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1 Introduction

Any candidate theory of quantum gravity must be able to characterize space-time geometry
in terms of integral degeneracies of states in the spectrum of the quantum theory. Further,
transitions from one geometry to another must be characterized by changes in these inte-
gral degeneracies. String theory has been shown to fulfil these expectations, albeit for a
restricted class of gravitational systems. Specifically, it has been able to provide explicit
counting formulas for a class of BPS configurations which appear as supersymmetric black
holes in various five- and four-dimensional theories of gravity [1–3]. In these examples,
generating functions for the exact integral statistical degeneracies of BPS microstates un-
derlying a given BPS black hole macrostate have been written down. In this note, we will
be focusing on 1/4 BPS states in four-dimensional N = 4 string theory models obtained by
compactifying heterotic string theory on T 6, or equivalently Type II on K3 × T 2, as well
as its ZN orbifold theories called CHL models, with N = 2, 3, 5, 7 [2, 4–27]. For simplicity,
we will refer to all these theories, including the parent theory, as CHL theories, regarding
the parent heterotic theory as corresponding to a trivial Z1 orbifold.
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A generic BPS configuration in these theories carries electric and magnetic charges
with respect to multiple Abelian U(1) gauge fields and hence is referred to as a dyonic BPS
state. 1/4 BPS generating functions in these theories have been written down in terms
of Siegel modular forms defined on a Sp(2,Z) upper half plane, called Siegel upper half
plane. These generating functions count three kinds of 1/4 BPS dyonic states, namely:
those that gravitate to form single centre 1/4 BPS dyonic black holes with a finite horizon
area in two-derivative gravity, two-centred bound states of 1/2 BPS constituents, and
finally single centre states that have zero horizon area at the two-derivative level. The
single centre states exist in all regions of moduli space and are hence labelled immortal.
For each two-centred bound dyon, there exist co-dimension one loci in the moduli space
of the theory across which the said state marginally decays into its 1/2 BPS constituents.
Consequently, these states are called decadent dyons, while the corresponding decadent loci
are referred to as their decay walls. We will be studying dyonic decays in a two-dimensional
space, called the axion-dilaton moduli space, where the decay walls correspond to lines of
marginal stability (LMS). A decadent dyon, therefore, exists only on one side of its line
of marginal stability. The generating function has an infinite family of second order poles,
a subset of which are parametrized by matrices in1 Γ0(N) ⊂ PSL(2,Z) and correspond to
the decadent lines of marginal stability. The appearance or disappearance of two-centred
bound states when crossing a line of marginal stability changes the degeneracy by an
amount equal to the residue of the generating function at the corresponding pole. This
change is referred to as a wall-crossing jump (∆d)LMS. The residue contribution at each
pole can be computed by mapping it to a single ‘canonical’ pole which corresponds to the
simplest possible dyonic decay, namely the dyon splitting into a 1/2 BPS electric and a 1/2
BPS magnetic monopole. The wall-crossing jump then is simply the product of the known
degeneracy of each constituent and their electromagnetic angular momentum, called the
Dirac-Schwinger-Zwanziger angular momentum. The existence of lines of marginal stability
guarantees that there exists a region of moduli space, where a given decadent dyon has
decayed and no longer exists as a two-centred system. It completely disappears from the
1/4 BPS spectrum and does not contribute to the dyonic degeneracy in this region. Hence,
decadent dyonic degeneracy at a given point in moduli space can be calculated as follows.
Starting from this point, as one moves through moduli space to the terminal region where
the dyonic degeneracy is known or independently determined, a given decadent dyon can
decay across one of a series of lines of marginal stability corresponding to possible decay
modes. The total change in dyonic degeneracy evaluated as the sum of the wall-crossing
jumps at these decay lines is the difference of the degeneracies at its initial and terminal
points. Hence the decadent dyonic degeneracy in the initial region is

dInitial = dTerminal +
∑
LMS

(∆d)LMS . (1.1)

To exactly compute this change, we need a systematic method of tracking and character-
izing the lines of marginal stability encountered by a given dyon as it moves to a terminal

1Γ0(N) =
{(

a b

c d

)
∈ PSL(2,Z) | c = 0 mod N

}
.
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region, where its degeneracy contribution is either zero or a finite quantity that is inde-
pendently determined. For a given decadent dyon it has been shown [12, 20] that these
can be encoded as a set W of Γ0(N) matrices.2 The matrices in this set were recently
studied by [26], who showed that the set was finite and translated the counting problem
into constraints on these matrices. In the absence of an explicit characterization of the set
W , their analysis requires careful identification of certain decay modes corresponding to
black hole bound state metamorphosis (BSM) [20, 26, 29] in order to avoid overcounting.

