in Eq. (7) is in a singlet
state; third, these Young-Yamanouchi bases in the left-hand
side of Eq. (A7) should be represented in the form of Young
diagram ½212� for q4. It follows that the states in Eq. (A7)
are eigenstates of the quadratic Casimir operator of
SUð6ÞCS for q4, with an eigenvalue of 26=3, as shown
in Table V.
In addition, since the Young-Yamanouchi basis of the

coupling scheme in Eq. (A7) also involves the Young
tableau corresponding to the irreducible representation of
the permutation group, S3 among three particles, we can
infer that there is another correspondence between these
states and the multiplet of SUð6ÞCS representation for q3.
From the standpoint of the Young tableau for q3 in
Eq. (A7), we can see that both the first and second states
belong to the multiplet of SUð6ÞCS representation for q3

represented by the Young diagram [21], while the third
state belongs to the multiplet of SUð6ÞCS representation
for q3 represented by the Young diagram ½13�. Table VI
confirms that this is the case because the SUð6ÞCS repre-
sentation [21] for q3 contains (octet, doublet) and (singlet,
doublet) states, and the SUð6ÞCS representation ½13�
for q3 contains (octet, doublet) states in the form of
SUð3ÞC ⊗ SUð2ÞS.

TABLE V. The composition of SUð3ÞC and SUð2ÞS concerning the SUð6ÞCS representation for q4.

SUð6ÞCS SUð3ÞC ⊗ SUð2ÞS Dimension Eigenvalue

½4� ð15; 5Þ, ð150; 3Þ, ð6̄; 1Þ 126 50=3
½14� ð6̄; 1Þ, ð3; 3Þ 15 14=3
½31� ð15; 3Þ, ð150; 5Þ, ð150; 3Þ, ð150; 1Þ, ð6̄; 3Þ, ð3; 3Þ, ð3; 1Þ 210 38=3
½212� ð150; 3Þ, ð150; 1Þ, ð6̄; 3Þ, ð3; 5Þ, ð3; 3Þ, ð3; 1Þ 105 26=3
½22� ð15; 1Þ, ð150; 3Þ, ð6̄; 5Þ, ð6̄; 1Þ, ð3; 3Þ 105 32=3

TABLE VI. The composition of SUð3ÞC and SUð2ÞS concern-
ing the SUð6ÞCS representation for q3.

SUð6ÞCS SUð3ÞC ⊗ SUð2ÞS Dimension Eigenvalue

½3� ð10; 4Þ, ð8; 2Þ 56 45=4
½21� ð10; 2Þ, ð8; 4Þ, ð8; 2Þ, ð1; 2Þ 70 33=4
½13� ð8; 2Þ, ð1; 4Þ 20 21=4
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Next, we show the Young-Yamanouchi bases of the
coupling scheme corresponding to Young diagram ½212�
with the total S ¼ 1=2 and at the same time S ¼ 1 among
particles 1–4, which come from the coupling scheme in
Eq. (A2),

ðA8Þ

It should be noted that the states in Eq. (A8) correspond
to states of the multiplet of the SUð6ÞCS representation for
q4, ½212�, not only because it is obvious from Table V that
the color state for q4 is in a triplet state, and at the same
time, the spin state for q4 is in a triplet state, but also
because these Young-Yamanouchi bases should be repre-
sented in the form of Young diagram ½212� for q4. Thus, the
states in Eq. (A8) are eigenstates of the quadratic Casimir
operator of SUð6ÞCS for q4, with 26=3 as their eigenvalue,
as shown in Table V.
Moreover, we can see from the Young tableau for q3 in

Eq. (A8) that both the first and the second states belong to
the multiplet of SUð6ÞCS representation for q3 represented
by Young diagram [21], while the third belongs to the
multiplet of SUð6ÞCS representation for q3 represented by
Young diagram ½13�.
Next, we show the Young-Yamanouchi bases for the

coupling scheme corresponding to the Young diagram [31]
with the total spin S ¼ 1=2 and at the same time S ¼ 0
among particles 1–4, which come from the coupling
scheme in Eq. (A1),

ðA9Þ

The states in Eq. (A9) belong to the multiplet of the
SUð6ÞCS representation for q4, ½31�, not only because it is
obvious from Table V that the color state for q4 is in a triplet
state, and at the same time, the spin state for q4 is in a
singlet state, but also because these Young-Yamanouchi
bases should be represented in the form of Young diagram
½31� for q4. Therefore, the states in Eq. (A9) are eigenstates
of the quadratic Casimir operator of SUð6ÞCS for q4, with
an eigenvalue of 38=3, as can be seen in Table V.
On the other hand, we can see from the Young tableau

for q3 in Eq. (A9) that the first belongs to the multiplet of
SUð6ÞCS representation for q3 represented by the Young
diagram [3], while both the second and the third states
belong to the multiplet of SUð6ÞCS representation for q3

represented by the Young diagram ½21�.
Next, we show the Young-Yamanouchi bases of the

coupling scheme corresponding to the Young diagram [31]
with the total spin S ¼ 1=2 and at the same time, S ¼ 1
among particles 1–4, which come from the coupling
scheme in Eq. (A2),

ðA10Þ

The states in Eq. (A10) belong to the multiplet of the
SUð6ÞCS representation for q4, ½31�, not only because it is
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obvious from Table V that the color state for q4 is in a triplet
state, and at the same time, the spin state for q4 is in a triplet
state, but also because these Young-Yamanouchi bases
should be represented in the form of the Young diagram
½31� for q4. Thus, the states in Eq. (A10) are eigenstates of
the quadratic Casimir operator of SUð6ÞCS for q4, with an
eigenvalue of 38=3, as can be seen in Table V.
Moreover, we can see from the Young tableau for q3 in

Eq. (A10) that the first state belongs to the multiplet of
SUð6ÞCS representation for q3 represented by Young
diagram [3], while both the second and the third states
belong to the multiplet of SUð6ÞCS representation for q3

represented by Young diagram ½21�.
Next, we show the Young-Yamanouchi bases of the

coupling scheme corresponding to the Young diagram ½22�
with the total spin S ¼ 1=2 and at the same time, S ¼ 1
among particles 1–4 which come from the coupling scheme
in Eq. (A2),

ðA11Þ

The states in Eq. (A11) belong to the multiplet of the
SUð6ÞCS representation for q4, ½22�, not only because it is
obvious from Table V that the color state for q4 is in a triplet
state, and at the same time, the spin state for q4 is in a triplet
state, but also because these Young-Yamanouchi bases
should be represented in the form of Young diagram ½22� for
q4. Therefore, the states in Eq. (A11) are eigenstates of the
quadratic Casimir operator of SUð6ÞCS for q4, with an
eigenvalue 32=3, which can be seen in Table V.
Moreover, we can see from the Young tableau for q3 in

Eq. (A11) that both the states belong to the multiplet of
SUð6ÞCS representation for q3 represented by the Young
diagram [21].
Next, we show the Young-Yamanouchi bases of the

coupling scheme corresponding to the Young diagram ½14�
with the total S ¼ 1=2 and at the same time, S ¼ 1 among
particles 1–4 which come from the coupling scheme in
Eq. (A2),

ðA12Þ
The states in Eq. (A12) belong to the multiplet of the

SUð6ÞCS representation for q4, ½14�, not only because it is
obvious from Table V that the color state for q4 is in a triplet
state, andat thesametime thespinstate forq4 is ina triplet state,
but also because these Young-Yamanouchi bases should be
represented in the form of Young diagram ½14� for q4.
Therefore, the state in Eq. (A12) is eigenstate of the quadratic
Casimir operator of SUð6ÞCS for q4, with an eigenvalue of
14=3, as canbe seen inTableV. It shouldbenoted that since the
Young-Yamanouchi bases in the left-hand side of Eq. (A12)
from the coupling scheme means a fully antisymmetric
property, each term in the right-hand side shouldbe conjugated
to each other in terms of the color state and spin state.
Moreover, we can see from the Young tableau for q3 in

Eq. (A12) that the state belongs to the multiplet of SUð6ÞCS
representation for q3 represented by the Young diagram ½13�.

b. The Young-Yamanouchi bases of coupling
scheme for S= 3=2

Next, we present the Young-Yamanouchi bases from the
coupling schemewith regard to the total spinS ¼ 3=2 in detail.
WeshowtheYoung-Yamanouchibasesof the coupling scheme
corresponding to the Young diagram ½212� with the total spin
S ¼ 3=2 and at the same time, S ¼ 1 among particles 1–4
which come from the coupling scheme in Eq. (A2),

ðA13Þ
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The states in Eq. (A13) correspond to the multiplet of the
SUð6ÞCS representation for q4, ½212�, not only because it is
obvious from Table V that the color state for q4 is in a triplet
state, and at the same time, the spin state for q4 is in a triplet
state but also because these Young-Yamanouchi bases
should be represented in the form of Young diagram
½212� for q4. Therefore, the states in Eq. (A13) are
eigenstates of the quadratic Casimir operator of SUð6ÞCS
for q4, with an eigenvalue of 26=3, as shown in Table V.
Furthermore, it is worth noting that from the standpoint

of the permutation group, S4, the states in Eq. (A13) are
exactly equivalent to the states in Eq. (A8), since the Young
tableau of the spin states in Eq. (A13) are the same as those
of the spin states in Eq. (A8) for the four quarks. As the
result, we can infer that the values of the color and spin
operator acted upon either the states in Eq. (A13) or the
states in Eq. (A8) are identical for four quarks.
For the three quarks, we can see from the Young tableau

in Eq. (A13) that both the first and second states belong to
the multiplet of SUð6ÞCS representation for q3 represented
by the Young diagram ½21�, while the third belongs to the
multiplet of SUð6ÞCS representation for q3 represented by
the Young diagram ½13�.
Next, we show the Young-Yamanouchi bases of the

coupling scheme corresponding to Young diagram ½212�
with the total spin S ¼ 3=2 and at the same time, S ¼ 2
among particles 1–4, which come from the coupling
scheme in Eq. (A3),

ðA14Þ

The states in Eq. (A14) correspond to the multiplet of the
SUð6ÞCS representation for q4, ½212�, not only because it is
obvious from Table V that the color state for q4 is in a triplet
state, and at the same time, the spin state for q4 is in a
quintet state, but also because these Young-Yamanouchi
bases should be represented in the form of the Young
diagam ½212� for q4. Therefore, the states in Eq. (A14) are
eigenstates of the quadratic Casimir operator of SUð6ÞCS
for q4, with an eigenvalue of 26=3, as shown in Table V.
Moreover, we can see from the Young tableau for q3 in

Eq. (A14) that both the first and the second states belong to
the multiplet of SUð6ÞCS representation for q3 represented
by Young diagram ½21�, while the third state belongs to the
multiplet of SUð6ÞCS representation for q3 represented by
Young diagram ½13�.

