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Abstract

In this work, we study warm inflationary scenario based on a deformation of R2 gravity. We start con-
sidering Rp and assume p = 2(1 + δ) with δ � 1 so that we simply obtain warm R2 inflation when setting 
δ = 0. We then derive the potential in the Einstein frame and consider a dissipation parameter of the form 
� = C1T with C1 being a coupling parameter. We focus only on the strong regime of which the interaction 
between inflaton and radiation fluid has been taken into account. We also consider a detailed analysis of 
the background dynamics, considering the evolution of the relevant quantities. We compute inflationary 
observables and constrain the parameters of our model using latest observational data reported by Planck. 
From our analysis, we discover that with proper choices of parameters the derived ns and r are in good 
agreement with the Planck 2018 observational constraints. Particularly, we constrain the potential scale U0
of the models.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A framework so called cosmic inflation responsible for an early rapid expansion of our Uni-
verse becomes a pillar of modern cosmology. It is successful not only to describe important 
issues that plague the standard Big Bang model, e.g. the horizon and flatness problems, but 
also provides a dynamical mechanism for generating the primordial energy density perturbations 
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seeding for a late time large scale structure. This was well known as “cold inflation” [1–5]. In the 
standard picture, the (p)reheating mechanism at the end of inflation is required in order to have 
particles/radiation populating the universe. These involve the presence of interactions between 
the inflaton with other fields resulting the (partial) decay of the inflaton into ordinary matter and 
radiation, see e.g. [6–8].

However, an alternative approach that the (p)reheating is unnecessary was later proposed. The 
process can be reliable if one introduces a coupling between inflaton and radiation of which the 
energy density of radiation can be maintained almost a constant during inflation. The mentioned 
alternative scenario was known as “warm inflation” [9–13]. Such a scenario gained much at-
tention to the community. In other words, it was originally proposed to provide sufficiently hot 
thermal bath. In the context of warm inflation, it was found that recent studies in many different 
theories were proposed. For instance, the authors of Ref. [14] conducted a possible realization 
of warm inflation owing to a inflaton field self-interaction. Additionally, models of minimal and 
non-minimal coupling to gravity were investigated in Refs. [15–20]. Recently, warm scenarion 
of the Higgs-Starobinsky (HS) model was conducted [21]. The model includes a non-minimally 
coupled scenario with quantum-corrected self-interacting potential in the context of warm infla-
tion [22]. An investigation of warm inflationary models in the context of a general scalar-tensor 
theory of gravity has been made in Ref. [23].

In this work, we investigate warm inflationary models in the context of a deformation of 
R2 gravity. We introduce a coupling between inflaton and radiation – a dissipative term. We 
demonstrate that the model can complete the radiation dominated Universe at the end of inflation 
and confront the predictions with the last Planck satellite data.

The paper is organized as follows: In Section 2, we will take a short recap of the formalism 
in the Rp theory with p ≥ 2. Here we present detailed derivations of the field equations as well 
as the potential in the Einstein frame. All relevant dynamical equations in warm inflation under 
the slow-roll approximation are given in Section 3. In Section 4, we consider the deformed R2

scenario and derive the spectral index and the tensor-to-scalar ration of the model. In section 6, 
we compare the results in this work with the observational data. Finally, we conclude our findings 
in the last section.

2. Rp setup

One of the simplest classes of a modification to Einstein gravity is to engineer the Einstein-
Hilbert term in the action. One possibility is a generic function of the Ricci scalar. This class 
of theories is well known as the f (R) theories. There were much earlier and pioneer works on 
f (R) and other gravity theories, see [27,28]. In this section, we consider the traditionally 4-
dimensional action in f (R) gravity including the matter fields and closely follow setup given in 
Refs. [29,30].

S = 1

2κ2

∫
d4x

√−gf (R) +
∫

d4x
√−gLM(gμν,�M) , (1)

where we have defined κ2 = 8πG = 8π/m2
Pl = 1/M2

P l , g is the determinant of the metric gμν , 
and the matter field Lagrangian LM depends on gμν and matter fields �M , and mP and MP

represent Planck mass and reduced Planck mass, respectively, with MPl = mPl/
√
8π . The field 

equation can be directly derived by performing variation of the action (1) with respect to gμν to 
obtain [29,30]
2
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F(R)Rμν(g) − 1

2
f (R)gμν − ∇μ∇νF (R) + gμν�F(R) = κ2T (M)

μν , (2)

where F(R) = ∂f (R)/∂R and the operator � is defined by � ≡ (1/
√−g)∂μ(

√−ggμν∂ν). 
Basically, the energy-momentum tensor of the matter fields is given by a definition T (M)

μν =
(−2/

√−g)δ(
√−gLM)/δgμν . Here it satisfies the continuity equation such that ∇μT

(M)
μν = 0. 

