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1 Introduction

In the context of (electro-)weakly interacting dark matter (DM), the static potential plays a
crucial role in substantially modifying the annihilation cross-section through the Sommerfeld
effect in indirect detection and relic abundance calculations [1, 2]. Due to the finite range
nature of the Yukawa potentials arising from W,Z-exchange, resonant features associated
with zero-energy bound states that enhance the cross-sections by up to several orders of
magnitude are observed in the mass spectrum. The size of the enhancement effect has made
the accurate calculation of the leading-order (LO) Sommerfeld effect an essential ingredient
in many WIMP DM calculations in the literature, both for minimal DM models [3] and the
MSSM [4, 5].

In recent years, the calculation of the annihilation cross-section in DM indirect detection
χχ → γ + X has progressed to include electroweak (EW) Sudakov logarithms and their
resummation to all orders [6–14]. The precision of these calculations has reached the percent
level for the wino and Higgsino model, naturally facilitating the question of the size of
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next-to-leading order (NLO) electroweak corrections to the non-relativistic Sommerfeld
effect expected to be the dominant source of theoretical uncertainty. Possible corrections to
the Sommerfeld effect are the mass-splittings between the particles in the multiplet after
electroweak symmetry breaking (EWSB) to two-loops, which are known for the simplest
multiplets [15–17], and the NLO EW potentials. For the case of wino DM, the NLO
potentials were first calculated in [18, 19] and shown to yield sizeable corrections, of similar
size than the Sudakov resummation, to the indirect detection prediction due to shifts of the
zero-energy bound state energies [18]. Also, for relic density calculations, corrections are
non-negligible though not quite as significant due to a complex interplay between high and
low temperature regimes [19].

Going away from the simple test case presented by wino DM, the question arises on
how these results can be generalized to arbitrary multiplets, possibly allowing for non-zero
hypercharge. For wino DM, channels with the same tree-level potential (up to possible
signs) were observed to receive the same NLO correction [19]. In addition, the fact that
the standard model (SM) self-energies tied to the tree-level exchange bosons have a highly
complex gauge parameter dependence that needs to be cancelled by other topologies suggests
a universality to be uncovered.

For massless gauge theories, it is known for a long time, that the correction to the static
potential obeys a Casimir scaling [20]. In the case of QCD, the Casimir scaling of the static
potential is only violated at the 3-loop order [21]. At the one-loop order the universality of
the potential correction is easiest seen by choosing a Coulomb gauge formulation in which
only self-energies contribute to the NLO correction [22]. In spontaneously broken gauge
theories, it is not intuitively clear that the conceptually interesting features of Coulomb
gauge are also applicable. Already in the 1980’s, a generalized Coulomb gauge for a
spontaneously broken gauge theory with massless and massive gauge bosons was formulated
(though not for the SM), with similar features than in the massless case [23]. The existence
of a Coulomb gauge formulation thereby suggests that the correction in the SM also has to
obey a “Casimir-like” scaling.

In this paper, we calculate the NLO correction to the static potential between two
SM multiplet particles, not necessarily part of the same multiplet. The NLO correction is
only tied to the particle content and gauge group of the SM. In this sense, it represents a
“low-energy” property of the SM gauge bosons, i.e., for exchange momenta of the order of
the EW scale |k| ∼ mW . In addition, EWSB and the interplay of massless and massive
gauge boson exchange allow for unique infrared behaviour for special linear combinations of
couplings that have no analogue in the QCD literature.

The paper is structured as follows: first, we provide a short overview of the effective
field theory setup and discuss the construction of the general tree-level potentials for an
arbitrary SM multiplet of TeV-scale mass. Afterwards, we provide the NLO potentials in
all possible channels. We omit many of the technical details, e.g., the calculation of the
one-loop topologies, which are provided in [19, 24] and focus on the phenomenology of the
NLO potentials. Subsequently, we present a detailed analysis of all channels that have not
appeared in the context of the wino NLO potentials in [18, 19, 24], provide accurate fitting
functions for easy use, and some general comments before we conclude.
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2 EFT setup and tree-level potentials

We follow the effective theory setup as outlined for non-relativistic heavy WIMPs in [5, 25, 26]
that was constructed in analogy to the respective EFTs for QED and QCD [27–31]. We
start from the non-relativistic effective theory

LNRDM = χ†(x)
(
iD0 + D2

2mχ

)
χ(x) , (2.1)

where χ is an arbitrary spin multiplet field charged under SU(2)L and/or hypercharge.
To stay close to the previous literature [4, 18, 19, 25] on non-relativistic effective theories
for electroweak DM at the TeV scale, we use in the following the term DM synonymous
to non-relativistic particles of mass mχ � mZ , if not explicitly stated otherwise. In fact,
calculating the potentials to NLO, the assumption of DM is not needed in any step.

Technically, the potentials are a matching coefficient onto a non-local four-fermion
operator from the non-relativistic theory to the potential non-relativistic theory. The
necessary Lagrangian pieces to obtain NLO non-relativistic accuracy are given by

LPNRDM =
∑
i

χ†vi(x)
(
iD0

i (t,0)− δmi + ∂2

2mχ

)
χvi(x)

−
∑

{i,j},{k,l}

∫
d3rV(ij),(kl)(r)χ

†
vk(t,x)χ†vl(t,x + r)χvi(t,x)χvj(t,x + r) , (2.2)

where δmi is the mass splitting between members of the multiplet due to radiative corrections
and, in typical cases, is of the order of the kinetic energy. The NLO correction to the
potentials V(ij)(kl) arises from the soft region in the method of regions expansion [32]. For a
detailed discussion of the power counting, the possible further terms in the Lagrangians,
and other aspects, see [19].

2.1 Tree-level potentials for arbitrary SM representations

The above allows us to extract the tree-level potentials for arbitrary SM representations by
matching the tree-level exchange in the potential region [32]. The necessary electroweak
Feynman rules for the emission from a static heavy particle depend only on the representation
under SU(2)L and U(1)Y . We select to work in the charge basis where T 3

R is diagonal, i.e.,
the electric charge is given by Q = T 3

R + Y . Additionally, there is some freedom in choosing
the entries of T±R , which are only fixed up to an arbitrary phase for each multiplet component.
We choose the entries of T±R real, which is also consistent with the minimal DM requirement
of having the same SU(2) invariant mass term for all components of the multiplet [3]. The
generic spin-j representation for this convention is then constructed using [33]〈

j,m1
∣∣∣T 3
R

∣∣∣j,m2
〉

= m2 δm1,m2〈
j,m1

∣∣∣T+
R

∣∣∣j,m2
〉

=

√
(j +m2 + 1)(j −m2)

2 δm1,m2+1

〈
j,m1

∣∣∣T−R ∣∣∣j,m2
〉

=

√
(j +m2)(j −m2 + 1)

2 δm1,m2−1 . (2.3)
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Using these generators, the tree-level potential for minimal DM [3, 34] and even more
generally arbitrary SM representations (not necessarily including a DM candidate) can be
constructed. The only assumption to be made is that the heavy particles that act as static
sources mχ � mZ are charged under the EW sector of the SM.