Next, we show the Young-Yamanouchi bases of the cou-
pling schemecorresponding to theYoungdiagram ½31�with the
total spinS ¼ 3=2 and at the same time,S ¼ 1 amongparticles
1–4, which come from the coupling scheme in Eq. (A2),

ðA15Þ
The states in Eq. (A15) belong to the multiplet of the SUð6ÞCS
representation for q4, ½31�, not only because it is obvious from
Table V that the color state for q4 is in a triplet state, and at the
same time, the spin state for q4 is in a triplet state, but also
because these Young-Yamanouchi bases states should be
represented in the form of the Young diagram ½31� for q4.
Thus, the states in Eq. (A15) are eigenstates of the quadratic
Casimir operator of SUð6ÞCS for q4, with an eigenvalue of
38=3, as shown in Table V.
Furthermore, it is worth noting that from the standpoint

of the permutation group, S4, the states in Eq. (A15) are
exactly equivalent to the states in Eq. (A10), since the
Young tableau of the spin states in Eq. (A15) are the same
as those of the spin states in Eq. (A10) for the four quarks.
As the result, we can infer that the values of the color and
spin operator acted upon either the states in Eq. (A15) or
the states in Eq. (A10) are identical for four quarks.
In addition, we can see from the Young tableau for q3 in

Eq. (A15) that the first state belongs to the multiplet of
SUð6ÞCS representation for q3 represented by Young
diagram ½3�, while both the second and the third states
belong to the multiplet of SUð6ÞCS representation for q3

represented by the Young diagram ½21�.
Next,weshowtheYoung-Yamanouchibasesof thecoupling

scheme corresponding to theYoung diagram ½22�with the total
S ¼ 3=2 and at the same time, S ¼ 1 among particles 1–4,
which come from the coupling scheme in Eq. (A2),

ðA16Þ
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The states in Eq. (A16) correspond to the multiplet of the
SUð6ÞCS representation for q4, ½22�, not only because it is
obvious from Table V that the color state for q4 is in a triplet
state, andat thesametime, thespinstate forq4 is ina triplet state,
but also because these Young-Yamanouchi bases should be
represented in the formofYoungdiagam ½22� forq4. Therefore,
the states in Eq. (A16) are eigenstates of the quadratic Casimir
operator of SUð6ÞCS for q4, with an eigenvalue of 32=3, as can
be seen in Table V.
From the standpoint of the permutation group, S4, the

states in Eq. (A16) are exactly equivalent to the states
in Eq. (A11), since the Young tableau of the spin states in
Eq. (A16) are the same as those of the spin states in
Eq. (A11) for the four quarks.
We also can see from the Young tableau for q3 in

Eq. (A16) that both the first and the second belong to the
multiplet of SUð6ÞCS representation for q3 represented by
Young diagram ½21�.
Next, we show the Young-Yamanouchi bases of the

coupling scheme corresponding to Young diagram ½14�with
the total S ¼ 3=2 and at the same time, S ¼ 1 among
particles 1–4 which come from the coupling scheme in
Eq. (A2),

ðA17Þ

The state in Eq. (A17) correspond to the multiplet of the
SUð6ÞCS representation for q4, ½14�, not only because it is
obvious from Table V that the color state for q4 is in a triplet
state, and at the same time, the spin state for q4 is in a triplet
state, but also because these Young-Yamanouchi bases
should be represented in the form of Young diagram ½14� for
q4. Therefore, the state in Eq. (A17) is eigenstate of the
quadratic Casimir operator of SUð6ÞCS for q4, with an
eigenvalue of 14=3, as can be seen in Table V. It should be
noted that since the Young-Yamanouchi bases in the left-
hand side of Eq. (A17) from the coupling scheme means a
fully antisymmetric property, each term in the right-hand
side should be conjugated to each other in terms of the color
state and spin state.
Besides, from the standpoint of the permutation group,

S4, the state in Eq. (A17) are exactly equivalent to state in
Eq. (A12), since for four quarks the Young tableau of the
spin states in Eq. (A17) are the same as those of the spin
states in Eq. (A12). In addition, we can see from the Young
tableau for q3 in Eq. (A17) that the state belongs to the
multiplet of SUð6ÞCS representation for q3 represented by
Young diagram ½13�.

c. The Young-Yamanouchi bases of coupling scheme
for S= 5=2

Finally, we show the Young-Yamanouchi bases for the
coupling scheme corresponding to the Young diagram ½212�
with the total spin S ¼ 5=2 and at the same time, S ¼ 2
among particles 1–4, which come from the coupling
scheme in Eq. (A3),

ðA18Þ

The states in Eq. (A18) belong to the multiplet of the
SUð6ÞCS representation for q4, ½212�, not only because it is
obvious from Table V that the color state for q4 is in a triplet
state, and at the same time, the spin state for q4 is in a quintet
state, but also because these Young-Yamanouchi bases
should be represented in the form of Young diagram ½212�
forq4. Therefore, the states in Eq. (A18) are eigenstates of the
quadratic Casimir operator of SUð6ÞCS for q4, with an
eigenvalue of 26=3, as can be seen in Table V.
From the standpoint of the permutation group, S4, the

state in Eq. (A18) are exactly equivalent to state in
Eq. (A14), since the Young tableau of the spin states
in Eq. (A18) are the same as those of the spin states in
Eq. (A14) for the four quarks.
We can also see from the Young tableau for q3 in

Eq. (A18) that both the first and the second belong to the
multiplet of SUð6ÞCS representation for q3 represented by
Young diagram ½21�, while the third belongs to the multiplet
of SUð6ÞCS representation for q3 represented by Young
diagram ½13�. We note that all of Young-Yamanouchi bases
of the coupling scheme for any total S are orthonormal to
each other.
In particular, we now consider the quadratic Casimir

operator of SUð6ÞCS for q3 in order to identify a corre-
spondence between the Young-Yamanouchi bases of the
coupling scheme and the multiplets of SUð6ÞCS represen-
tation for q3. Given the quadratic Casimir operator of
SUð6ÞCS for q3, in fact, we can calculate the eigenvalues in
Table VI by acting the quadratic Casimir operator upon the
Young-Yamanouchi bases of the coupling scheme. This can
be possible by introducing a formula given by

CCS
3 ¼ 1

4

X2
i¼1

λci λ
c
3σ⃗i · σ⃗3 þ CCS

2 þ 1

2
CC
3 −

1

2
CC
2

þ 1

3
ðS⃗ · S⃗Þ3 −

1

3
ðS⃗ · S⃗Þ2 þ 2I; ðA19Þ
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where CCS is the quadratic form of Casimir operator of
SUð6ÞCS, CC the quadratic form of Casimir operator of
SUð3ÞC, S the spin operator, I the identity operator, and the
subscript in each Casimir operator indicates the number of
the participant quarks. This notation will be used for the
subsequent formula associated with Casimir operator.
For example, we consider the third state in Eq. (A7) and

the first state in Eq. (A9). From the color and spin state for q3

of the Young-Yamanouchi basis, both states are in a ð8; 2Þ
state, which is the composition of color state and spin state
contained in both ½13� and ½3� of the SUð6ÞCS representation
for q3. However, in spite of being in the same composition of
color state and spin state, ð8; 2Þ, we can distinguish these
states immediately from the Young-Yamanouchi basis of the
SUð6ÞCS representation for q3. In fact, we can calculate their
eigenvalues ofCCS

3 to these states and examinewhether these
states become eigenstates of CCS

3 , using the formula in
Eq. (A19). However, it is not so easy to show this, owing
to the first term in Eq. (A19). After some complex algebraic
calculation, we obtain the following eigenvalue equation:

ðA20Þ

Here, the eigenvalue of CCS
2 is manifestly determined by the

composition of the color and spin state for q2, which is either
symmetric or antisymmetric. Table VII shows the eigenval-
ues ofCCS

2 and the composition of color and spin state of the
SUð6ÞCS representation for q2.