The action (2.1) in f (R) gravity generally corresponds to a non-linear function f in terms of 
R. It is possible to derive an action in the Einstein frame under the conformal transformation 
[31,32]:

g̃μν = 	2gμν , (3)

where 	2 is the conformal factor and a tilde commonly represents quantities in the Einstein 
frame. The Ricci scalars R and R̃ in the two frames are related via

R = 	2(R̃ + 6�̃ ln	 − 6g̃μν∂μ ln	∂ν ln	
)
, (4)

where

�̃ ln	 = 1√−g̃
∂μ

(√−g̃g̃μν∂ν ln	
)
, ∂μ ln	 = ∂μ ln	

∂x̃μ
. (5)

We rewrite the action (1) in the form

SJ =
∫

d4x
√−g

( 1

2κ2FR − V
)

+
∫

d4x
√−gLM

(
gμν,�M

)
, (6)

where

V = FR − f

2κ2 . (7)

Using Eq. (4) and the relation 
√−g = 	−4

√−g̃, the action (6) is transformed as

SE =
∫

d4x
√−g̃

( 1

2κ2F	−2(R̃ + 6�̃ ln	 − 6g̃μν∂μ ln	∂ν ln	
) − 	−4V

)
+

∫
d4x

√−gLM

(
gμν,�M

)
. (8)

The Einstein frame action as a linear action in R̃ can be directly obtained using 	2 = F , and it is 
very useful to introduce κφ = √

3/2 lnF . Then we have ln	 = κφ/
√
6. Because of the Gauss’s 

theorem, the integration 
∫

d4x
√−g̃�̃ ln	 vanishes. Therefore, the action in the Einstein frame 

reads

SE =
∫

d4x
√−g̃

( 1

2κ2 R̃ − 1

2
g̃μν∂μφ∂νφ − U(φ)

)
+

∫
d4x

√−g̃LM

(
F−1(φ)g̃μν,�M

)
, (9)

where the scalar degree of freedom takes a canonical form with a potential

U(φ) = V

F 2 = FR − f

2κ2F 2 . (10)

Let us consider inflationary dynamics in the Einstein frame for the scenario also known as the 
generalized R2 model or Rp model [33–36]. With f (R) = R + λRp , we find
3
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φ =
√
3

2

1

κ
ln

(
1+ λp Rp−1

)
. (11)

Substituting the above expression into Eq. (10), we obtain

U(φ) = FR − f

2κ2F 2 = U0e
−2

√
2/3κφ

(
e
√
2/3κφ − 1

) p
p−1

, (12)

where

U0 = 1

2κ2 (p − 1)pp/(1−p)λ1/(1−p) . (13)

Note that for p = 2 and λ = 1/(6M2) the potential (12) recovers the potential for R2 inflation:

U(φ) = 3M2

4κ2

(
1− e−√

2/3κφ
)2

. (14)

Hence the Lagrangian density of the field φ is given by Lφ = −1/2g̃μν∂μφ∂νφ − U(φ) with the 
energy-momentum tensor

T̃ (φ)
μν = − 2√−g̃

δ
(√−g̃Lφ

)
δg̃μν

= ∂μφ∂νφ − g̃μν

[1
2
gμν∂αφ∂βφ + U(φ)

]
. (15)

We notice from Eq. (9) that the scalar field φ is directly coupled to matter in the Einstein frame. 
In order to see this more explicitly, we take the variation of the action (9) with respect to the field 
φ following the usual Euler-Lagrange technique:

∂μ

(∂
(√−g̃Lφ

)
∂μφ

)
+ ∂

(√−g̃Lφ

)
∂φ

+ ∂LM

∂φ
= 0 , (16)

implying that

�̃φ − U,φ + 1√−g̃

∂LM

∂φ
= 0 , where �̃φ = 1√−g̃

∂μ

(√−g̃g̃μν∂νφ
)

(17)

The energy-momentum tensor of matter in the Einstein frame is given by

T̃ (M)
μν = − 2√−g̃

δ
(√−g̃LM

)
δg̃μν

. (18)

Using the standard technique, the derivative of the Lagrangian density LM = LM(gμν) =
LM(F−1(φ)g̃μν) with respect to φ yields

∂LM

∂φ
= δLM

δgμν

∂gμν

∂φ
= 1

F(φ)

δLM

δg̃μν

(
∂F (φ)g̃μν

)
∂φ

= −√−g̃
F,φ

2F
T̃ (M)

μν g̃μν . (19)

In f (R) gravity, we have −F,φ/2F =X = −1/
√
6. It then follows that

∂LM

∂φ
= √−g̃κXT̃ , (20)

with T̃ = g̃μνT̃
μν(M) = −ρ̃M + 3P̃M in which we have assumed perfect fluids in the Einstein 

frame. Substituting Eq. (20) into Eq. (16), we obtain the field equation in the Einstein frame:

�̃φ − U,φ + κXT̃ = 0 , (21)

showing that the field φ is directly coupled to matter.
4
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3. Slow-roll dynamics in warm inflation

It is worth mentioning that we will directly couple the fermions in the Einstein frame La-
grangian (9). In the following, we assume the model present in Ref. [26] for the interactions. 
Considering the Einstein frame action with the flat FLRW line element, the action (9) leads to 
the Friedmann equation for warm inflation taking the form