For the (off-diagonal) tree-level potential due to the exchange of a W -boson, we find

V W
(ij),(kl) = (−1)nQ

4πα2
k2 +m2

W

(
T+
R,ikT

−
R,jl + T−R,ikT

+
R,jl

)
= (−1)nQV W

tree

(
T+
R,ikT

−
R,jl + T−R,ikT

+
R,jl

)
, (2.4)

where nQ = 0 if the |Qi|+ |Qj | = |Qk|+ |Ql| and nQ = 1 otherwise. (−1)nQ expresses the
possible minus sign in the Feynman rule in the employed particle/particle convention for
the non-relativistic Lagrangian [25]. In the particle/anti-particle convention oftentimes used
in NRQCD, the sign arises due to “fermion flow”. Let us note that the factor is mainly used
to allow compact results, as many expressions differ simply by a sign. One can also avoid
using this factor at all, however, at the cost of introducing two W -exchange potentials to
cover all possible cases. Given the NLO potentials discussed later, we find using a single
factor to express this possible sign more convenient. In addition, let us remark that for the
group factor T+

R T
−
R + T−R T

+
R , only one term is non-zero for a fixed channel.

Similarly, we construct the photon and Z-exchange potentials

V
γ/Z

(ij),(ij) = +4πα
k2 (T 3

R,ii + Yi)(T 3
R,jj + Yj) + 4πα

k2 +m2
Z

c2
WT

3
R,ii − s2

WYi

sW cW
·
c2
WT

3
R,jj − s2

WYj

sW cW

=
(

4πα
k2 + 4πα

k2 +m2
Z

c2
W

s2
W

)
T 3
R,iiT

3
R,jj +

(
4πα
k2 −

4πα
k2 +m2

Z

)
(T 3
R,iiYj + T 3

R,jjYi)

+
(

4πα
k2 + 4πα

k2 +m2
Z

s2
W

c2
W

)
YiYj

= V T3T3
tree T 3

R,iiT
3
R,jj + V T3Y

tree (T 3
R,iiYj + T 3

R,jjYi) + V Y Y
tree YiYj

= V T3T3
(ij)(ij) + V T3Y

(ij)(ij) + V Y Y
(ij)(ij) , (2.5)

where we fixed i = k, j = l, as hypercharge Y and T 3
R are diagonal matrices. The

hypercharges for particles i, j are distinguished to cover antiparticles for which Yi = −Yj .
Although, we assume the same SU(2) representation R for both sources, to not further
clutter notation, all results, including NLO potentials also hold if the sources are part of
different multiplets, as we explicitly checked.

We identify three gauge-invariant combinations to which we will consider the NLO
correction separately. The combinations T 3T 3 and Y Y are gauge-invariant, as one can write
down models with vanishing SU(2) charge and non-zero hypercharge and vice versa. As
these two combinations need to be separately gauge-invariant, also the linear combination
T 3Y is gauge-invariant, even though it only appears if both T 3T 3 and Y Y are non-zero.1

1As long as the potential is between particles of the same multiplet, T 3Y only appears if both other
combinations are non-zero. In the case of different multiplets, situations may occur, where both T 3

RT 3
R′ and

YRYR′ are zero, whilst T 3
RYR′ is not, e.g., if one static source has zero hypercharge and the other non-zero

hypercharge but vanishing SU(2) charge. However, the following analysis is not affected by this consideration.
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Figure 1. Relevant one-loop topologies correcting the tree-level W -exchange channel χiχj → χkχl

channel excluding wave-function and counterterm topologies. Also symmetric diagrams, e.g., vertex
corrections at the lower line are not explicitly shown.

3 NLO electroweak potentials

To calculate the NLO potential correction, we consider all possible one-loop topologies
with general SU(2) and hypercharge factors. Using general group identities for arbitrary
SU(2) representations (see, e.g., [35]), all topologies are reduced till only two SU(2) or
hypercharge factors are present. Together with the necessary loop expressions, which are
discussed in [19] (appendix A) in Feynman and general covariant Rξ-gauge, and the on-shell
renormalization scheme (section 3.1.1) of [19] the NLO correction can be assembled. For
brevity, we point to [19] for the notation, topologies and other subtleties in connection with
loop integrals and on-shell renormalization scheme.

3.1 Off-diagonal W -boson exchange

Let us begin by examining the correction corresponding to the tree-level off-diagonal
W -boson exchange contribution. After assembling all topologies and counterterms, as
schematically shown in figure 1, we are left with the correction

δV W
(ij),(kl) = V W

(ij),(kl)

[
2δZe − 2δsW

sW
+ ΣWW

T (−k2)− δm2
W

k2 +m2
W

+ 2
(
IWγ

3 gauge + IWZ
3 gauge

)]

+ (−1)nQ+1(T+
R,ikT

−
R,jl + T−R,ikT

+
R,jl)

[
Ibox (α2,mW ;α, 0) + Ibox

(
α2,mW ;αc

2
W

s2
W

,mZ

)]
+ δV W

(ij),(kl)

∣∣∣
WF/vertex

. (3.1)
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The first line gives the contribution trivially proportional to the tree-level potential, as it
corresponds to the electric charge and Weinberg angle counterterms, self-energy, W -boson
mass counterterm insertion, and the triple vertex topologies. In the second line the box
topologies contribute. As only one W -boson can be part of these corrections to have a
net charge change of one between the two static sources, it is also easy to verify, that this
contribution is proportional to the tree-level group factor. Finally, in the last line there
is symbolically the wave-function and vertex correction. Both wave-function, as well as
vertex correction are proportional to further group factors. In the linear combination of the
two, however, only a contribution proportional to the tree-level group factor remains. The
resulting expression for the one-loop correction is gauge-invariant and finite, as we explicitly
checked. Furthermore, in the limits mW → mZ and hence sW → 0, cW → 1, we recover
previously known expressions for the singlet potential of a Higgsed SU(2) theory [36, 37]
(similarly for T 3T 3 below). More precisely, we compared the unrenormalized potential, as
the renormalization was not fully specified in [36].