2. Systematic analysis of q4q̄

a. The SUð6ÞCS representation of pentaquark

In this subsection, we deal with a correspondence
between the irreducible representations of SUð6ÞCS for
the pentaquark and the color and spin states in the coupling
scheme mentioned in a preceding section. For our purpose,
we categorize the direct product of the fundamental
representation of SUð6ÞCS for the pentaquark, which leads
to useful information in calculating the color-spin inter-
action. This procedure is achieved by classifying the 7776-
dimensional color ⊗ spin states of q4Q̄ into the direct sum
of the irreducible representations of SUð6ÞCS. This is
obtained from multiplying Eq. (A5) by 6̄CS, as given
in Eq. (A21).
In Eq. (A21), the subscripts outside of the brackets in the

second and third lines indicate the SUð6ÞCS representation for
q4, since the SUð6ÞCS representations for q4q̄ inside the
bracket are originally due to the direct product of the
SUð6ÞCS representation for q4 and 6̄CS for q̄ in the first line.
Therefore, the SUð6ÞCS representations for q4q̄ inside the
bracket, represented by their correspondingYoung diagram in
the subscript, have a certain symmetry for q4 which is
expressed in terms of the Young diagram of the SUð6ÞCS
representation for q4. The dimension of each of irreducible
SUð6ÞCS representation for the pentaquark is given in the third
column of Table VIII.
On the one hand, we further decompose the SUð6ÞCS into

the sum of SUð3ÞC ⊗ SUð2ÞS multiplets in order to
select out the physically allowed color singlet states among

TABLE VII. The composition of SUð3ÞC and SUð2ÞS con-
cerning the SUð6ÞCS representation for q2.

SUð6ÞCS Young
diagram SUð3ÞC ⊗ SUð2ÞS Dimension Eigenvalue

½2� ð6; 3Þ, ð3̄; 1Þ 21 20=3
½12� ð6; 1Þ, ð3̄; 3Þ 15 14=3

TABLE VIII. The composition of SUð3ÞC and SUð2ÞS concerning the SUð6ÞCS representation for q4q̄.

SUð6ÞCS Young tableau SUð3ÞC ⊗ SUð2ÞS Dimension Eigenvalue

½514� ð35; 6Þ, ð35; 4Þ, ð27; 4Þ, ð27; 2Þ, ð10; 6Þ,
ð8; 4Þ, ð10; 4Þ, ð10; 2Þ, ð10; 2Þ, ð8; 2Þ

700 81=4

½3� ð10; 4Þ, ð8; 2Þ 56 45=4
½4213� ð35; 4Þ, ð35; 2Þ, ð27; 6Þ, 2ð27; 4Þ,

2ð27; 2Þ, ð10; 6Þ, 2ð10; 4Þ, 2ð10; 2Þ,
ð10; 4Þ, ð10; 2Þ, ð8; 6Þ, 3ð8; 4Þ, 3ð8; 2Þ, ð1; 4Þ, ð1; 2Þ

1134 65=4

½21� ð10; 2Þ, ð8; 4Þ, ð8; 2Þ, ð1; 2Þ 70 33=4
½3213� ð35; 2Þ, ð27; 4Þ, ð27; 2Þ, ð10; 4Þ, ð10; 2Þ, ð10; 6Þ,

ð10; 4Þ, ð10; 2Þ, ð8; 6Þ, 2ð8; 4Þ, 2ð8; 2Þ, ð1; 4Þ
560 57=4

½32212� ð27; 4Þ, 2ð27; 2Þ, ð10; 4Þ, ð10; 2Þ, ð10; 4Þ, ð10; 2Þ,
ð8; 6Þ, 3ð8; 4Þ, 3ð8; 2Þ, ð1; 6Þ, ð1; 4Þ, ð1; 2Þ

540 49=4

½13� ð8; 2Þ, ð1; 4Þ 20 21=4
½241� ð10; 2Þ, ð8; 4Þ, ð8; 2Þ, ð1; 2Þ 70 33=4

DOUBLY-CHARMED PENTAQUARK IN A QUARK MODEL WITH A … PHYS. REV. D 108, 014026 (2023)

014026-15



the SUð6ÞCS representations in Eq. (A21). Table IX shows
the allowed color singlet states with their possible spin
states, denoted by ½1C; S�, within each SUð6ÞCS represen-
tation of pentaquark. Table VIII shows the composition

of SUð3ÞC and SUð2ÞS multiplets in the SUð6ÞCS repre-
sentation, as well as the dimension and the eigenvalue of
CCS, which is the quadratic form of the Casimir operator of
the SUð6ÞCS representation.

ðA21Þ

In the simplest constituent quarkmodel based on the color
spin interaction, the attraction of stabilizing pentaquark
depends critically on the expectation value of the interaction.
Now that we have completed the necessary classifications
and obtained the required results, we are in a position to
calculate the color-spin interaction resulting from quantum
chromodynamics. This interaction is given by

HCS ¼ −
X5
i<j

λci λ
c
j σ⃗i · σ⃗j: ðA22Þ

One can derive the following elegant formula for
Eq. ((A22) relevant to the pentaquark configuration by
introducing the quadratic form of Casimir operator of
SUð6ÞCS, which is denoted by CCS:

−
X5
i<j

λci λ
c
j σ⃗i · σ⃗j ¼ 4CCS

5 − 8CCS
4 − 2CC

5 þ 4CC
4

−
4

3
ðS⃗ · S⃗Þ5 þ

8

3
ðS⃗ · S⃗Þ4 þ 24I; ðA23Þ

where the subscript in each Casimir operator indicates the
number of the participant quarks, the terms CCS and CC

refer to the quadratic form of Casimir operator of SUð6ÞCS
and SUð3ÞC, respectively. The operator S denotes the spin
operator, and I the identity operator. The derivation of the

formula is similar to that of the corresponding formula for
the dibaryon system described in [37]. However, to account
for the antiquark, we replace λi (σ⃗j) with −λ�i (−σ⃗�j ). In
Eq. (A23), the eigenvalue of CC

4 is 4=3, because the Young
tableau of q4 is ½212�, when the pentaquark is in the color
singlet configuration.
We are now in a position to construct color⊗ spin states

in terms of the irreducible SUð6ÞCS representation of the
pentaquark, which is useful for understanding the sym-
metry property among the four quarks as well as making a
good choice of full wave function, involving a flavor and a
spatial function. To do this, we examine all the cases
corresponding to the SUð3ÞF limit available to Eq. (A23).

b. Color ⊗ spin states with S= 1=2 in terms
of the irreducible SUð6ÞCS representation

of the pentaquark

Wefirst consider flavor150 casewithS ¼ 1=2. In this case,
there are twoorthonormal flavor⊗ color⊗ spin states,which
are fully antisymmetryic among the four quarks. Through the
coupling scheme and the systematic account for the irreduc-
ible SUð6ÞCS representation of the pentaquark, we can see
that in general there are two independent methods by which
we can construct the fully antisymmetric flavor ⊗ color ⊗
spin state among particles 1–4. This construction will be
helpful in making a suitable choice for the full wave function
involving a flavor and a spatial function.
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Before analyzing this in detail, we introduce two for-
mulas for the four quarks, similar to Eq. (A23) and make a
use of these in calculating the color and spin interaction
between a pair of four quarks. The relevant formula
depends upon the flavor state, given as follows:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗j ¼ 4CF

4 þ 2CC
4 þ 4

3
ðS⃗ · S⃗Þ4 − 24I; ðA24Þ

where CF
4 is the quadratic Casimir operator of SUð3ÞF for

q4. There is another formula depending upon the SUð6ÞCS
representation for particles 1–4, given as follows:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗j¼−4CCS

4 þ2CC
4 þ

4

3
ðS⃗ · S⃗Þ4þ32I; ðA25Þ

where CCS
4 is a quadratic Casimir operator of SUð6ÞCS for

particles 1–4. Themost important aspect of the flavor⊗ color
⊗ spin state of the pentaquark under consideration is that it
can bewell understood in a freshway convenient for using the
eigenstate of any Casimir operator consisting of Eqs. (A24)
and (A25), or Eq. (A23). In this view, we emphasize that the
color⊗ spin state of the pentaquark can also be considered as
the eigenstate of the Casimir operator of the SUð6ÞCS
representation of the pentaquark. In this subsection, our main
purpose is to investigate a correspondence between the color
⊗ spin state in the coupling scheme and the irreducible
SUð6ÞCS representation of the pentaquark, by making a
systematic analysis of Eq. (A21) and Table VIII.
Now, let us return to the case of flavor 150 for S ¼ 1=2.