H 2 = 1

3M2
p

(
1

2
φ̇2 + U(φ) + ρR

)
, (22)

with φ̇ = dφ/dt and ρr being the energy density of the radiation fluid with the equation of state 
given by wr = 1/3. As of the standard fashion, the dynamics of the scalar field (φ) with the 
dissipative term (�) in the context of warm inflation scenario is also governed by the Klein-
Gordon equation. It is described via

φ̈ + 3H φ̇ + U ′(φ) = −�φ̇ , (23)

where U ′(φ) = dU(φ)/dφ. The above relation is equivalent to the evolution equation for the 
inflaton energy density ρφ given by

ρ̇φ + 3H(ρφ + pφ) = −�(ρφ + pφ) , (24)

with pressure pφ = φ̇2/2 − U(φ), and ρφ + pφ = φ̇2. Energy conservation then implies that the 
energy lost of the inflaton field must transfer to some other fluid component ρα. Here the RHS 
of Eq. (24) acts as the source term. Hence we have

ρ̇α + 3H(ρα + pα) = �(ρφ + pφ) . (25)

In case of radiation, we have ρα = ρR and

ρ̇R + 4HρR = �φ̇2 . (26)

A condition for warm inflation requires ρ1/4
R > H in which the dissipation potentially affects both 

the background inflaton dynamics, and the primordial spectrum of the field fluctuations. To have 
the accelerated expansion, the motion of the inflaton field has to be overdamped during warm 
inflation. Following Refs. [24,48], we consider the general form of the dissipative coefficient, 
given by

� = Cm

T m

φm−1 , (27)

where m is an integer and Cm is associated to the dissipative microscopic dynamics. Different 
choices of m have been studied in Refs. [24,48,49]. Namely, (1) m = 1: this case corresponds 
to the high temperature regime, see Refs. [12,15,26]; (2) m = 3: this model is motivated by a 
supersymmetric scenario [12,48,50], and is found in a minimal warm inflation [51–53]. Instead 
of the Hubble term, this can be achieved due to the present of the extra friction term, �. In 
slow-roll regime, the equations of motion reduce then to:

3H(1+ Q)φ̇ 	 −Uφ , (28)

4ρR 	 3Qφ̇2 , (29)

where we have introduced the dissipative ratio Q = �/(3H) and Q is not necessarily constant. 
Concretely, the ratio Q may increase or decrease during inflation since the coefficient � may 
5
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depend on φ and T . The flatness of the potential U(φ) in warm inflation is measured in terms of 
the slow roll parameters which are defined in Ref. [41] given by

ε = M2
p

2

(
U ′

U

)2

, η = M2
p

U ′′

U
, β = M2

p

(
U ′ �′

U �

)
. (30)

Notice that the last term disappears in standard cold inflation. In warm inflationary model, we 
define the slow roll parameters as follows:

εH = ε

1+ Q
, ηH = η

1+ Q
. (31)

Inflationary phase of the universe in warm inflation takes place when the slow-roll parameters 
satisfy the following conditions [41–43]:

ε � 1+ Q, η � 1+ Q, β � 1+ Q, (32)

where the condition on β ensures that the variation of � with respect to φ is slow enough. 
Compared to the cold scenario, the power spectrum of warm inflation gets modified and it is 
given in Refs. [38–42,44–46] and it takes the form:

PR(k) =
(

H 2
k

2πφ̇k

)2 (
1+ 2nk +

(
Tk

Hk

)
2
√
3π Qk√

3+ 4π Qk

)
G(Qk) , (33)

where the subscript “k” signifies the time when the mode of cosmological perturbations with 
wavenumber “k” leaves the horizon during inflation and n = 1/

(
expH/T − 1

)
is the Bose-

Einstein distribution function. Additionally, the function G(Qk) encodes the coupling between 
the inflaton and the radiation in the heat bath leading to a growing mode in the fluctuations of the 
inflaton field. It is originally proposed in Ref. [38] and its consequent implications can be found 
in Refs. [40,54].

This growth factor G(Qk) is dependent on the form of � and is obtained numerically. As 
given in Refs. [16,39], we see that for � ∝ T :

G(Qk)linear = 1+ 0.0185Q2.315
k + 0.335Q1.364

k . (34)

In this work, we consider a linear form of G(Qk) with Q � 1. Clearly, for small Q, i.e., Q � 1, 
the growth factor does not enhance the power spectrum. It is called the weak dissipation regime. 
However, for large Q, i.e., Q � 1, the growth factor significantly enhances the power spectrum. 
The latter is called the strong dissipation regime. The primordial tensor fluctuations of the metric 
give rise to a tensor power spectrum. It is the same form as that of cold inflation given in Ref. [13]
as

PT (k) = 16

π

( Hk

Mp

)2
. (35)

The ratio of the tensor to the scalar power spectrum is expressed in terms of a parameter r as

r = PT (k)
. (36)
PR(k)

6
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4. Warm deformed R2 scenario

In the present analysis, we will consider warm inflation in the strong regime that the inflaton 
perturbations are non-trivially affected by the fluctuations of the thermal bath, and the amplitude 
of the spectrum may get a correction, generically called the “growing mode”, depending on the 
value of the dissipative ratio. This was originally conducted by Graham and Moss [38]. Since the 
solutions when p = 2 are well known, hence we rewrite the potential by substituting p/(p−1) =
2(1 − δ) with δ � 1. Therefore, we can use perturbation theory in the small parameter δ. The 
resulting potential (12) takes the form