Therefore, the one-loop correction to theW -boson exchange potentials can be written as

V W,NLO
(ij),(kl) = (−1)nQ

(
T+
R,ikT

−
R,jl + T−R,ikT

+
R,jl

) (
V W

tree + δV W
1−loop

)
, (3.2)

meaning the potential correction is universal. Like in QED and QCD, where the potential
correction scales with the Casimir operator of the representation, we find a “Casimir-like”
scaling analogously also in the spontaneously broken EW theory. In this sense, the correction
is a “low-energy” property of the SM W -bosons.

3.2 Diagonal photon and Z-boson exchange

In an analogous fashion, we can assemble the correction for the diagonal channels (ij)→ (ij),
i.e., corresponding to tree-level photon and/or Z-boson exchange. Again we find that we can
reduce all contributions to the tree-level factors. As mentioned for the tree-level potentials
above, we split the corrections into separately gauge-invariant contributions. The correction
proportional to T 3T 3 is given by

δV T3T3
(ij),(ij) = +4πα

k2

(
T 3
R,iiT

3
R,jj

)(
2δZe + Σγγ

T (−k2)
k2

)

+ 4πα
k2 +m2

Z

(
T 3
R,iiT

3
R,jj

) c2
W

s2
W

(
2δZe + 2δcW

cW
− 2δsW

sW
+ ΣZZ

T (−k2)− δm2
Z

k2 +m2
Z

)

+ 4πα
k2(k2 +m2

Z)

(
T 3
R,iiT

3
R,jj

) −2cW
sW

ΣγZ
T (−k2) + V T3T3

(ij),(ij)

(
2IWW

3 gauge

)
+ δV T3T3

(ij),(ij)

∣∣∣
vertex/WF

− T 3
R,iiT

3
R,jjIbox (α2,mW ;α2,mW ) . (3.3)

Similar to the off-diagonal correction discussed above, the first three lines give the corrections
trivially proportional to the tree-level group factor from counterterms, self-energies and the
triple gauge vertex contribution. In the last line, the wave-function renormalization and
vertex correction cancel such that only a universal term proportional to the tree-level group
factor is left over. Finally, the box and crossed-box diagrams involving W -bosons are also
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proportional to T 3
RT

3
R, which is easily verified by writing out the group factors, accounting

for the relative minus sign of the crossed box to the box diagram, and in addition using[
T+
R , T

−
R

]
ii

= −T 3
R,ii.

For the tree-level T 3Y linear combination, the correction reads

δV T3Y
(ij),(ij) = +4πα

k2

(
T 3
R,iiYj + T 3

R,jjYi
)(

2δZe + Σγγ
T (−k2)

k2

)

− 4πα
k2 +m2

Z

(
T 3
R,iiYj + T 3

R,jjYi
)(

2δZe + ΣZZ
T (−k2)− δm2

Z

k2 +m2
Z

)

+ 4πα
k2(k2 +m2

Z)

(
T 3
R,iiYj + T 3

R,jjYi
)(sW

cW
− cW
sW

)
ΣγZ
T (−k2)

+ δV T3Y
(ij),(ij)

∣∣∣
vertex/WF

+ V T3Y
(ij),(ij)I

WW
3 gauge . (3.4)

Note that in this case, and also in the Y Y case below, the box contributions cancel against
their crossed box counterparts. In the diagonal channel, there is always the possibility of
pure photonic and pure Z box contributions that cancel naturally. Furthermore, the mixed
photon/Z boxes cancel, as the photon and Z-boson commute. Therefore, only W -boson
boxes contribute in diagonal channels, which are pure SU(2) contributions and therefore
have the T 3

RT
3
R structure discussed above. Furthermore, in this case, and for Y Y below,

the wave-function and vertex contribution is proportional to the tree-level potential factor.
All other topologies are trivially proportional to the tree-level potential. For Y Y , the
result reads

δV Y Y
(ij),(ij) = +4πα

k2 (YiYj)
(

2δZe + Σγγ
T (−k2)

k2

)

+ 4πα
k2 +m2

Z

s2
W

c2
W

(YiYj)
(

2δZe − 2δcW
cW

+ 2δsW
sW

+ ΣZZ
T (−k2)− δm2

Z

k2 +m2
Z

)

+ 4πα
k2(k2 +m2

Z)
(YiYj)

2sW
cW

ΣγZ
T (−k2) + δV Y Y

(ij),(ij)

∣∣∣
vertex/WF

. (3.5)

For the pure hypercharge contribution, also the triple vertex contribution is non-existent.
The origin of the triple gauge interaction is the W aW bW c interaction in the unbroken
theory. Only one of these bosons can be W 3 that in the broken theory becomes photon
or Z-boson. Therefore, only once a mixing of SU(2) and U(1) is possible, meaning only
T 3T 3 and T 3Y have a triple gauge contribution. We checked that the poles cancel for each
of the three gauge-invariant linear combinations and that the result is independent of the
gauge-fixing parameters ξγ , ξZ , and ξW .

As for the off-diagonal contribution above, in the diagonal channel with tree-level
photon and/or Z-exchange, we find

V
γ/Z,NLO

(ij),(ij) = V T3T3
(ij),(ij) + δV T3T3

(ij),(ij) + V T3Y
(ij),(ij) + δV T3Y

(ij),(ij) + V Y Y
(ij),(ij) + δV Y Y

(ij),(ij)

= T 3
R,iiT

3
R,jj

(
V T3T3

tree + δV T3T3
1−loop

)
+ (T 3

R,iiYj + T 3
R,jjYi)

(
V T3Y

tree + δV T3Y
1−loop

)
+ YiYj

(
V Y Y

tree + δV Y Y
1−loop

)
, (3.6)
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meaning that also in this channel the one-loop correction is universal and only dependent
on the tree-level gauge boson exchange.

3.3 One-loop correction for vanishing tree-level potential

There are, in principle, two further possibilities for possible channels, induced at one-loop
as their tree-level potential vanishes. Channels with charge change two between the static
sources, e.g., (00) → ((++) (−−)) in the SU(2) quintuplet, or channels with net charge
change zero between the sources, but vanishing tree-level potential, e.g., (00)→ (00) for
the pure wino.

In both cases, the correction at one-loop vanishes. Intuitively, this is also expected, as
the only topologies that can induce such a potential are box and crossed box diagrams.
Given their very intricate gauge parameter dependence, which can only be cancelled by a
delicate linear combination of self-energies, counterterms and so on, the box and crossed
box diagrams were expected to cancel amongst themselves to maintain gauge invariance.
We also checked the cancellation explicitly.

Another way to think of this cancellation is to note that Coulomb gauge can also be
formulated for spontaneously broken non-Abelian gauge theories [23]. In Coulomb gauge,
all soft emissions connected to the heavy static source vanish. Therefore, only the potential
region of the box diagram, which is an iteration of the tree-level potential and the Coulomb
gauge SM self-energies and counterterms, may contribute. However, the self-energies and
counterterm insertions are necessarily proportional to the tree-level potential, which in
the cases at hand vanishes, meaning that there are no induced channels at one-loop. The
Coulomb gauge argument also motivates the “Casimir-like” scaling, as one could also phrase
the result in terms of Coulomb gauge SM self-energies with all other terms vanishing.