As one approach, we can obtain two orthonormal flavor ⊗
color ⊗ spin states by multiplying the color ⊗ spin states
coming from the coupling scheme in Eqs. (A7) and (A8) by
its conjugate flavor 150 states, respectively, in order to
satisfy the fully antisymmetry, as shown below,

ðA26Þ

Here, as mentioned above, the spin state of jψ1i (jψ2i) in
Eq. (A26) for particles 1–4 is 0 (1). Since the two formulas
in Eqs. (A24) and (A25) are made up of only Casimir
operators except for the identity operator, it is obvious that
the states in Eq. (A26) are the eigenstates of both
Eqs. (A24) and (A25). Therefore, the matrix element of
Eq. (A24) in terms of jψ1i and jψ2i in Eq. (A26) become
diagonalized in a 2 by 2 matrix form as follows:

�
−
X4
i<j

λci λ
c
j σ⃗i · σ⃗j

�
¼
�
0 0

0 8
3

�
: ðA27Þ

It is easy to calculate this expectation value from the formula
in Eq. (A24), where the eigenvalue of the flavormultiplet 150

for CF
4 is 16=3. For the color part, the eigenvalue of CC

4 for
the four quarks is given as 4=3 because the color state is in a
triplet of SUð3ÞC. Moreover, we can indeed obtain the same
result through another formula of Eq. (A25), because the
Young-Yamanouchi bases in Eq. (A26) obtained from the
coupling scheme belong to the multiplets of SUð6ÞCS
representation, ½212� for particles 1–4. This indicates that
these states become the eigenstates of the quadratic Casimir
operator, CCS

4 , with an eigenvalue of 26=3, as shown in
Table V. These are given as follows:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψ1i

¼ ð−4× 26=3þ 2× 4=3þ 4=3× 0þ 32Þjψ1i ¼ 0jψ1i;

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψ2i

¼ ð−4× 26=3þ 2× 4=3þ 4=3× 1× 2þ 32Þjψ2i
¼ 8=3jψ2i: ðA28Þ

We can infer another way of constructing the two
orthonormal flavor ⊗ color ⊗ spin states for S ¼ 1=2
from the SUð6ÞCS representation of the pentaquark in
Eq. (A21). This can be accomplished in the same way
as those from the coupling scheme in Eq. (A26). That is to
say, first of all, both the ½21� and ½32212� of the SUð6ÞCS
representation in Table VIII contain states which are in the
color singlet, and at the same time, S ¼ 1=2 states, that is,
½1C; 2S�, as can be seen in Tables IX and VIII. Second, both

TABLE IX. The SUð6ÞCS representations containing ½1C; S�
multiplet.

SUð3ÞC ⊗ SUð2ÞS SUð6ÞCS representation

½1C; 1=2� ½241�, ½32212�, [21], ½4213�
½1C; 3=2� ½13�, ½32212�, ½3213�, ½4213�
½1C; 5=2� ½32212�
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the ½21� and ½32212� in the SUð6ÞCS representation have a
symmetry property for q4 corresponding to the Young
diagram ½212�, which are conjugate to the flavor 150
multiplet, as can be seen in Eq. (A21). Then, the two
orthonormal flavor⊗ color⊗ spin states for S ¼ 1=2 based
on the SUð6ÞCS representation of the pentaquark are given
as follows:

ðA29Þ

Here, we introduce new notation for the part of the
color and spin state. In the right hand side of Eq. (A29),
the ket states in the first and second equations express the
states belonging to the [21] and ½32212� multiplets of the
SUð6ÞCS representation of the pentaquark, respectively.
The Young-Yamanouchi bases in the ket states represent
the respective symmetry properties for particles 1–4.
Also, the subscript CS1=2 outside of the ket states means
that the states are in the color singlet and S ¼ 1=2 state for
the pentaquark.
Furthermore, it should be noted that each part of the

color and spin states in Eq. (A29) are the eigenstates of the
quadratic Casimir operator, CCS

5 of the SUð6ÞCS represen-
tation for the pentaquark. Therefore, we can obtain the
eigenvalue equation for the quadratic Casimir operatorCCS

5 ,
which allows us to construct the SUð6ÞCS representation of
the pentaquark using the states obtained from the coupling
scheme. The eigenvalue equation from Table VIII is as
follows:

ðA30Þ

ðA31Þ

Since the color and spin states in Eq. (A29) become the
eigenstates of the CCS

5 , we can infer from Eq. (A21) that the
linear sum of the color ⊗ spin parts between jψ1i and jψ2i
in Eq. (A26) must belong to either the [21] of SUð6ÞCS
representation or the ½32212� of SUð6ÞCS representation in
Eq. (A29). The coefficients of this linear combination can
be determined by requiring that the linear combination
becomes an eigenstate of the Casimir operator CCS

5 of the
SUð6ÞCS representation, as well as satisfying the normali-
zation condition for the linear sum. Therefore, action of
CCS
5 upon the linear sum that gives the eigenvalues of either

33=4 or 49=4 in Table VIII leads to an equation involving
two variables. The operator CCS

5 is given as follows.

CCS
5 ¼ −

1

4

X4
i¼1

λci λ
c
5σ⃗i · σ⃗5 þ CCS

4 þ 1

2
CC
5 −

1

2
CC
4

þ 1

3
ðS⃗ · S⃗Þ5 −

1

3
ðS⃗ · S⃗Þ4 þ 2I: ðA32Þ

After some algebraic calculations of a coupled equation
with two unknown variables, we obtain the following
relations:
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ðA33Þ

The same procedure is equally applied to the rest of the
Young-Yamanouchi bases of [21] (½32212�). We can see
obviously that the same relation holds for the others,

ðA34Þ

ðA35Þ

On the other hand, there is a general rule of the
permutation group that the second Young-Yamanouchi
basis of the [21] multiplet in Eq. (A30) (the ½32212� in
Eq. (A31)) can be obtained by acting the permutation
operator (23) upon the first Young-Yamanouchi basis of the
[21] in Eq. (A30) (the ½32212� in Eq. (A31)). This process is
also applied to the last basis of the [21] multiplet (and the
[32212] multiplet) by acting the permutation (34) upon the
second basis.
From Eqs. (A33)–(A35), we find the following relations

between the states in Eq. (A26) and the states in Eq. (A29):

jΨ1i ¼
1ffiffiffi
2

p jψ1i þ
1ffiffiffi
2

p jψ2i;

jΨ2i ¼ −
1ffiffiffi
2

p jψ1i þ
1ffiffiffi
2

p jψ2i: ðA36Þ

We can finally calculate the matrix element of Eq. (A23)
in terms of jΨ1i and jΨ2i. Using Eq. (A36), we find the
following 2 by 2 matrix elements:

hΨ1j −
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨ1i

¼ 4 × 33=4 − 8 × 26=3 − 2 × 0þ 4 × 4=3

− 4=3 × 1=2 × 3=2þ 8=3 × ð1=2 × 0þ 1=2 × 1 × 2Þ
þ 24 ¼ −16=3;

hΨ2j −
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨ2i

¼ 4 × 49=4 − 8 × 26=3 − 2 × 0þ 4 × 4=3

− 4=3 × 1=2 × 3=2þ 8=3 × ð1=2 × 0þ 1=2 × 1 × 2Þ
þ 24 ¼ 32=3;

hΨ1j −
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨ2i

¼ 8=3 × ð−1=2 × 0þ 1=2 × 1 × 2Þ ¼ 8=3: ðA37Þ

By diagonalizing the matrix in Eq. (A37), we find that
the eigenvalue of Eq. (A23) is either −8=3ð−1þ ffiffiffiffiffi

10
p Þ or

8=3ð1þ ffiffiffiffiffi
10

p Þ.
It is instructive to examine the expectation value of

λci λ
c
j σ⃗i · σ⃗j from the symmetry property. Furthermore, using

Eqs. (A25) and (A36), we can easily express the expect-
ation value of Eq. (A25) for particles 1–4 in terms of jΨ1i
and jΨ2i in Eq. (A29) as follows:

�
−
X4
i<j

λci λ
c
j σ⃗i · σ⃗j

�
¼
� 4

3
4
3

4
3

4
3

�
: ðA38Þ

Then, diagonalizing Eq. (A38) gives either 0, or 8=3 as the
same eigenvalues, which are obtained from Eq. (A27). In
addition, due to the fact that the antisymmetry property of
Eq. (A29) and the following relation, ðikÞλci λcj σ⃗i · σ⃗jðikÞ ¼
λckλ

c
j σ⃗k · σ⃗j, the expectation value of λci λ

c
j σ⃗i · σ⃗j (i < j ¼ 1,

2, 3, 4) is all the same. Therefore, we find the following:

h−λci λcj σ⃗i · σ⃗ji ¼
� 2

9
2
9

2
9

2
9

�
ði < j ¼ 1; 2; 3; 4Þ: ðA39Þ

In a similar manner, we can calculate the expectation value
of λci λ

c
5σ⃗i · σ⃗5 (i ¼ 1, 2, 3, 4) in terms of jΨ1i and jΨ2i in
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Eq. (A29), using Eqs. (A37), (A38), and the fully anti-
symmetric property for the four quarks,

h−λci λc5σ⃗i · σ⃗5i ¼
�− 5

3
1
3

1
3

7
3

�
ði ¼ 1; 2; 3; 4Þ: ðA40Þ

For the flavor 3 multiplet represented by Young diagram
½212� for q4, there are two orthonormal flavor ⊗ color ⊗
spin states, satisfying fully antisymmetry property. These
states can be obtained by multiplying the color ⊗ spin
states coming from the coupling scheme in Eqs. (A9) and
(A10) by its conjugate flavor 3 states, respectively,

ðA41Þ

Obviously, since the states in Eq. (A41) are the eigen-
states of Eq. (A24), the matrix element of Eq. (A24) is
diagonalized in terms of those states, as follows:

�
−
X4
i<j

λci λ
c
j σ⃗i · σ⃗j

�
¼
�−16 0

0 − 40
3

�
: ðA42Þ

It is easy to calculate this expectation value from the
formula in Eq. (A24) where the eigenvalue of the flavor 3
multiplet for CF

4 is 4=3. Moreover, the application of
Eq. (A25) to the states in Eq. (A41) leads to the same
expectation value as that of Eq. (A42) because the Young-
Yamanouchi bases in Eq. (A41) obtained from the coupling
scheme belong to the multiplets of SUð6ÞCS representation,
½31� for particles 1–4. These states have an eigenvalue of
38=3 in Table V, as the eigenstates of the quadratic Casimir
operator, CCS

4 . These are given as follows:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψ1i ¼ ð−4 × 38=3þ 2 × 4=3