U(φ) = U0e
−2

√
2/3κφ

(
e
√
2/3κφ − 1

)2(1−δ)

, (37)

where

U0 = 1

2κ2 (p − 1)pp/(1−p)λ1/(1−p) with p = 2(δ − 1)

2δ − 1
	 2+ 2δ +O(δ2) . (38)

From Eq. (30), we cam compute the slow-roll parameters to obtain

ε =
4

⎛
⎝δe

√
2
3 φ

Mp − 1

⎞
⎠

2

3

⎛
⎝e

√
2
3 φ

Mp − 1

⎞
⎠

2 	 ε2(φ)

⎛
⎝1− δ e

√
2
3 φ

Mp

⎞
⎠ , (39)

η =
4e

√
2
3 φ

Mp

⎛
⎝δ

⎛
⎝2δe

√
2
3 φ

Mp − 3

⎞
⎠ − 1

⎞
⎠ + 8

3

⎛
⎝e

√
2
3 φ

Mp − 1

⎞
⎠

2 	 η2(φ)

⎛
⎜⎜⎝1− 3δe

√
2
3 φ

Mp

e

√
2
3 φ

Mp − 2

⎞
⎟⎟⎠ , (40)

β =
4

⎛
⎝2e

√
2
3 φ

Mp − 3

⎞
⎠

⎛
⎝δe

√
2
3 φ

Mp − 1

⎞
⎠

15

⎛
⎝e

√
2
3 φ

Mp − 1

⎞
⎠

2 	 β2(φ)

⎛
⎝1− δe

√
2
3 φ

Mp

⎞
⎠ , (41)

where we have defined slow-roll parameters for p = 2 as

ε2(φ) = 4

3

⎛
⎝e

√
2
3 φ

Mp − 1

⎞
⎠

2 , η2(φ) = −
4

⎛
⎝e

√
2
3 φ

Mp − 2

⎞
⎠

3

⎛
⎝e

√
2
3 φ

Mp − 1

⎞
⎠

2 , β2(φ) = −
4

⎛
⎝2e

√
2
3 φ

Mp − 3

⎞
⎠

15

⎛
⎝e

√
2
3 φ

Mp − 1

⎞
⎠

2 .

(42)
7
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We find Q for the strong limit:

Q 	
5
√
2C1

33/5

(
U0e

−
√
6φ

Mp

√√√√√√√√√
U0

⎛
⎜⎜⎜⎝e

√
2
3 φ

Mp −1

⎞
⎟⎟⎟⎠
2

M2
p

C1Cr

)
√√√√√√U0e

− 2
√

2
3 φ

Mp

⎛
⎜⎝e

√
2
3 φ

Mp −1

⎞
⎟⎠2

M2
p

⎛
⎝1− δe

√
2
3 φ

Mp

⎞
⎠ = Q2(φ)

⎛
⎝1− δe

√
2
3 φ

Mp

⎞
⎠ , (43)

where

Q2(φ) =
5
√
2C1

33/5

(
U0e

−
√
6φ

Mp

√√√√√√√√√
U0

⎛
⎜⎜⎜⎝e

√
2
3 φ

Mp −1

⎞
⎟⎟⎟⎠
2

M2
p

C1Cr

)
√√√√√√U0e

− 2
√

2
3 φ

Mp

⎛
⎜⎝e

√
2
3 φ

Mp −1

⎞
⎟⎠

2

M2
p

. (44)

Our strategic analysis here is that we first solve the system for δ = 0, and then use perturbation 
theory in the small parameter δ and search for a solution to this condition of the type

φend = φδ=0
end + φ1δ . (45)

For δ = 0, we consider

ε2(φ) = 4

3

⎛
⎝e

√
2
3 φ

Mp − 1

⎞
⎠

2 , (46)

Q2(φ) =
5
√
2C1

33/5

(
U0e

−
√
6φ

Mp

√√√√√√√√√
U0

⎛
⎜⎜⎜⎝e

√
2
3 φ

Mp −1

⎞
⎟⎟⎟⎠
2

M2
p

C1Cr

)
√√√√√√U0e

− 2
√

2
3 φ

Mp

⎛
⎜⎝e

√
2
3 φ

Mp −1

⎞
⎟⎠

2

M2
p

. (47)

When inflation ends, one finds from Eq. (32) using a condition εend ≈ Qend with δ = 0:
8
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4

3

⎛
⎝e

√
2
3 φδ=0

end
Mp − 1

⎞
⎠

2 ≈
5
√
2C1

33/5

(
U0e

−
√
6φδ=0

end
Mp

√√√√√√√√√
U0

⎛
⎜⎜⎜⎝e

√
2
3 φδ=0

end
Mp −1

⎞
⎟⎟⎟⎠
2

M2
p

C1Cr

)
√√√√√√U0e

− 2
√

2
3 φδ=0

end
Mp

⎛
⎜⎝e

√
2
3 φδ=0

end
Mp −1

⎞
⎟⎠

2

M2
p

. (48)