In this note, we will provide a systematic and explicit characterization of this set W by
setting up a new approach based on continued fractions for decadent dyons. This arithmetic
encodes a rule for generating elements of W , using the continued fraction representation
of a ratio of two charge bilinears associated with the decadent dyon. This new approach
automatically avoids all overcounting complications, such as BSM, associated with dyonic
decays. The basic principles of this new decadent dyon counting framework can be summed
up as follows:

1. Decadent dyons decay across lines of marginal stability in moduli space, either to
disappear from the 1/4 BPS spectrum or to leave behind an immortal remnant with
a vanishing classical horizon and with a finite contribution to the BPS degeneracy that
is independently determined. Hence, for every decadent dyon, there exists a terminal
region, i.e., a region of moduli space where its degeneracy is either vanishing or finite
and known.

2. The lines of marginal stability are in a one-to-one correspondence with a subset of
the second order poles of the generating function, parametrized by the group Γ0(N).3

3. The lines of marginal stability divide the axion-dilaton moduli space into connected
regions/chambers [20]. Following [26], we will compute dyonic degeneracies in one of
these regions, called the R-chamber.

4. The lines of marginal stability that a given dyon encounters in its trajectory through
the axion-dilaton moduli space from the R-chamber to its terminal region, where its
degeneracy is known or independently determined, are encoded in a setW of matrices
in Γ0(N).

5. Our decadent dyon counting principle can be stated as follows:

The sequence of lines of marginal stability which encode decadent dyonic degeneracy
is systematically generated by the continued fraction representation of two integers
associated with the decadent dyon.

The salient features of the results of this paper are briefly outlined as follows.
We solve the decadent dyon counting problem specified in terms of three charge bilin-

ears (m, n, `) with ∆ = 4mn − `2 ≤ 0. Using the observation that the lines of marginal
2For an analysis of the walls of marginal stability in N = 2 string theories, see [28].
3In theN = 1 case, the lines of marginal stability are in one-to-one correspondence with Γ+(1), see (2.18).
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stability are Farey arcs which correspond to Γ0(N) matrices, we show that the finite se-
quence of Γ0(N) matrices in W has the distinctive property that its last element, which
we denote by γ∗, completely determines W .

Using known constraints on the charge bilinears to fix γ∗, each element of W can be
read off from its decomposition in terms of the PSL(2,Z) basis {

(
1 1
0 1

)
,

(
1 0
1 1

)
}. This fixes

W explicitly. Hence, the formula (1.1) can be used to compute the dyonic degeneracy
dInitial(m, n, `). For ∆ = 0, we find a remarkable property for dTerminal: it is the dyonic de-
generacy of an immortal dyonic configuration with charge bilinears (0, 1

N gcd(m,nN, `), 0)
and captured by a known mock modular form [21, 24] for each CHL orbifold.

This note is structured as follows. In section 2 we will define the dyon counting
problem by first reviewing the setup and notation employed in characterizing dyons and
dyonic degeneracies in N = 4 CHL theories and, in particular, explicate the representation
of each line of marginal stability by a Γ0(N) matrix. The review material in this section
follows [20]. In section 3, we will solve the dyon counting problem by introducing relevants
aspects of the theory of continued fractions, and we will explicitly show how the requisite
lines of marginal stability for computing a decadent dyonic degeneracy are generated by
a continued fraction representation. Our solution for characterizing the lines of marginal
stability can be displayed as an elegant diagrammatic representation of decay walls based
on continued fraction convergents and Farey arcs. In section 4 we systematize various
features of the reasoning behind and implications of our results for ZN CHL models. In
the appendix we comment on the relation of our continued fraction approach to the theory
of integral binary quadratic forms and comment on BSM.