þ 4=3 × 0þ 32Þjψ1i ¼ −16jψ1i;

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψ2i ¼ ð−4 × 38=3þ 2 × 4=3

þ 4=3 × 1 × 2þ 32Þjψ2i
¼ −40=3jψ2i: ðA43Þ

On the one hand, from the point of view of the SUð6ÞCS
representation of pentaquark, both the ½21� and the ½4213� in
the SUð6ÞCS representation conjugate to the flavor 3
multiplet for the four quarks contain the state which are
in both the color singlet and S ¼ 1=2 state, as shown in
Tables IX and VIII and Eq. (A21). Therefore, another
approach based on the SUð6ÞCS representation in Eq. (A21)
gives the two orthonormal flavor ⊗ color ⊗ spin states for
S ¼ 1=2, which satisfy fully antisymmetry in the same way
as in the coupling scheme,

ðA44Þ

We again use the same notation introduced in the case of
flavor 150 to express the states belonging to the multiplets
of the [21] and ½4213� of the SUð6ÞCS representation of the
pentaquark.
It should be noted that both the ½21� and ½4213�multiplets

in Eq. (A44) are eigenstates of CCS
5 of the SUð6ÞCS

representation. Therefore, we can see from Table VIII that
the following relations hold:
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CCS
5 jΨ1i ¼ 33=4jΨ1i; CCS

5 jΨ2i ¼ 65=4jΨ2i: ðA45Þ

As in the case of flavor 150, for the specific the Young-
Yamanouchi basis, it is found that the linear sum of the
color and spin parts between jψ1i and jψ2i in Eq. (A41)
coming from the coupling scheme must belong to either the
[21] of SUð6ÞCS representation or the ½4213� of SUð6ÞCS
representation in Eq. (A44). Therefore, we can find the
coefficients of the linear sum by solving a coupled equation
that satisfies two requirements, as we have already done.
Thus, we obtain the following relation:

ðA46Þ

For the multiplet [4213], we obtain the following relation in
the same method:

ðA47Þ

In addition to these, we obtain the same relations applicable
to the rest of Young-Yamanouchi bases of [21] (½4213�), as
we have already done in the case of flavor 150. Then, we
obtain the following relation from a correspondence
between Eqs. (A41) and (A44):

jΨ1i ¼
1

2
jψ1i −

ffiffiffi
3

p

2
jψ2i;

jΨ2i ¼
ffiffiffi
3

p

2
jψ1i þ

1

2
jψ2i: ðA48Þ

We can now straightforwardly calculate the matrix
element of Eq. (A23) in terms of jΨ1i and jΨ2i in
Eq. (A44). Using Eq. (A48), we find the following 2 by
2 matrix elements:

hΨ1j −
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨ1i

¼ 4 × 33=4 − 8 × 38=3 − 2 × 0þ 4 × 4=3

− 4=3 × 1=2 × 3=2þ 8=3 × ð1=4 × 0þ 3=4 × 1 × 2Þ
þ 24 ¼ −36;

hΨ2j −
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨ2i

¼ 4 × 65=4 − 8 × 38=3 − 2 × 0þ 4 × 4=3

− 4=3 × 1=2 × 3=2þ 8=3 × ð3=4 × 0

þ 1=4 × 1 × 2Þ þ 24 ¼ −20=3;

hΨ1j −
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨ2i

¼ 8=3 × ð
ffiffiffi
3

p
=4 × 0 −

ffiffiffi
3

p
=4 × 1 × 2Þ

¼ −4=
ffiffiffi
3

p
: ðA49Þ

By diagonalizing the matrix in Eq. (A49), we obtain that
the eigenvalue of Eq. (A23) is either −8=3ð8þ ffiffiffiffiffi

31
p Þ

or 8=3ð−8þ ffiffiffiffiffi
31

p Þ.
We also examine the expectation value of λci λ

c
j σ⃗i · σ⃗j

from the symmetry property. Using Eqs. (A25) and (A48),
one can easily show that the expectation value of Eq. (A25)
for particles 1–4 is given in terms of jΨ1i and jΨ2i in
Eq. (A44) as follows:

�
−
X4
i<j

λci λ
c
j σ⃗i · σ⃗j

�
¼
 
−14 − 2ffiffi

3
p

− 2ffiffi
3

p − 46
3

!
: ðA50Þ

Then, diagonalizing Eq. (A50) gives either −16 or −40=3,
which are the same eigenvalues obtained from Eq. (A42).
In addition, due to the fact that the antisymmetry
property of Eq. (A44) and the following relation,
ðikÞλci λcj σ⃗i · σ⃗jðikÞ ¼ λckλ

c
j σ⃗k · σ⃗j, the expectation value of

λci λ
c
j σ⃗i · σ⃗j (i < j ¼ 1, 2, 3, 4) is all the same. Therefore, we

find the following:

h−λci λcj σ⃗i · σ⃗ji¼
 

−7
3

− 1

3
ffiffi
3

p

− 1

3
ffiffi
3

p −23
9

!
ði<j¼1;2;3;4Þ: ðA51Þ

In a similar manner, we can calculate the expectation value
of λci λ

c
5σ⃗i · σ⃗5 (i ¼ 1, 2, 3, 4) in terms of jΨ1i and jΨ2i in

Eq. (A44), using Eqs. (A49), (A50), and the fully anti-
symmetric property for the four quarks,

h−λci λc5σ⃗i · σ⃗5i¼
 

−11
2

− 1

2
ffiffi
3

p

− 1

2
ffiffi
3

p 13
6

!
ði¼ 1;2;3;4Þ: ðA52Þ

For the flavor 6̄ multiplet represented by Young diagram
½22� for q4, there is one fully antisymmetric flavor ⊗ color
⊗ spin state coming from the coupling scheme in
Eq. (A11)) as follows:
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ðA53Þ

Obviously, since the state in Eq. (A53) must be the
eigenstate of Eq. (A24), we obtain the following relation:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψi ¼ −16=3jψi; ðA54Þ

where the eigenvalue of the flavor 6̄ for CF
4 is 10=3.

We can also obtain the same result of Eq. (A54) by using
Eq. (A25) and the Young-Yamanouchi bases in color and
spin part of Eq. (A53) obtained from the coupling scheme.
This is so because these Young-Yamanouchi bases in
Eq. (A53) belong to the multiplets of SUð6ÞCS representa-
tion ½22� for particles 1–4 and the states become the
eigenstates of the quadratic Casimir operator, CCS

4 , whose
eigenvalue is 32=3. This is given as follows:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψi

¼ ð−4 × 32=3þ 2 × 4=3þ 4=3 × 1 × 2þ 32Þjψi
¼ −16=3jψi: ðA55Þ

On the one hand, from the point of view of the SUð6ÞCS
representation of pentaquark, the ½21� in the SUð6ÞCS
representation conjugate to the flavor 6̄ multiplet for the
four quarks contains the state, which is in both the color
singlet and S ¼ 1=2 state, as shown in Tables IX and VIII
and Eq. (A21). Also, it has the symmetry property for q4

corresponding to Young diagram ½22�. Therefore, another
approach based on the SUð6ÞCS representation in Eq. (A21)
gives a flavor ⊗ color ⊗ spin state for S ¼ 1=2, which
satisfies fully antisymmetry in the same way as in the
coupling scheme,

ðA56Þ

It should be noted that the Young-Yamanouchi bases of
the color and spin part of Eq. (A53) are equivalent to those
of Eq. (A56).
Since the Young-Yamanouchi bases in Eq. (A56) are the

eigenstates of CCS
5 of SUð6ÞCS representation, we obtain

from Table VIII the following eigenvalue equation valid for
the Casimir operator of the SUð6ÞCS:

CCS
5 jΨi ¼ 33=4jΨi: ðA57Þ

In addition to this, jΨi in Eq. (A56) becomes the
eigenstate of Eq. (A23), by using Eq. (A57). Thus, it is
straightforward to calculate the following:

−
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨi ¼ ð4 × 33=4 − 8 × 32=3 − 2 × 0

þ 4 × 4=3 − 4=3 × 1=2 × 3=2

þ 8=3 × 1 × 2þ 24ÞjΨi
¼ −56=3jΨi: ðA58Þ

On the other hand, the antisymmetry property of jΨi in
Eq. (A56) leads to the expectation value of λci λ

c
j σ⃗i · σ⃗j

(i < j ¼ 1, 2, 3, 4), which are all the same, by using
Eq. (A54),

hΨj−λci λ
c
j σ⃗i · σ⃗jjΨi¼−8=9; ði < j¼ 1;2;3;4Þ: ðA59Þ

In a similar manner as we have already done, we can
calculate the expectation value of λci λ

c
5σ⃗i · σ⃗5 (i ¼ 1, 2, 3,

4), by using Eqs. (A58), (A54), and the fully antisymmetric
property for the four quarks,

hΨj − λci λ
c
5σ⃗i · σ⃗5jΨi ¼ −10=3; ði ¼ 1; 2; 3; 4Þ: ðA60Þ

For the fully symmetric flavor 15 multiplet represented
by Young diagram [4], there is one fully antisymmetric
flavor ⊗ color ⊗ spin state coming from the coupling
scheme in Eq. (A12) as follows:

ðA61Þ

where the spin state for particles 1–4 is 1.
On the one hand, from the point of view of the SUð6ÞCS

representation of pentaquark, the ½241� of SUð6ÞCS repre-
sentation conjugate to the flavor 15 multiplet for the four
quarks contains the state, which is in both the color singlet
and S ¼ 1=2 state, as shown in Tables IX and VIII. Also, it
has the symmetry property for q4 corresponding to Young
diagram ½14�. Therefore, another approach based on the
SUð6ÞCS representation in Eq. (A21) gives a flavor⊗ color
⊗ spin state for S ¼ 1=2, which satisfies fully antisym-
metry in the same way as in the coupling scheme,

WOOSUNG PARK and SUNGSIK NOH PHYS. REV. D 108, 014026 (2023)

014026-22



ðA62Þ

It should be noted that the Young-Yamanouchi basis of
the color and spin part of Eq. (A61) is equivalent to that of
Eq. (A62). We can see from these properties that this state
becomes the eigenstate of Eq. (A24) as well as Eq. (A23).
Then, by using the fact that the eigenvalue of the flavor 15
multiplet to the CF

4 is 28=3, we obtain from Eq. (A24) the
following:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψi ¼ ð4 × 28=3þ 2 × 4=3

þ 4=3 × 1 × 2 − 24Þ
¼ 56=3jψi: ðA63Þ

We can also obtain the same result of Eq. (A63) by using
Eq. (A25) and the Young-Yamanouchi basis in color and
spin part of Eq. (A62) obtained from the coupling scheme.
This is so because these Young-Yamanouchi basis in
Eq. (A62) belong to the multiplets of SUð6ÞCS representa-
tion, ½14� for particles 1–4 and the states become the
eigenstate of the quadratic Casimir operator, CCS

4 , whose
eigenvalue is 14=3. This is given as follows:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjΨi ¼ 56=3jΨi: ðA64Þ

Since the Young-Yamanouchi basis in Eq. (A62) is the
eigenstate of CCS

5 of SUð6ÞCS representation of the penta-
quark, we obtain from Table VIII the following eigenvalue
equation valid for the Casimir operator of the SUð6ÞCS:

CCS
5 jΨi ¼ 33=4jΨi: ðA65Þ

In addition to this, jΨi in Eq. (A62) becomes the
eigenstate of Eq. (A23), by using Eq. (A65). Thus, it is
straightforward to calculate the followings:

−
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨi ¼ ð4 × 33=4 − 8 × 14=3 − 2 × 0

þ 4 × 4=3 − 4=3 × 1=2 × 3=2

þ 8=3 × 1 × 2þ 24ÞjΨi
¼ 88=3jΨi: ðA66Þ

On the other hand, the antisymmetry property of jΨi in
Eq. (A62) leads to the expectation value of λci λ

c
j σ⃗i · σ⃗j

(i < j ¼ 1, 2, 3, 4), which are all the same, by using
Eq. (A63),

hΨj−λci λ
c
j σ⃗i · σ⃗jjΨi¼ 28=9; ði < j¼ 1;2;3;4Þ: ðA67Þ

Finally, we can calculate the expectation value of λci λ
c
5σ⃗i ·

σ⃗5 (i ¼ 1, 2, 3, 4), by using Eqs. (A63), (A66), and the fully
antisymmetric property for the four quarks,

hΨj − λci λ
c
5σ⃗i · σ⃗5jΨi ¼ 8=3; ði ¼ 1; 2; 3; 4Þ: ðA68Þ

c. Color ⊗ spin states with S= 3=2 in terms of the
irreducible SUð6ÞCS representation of pentaquark

In this subsection, we examine the S ¼ 3=2 case with
respect to the flavor states among the particles 1–4. For the
fully symmetric flavor 15 multiplet, there is one fully
antisymmetric color⊗ spin state conjugate to the flavor 15
multiplet coming from the coupling scheme in Eq. (A17).
This state is exactly equivalent to that obtained from Young
diagram ½13� of the SUð6ÞCS representation of the penta-
quark, since the multiplet of ½13� of the SUð6ÞCS repre-
sentation of the pentaquark contains the state that is in both
the color singlet and S ¼ 3=2 state, as shown in Tables IX,
VIII, and Eq. (A21). The state is given as

ðA69Þ

where the state is in S ¼ 1 for the four quarks. Then, we can
see that the state in Eq. (A69) becomes not only the
eigenstate of Eq. (A24) for particles 1–4, but also the
eigenstate of Eq. (A23), because this state can be viewed as
consisting of the eigenstate of any Casimir operator that are
involved in Eqs. (A24) and (A23).
For Eq. (A24), we obtain the following:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjΨi ¼ ð4 × 28=3þ 2 × 4=3

þ 4=3 × 1 × 2 − 24ÞjΨi
¼ 56=3jΨi: ðA70Þ

Here, we remind the fact that the eigenvalue of the flavor 15
multiplet to the CF

4 is 28=3. We can also see that another
calculation obtained from Eq. (A25) is the same as that of
Eq. (A70), since the color and spin part for the four quarks
in Eq. (A69) belongs to the multiplet of SUð6ÞCS repre-
sentation, ½14�, and the eigenvalue of this state to the
Casimir operator, CCS

4 is 14=3, as shown in Table V.
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For Eq. (A23), we obtain the following:

−
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨi ¼ ð4 × 21=4 − 8 × 14=3 − 2 × 0

þ 4 × 4=3 − 4=3 × 3=2 × 5=2

þ 8=3 × 1 × 2þ 24ÞjΨi
¼ 40=3jΨi: ðA71Þ

In this calculation performed with the second expression in
Eq. (A69), we use the eigenvalue of SUð6ÞCS representa-
tion, ½13�, of 21=4 for the Casimir operator, CCS

5 .
Besides, the antisymmetry property for particles 1–4 in

Eq. (A69) makes it possible to calculate the expectation
value of λci λ

c
j σ⃗i · σ⃗j (i < j ¼ 1, 2, 3, 4), immediately

resulting from Eq. (A70), as follows:

hΨj−λci λ
c
j σ⃗i · σ⃗jjΨi¼ 28=9; ði < j¼ 1;2;3;4Þ: ðA72Þ

In a similar method, we can calculate the expectation value
of λci λ

c
5σ⃗i · σ⃗5 (i ¼ 1, 2, 3, 4), by using Eqs. (A71), (A70),

and the fully antisymmetric property for the four quarks,

hΨj − λci λ
c
5σ⃗i · σ⃗5jΨi ¼ −4=3; ði ¼ 1; 2; 3; 4Þ: ðA73Þ

For the flavor 150 multiplet represented by Young
diagram [31] for q4, there are two orthonormal flavor ⊗
color⊗ spin states, satisfying fully antisymmetry property.
These states can be obtained by multiplying the color ⊗
spin states coming from the coupling scheme in Eqs. (A13)
and (A14) by its conjugate flavor 150 states, respectively,

ðA74Þ

Obviously, since the states in Eq. (A74) are the eigenstates
of Eq. (A24), the matrix element of Eq. (A24) is diagon-
alized in terms of those states, as follows:

�
−
X4
i<j

λci λ
c
j σ⃗i · σ⃗j

�
¼
� 8

3
0

0 8

�
: ðA75Þ

Here, the eigenvalue of the flavor 150 multiplet to the CF
4 is

16=3. We can also obtain the same values as those of
Eq. (A75) through Eq. (A25), because the Young-
Yamanouchi bases in Eq. (A74) obtained from the coupling
scheme belong to the multiplets of SUð6ÞCS representation,
½212� for particles 1–4. These states have an eigenvalue of
26=3 in Table V, as the eigenstates of the quadratic Casimir
operator, CCS

4 . These are given as follows:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψ1i ¼ ð−4× 26=3þ 2× 4=3

þ 4=3× 1× 2þ 32Þjψ1i ¼ 8=3jψ1i;

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψ2i ¼ ð−4× 26=3þ 2× 4=3

þ 4=3× 2× 3þ 32Þjψ2i ¼ 8jψ2i:
ðA76Þ

On the one hand, from the point of view of the SUð6ÞCS
representation of pentaquark, both the ½32212� and ½13� in
the SUð6ÞCS representation conjugate to the flavor 150
multiplet for the four quarks contain the state, which are in
both the color singlet and S ¼ 3=2 state, as shown in
Tables IX and VIII and Eq. (A21). Therefore, another
approach based on the SUð6ÞCS representation in Eq. (A21)
gives the two orthonormal flavor ⊗ color ⊗ spin states for
S ¼ 3=2 which satisfy fully antisymmetry in the same way
as in the coupling scheme,

ðA77Þ
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It should be noted that both ½32212� and ½13� multiplets in
Eq. (A77) are eigenstates of CCS

5 of the SUð6ÞCS repre-
sentation. Therefore, we can see from Table VIII that the
following relations hold:

CCS
5 jΨ1i ¼ 49=4jΨ1i; CCS

5 jΨ2i ¼ 21=4jΨ2i: ðA78Þ
Due to the situation of a similar kind that occurs in the

case of S ¼ 1=2, the approach used in the previous
subsection can also be applied to this case to find a
correspondence between Eqs. (A74) and (A77). This can
be achieved by solving an algebraic problem involving a
coupled equation with two unknown variables. Specifically,
we obtain the following relation:

ðA79Þ

The same procedure holds good for the rest of Young-
Yamanouchi bases of ½32212� (½13�). We can then find at
once the relation between the states in Eqs. (A74) and
(A77), by using Eq. (A79), as the following:

jΨ1i ¼
ffiffiffi
5

7

r
jψ1i þ

ffiffiffi
2

7

r
jψ2i;

jΨ2i ¼ −
ffiffiffi
2

7

r
jψ1i þ

ffiffiffi
5

7

r
jψ2i: ðA80Þ

We can now straightforwardly calculate the matrix
element of Eq. (A23) in terms of jΨ1i and jΨ2i in
Eq. (A77). Using Eq. (A80), we find the following 2
by 2 matrix elements:

hΨ1j −
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨ1i

¼ 4 × 49=4 − 8 × 26=3 − 2 × 0þ 4 × 4=3

− 4=3 × 3=2 × 5=2þ 8=3ð5=7 × 2

þ 2=7 × 2 × 3Þ þ 24 ¼ 260=21;

hΨ2j −
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨ2i

¼ 4 × 21=4 − 8 × 26=3 − 2 × 0þ 4 × 4=3

− 4=3 × 3=2 × 5=2þ 8=3ð2=7 × 2þ 5=7 × 2 × 3Þ
þ 24 ¼ −232=21;

hΨ1j −
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨ2i ¼ 8=3 × ð−

ffiffiffiffiffi
10

p
=
ffiffiffiffiffi
49

p
× 2

þ
ffiffiffiffiffi
10

p
=
ffiffiffiffiffi
49

p
× 2 × 3Þ ¼ 32

ffiffiffiffiffi
10

p
=21: ðA81Þ

By diagonalizing the matrix, we find that the eigenvalue of
Eq. (A23) is either −12 or 40=3.
We also examine the expectation value of λci λ

c
j σ⃗i · σ⃗j

from the symmetry property. Using Eqs. (A25) and (A80),
one can easily show that the expectation value of Eq. (A25)
for particles 1–4 is given in terms of jΨ1i and jΨ2i in
Eq. (A77) as follows:

�
−
X4
i<j

λci λ
c
j σ⃗i · σ⃗j

�
¼
 

88
21

16
ffiffiffiffi
10

p
21

16
ffiffiffiffi
10

p
21

136
21

!
: ðA82Þ

Then, the matrix in Eq. (A82) is diagonalized to give the
eigenvalues of 8 and 8=3, which are the same as those
obtained from Eq. (A75). The antisymmetry property for
particles 1–4 makes it possible to calculate the expectation
value of λci λ

c
j σ⃗i · σ⃗j (i < j ¼ 1, 2, 3, 4), immediately

resulting from Eq. (A82), as follows:

h−λci λcj σ⃗i · σ⃗ji¼
 

44
63

8
ffiffiffiffi
10

p
63

8
ffiffiffiffi
10

p
63

68
63

!
; ði < j¼ 1;2;3;4Þ: ðA83Þ

In a similar manner, we can calculate the expectation
value of λci λ

c
5σ⃗i · σ⃗5 (i ¼ 1, 2, 3, 4) in terms of jΨ1i and jΨ2i

in Eq. (A77), using Eqs. (A81) and (A82), and the fully
antisymmetric property for the four quarks,

h−λci λc5σ⃗i · σ⃗5i¼
 

43
21

4
ffiffiffiffi
10

p
21

4
ffiffiffiffi
10

p
21

−92
21

!
; ði¼ 1;2;3;4Þ: ðA84Þ

For the flavor 3 multiplet, there is one fully antisym-
metric flavor ⊗ color ⊗ spin state coming from the
coupling scheme in Eq. (A15), which is given as

ðA85Þ
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where the spin state for particles 1-4 is 1. Since the state in
Eq. (A85) is an eigenstate of Eq. (A24) for particles 1–4,
we find from Eq. (A24) the following equation:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψi ¼ −40=3jψi; ðA86Þ

where the eigenvalue of the flavor 3 to CF
4 is 4=3. We can

also obtain the same result of Eq. (A86) through Eq. (A25),
because the Young-Yamanouchi bases in color and spin
part of Eq. (A85) obtained from the coupling scheme
belong to the multiplets of SUð6ÞCS representation, ½31� for
particles 1–4. Then, by using Eq. (A25), we obtain the
following:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjψi ¼ ð−4 × 38=3þ 2 × 4=3

þ 4=3 × 1 × 2þ 32Þjψi
¼ −40=3jψi: ðA87Þ

On the one hand, from the point of view of the SUð6ÞCS
representation of pentaquark, the ½4213� in the SUð6ÞCS
representation conjugate to the flavor 3 multiplet for the
four quarks contains the state which is in both the color
singlet and S ¼ 3=2 state, as shown in Tables IX and VIII
and Eq. (A21). Also, it has the symmetry property for q4

corresponding to Young diagram ½212�. Therefore, another
approach based on the SUð6ÞCS representation in Eq. (A21)
gives a flavor ⊗ color ⊗ spin state for S ¼ 3=2, which
satisfies fully antisymmetry in the same way as in the
coupling scheme,

ðA88Þ

Since the color-spin parts of Eq. (A88) are the eigenstates
with an eigenvalue of 65=4 for CCS

5 , using Eq. (A23), we
can obtain the following equation:

−
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨi ¼ ð4 × 65=4 − 8 × 38=3 − 2 × 0

þ 4 × 4=3 − 4=3 × 3=2 × 5=2

þ 8=3 × 1 × 2þ 24ÞjΨi
¼ −20=3jΨi: ðA89Þ

For the flavor 6̄ multiplet, there is one fully antisym-
metric flavor ⊗ color ⊗ spin state coming from the
coupling scheme in Eq. (A16). This state must be exactly
equivalent to that coming from Young diagram ½3213� of the
SUð6ÞCS representation of pentaquark, which is conjugate
to the flavor 6̄ multiplet, as can be seen from Tables IX,
VIII, and Eq. (A21). It has to be so for the reason that the
multiplet of the ½3213� representation contains the state in
the color singlet and at the same time, S ¼ 3=2 state. The
fully antisymmetric flavor⊗ color⊗ spin state for S ¼ 3=2
is given as follows:

ðA90Þ

It should be noted that the color ⊗ spin states in Eq. (A90)
become the eigenstates of CCS

4 as well as CCS
5 . From either

Eqs. (A25) or (A24), we find the eigenvalue equation for
particles 1–4 as follows:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjΨi ¼ −16=3jΨi: ðA91Þ

Moreover, we straightforwardly find the eigenvalue equa-
tion of Eq. (A23) as follows:

−
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨi ¼ ð4 × 57=4 − 8 × 32=3 − 2 × 0

þ 4 × 4=3 − 4=3 × 3=2 × 5=2

þ 8=3 × 1 × 2þ 24ÞjΨi
¼ 4=3jΨi: ðA92Þ

d. the flavor ⊗ color ⊗ spin states
in the case of S= 5=2

In the case of S ¼ 5=2, we have only to consider the
flavor 150 multiplet, because color ⊗ spin states coming
from the coupling scheme are given by Eq. (A18) conjugate
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to the flavor 150 states. With the color ⊗ spin states
of the coupling scheme, the fully antisymmetric flavor
⊗ color ⊗ spin state for S ¼ 5=2 can be constructed, as
follows:

ðA93Þ

This state in Eq. (A93) must be exactly equivalent to that
coming from Young diagram ½32212� of the SUð6ÞCS
representation of the pentaquark, involving the state which
are in the color singlet and S ¼ 5=2, as can be seen from
Tables IX, VIII, and Eq. (A21). The fully antisymmetric
flavor ⊗ color ⊗ spin state for S ¼ 5=2 coming from the
Young diagram ½32212� of the SUð6ÞCS representation of
the pentaquark is given as

ðA94Þ

The color ⊗ spin states coming from the coupling scheme
in Eq. (A93) become the eigenstates of CCS

4 . Also, those
coming from the Young diagram ½32212� of the SUð6ÞCS
representation of pentaquark become the eigenstates of
CCS
5 . These indicate that these color ⊗ spin states are the

eigenstates of both Eqs. (A25) and (A23). From either
Eqs. (A25) or (A24), we find the eigenvalue equation for
particles 1–4 as follows:

−
X4
i<j

λci λ
c
j σ⃗i · σ⃗jjΨi ¼ 8jΨi: ðA95Þ

Moreover, we straightforwardly find the eigenvalue equa-
tion of Eq. (A23) as follows:

−
X5
i<j

λci λ
c
j σ⃗i · σ⃗jjΨi ¼ ð4 × 49=4 − 8 × 26=3 − 2 × 0

þ 4 × 4=3 − 4=3 × 5=2 × 7=2

þ 8=3 × 2 × 3þ 24ÞjΨi
¼ 40=3jΨi: ðA96Þ

3. Color ⊗ spin states with S= 1=2 in terms
of the irreducible SUð6ÞCS representation

of the pentaquark

There are a total of 15 color ⊗ spin states that are in a
color singlet and have S ¼ 1=2, as shown in Eqs. (6) and
(7). These states correspond to 15 orthonormal states
obtained from the systematic analysis of Eq. (A21), each
of which is associated with a specific Young-Yamanouchi
basis for particles 1–4 and has a certain symmetry. These
states arise from the SUð6ÞCS representation of the penta-
quark, and we will examine the method of calculating the
expectation values of λci λ

c
j σ⃗i · σ⃗j using these states,

ðA97Þ
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4. Color ⊗ spin states with S= 3=2 in terms
of the irreducible SUð6ÞCS representation

of the pentaquark

There are a total of 12 color ⊗ spin states that are in a
color singlet and have S ¼ 3=2, as shown in Eqs. (6) and
(10). These states correspond to 12 orthonormal states

obtained from the systematic analysis of Eq. (A21), each of
which is associated with a specific Young-Yamanouchi
basis for particles 1–4 and has a certain symmetry. These
states arise from the SUð6ÞCS representation of the penta-
quark, and we will examine the method of calculating the
expectation values of λci λ

c
j σ⃗i · σ⃗j using these states,

ðA98Þ

5. Color ⊗ spin states with S= 5=2 in terms of the
irreducible SUð6ÞCS representation of the pentaquark

According to Eqs. (6) and (13), there are three color ⊗
spin states that are in a color singlet and have S ¼ 5=2.
From the systematic analysis of Eq. (A21), we find that
these states correspond to the multiplet ½32212� representa-
tion of the pentaquark. Consequently, these three ortho-
normal states can be obtained only from this representation,