Apparently, the above equation can be analytically solved to obtain exact solutions. To this end, 
we can solve Eq. (48) to obtain a value of the inflaton field at the end of inflation to yield

φδ=0
end ≈

√
3

2

1

8
Mp log

( 29CrU0

32C1M4
p

)
, (49)

where a large field approximation has been implemented by assuming e

√
2
3φend/Mp ± 1 ≈

e

√
2
3φend/Mp . Substituting a solution (49) into Eq. (45) and then applying to Eq. (48), we find 

for φ1:

φ1 	 1

5
25/8 4

√
3Mp

8

√
CrU0

C1M4
p

. (50)

Therefore, the solution reads

φend = φδ=0
end + φ1δ 	

√
3

2

1

8
Mp log

( 29CrU0

32C1M4
p

)
+ 1

5
25/8 4

√
3Mp

8

√
CrU0

C1M4
p

δ . (51)

Taking δ = 0, we simply obtain the results of R2-type warm inflation, see Ref. [21]. Moreover, 
the inflaton field at the Hubble horizon crossing in the strong regime, φN , can be determined 
using the perturbation trick. For the number of e-folding, we see that

N = 1

M2
p

φini∫
φend

QU

U ′ dφ

=
5C1

(
8e

√
2
3 φ

Mp + 12

)(
U0

√
U0
M2

p
e
− 2

√
2
3 φ

Mp

C1Cr

)

1624/533/5
√

U0
M2

p

(
1+ δe

√
2
3 φ

Mp

)∣∣∣∣∣
φini

φend

. (52)

We search for the solution of the type:

φN = φδ=0
N + φ2δ . (53)

Consider Eq. (52) using δ = 0, we find for φδ=0:
N

9
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φδ=0
N =

√
3

2

1

3
Mp log

(25 24 33CrN
5U0

55 C4
1M

4
p

)
. (54)

Substituting Eq. (54) into Eq. (53), and applying back to Eq. (52), we then solve to obtain

φN = φδ=0
N + φ2δ

=
√
3

2

1

3
Mp log

(25 24 33CrN
5U0

55 C4
1M

4
p

)

+ 4
√
6Mp

5

(
5 52/3 − 24 3

√
N5U0Cr

C4
1M4

p

) 3

√
N5U0Cr

C4
1M

4
p

(
9 3
√
5 3

√
N5U0Cr

C4
1M

4
p

− 25

)
δ . (55)

As done above, we therefore can re-write the slow-roll parameters in terms of the number of 
e-foldings, N , by using large field approximation in the strong Q limit and then we find

ε ≈
125 3

√
5C4

1M
4
p

3

√
N5U0Cr

C4
1M4

p

432N5U0Cr

−
25δ

(
9 52/3N5U0Cr − 25 3

√
5C4

1M
4
p

(
N5U0Cr

C4
1M4

p

)
2/3

)

27N5U0Cr

(
5 52/3 − 24 3

√
N5U0Cr

C4
1M4

p

) , (56)

η ≈ −
5 52/3C4

1M
4
p

(
N5U0Cr

C4
1M4

p

)
2/3

18N5U0Cr

−
20δ

(
5 52/3 − 9 3

√
N5U0Cr

C4
1M4

p

)

9

(
5 52/3 − 24 3

√
N5U0Cr

C4
1M4

p

) , (57)

β ≈ −
52/3C4

1M
4
p

(
N5U0Cr

C4
1M4

p

)
2/3

9N5U0Cr

−
8δ

(
5 52/3 − 9 3

√
N5U0Cr

C4
1M4

p

)

9

(
5 52/3 − 24 3

√
N5U0Cr

C4
1M4

p

) . (58)

Moreover, we can write Q for the strong limit in terms of N as

QN 	
52/3C5

1M
6
p

√
U0
M2

p

5

√
U0

√
U0
M2

p

C1Cr

(
N5U0Cr

C4
1M4

p

)
13/15

6N5U2
0Cr

−
8C1δM

2
p

√
U0
M2

p

5

√
U0

√
U0
M2

p

C1Cr

(
63

(
N5U0Cr

C4
1M4

p

)
8/15 − 10 52/3 5

√
N5U0Cr

C4
1M4

p

)

15U0

(
24 3

√
N5U0Cr

C4
1M4

p

− 5 52/3
) . (59)

It is noticed that for a large field approximation the results given above do depend on a small 
number, δ, as expected. When setting δ = 0, we have the results of warm scenario for R2-type 
inflation, see for instance Ref. [21] for Higgs-Starobinky inflation. Since the energy density dur-
ing inflation is predominated by its potential of the inflaton field. Therefore we can write the 
Einstein equation as
10
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H 2 = 8π

3

U

M2
p

= 8π

3

U0

M2
p

e
− 2

√
2
3 φk

Mp

(
e

√
2
3 φk

Mp − 1
)2(1−δ)

. (60)

Using the above relation, we can write Eq. (28) for our model as

φ̇ 	 − Uφ

3H(1+ Q)
	 −

Mp

√
U0
M2

p

3
√

π(Q + 1)
(e

−
√

2
3 φ

Mp + δ) . (61)