To summarize: for hypercharge Y = 0 independent of the SU(2) representation, two
potentials, one off-diagonal due to W -exchange and one diagonal due to γ/Z-exchange
appear. The one-loop correction to both potentials is proportional to the tree-level group
factor and thereby presents the analogue of Casimir scaling in QCD. The results already
appear in the literature for the wino model with corresponding group factors [18, 19]. For
non-zero hypercharge Y 6= 0, two further potentials occur that can be assembled from known
results for PNRDM loop integrals (for details, see appendix A of [19]). The correction to
these additional potentials in the diagonal channel is also proportional to the tree-level group
factor, meaning they also obey Casimir-like scaling. Furthermore, underlining the scaling
behaviour of the NLO correction, we find that there are no one-loop induced potentials in
channels with a vanishing tree-level contribution.

4 Analysis of the different channels

In this section, we discuss the behaviour of the NLO potential in the asymptotic regions,
where analytic results in position space can be extracted and thereby, further strong checks
on the results are possible. We omit the discussion of the correction to off-diagonal W -boson
exchange and the T 3T 3 linear combination for γ/Z-exchange, as these appear already for
wino DM [18, 19] and are extensively discussed in section 3.3 of [19]. Therefore, the focus is

– 8 –



J
H
E
P
1
0
(
2
0
2
1
)
1
3
6

on T 3Y and Y Y , and particular linear combinations of T 3 and Y with special long-distance
behaviour. To make the origin of the leading behaviours and the various factors more
transparent, we discuss the asymptotic corrections for three separately gauge-invariant
contributions — light fermions, third-generation quarks, and electroweak sector.

Furthermore, we provide fitting functions that approximate the potential correction to
permille level accuracy, making them suited, e.g., for Sommerfeld enhancement or bound
state calculations in minimal DM models. Finally, we comment on the various dependencies
on the renormalization scheme, top quark mass, and further subtleties.

All numerical values, unless stated otherwise are obtained with the input parameters:
α = αos(mZ) = 1/128.943 for the electromagnetic coupling at the Z-mass, the gauge-boson
masses mW = 80.385 GeV and mZ = 91.1876 GeV, that via on-shell relations determine the
weak couplings and mixing angles cW = mW /mZ . Furthermore, the value for Higgs boson
mH = 125 GeV and top quark mass mt = 173.1 GeV are used. All other fermions of the SM
are taken massless. For practical purposes the uncertainty on all parameters, except the
top mass dependence discussed below, is negligible.

4.1 Asymptotic behaviour

4.1.1 T 3Y -linear combination

In figure 2, we show the potential correction relative to the tree-level potential for V T3Y
tree .

For small distances, the Coulombic behaviour of photon and Z tree-level potential cancels,
as SU(2) and U(1) disentangle in the UV. Similarly, for the NLO correction, we find

δV T3Y (r → 0) = const. (4.1)

which also holds for each gauge-invariant sub piece individually, as visible in the lower panel
of figure 2 by the constant ratio between LO and NLO potential. The origin of the constant
term becomes clear when examining the tree-level linear combination in the method of
regions expansion [32]. The Fourier transformation from momentum to position space of a
Yukawa potential has two regions for r → 0. The first region is given by 1

r ∼ |k| � mZ ,
which in dimensional regularization can be evaluated order by order to

µ̃2ε
∫

dd−1k
(2π)d−1 e

ik·r 4πα
k2 +m2

Z

= µ̃2ε
∫

dd−1k
(2π)d−1 e

ik·r
∞∑
n=0

4πα
k2

(
−m

2
Z

k2

)n
1
r
∼|k|�mZ

≈
∞∑
n=0

µ̃2ε
∫

dd−1k
(2π)d−1 e

ik·r 4πα
k2

(
−m

2
Z

k2

)n
= α

r
cosh(mZr)

r→0−→ α

r

(
1 + 1

2m
2
Zr

2 +O(m4
Zr

4)
)
, (4.2)

and reproduces all the attractive contributions of the Yukawa potential, particularly the
leading Coulomb behaviour for r → 0, that cancels against the photonic term for the T 3Y

linear combination. However, to capture the screening due to the exchange boson mass, the
second region that encapsulates all gauge boson mass-dependent contributions, which is
given by |k| ∼ mZ � 1

r needs to be considered. Here the gauge-boson propagator cannot
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Figure 2. The NLO correction to the tree potential V T 3Y
tree . The upper panel shows the modulus

of the potential |r · V (r)| for the LO and NLO potential, the NLO contribution only, and the
large-distance asymptotic behaviour. In the lower panel, we show the ratio of the full NLO potential
to the LO potential (blue solid) and separately for the three gauge invariant pieces identified in the
text (other curves).

be expanded. Nevertheless, we can perform an expansion in |k · r| � 1. The resulting
integrals are power-like divergent and require regularization. To evaluate the second region,
we conveniently choose dimensional regularization and find

µ̃2ε
∫

dd−1k
(2π)d−1 e

ik·r 4πα
k2 +m2

Z

= µ̃2ε
∫

dd−1k
(2π)d−1

4πα
k2 +m2

Z

∞∑
n=0

(ik · r)n

n!
1
r
�|k|∼mZ

≈
∞∑
n=0

µ̃2ε
∫

dd−1k
(2π)d−1

4πα
k2 +m2

Z

(ik · r)n

n! (4.3)

= α

r
sinh(−mZr)

r→0−→ α

r

(
−mZr −

1
6 m

3
Zr

3 +O(m5
Zr

5)
)
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which captures all screening contributions of the Yukawa potential, in particular the first
subleading term for r → 0. For the T 3Y linear combination at tree-level, this means

V T3Y
tree (r) = α

r
− α

r
e−mZr r→0−→ αmZ . (4.4)

For the NLO correction, a similar cancellation happens, i.e., the leading pieces from
mZ � |k| ∼ 1

r cancel as SU(2) and U(1) disentangle at small-distance, respectively high
energies. Therefore, the correction stems from the region |k| ∼ mZ � 1

r . However, an
analytic extraction of the NLO coefficient is very challenging, as at NLO, the expanded
Fourier transform of complicated one-loop structures, e.g., from the SM self-energies, needs
to be evaluated. We can extract the light-fermionic contribution as all Fourier transforms
from momentum to position space are analytically know, i.e., the full result can be Fourier
transformed and then Taylor expanded around r → 0. For electroweak and third-generation
quarks, this is not possible as the Fourier transforms are not analytically known (cf.
appendix B.2 of [19]). The coefficients can be extracted numerically, or one could try to
extract them by solving the integrals over the one-loop mass and momentum structures.
Technically, the latter is equivalent to solving various two-loop integrals in d = 3.