ðA99Þ

6. The expectation value of λci λ
c
j σ⃗i · σ⃗j

In this section, we examine the expectation values of
λci λ

c
j σ⃗i · σ⃗j in terms of color ⊗ spin states in Eqs. (A97),

(A98), and (A99). Though this problem can be completely
understood through a systematic analysis in Sec. IV, the
process is not easy, but very complicated. However, there is
a simpler way to approach this calculation by taking
advantage of the symmetry properties between the first
and second quarks, since all the states in Eqs. (A97), (A98),
and (A99) are made up of either symmetric or antisym-
metric combinations of color and spin states. Then, it is
easy to show that the expectation values of λc1λ

c
2σ⃗1 · σ⃗2 can

be calculated directly through the following:

ðA100Þ

In Eq. (A100), the subscript C indicates the color state, and
S indicates the spin state. In the case of S ¼ 1=2, we can
calculate the expectation values of λci λ

c
j σ⃗i · σ⃗j in terms of

color ⊗ spin states in Eq. (A97), resulting in a 15 by 15
matrix form denoted by hλc1λc2σ⃗1 · σ⃗2i.
In order to calculate the other expectation values, such as

hλc1λc3σ⃗1 · σ⃗3i, it is necessary to consider a transposition
operator, ðijÞ to take an important role in this situation.
Here, for the purpose, we use the following formula:

ðijÞλc1λci σ⃗1 · σ⃗iðijÞ ¼ λc1λ
c
j σ⃗1 · σ⃗j; ðA101Þ

where ðijÞ is the transposition operator of the permutation
group, S4, which acts on the Young-Yamanouchi states
corresponding to a given Young diagram of q4. As presented
in Ref. [38], by the use of the generator of SUð3ÞC and
SUð2ÞS, the ðijÞ operator (i < j ¼ 1, 2, 3, 4) can be replaced
by ð1=3I þ 1=2λci λ

c
jÞ ⊗ ð1=2I þ 1=2σ⃗i · σ⃗jÞ, acting on the
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color and spine space, respectively. Furthermore, when
the transposition operator is represented by the Young-
Yamanouchi bases of the color ⊗ spin states of the
pentaquark in Eq. (A97), it becomes a block diagonal matrix
because the Young-Yamanouchi bases of a specific SUð6ÞCS
representation form an invariant subspace under the trans-
position operator.

Now, we can calculate the expectation value of λc1λ
c
3σ⃗1 ·

σ⃗3 by means of hλc1λc3σ⃗1 · σ⃗3i ¼ ð23Þhλc1λc2σ⃗1 · σ⃗2ið23Þ.
Here, we present the transposition operator, (23),
which is represented in a block diagonal matrix with
respect to the color ⊗ spin states of the pentaquark
in Eq. (A97),

ð23Þ ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
2

ffiffi
3

p
2

0 0 0 0 0 0 0 0 0 0 0 0

0
ffiffi
3

p
2

1
2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 − 1
2

ffiffi
3

p
2

0 0 0 0 0 0 0 0 0

0 0 0 0
ffiffi
3

p
2

1
2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
2

ffiffi
3

p
2

0 0 0 0 0 0 0

0 0 0 0 0 0
ffiffi
3

p
2

1
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 − 1
2

ffiffi
3

p
2

0 0 0 0

0 0 0 0 0 0 0 0 0
ffiffi
3

p
2

1
2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 − 1
2

ffiffi
3

p
2

0

0 0 0 0 0 0 0 0 0 0 0 0
ffiffi
3

p
2

1
2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ðA102Þ

In a similar manner, we calculate the remaining expect-
ation values of λci λ

c
j σ⃗i · σ⃗j (i < j ¼ 1, 2, 3, 4) by using other

transposition operators.
Additionally, we can obtain the expectation values of

λci λ
c
5σ⃗i · σ⃗5 (i ¼ 1, 2, 3, 4) between a quark and an antiquark

by deriving the following formula:

λc4λ
c
5σ⃗4 · σ⃗5 ¼ −4CCS

ð4þ5Þ þ 2CC
ð4þ5Þ

þ 4

3
ðS⃗ · S⃗Þð4þ5Þ þ 16I: ðA103Þ

In order to calculate the expectation value of λc4λ
c
5σ⃗4 · σ⃗5, it

is necessary to decompose 6CS ⊗ 6̄CS into the direct sum of
the composition of SUð3ÞC and SUð2ÞS: 6CS ⊗ 6̄CS ¼
35CS ⊕ 1CS. The dimensions of the SUð6ÞCS representa-
tion corresponding to the Young diagrams ½214� and ½16�
are 35 and 1, respectively. Table X shows the composi-
tion of SUð3ÞC and SUð2ÞS concerning the SUð6ÞCS
representation, and its eigenvalue of the quadratic
Casimir operator, CCS for qq̄.

On the other hand, it should be noted that, in Eq. (6), the
color states between the fourth and fifth quarks are octet in
the jC1i and jC2i, and singlet in the jC3i. For the spin part,
since most of the spin states between the fourth and fifth
quarks in Eqs. (7) and (10) cannot be directly determined,
these Young-Yamanouchi spin states should be transformed
into those associated with the decay mode. With the
availability of these eigenvalues of such Casimir operators,
we can calculate the expectation values of λc4λ

c
5σ⃗4 · σ⃗5,

and the λci λ
c
5σ⃗i · σ⃗5 (i ¼ 1, 2, 3) through the relevant

permutations.

TABLE X. The composition of SUð3ÞC and SUð2ÞS concerning
the SUð6ÞCS representation for qq̄.

SUð6ÞCS Young
diagram SUð3ÞC ⊗ SUð2ÞS Dimension Eigenvalue

½214� ð8; 3Þ, ð8; 1Þ, ð1; 3Þ 35 6
½16� ð1; 1Þ 1 0

DOUBLY-CHARMED PENTAQUARK IN A QUARK MODEL WITH A … PHYS. REV. D 108, 014026 (2023)

014026-29



[1] S. K. Choi et al. (Belle Collaboration), Observation of a
Narrow Charmonium—Like State in Exclusive Bþ -— >
Kþ - piþ pi- J=psi Decays, Phys. Rev. Lett. 91, 262001
(2003).

[2] R. Aaij et al. (LHCb Collaboration), Observation of an
exotic narrow doubly charmed tetraquark, Nat. Phys. 18,
751 (2022).

[3] J. l. Ballot and J. M. Richard, Four quark states in additive
potentials, Phys. Lett. 123B, 449 (1983).

[4] S. Zouzou, B. Silvestre-Brac, C. Gignoux, and J. M. Richard,
Four quark bound states, Z. Phys. C 30, 457 (1986).

[5] J. Carlson, L. Heller, and J. A. Tjon, Stability of dimesons,
Phys. Rev. D 37, 744 (1988).

[6] B. Silvestre-Brac and C. Semay, Systematics of L ¼ 0 q2q̄2

systems, Z. Phys. C 57, 273 (1993).
[7] C. Semay and B. Silvestre-Brac, Diquonia and potential

models, Z. Phys. C 61, 271 (1994).
[8] S. Pepin, Fl. Stancu, M. Genovese, and J.-M. Richard,

Tetraquarks with colour-blind forces in chiral quark models,
Phys. Lett. B 393, 119 (1997).

[9] Boris A. Gelman and Shmuel Nussinov, Does a narrow
tetraquark cc anti-u anti-d state exist?, Phys. Lett. B 551,
296 (2003).

[10] J. Vijande, F. Fernandez, A. Valcarce, and B. Silvestre-Brac,
Tetraquarks in a chiral constituent-quark model, Eur. Phys.
J. A 19, 383 (2004).

[11] D. Janc and M. Rosina, The Tcc ¼ DD� molecular state,
Few Body Syst. 35, 175 (2004).

[12] D. Ebert, R. N. Faustov, V. O. Galkin, and W. Lucha,
Masses of tetraquarks with two heavy quarks in the
relativistic quark model, Phys. Rev. D 76, 114015 (2007).

[13] Youchang Yang, Chengrong Deng, Jailun Ping, and T.
Goldman, S-wave QQq̄ q̄ state in the constituent quark
model, Phys. Rev. D 80, 114023 (2009).

[14] Yoichi Ikeda, Bruno Charron, Sinya Aoki, Takumi Doi,
Tetsuo Hatsuda, Takashi Inoue, Noriyoshi Ishii, Keiko
Murano, Hidekatsu Nemura, and Kenji Sasaki, Charmed
tetraquarks Tcc and Tcs from dynamical lattice QCD
simulations, Phys. Lett. B 729, 85 (2014).

[15] W. Park and S. H. Lee, Color spin wave functions of heavy
tetraquark states, Nucl. Phys. A925, 161 (2014).

[16] Marek Karliner and Jonathan L. Rosner, Discovery of
the Doubly Charmed Ξcc Baryon Implies a Stable bbūd̄
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