Then combining these two quantities, we end up with to the first order of δ:

H 2
k

2πφ̇k

	 −4
√

π(Q + 1)

Mp

√
U0

M2
p

e

√
2
3 φk

Mp (1+ e

√
2
3 φk

Mp δ) . (62)

On substituting Eq. (61) in the energy density of radiation given in Eq. (26), we obtain the 
temperature of the thermal bath as

Tk =
(3Qφ̇2

4Cr

)1/4 	 1√
2 4
√
3π

(
QU0e

− 2
√

2
3 φk

Mp

Cr(Q + 1)2

)1/4

(1− δ e

√
2
3 φk

Mp /2) , (63)

with Cr = π2g∗/30 where g∗ is the number of relativistic degrees of freedom during warm 
inflation. Regarding Ref. [19], we can take g∗ ≈ 200. Then we can combine the above result 
with H from Eq. (60) to obtain the factor T/H to yield

Tk

Hk

	
4
√
3

4π3/4
√

U0
M2

p

⎛
⎜⎜⎝QU0e

− 2
√

2
3 φ

Mp

Cr(Q + 1)2

⎞
⎟⎟⎠

1/4

(1− e

√
2
3 φk

Mp δ/2) . (64)

Since the dissipation parameter is defined as Q = �
3H for model of warm inflation, we consider 

� = C1T . After substituting this form of � we obtain T = 3HQ
C1

. We equate this with Eq. (64) to 
obtain

φk

Mp

	
√
3

2
log

(
A

((√
3C2

1δ

√
2QU0

Cr(Q + 1)2
+ 72π3/2Q2U0

M2
p

)1/2

− 12π3/4Q

√
U0

M2
p

)2)
,

(65)

where

A= 1

C2
1δ

2
√

3QU0
Cr(Q+1)2

, (66)

and we have assumed a large field approximation to write Eq. (65). For the dissipation–dominated 
regime, the dissipation rate, �, is much greater than the expansion rate, i.e., Q � 1. In this case, 
the evolution of the inflaton field during this phase can be approximately obtained. This allows 
us to write the energy density of the radiation field as

ρR(k) 	 1

12Qk

(
Uφk

Hk

)2

= U0

12πQk

e
− 2

√
2
3 φk

Mp

⎛
⎝1− 2δe

√
2
3 φk

Mp

⎞
⎠ . (67)
11
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Substituting results given in Eq. (65) in Eqs. (64) and (62), we can express PR(k) in terms of 
variables Qk, Cr and C1. Also, from its definition in Eq. (31), the slow roll parameter can be 
written as

εH = ε

(1+ Qk)
	 1

(1+ Qk)

4

3

⎛
⎝e

√
2
3 φk

Mp − 1

⎞
⎠

2

⎛
⎝1− 2δe

√
2
3 φk

Mp

⎞
⎠ , (68)

ηH = η

(1+ Qk)
	 1

(1+ Qk)

8− 4(3δ + 1) e

√
2
3 φk

Mp

3

⎛
⎝e

√
2
3 φk

Mp − 1

⎞
⎠

2 . (69)

From Eq. (60), we can write

(
H

Mp

)2

= 8π

3

U0

M4
p

e−2
√
2/3κφ

(
e
√
2/3κφ − 1

)2(1−δ)

. (70)

Using Eq. (70), the tensor power spectrum for this model is evaluated as

PT (k) = 16

π

(
Hk

MPl

)2

	 128

3

U0

M4
p

e
− 2

√
2
3 φk

Mp

(
e

√
2
3 φk

Mp − 1
)2(1−δ)

. (71)

Note here that we can use Eq. (65) and can express PT (k) in terms of model parameters.

5. Background dynamics

In this section, a detailed analysis of the background dynamics, considering the evolution of 
the radiation energy density, ρR , and the quantities that are important for warm inflation, e.g., 
φ/Mp , Q, T/H , and so on, would be interesting to be examined. We start in this section studying 
how the dissipation parameter, Q, evolves with the number of efolds, N .

dQ

dN
	

13 52/3C1M
2
p

√
U0
M2

p

5

√
U0

√
U0
M2

p

C1Cr

18NU0

(
N5U0Cr

C4
1M4

p

)2/15

+
64δN4Cr

√
U0
M2

p

5

√
U0

√
U0
M2

p

C1Cr

(
63

(
N5U0Cr

C4
1M4

p

)8/15

− 10 52/3 5

√
N5U0Cr

C4
1M4

p

)

3C3
1M

2
p

(
N5U0Cr

C4M4

)2/3 (
24 3

√
N5U0Cr

C4M4 − 5 52/3
)

2

1 p 1 p

12
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−
8C1δM

2
p

√
U0
M2

p

5

√
U0

√
U0
M2

p

C1Cr

⎛
⎜⎝ 168N4U0Cr

C4
1M4

p

(
N5U0Cr

C4
1M4

p

)
7/15

− 10 52/3N4U0Cr

C4
1M4

p

(
N5U0Cr

C4
1M4

p

)4/5

⎞
⎟⎠

15U0

(
24 3

√
N5U0Cr

C4
1M4

p

− 5 52/3
)