In any physical application, the coefficient is irrelevant for practical purposes, which
is why we refrain from performing this analytic calculation. If T 3Y is present for the
potential, also T 3T 3 and Y Y are non-vanishing, which have an 1/r asymptotic behaviour
at small distances. Already at mW r ≈ 0.1, both are more than two orders of magnitude
larger. At even smaller distances, the differences grow linearly, making the constant term
phenomenologically unimportant. For cases where different multiplets act as static sources
and therefore T 3Y could appear without T 3T 3 or Y Y , Higgs potentials with a tree-level
term are expected, making the T 3Y UV limit again subleading.

The massive contributions are screened for large distances, and the leading correction
comes from the corrections to photon exchange at tree-level. Split into the various gauge-
invariant sub-parts, we find

δV T3Y
light ferm.(k2 → 0) = 76

9
α2

k2 ln k2

m2
Z

+O(k0) , (4.5)

δV T3Y
3rd gen. quarks(k2 → 0) = 4

9
α2

k2 ln k2

m2
Z

+O(k0) , (4.6)

δV T3Y
electroweak(k2 → 0) = α2

2s
2
W

m2
W

F (mW ,mZ ,mH) . (4.7)

The light fermionic and third-generation quark contribution — namely there bb̄-loops
— correct the large-distance behaviour logarithmically with a coefficient proportional to
the electromagnetic beta function. The electroweak correction is given by the function
F (mW ,mZ ,mH) in appendix A and is exponentially suppressed in position space. Nev-
ertheless, the function provides a strong check on the calculation as it has to obey the
screening theorem [38] for the Higgs mass dependence, which is indeed fulfilled. It evaluates
to −0.61209 for on-shell parameters. Therefore the full correction to the T 3Y channel at
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Figure 3. The NLO correction to the tree potential V Y Y
tree . The upper panel shows the modulus of

the potential |r ·V (r)| for the LO and NLO potential, the NLO contribution only, and the asymptotic
behaviours (the change from solid to dashed indicates the sign change of the correction). In the lower
panel, we show the ratio of the full NLO potential to the LO potential (blue solid) and separately
for the three gauge invariant pieces identified in the text (other curves).

large distances is given by

δV T3Y
r→∞(r) = α2

2πr (−β0,em) (ln(mZr) + γE) (4.8)

where β0,em = −80/9 is the electromagnetic beta function coefficient.

4.1.2 Y Y -linear combination

In figure 3, the correction in the channel δV Y Y is shown. At small distances, as ex-
pected, we recover the potential correction to the unbroken U(1)Y theory, i.e., the various
gauge-invariant sub-parts are corrected by beta function logarithms corresponding to their
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hypercharge

δV Y Y
light ferm.(k2 →∞) = α2

1
k2

(
49
9 ln k2

m2
Z

+ 3c2
W

s2
W

ln m
2
W

m2
Z

)
(4.9)

δV Y Y
3rd gen. quarks(k2 →∞) = α2

1
k2

(
11
9 ln k2

m2
Z

+G(mW ,mZ ,mt)
)

(4.10)

δV Y Y
electroweak(k2 →∞) = α2

1
k2

(
1
6 ln k2

m2
Z

+H(mW ,mZ ,mH)
)
. (4.11)

The further functions G(mW ,mZ ,mt) and H(mW ,mZ ,mH) that correct the purely Coulom-
bic piece for r → 0 are given in appendix A. G can be approximated to sub permille
accuracy in the interval of ±10 GeV around the on-shell top-mass mt,os = 173.1 GeV, by
G(mW ,mZ ,mt) = 11.9389+4.40457 ·10−4 GeV−2× (m2

t −m2
t,os), for all other parameters at

on-shell values. The function H evaluates to 2.53229 for on-shell parameters. To determine
the full asymptotic behaviour in the r → 0 limit, we define

∆2 = 3c2
W

s2
W

ln m
2
W

m2
Z

+G(mW ,mZ ,mt) +H(mW ,mZ ,mH) , (4.12)

which in the Y Y -sector takes the form

δV Y Y
r→0(r) = α2

1
2πr

(
−β0,Y (ln(mZr) + γE) + 1

2∆2

)
≈ α2

1
2πr (−β0,Y ln(mZr) + 1.97247) (4.13)

where β0,Y = −49
9 −

11
9 −

1
6 = −41

6 , and the last line provides the numerical value for on-shell
parameters. Of the numerical coefficient, the light-fermion term makes up −4.46142, the
third-generation quarks 5.26395, the electroweak terms 1.16994 and the Euler-Mascheroni
constant associated with the logarithm −3.94431.

Going to large distances, the leading correction, as for T 3Y above, stems from corrections
to the photonic Coulomb potential. Therefore, the correction is again logarithmic in the
electromagnetic beta function, and the electroweak part only gives a subleading contribution

δV Y Y
light ferm.(k2 → 0) = 76

9
α2

k2 ln k2

m2
Z

+O(k0) , (4.14)

δV Y Y
3rd gen. quarks(k2 → 0) = 4

9
α2

k2 ln k2

m2
Z

+O(k0) , (4.15)

δV Y Y
electroweak(k2 → 0) = α2

2s
2
W

m2
W

I(mW ,mZ ,mH) (4.16)

with the function I(mW ,mZ ,mH) = 0.75918 for on-shell parameters, given in functional
form in appendix A and obeying the screening theorem [38]. Therefore, at large distances,
we find

δV Y Y
r→∞(r) = α2

2πr (−β0,em) (ln(mZr) + γE) . (4.17)
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Figure 4. The relevant one-loop self-energy, that in the large distance, small momentum exchange
region, gives the long-range asymptotic (4.19) for δV T 3T 3 − 2δV T 3Y + δV Y Y .

In contrast to the T 3T 3 analogue, discussed on the wino channel χ+χ− → χ+χ− in [19],
the beta function behaviour for large and small distances does not change sign for the Y Y
correction, as both limits correspond to an Abelian symmetry. In turn, this means that the
correction changes sign in the most relevant region mW r ∼ 1, cf. figure 3.

4.1.3 Special linear combinations of T 3 and Y

For the T 3T 3 projection, as well as the T 3Y and Y Y cases discussed above, at large
distances, the correction is dominated by the U(1)em correction to the tree-level photonic
Coulomb potential. In special cases, where the Coulomb potential is not present at tree-level,
e.g., if T 3

R,ii + Yi = Qi = 0, the correction shows different IR behaviour, as only Z-exchange
is possible at tree-level. Therefore, we have to reanalyze the large distance behaviour for
the relevant linear combinations in these cases.