2 Dyon counting problem

2.1 Notation and setup

We consider ZN CHL orbifold models with N = 1, 2, 3, 5, 7. These models have r =
48/(N + 1) + 4 Abelian gauge fields with respect to which a generic BPS state in these
theories carries electric and magnetic charges [9]. These form vectors ~Q and ~P respectively.
~P lies in an r-dimensional even lattice that for any N > 1 model is not self-dual, while ~Q

lies in the dual lattice to ~P such that N ~Q itself belongs to an r-dimensional integral even
lattice. Dyonic degeneracies are functions of three rational numbers associated with the
dyons, namely: the norms of the electric and magnetic vectors, Q2 = 2n and P 2 = 2m
respectively, and the inner product of the electric and magnetic vectors, Q · P = `, which
form the T-duality invariants of the theory. Further, the 1/4-BPS states in these theories
are characterized in terms of two U-duality invariants [13, 16, 18, 30],

∆ = Q2 P 2 − (Q · P )2 = 4mn− `2 , (2.1)

I = gcd(Qi Pj −Qj Pi) , 1 ≤ i, j ≤ r , (2.2)

where Qi and Pj are the ith and jth components of ~Q and ~P . For N = 1, the dyonic de-
generacies for arbitrary torsion I are explicitly given in terms of the degeneracies d(m,n, `)
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for I = 1 as [17, 18]
dI(m,n, `) =

∑
t|I
t d(m, n

t2
,
`

t
) . (2.3)

In the following, we will focus on the I = 1 case for N = 1, 2, 3, 5, 7. Later, we will
generalize our results to I > 1, but N = 1 alone.

Single centre 1/4 BPS black holes with finite horizon area have ∆ > 0. In this paper,
we will consider two-centred 1/4 BPS configurations with ∆ ≤ 0. For the case N = 1, it
was shown in [22] that the degeneracies of single centre 1/4 BPS black holes are encoded
in states with ∆ < 0 through a generalized Rademacher expansion.

We will focus on 1/4 BPS states with primitive charges, and belonging to the twisted
sector of the ZN CHL orbifold when N > 1. The generating function for dyonic degen-
eracies of these 1/4 BPS states4 is a modular form5 of a subgroup of the genus-2 modular
group Sp(2,Z) [9], (we use the conventions of [20])

1
Φk(ρ, σ, v) =

∑
m,nN ≥ −1
m,nN, ` ∈ Z

(−1)`+1 d(m,n, `) e2πi (mρ+nσ+`v). (2.4)

Φk has an infinite family of second order zeroes in the (ρ, σ, v) Siegel upper half plane. A
subset of these satisfy (see eq. (5.1) in [12]; we follow the notation of [20])

pqσ2 + rsρ2 + (ps+ qr)v2 = 0 ,
(
p q

r s

)
∈ Γ0(N) , (2.5)

where (ρ2, σ2, v2) are the imaginary parts of (ρ, σ, v), and where

Γ0(N) =
{(

a b

c d

)
∈ PSL(2,Z) | c = 0 mod N

}
. (2.6)

These loci form co-dimension 1 hypersurfaces or walls which delineate different domains
in the (v2/σ2, ρ2/σ2) plane. These correspond to the lines of marginal stability in the
axion-dilaton complex upper half plane [12, 20], as shown in figure 1.

At each of these lines, two-centred dyons can fragment into individual 1/2 BPS con-
stituents and disappear from the spectrum. The wall-crossing jump is precisely the residue
of the generating function evaluated at the corresponding pole. Each of these lines falls
into one of two categories [20]: they are either circles that intersect the horizontal axis at
two rational points, p/r and q/s, with ps − qr = 1, or they are vertical lines at integral

4See [15, 24, 27] for BPS degeneracies in the untwisted sector.
5Φk is a modular form of weight k = 24/(N + 1)−2 under a subgroup G̃ ⊂ Sp(2,Z) [9]. It transforms as

Φk(Ω) → det(C Ω +D)k Φk(Ω),

where Ω =
(
ρ v

v σ

)
denotes the period matrix of the genus-2 Riemann surface which transforms as Ω →

(AΩ +B)(C Ω +D)−1 under transformations
(
A B

C D

)
∈ G̃.
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Figure 1. Lines of marginal stability in the axion-dilaton complex upper half plane for the
case N = 1.

points on the horizontal axis. The latter can be viewed as special circles that connect p/r
and q/s, with vanishing r or s. We will refer to all of these circles as Farey arcs. Hence,
associated with each line of marginal stability is a Γ0(N) matrix

(
p q

r s

)
, formed from its

rational endpoints p/r and q/s. The ith vertical line lies i units to the right of the vertical
axis and is labelled by the ith power of the T -generator of PSL(2,Z) given by

(
1 1
0 1

)
. Hence,

vertical lines are referred to as T-walls and divide the axion-dilaton complex upper half
plane into semi-infinite strips, each of which contains an infinite number of Farey arcs. In
particular, the T-wall passing through the origin of the axion-dilaton complex upper half
plane corresponds to the unit matrix. The lines of marginal stability represented by circles
with finite rational points p/r and q/s are called S-walls.