−
5 52/3C5

1M
6
p

√
U0
M2

p

5

√
U0

√
U0
M2

p

C1Cr

(
N5U0Cr

C4
1M4

p

)
13/15

6N6U2
0Cr

. (72)

For the inflaton field, we have

dφ/Mp

dN
	 12 3

√
5
√
6δN4U0Cr

C4
1Mp4 3

√
N5U0Cr

C4
1Mp4

(
5 52/3 − 24 3

√
N5U0Cr

C4
1Mp4

)

+
4
√

2
3δN

4U0Cr

(
9 3
√
5 3

√
N5U0Cr

C4
1Mp4

− 25

)

C4
1Mp4

(
N5U0Cr

C4
1Mp4

)2/3 (
5 52/3 − 24 3

√
N5U0Cr

C4
1Mp4

)

+
32

√
6δN4U0Cr

(
9 3
√
5 3

√
N5U0Cr

C4
1Mp4

− 25

)

C4
1Mp4 3

√
N5U0Cr

C4
1Mp4

(
5 52/3 − 24 3

√
N5U0Cr

C4
1Mp4

)
2

+ 5√
6N

(73)

and

T/H 	 5

8 4
√
2π3/4

√
U0
M2

p

B + C−1

((
2

π

)3/4

δM2
pU0

(
27 3

√
5N5Cr

√
U0

M2
p

(
N5U0Cr

C4
1M

4
p

)2/3

+5 52/3C1N
5Cr

5

√√√√√U0

√
U0
M2

p

C1Cr

5

√
N5U0Cr

C4
1M

4
p

−9C1N
5Cr

5

√√√√√U0

√
U0
M2

p

C1Cr

(
N5U0Cr

C4
1M

4
p

)8/15 )
B

)
, (74)

where

B ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C5
1M

6
pN5U3

0

√
U0
M2

p

5

√
U0

√
U0
M2

p

C1Cr

5

√
N5U0Cr

C4
1M4

p⎛
⎜⎝52/3C5

1M
6
p

√
U0
M2

p

5

√
U0

√
U0
M2

p

C1Cr

(
N5U0Cr

C4
1M4

p

)13/15

+ 6N5U2
0Cr

⎞
⎟⎠

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/4
13
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C =
(
5 52/3 − 24 3

√
N5U0Cr

C4
1M

4
p

)⎛
⎜⎜⎜⎜⎝52/3C5

1M
6
p

√
U0

M2
p

5

√√√√√U0

√
U0
M2

p

C1Cr

(
N5U0Cr

C4
1M

4
p

)
13/15 + 6N5U2

0Cr

⎞
⎟⎟⎟⎟⎠ .

(75)

For the energy density of radiation, we find

dρR

dN
	 −

20 52/3δCr

⎛
⎝U0

√
U0
M2

p

C1Cr

⎞
⎠

4/5 (
9 3
√
5N5U0Cr

(
N5U0Cr

C4
1M4

p

)2/15

− 25C4
1M

4
p

(
N5U0Cr

C4
1M4

p

)
4/5

)

9πC4
1M

4
pN

(
N5U0Cr

C4
1M4

p

)2/3 (
5 52/3 − 24 3

√
N5U0Cr

C4
1M4

p

)2

+
175 52/3Cr

⎛
⎝U0

√
U0
M2

p

C1Cr

⎞
⎠

4/5

3456πN

(
N5U0Cr

C4
1M4

p

)8/15
−

125 52/3C4
1M

4
p

⎛
⎝U0

√
U0
M2

p

C1Cr

⎞
⎠

4/5 (
N5U0Cr

C4
1M4

p

)7/15

1152πN6U0

+
5 52/3δ

⎛
⎝U0

√
U0
M2

p

C1Cr

⎞
⎠

4/5 (
9 3
√
5N5U0Cr

(
N5U0Cr

C4
1M4

p

)2/15

− 25C4
1M

4
p

(
N5U0Cr

C4
1M4

p

)4/5
)

18πN6U0

(
5 52/3 − 24 3

√
N5U0Cr

C4
1M4

p

)

−

52/3δ

⎛
⎝U0

√
U0
M2

p

C1Cr

⎞
⎠

4/5
⎛
⎜⎜⎝ 6 3√5N9U2

0C2
r

C4
1M4

p

(
N5U0Cr

C4
1M4

p

)
13/15

+ 45 3
√
5N4U0Cr

(
N5U0Cr

C4
1M4

p

)2/15

− 100N4U0Cr

5

√
N5U0Cr

C4
1M4

p

⎞
⎟⎟⎠

18πN5U0

(
5 52/3 − 24 3

√
N5U0Cr

C4
1M4

p

) .

(76)

We display the background dynamics by considering the evolution of the radiation energy 
density, Q, T/H, T/Mp and φ/Mp in Fig. 1. We illustrate the evolution of the different 
dynamical quantities in the deformed R2 model, obtained numerically for an example with 
Cr = 70, C1 = 0.3, δ = 0.02, and U0 = 10−10 M4

p .