We begin with the linear combination, for which both heavy particles are electrically
neutral, i.e., T 3

ii = −Yi and T 3
jj = −Yj . In this case, the relevant linear combination reads

δV T3T3−2T3Y+Y Y
Z−only = δV T3T3 − 2δV T3Y + δV Y Y . (4.18)

At large distances, i.e. small momenta, massive propagators are not resolved anymore, which
leads to the situation depicted in figure 4. The Z-boson propagators can be shrunk to a
point, and the EFT is essentially a Four-Fermi theory. However, as the light fermions in the
loop are massless from the perspective of the electroweak scale, they generate a long-range
potential that on dimensional grounds has to scale as r−5. We find the asymptotic behaviour

δV r→∞
Z−only(r) = 12α

πs2
W c

2
Wm

5
Zr

5

{
αmZ

c2
W s

2
W

[(
27− 54s2

W + 76s4
W

36

)
+
(

9− 12s2
W + 8s4

W

72

)]}

= 12α
πs2

W c
2
Wm

4
Zr

5
ΓZ
mZ

(4.19)

where the Z-width is given by mZΓZ = ImΣZZ
T (m2

Z). In the first line, inside the curly
brackets, the terms indicate the light fermionic and third-generation quark (i.e., bb̄-loops)
contributions to the Z-width, respectively. The behaviour is shown in figure 5. The physics
is completely analogous to the corresponding situation in the (off-diagonal) W -exchange
channel (cf. [19]), and is known from the analogous situation of a long-range force due to
massless neutrino exchange in atomic physics [39, 40].

– 14 –



J
H
E
P
1
0
(
2
0
2
1
)
1
3
6

10−2 10−1 100 101

mWr

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

|r
·V

(r
)|

Channel V T3T3 − 2V T3Y + V Y Y

δV (r) only

VLO+δV (r)

VLO

δVasy.(r 7→ 0/∞)

10−2 10−1 100 101

mWr

0.88

0.92

0.96

1.00

1.04

1.08

∣ ∣ ∣ ∣1
+
δV

(r
)

V
L

O
(r

)∣ ∣ ∣ ∣

Channel δV T3T3 − 2δV T3Y + δV Y Y

Full correction

Light fermions

3rd gen. quarks

Electroweak

10−2 10−1 100 101

mWr

10−7

10−6

10−5

10−4

10−3

10−2

|r
·V

(r
)|

Channel V T3T3 − V T3Y

δV (r) only

VLO+δV (r)

VLO

δVasy.(r 7→ 0/∞)

10−2 10−1 100 101

mWr

0.84

0.88

0.92

0.96

1.00

1.04

1.08
∣ ∣ ∣ ∣1

+
δV

(r
)

V
L

O
(r

)∣ ∣ ∣ ∣

Channel δV T3T3 − δV T3Y

Full correction

Light fermions

3rd gen. quarks

Electroweak

10−2 10−1 100 101

mWr

10−7

10−6

10−5

10−4

10−3

10−2

|r
·V

(r
)|

Channel V Y Y − V T3Y

δV (r) only

VLO+δV (r)

VLO

δVasy.(r 7→ 0/∞)

10−2 10−1 100 101

mWr

1.00

1.02

1.04

1.06

∣ ∣ ∣ ∣1
+
δV

(r
)

V
L

O
(r

)∣ ∣ ∣ ∣

Channel δV Y Y − δV T3Y

Full correction

Light fermions

3rd gen. quarks

Electroweak

Figure 5. The NLO correction to the tree-level Z-boson only exchange potentials discussed in the
text. The left panel shows the modulus of the potential |r · V (r)| for the LO and NLO potential,
the NLO contribution only, and the large-distance asymptotic behaviour (the change from solid to
dashed for the correction only line, indicates the sign change of this term). In the right panel, we
show the ratio of the full NLO potential to the LO potential (blue solid) and separately for the three
gauge invariant pieces identified in the text (other curves). The upper plots correspond to the linear
combination given in (4.18), the middle and lower plots to the linear combinations in (4.20).
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Figure 6. The relevant one-loop self-energy, that in the large distance, small momentum exchange
region, gives the long-range asymptotic (4.21) for δV T 3T 3 − δV T 3Y and δV Y Y − δV T 3Y .

For an indirect detection analysis, e.g., of minimal DM, where the overall charge of the
two-particle system is vanishing, the above is sufficient. In general, e.g., in relic abundance
calculation or going away from DM, the restriction of both heavy particles being neutral
for a Z-only Yukawa potential at tree-level is too restrictive. Without loss of generality, let
us assume that the heavy particle i is neutral T 3

R,ii = −Yi and the particle j is electrically
charged T 3

R,jj 6= −Yj . The linear combination for the potential corrections is then

−YiT 3
jj

(
δV T3T3 − δV T3Y

)
+ YiYj

(
δV Y Y − δV T3Y

)
, (4.20)

meaning we have to examine δV T3T3 − δV T3Y and δV Y Y − δV T3Y . The asymptotic
behaviour at large distances is now r−3, as there is still the possibility of a photon coupling
to the charged particle, as depicted in a concrete example in figure 6. The correction is of
opposite sign between the two linear combinations, in order to reproduce (4.19) if the two
asymptotics are added(
δV T3T3 − δV T3Y

)
(r → 0) = −

(
δV Y Y − δV T3Y

)
(r → 0)

= − α1α2
18πm2

Zr
3

{(
38c2

W − 38s2
W − 11

)
+
(
2c2
W − 2s2

W + 1
)}

(4.21)

where the terms in the curly brackets correspond to light fermions and third-generation
quarks, respectively. As indicated in figure 6, the terms arise from massless fermion loops in
ΣγZ
T , and if added the middle and lower panel of figure 5 — adjusted for the sign — indeed

reproduce the upper panel.