6. Confrontation with Planck 2018 data

In this section, the inflation potentials can be constrained using the COBE normalization con-
dition [25]. This can be used to fix the parameters of the models in the present analysis. From 
Planck 2018 data, the inflaton potential must be normalized by the slow-roll parameter, ε and 
satisfied the following relation at the horizon crossing φ = φN in order to produce the observed 
amplitude of the cosmological density perturbation (As):
14
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Fig. 1. We display the dynamical evolution in warm inflation with a potential given in Eq. (37). The behavior of the 
dissipation parameter Q (purple line), the ratio T/H (red line), temperature of the Universe T (in units of Mp ), the 
homogeneous inflaton field φ (in units of Mp ), the energy density in φ is shown as a function of the number of efolds 
N with the dissipation coefficient � = C1T . To generate this plot, we take C1 = 0.3, Cr = 70, δ = 0.02 and U0 =
10−10 M4

p .

U(φN)

ε(φN)
	 (0.0276Mp)4 . (77)

Taking the potential Eq. (37) and the first slow-roll parameter ε given in Eq. (41), and substituting 
φN given in Eq. (55), we approximately find that

U0 	 1.2× 10−4C
8/5
1 M4

p

N2C
2/5
r

+ 7.2× 10−6C
4/5
1 M4

p

N 5
√

Cr

δ . (78)

As of the primordial power spectrum for all the models written in terms of Q, λ, and C1, we 
can demonstrate how the power spectrum does depend on the scale. The spectral index of the 
primordial power spectrum is defined as

ns − 1= d lnPR(k)

d ln(k/kp)
= d lnPR(k)

dQ

dQ

dN

dN

dx

∣∣∣∣∣
k=kp

, (79)

where x = ln(x/xp) and kp corresponds to the pivot scale. From a definition of N , it is rather 
straightforward to show that [19]

dN

dx
= − 1

1− εH

. (80)

Now we compute r and ns using Eq. (36) and Eq. (79) for a linear form of the growing mode 
function G(Q) given in Eq. (34). Note that r and ns are approximately given in Refs. [16,39,40]. 
15
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Fig. 2. We compare the theoretical predictions of (r, ns) in the strong limit Q � 1 for Rp model. We consider a linear 
form of the growing mode function G(QN ). For the plots, we have used U0 	 10−10 M4

p, C1 = 0.30, δ = 0.02 and 
Cr = 70 (orange line), and Cr = 120 (purple line). We consider theoretical predictions of (r, ns ) for different values of 
N with Planck’18 results for TT, TE, EE, +lowE+lensing+BK15+BAO.

We show the predictions of deformed Rp gravity in Fig. 2 where we have used two values 
of Cr = 70, 120. We have also found that if dissipation is already strong at horizon crossing, 
Q � 1, the spectrum becomes more blue-tilted. This is due to the coupling between inflaton and 
radiation fluctuations. This behavior was noticed so far in Refs. [16,26].

7. Conclusion

In this work, we have investigated warm inflationary model in the context of a deformation 
of R2 gravity which is coupled to radiation through a dissipation term. We start considering 
Rp setup and assume p = 2(1 + δ) with δ � 1 so that we can simply use the perturbation 
method. Particularly, our results covered simple warm R2 inflation when setting δ = 0. We have 
demonstrated detailed derivations of the potentials in the Einstein frame, and derived relevant 
parameters in the warm Rp inflation using the slow-roll approximation. Concretely, we have 
particularly considered a dissipation parameter of the form � = C1T with C1 being a coupling 
parameter and have focused only on the strong regime of which the interaction between inflaton 
and radiation fluid has been taken into account.

In this work, we have also taken into account a detailed analysis of the background dynamics, 
considering the evolution of the radiation energy density, ρR, and the quantities that are important 
for warm inflation, e.g., Q, T/H, T/Mp and φ/Mp . To confront the results with the data, we 
have computed inflationary observables and have constrained the parameters of our model using 
current Planck 2018 data. We have compared the theoretical predictions of (r, ns) in the strong 
limit for the model with Planck’18 results. With proper choices of parameters, we have demon-
strated that the predictions are in good agreement with Planck 2018 data [37]. Additionally, the 
potential scale U0 of the models were constrained using the COBE normalization condition. It 
is worth noting that our scenario on warn deformed R2 inflation may be possibly linked to the 
marginally deformed Starobinsky model [47] dictating the trace-log quantum corrections. How-
16
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ever, the deformation can be tested by current and future experimental results and constitutes a 
sensible generalization of the original (warm) Starobinsky scenario.

We should stress here that other forms of dissipation coefficient considered in the literature 
might also be relevant to be considered. For example, a dissipation coefficient with a cubic de-
pendence on the temperature given by � = CφT 3/φ2 was studied in Refs. [12,48,50–53], while 
the high temperature regime with � ∝ T was found in Refs. [12,15,26,43]. Additionally, for the 
case in which a dissipation coefficient depends only on the scalar field with � ∝ φ−1 was first 
considered in warm inflation in Ref. [55]. However, based on the present analysis, analytical 
solutions of deformed R2 gravity can not be obtained for those of the dissipation forms. This 
requires the numerical computations. We will leave them for future investigation.
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