4.2 Fitting functions for the NLO correction

To make the result easily usable, we provide fitting functions for the various channels
using the on-shell parameters discussed above. The fitting functions approximate the full
numerical Fourier transform of the momentum space potentials in section 3 to permille
level accuracy for the region of interest in practical calculations, e.g., of the Sommerfeld
enhancement. In order to shorten notation, we introduce the variables x = mW r, and
L = ln x. Note that for the asymptotic regions x & 102 and x . 10−2, the asymptotic
behaviours discussed above may be used. Differences between asymptotic behaviours and
full Fourier transform are permille level or even below in these regions.
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Fitting function for off-diagonal W -exchange. A piecewise function efficiently fits
the off-diagonal W -exchange contribution due to a sign change of the correction around
x0 = 555/94, and the different functional forms of the long and short-distance behaviour.
The function is introduced in [18] for the wino in the channel χ0χ0 → χ+χ−, which amounts
to an overall minus sign from wino coupling factors. We repeat the function for completeness

δV W
fit (r) = 2595α2

2
πr

×


−exp

[
−79(L− 787

12 )(L− 736
373 )(L− 116

65 )(L2− 286L
59 + 533

77 )
34(L− 512

19 )(L− 339
176 )(L− 501

281 )(L2− 268L
61 + 38

7 )

]
, x < x0

exp
[
−13267(L− 76

43 )(L− 28
17 )(L+ 37

30 )(L2− 389L
88 + 676

129 )
5(L− 191

108 )(L− 256
153 )(L+ 8412

13 )(L2− 457L
103 + 773

146 )

]
, x > x0

,

(4.22)

to be used in (3.2).

Fitting function for T 3T 3. For the projection on the T 3T 3 component of the photon
and Z potential, the fitting function

δV T3T3
fit = δV T3T3

r→∞

1 + 32
11x
− 22

9
+ δV T3T3

r→0

1 + 7
59x

61
29
− α

r

[
− 1

30 + 4
135 ln x

1 + 58
79x
− 17

15 + 1
30x

119
120 + 8

177x
17
8

]
, (4.23)

is introduced and can be used in (3.3). The function was first given — with adjusted
coupling factors — for the corresponding wino channel in [18]. The asymptotic behaviours
for r → 0,∞ are given by (with rationalized coefficients)

δV T3T3
r→0 (r) = α2

2
2πr

(
β0,SU(2) ln(mZ r)−

1960
433

)
(4.24)

δV T3T3
r→∞ (r) = α2

2πr β0,em (ln(mZr) + γE) (4.25)

with β0,em = −80/9 and γE the Euler-Mascheroni constant. For an in detail discussion
on the asymptotic behaviours and the full functional form in terms of mW ,mZ ,mH ,mt,
see [19] where these are discussed in great detail for the wino channel χ+χ− → χ+χ−.

Fitting function for Y Y . For the pure hypercharge projection Y Y , we again fit with
a piecewise function, as there is a sign change around x1 = 718

853 . The function to be used
in (3.3) is given by

δV Y Y
fit (r) =



δV Y Y
r→0

1 + 97
12306436e

− 484
119x
− α2

r

71
104 + 145

2109x

1 + 262
185e

− 961
412x

+
41
19r + 42

11mW

1 + 126870 e
484
119x

, x ≤ x1

δV Y Y
r→∞

1 + e
356
185−

191
179x

+ α2

r

−85336
177 −

272x
21

1 + e
398
373x−

127
66

+
4402

9 −
959
√
x

93 + 564x
35

1 + e
643
602x−

2157
1120

 , x > x1

.

(4.26)

The asymptotic behaviours in the r → 0,∞ limit were given above in (4.13) and (4.17).
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Fitting function for T 3T 3 + T 3Y . Separately fitting the channel T 3Y to sufficient
accuracy proves challenging. As T 3T 3 and Y Y are always non-zero as long as both heavy
sources are within the same multiplet, we fit T 3T 3 + T 3Y , which provides a much better fit
quality compared to only fitting T 3Y . Together with T 3T 3 and Y Y , the fitting functions
still cover all relevant linear combinations, except those with special IR dynamics below.
The resulting fitting function to be used within (3.3) is given by

(
δV T3T3 + δV T3Y

)
fit

(r) = δV T3T3
r→0

1 + 62
161x

203
185

+ 2 δV T3T3
r→∞

1 + 807
280x

− 267
268

+
α
r

(
−77

57 + 71
485L−

64
263L

2
)

(
1 + 268

7 x−
220
109
) (

1 + 686
145x

48
43
) ,

(4.27)

where the necessary asymptotic behaviours are given in (4.24) and (4.25).

Fitting function for T 3T 3−2T 3Y + Y Y . As discussed above, if the tree-level photon
exchange vanishes even though Z-exchange is still possible, special IR behaviour of the
potentials is observed. If the Z-only potential from the linear combination T 3T 3−2T 3Y +Y Y
appears in (3.3), we use a piecewise fitting function, due to the sign change in the correction
around x2 = 1382

275(
δV T3T3 − 2δV T3Y +δV Y Y

)
fit

(r)

= α2

r


− exp

[
597(L− 1667

108 )(L− 837
503 )(L− 55

34 )(L− 961
911 )(L2− 1715

563 L+ 2072
587 )

83(L− 841
31 )(L− 292

133 )(L− 1733
1054 )(L− 2105

1302 )(L2− 729
263L+ 1422

451 )

]
, x ≤ x2

exp
[
−3710(L− 637

396 )(L+ 2999
875 )(L2− 7506

1819L+ 1097
240 )(L2− 5789

2180L+ 2399
1326 )

933(L− 398
247 )(L− 933

613 )(L+ 2137
662 )(L2− 2785

664 L+ 8311
1749 )

]
, x > x2

. (4.28)

Fitting function for T 3T 3 − T 3Y . Finally, we need to cover the two cases with r−3

long-distance behaviours. For T 3T 3 − T 3Y in (3.3), we fit with a piecewise function(
δV T3T3 − δV T3Y

)
fit

= −α
2

r


exp

[
1823(L− 262

15 )(L− 100
91 )(L2− 641

145L+ 1226
177 )(L2− 1434

341 L+ 4709
1052 )

243(L− 1549
52 )(L− 925

319 )(L2− 1438
351 L+ 642

151 )(L2− 595
158L+ 1491

281 )

]
, x ≤ x3

exp
[
−902(L− 1229

169 )(L− 29
279 )(L2− 1331

278 L+ 327
56 )(L2− 2920

747 L+ 1013
258 )

(L− 3891
535 )(L+ 5687

13 )(L2− 627
131L+ 391

67 )(L2− 811
207L+ 661

169 )

]
, x > x3

, (4.29)

with x3 = 950
119 .

Fitting function for Y Y −T 3Y . For the linear combination Y Y −T 3Y in (3.3), we find(
δV Y Y − δV T3Y

)
fit

= α2

r


exp

[
518(L− 496

19 )(L+ 106
283 )(L2− 392

185L+ 827
394 )(L2+ 67

189L+ 1473
158 )

83(L− 395
8 )(L− 747

236 )(L2− 659
445L+ 193

108 )(L2+ 347
2171L+ 677

81 )

]
, x ≤ x4

exp
[

1636(L− 837
79 )(L+ 147

397 )(L2− 1073
265 L+ 801

173 )(L2− 1805
727 L+ 2630

1127 )
11(L− 687

64 )(L− 1981
24 )(L2− 2457

601 L+ 520
111 )(L2− 449

179L+ 312
115 )

]
, x > x4

, (4.30)

with x4 = 379
189 .
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Figure 7. Ratio of the numerical Fourier transform of the potential correction to the fitting functions
in the variable x = mW r for the channels Y Y (blue/dashed) and T 3T 3 + T 3Y (red/dash-dotted)
in the upper panel. In the lower panel, the same ratio is shown for the channels with power-like
large distance asymptotic behaviours T 3T 3−T 3Y (blue/dashed), Y Y −T 3Y (red/dash-dotted) and
T 3T 3 − 2T 3Y + Y Y (green/dotted).

4.2.1 Accuracy of the fitting functions

The accuracy for the off-diagonal W -exchange and the diagonal T 3T 3-exchange fitting
functions has already been discussed in depth in [18]. It was found that the fitting functions
provide permille level accurate results, except in the absolute vicinity of a sign change (W -
exchange). For practical calculations, e.g., of the Sommerfeld factors in indirect detection,
this translates into subpermille accurate results, except close to zero-energy resonance
positions where deviations of up to three permille are found.

The comparison of the fitting functions against the full numerical solution of the Fourier
transformation from position to momentum space in the new channels is shown in figure 7.
In the upper panel, the channels Y Y (blue/dashed) and T 3T 3 + T 3Y (red/dash-dotted) are
shown both agreeing on the permille level with the numerical solution, except very close
to the sign change in Y Y , where the ratio of full numerical potential to fitting function
naturally blows up.
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We also find permille level accuracy for cases with special long-distance behaviours
(lower panel), except at the sign changes. For practical purposes, the results are sufficient
to allow an accurate solution of the Schrödinger equation. To validate this statement,
we use the higgsino model implemented as discussed in [14]. We find that the accuracy
is similar to the wino case [18] with a maximum of two permille deviation at the exact
resonance positions and even subpermille accuracies for the Sommerfeld factors off resonance.
Implicitly, this tests all fitting functions, except T 3T 3 − T 3Y and Y Y − T 3Y , which would,
e.g., appear in the relic abundance calculation. Given the precise agreement of numerical
Fourier transform and fitting function shown in figure 7, we expect similar accuracy if these
fitting functions are used to solve the Schrödinger equation.

4.3 General comments

Before concluding, let us make a few remarks on renormalization schemes and parameter
dependencies without repeating a similar in-depth discussion as provided for the pure SU(2)
part in the wino case [19]. At small distances, the beta function logarithms for r → 0 cause
a breakdown of perturbation theory in the channel δV Y Y (the channel δV T3Y does not
suffer this divergence, as SU(2) and U(1) disentangle for high-energies). The dangerous
logarithmic behaviour is cured by a renormalization scheme conversion to the MS-scheme
that absorbs the leading logarithms. For practical calculations, e.g., of the Sommerfeld
enhancement, where the region mW r ∼ 1 dominates, the logarithmic behaviour of the
on-shell result does not change the result by much in comparison to the MS treatment. In
the infrared, the MS-scheme suffers problems, e.g., in the off-diagonal W -exchange channel
with r−5 long-range behaviour, an unphysical r−3 tail is induced in MS. Therefore, it is
not clear which scheme is superior for practical calculations [19]. The differences for final
results are compatible with the expected differences between two renormalization schemes
at one-loop.

Similarly, the parameter dependence for the new potentials involving hypercharge is
similar to the pure SU(2) case [19]. The only input parameter with a significant dependence
and a sizeable modification of the one-loop potentials is the top quark mass as exemplified
for the function G below eq. (4.11). For the mixed T 3Y component, a similar relative
dependence is expected. However, as the contribution is subdominant for r → 0 compared
to T 3T 3 and Y Y , a further investigation is not warranted. Furthermore, as the massive
self-energy loops decouple in the infrared, the top mass dependence is also unimportant at
large distances. Therefore, from a phenomenological standpoint, the top mass dependence
to T 3Y is irrelevant.

5 Conclusion

In this paper, we have shown that the NLO correction to the electroweak potentials induced
by W,Z, and photon exchange is universal and follows a “Casimir-like” scaling. Thereby,
we have unravelled a “low-energy” property of the SM gauge-bosons. Previously, the NLO
correction was discussed for wino DM [19], which covers the cases of pure SU(2) interactions
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(T+T− and T 3T 3). In addition, we also calculated the SU(2) and hypercharge mixing
contribution (T 3Y ) and the pure hypercharge correction (Y Y ) for the SM.

For the general case of arbitrary hypercharge, we also identify linear combinations with
unique infrared behaviour, namely when the electric charge of the heavy particles vanishes.
For the case of T 3T 3 − 2T 3Y + Y Y , we find an r−5 long-distance tail from light-fermion
loops in pure Z-exchange known in the neutrino context [39, 40] and first discussed in
the DM context in [18] (for the case of W -exchange). In addition, for T 3T 3 − T 3Y and
Y Y − T 3Y , i.e., Z-exchange between a neutral and a charged particle, a long-distance r−3

tail from photon and Z-mixing at NLO arises. To the best of our knowledge, this is a
completely new long-range potential not discussed previously in the literature.

To make our results accessible, we provide fitting functions that approximate the full
numerical Fourier transform of the NLO correction to permille level accuracy. While this
paper focuses on the technical computation of the NLO potentials and their behaviour,
many phenomenological analyses become possible with the fitting functions at hand. For
example, a reanalysis, e.g., of the viable minimal DM candidates is on the cards, both
in indirect detection and relic abundance considerations [3]. Similarly, it may also be
interesting to assess the impact of the correction on bound state formation, e.g., in the
accurate determination of the minimal DM relic abundance [41, 42].

Finally, a comment on the applicability of the results is in order. The results allow the
construction of the NLO correction for arbitrary electroweak charged models which obey
mχ � mZ . The results are also an integral part of models involving Higgs potentials, such
as the MSSM. In this case, however, the correction to the Higgs potentials and depending on
the considered gauge, also the tree-level Goldstone and longitudinal gauge boson potentials
would need to be worked out. As long as the contribution of Higgs potentials is small, which
is typically the case, e.g., in the MSSM [5], our results already provide a good approximation
to the full NLO correction also in this case.
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A Analytic coefficients for asymptotic behaviours

In section 4.1, we discussed the asymptotic behaviour for r → 0/∞ of the NLO correction
to the potentials. In this appendix, the lenghty functions of SM masses and Weinberg
angles are provided that appear in this context. The arctan terms below stem from the
simplification of real parts of self-energies, e.g., in the gauge-boson mass renormalization.

A.1 The r →∞ asymptotics - arbitrary SM representation
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A.2 The r → 0 asymptotics - arbitrary SM representation
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