The decay modes at each line of marginal stability are completely determined by the
corresponding Γ0(N) matrix, as is the corresponding zero (2.5) of Φk, as [20]

γ =
(
p q

r s

)
∈ Γ0(N) :

(
Q

P

)
→
(
p (sQ− q P )
r (sQ− q P )

)
+
(
q (−r Q+ pP )
s (−r Q+ pP )

)
. (2.7)

The decay mode corresponding to the unit matrix is the simplest case of a dyonic decay:
the dyon undergoes an ‘elementary’ split into a pure electric and a pure magnetic fragment,
as can be seen by putting q = r = 0 and p = s = 1 in the above formula to get

γ =
(

1 0
0 1

)
:
(
Q

P

)
→
(
Q

0

)
+
(

0
P

)
, v2 = 0 . (2.8)

We will refer to this T-wall as an elementary T-wall. The corresponding wall-crossing jump
produces a change in the dyonic degeneracy formula. This change can be computed by
observing that for v → 0 [9],

Φk(ρ, σ, v) v→ 0−−−→ v2 f (k)(ρ) f (k)
(
σ

N

)
, (2.9)

where f (k) is a specific weight (k + 2) modular form of Γ0(N), namely [9] f (k)(ρ) =
η(ρ)k+2 η(Nρ)k+2, where η(ρ) denotes the Dedekind eta function. We write the Fourier
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expansion of its inverse as

1
f (k)(ρ)

=
∞∑

m=−1
d1(m) e2πimρ ,

1
f (k)(σ/N)

=
∞∑

n=−1/N
d2(n) e2πinσ . (2.10)

Hence, the wall-crossing jump across this T-wall can be deduced from the v = 0 residue of
the generating function to be [20]

∆ d(m,n, `) = (−1)`+1 |`| d1(m) d2(n) . (2.11)

We now make an important point about encoding the orientation of the decay walls
in terms of a Γ0(N) matrix

(
p q

r s

)
[20]. We take the orientation to run from the second

column to the first column, which represents the wall running from q/s to p/r. Hence, the
elementary T-wall runs from 0 to i∞. It can be shown [20] that for ` > 0, the two-centred
state (m,n, `) exists to the left of the elementary T-wall and disappears from the 1/4 BPS
spectrum as one crosses the wall from left to right. Conversely, the ` < 0 two-centred state
exists to the right of this wall and decays across it as we move from right to left. The
labelling of lines of marginal stability by Γ0(N) matrices allows us to map a generic dyon
decay as in (2.7) to the elementary T-wall decay,

γ−1
(
Q

P

)
=
(
Qγ
Pγ

)
→
(
sQ− qP

0

)
+
(

0
−rQ+ pP

)
=
(
Qγ
0

)
+
(

0
Pγ

)
. (2.12)

The charge bilinears (m,n, `) are mapped to (mγ , nγ , `γ),

Q2
γ

2 = nγ = s2 n+ q2m− qs ` ,

P 2
γ

2 = mγ = r2 n+ p2m− pr ` ,

Qγ · Pγ = `γ = −2rs n− 2pq m+ (ps+ qr) ` . (2.13)

Under this map, a two-centred 1/4 BPS state (m,n, `) which exists to the left of a Farey
arc, and decays across it, is mapped to a two-centred 1/4 BPS state (mγ , nγ , `γ > 0) which
exists to the left of the elementary T-wall, while a two-centred 1/4 BPS state (m,n, `)
which exists to the right of a Farey arc, and decays across it, is mapped to a two-centred
1/4 BPS state (mγ , nγ , `γ < 0) which exists to the right of the elementary T-wall.

Thus, the wall-crossing jump contribution of a dyon
(
Q

P

)
across a generic line of

marginal stability, labelled by a Γ0(N) matrix γ, to the dyonic degeneracy formula is equal
to the jump contribution of the dyon

(
Qγ
Pγ

)
across the elementary T-wall [20],

∆γ d(m, n, `) = (−1)`γ+1 |`γ | d1(mγ) d2(nγ) . (2.14)

Hence, counting contributions from the decay of a given dyon across various lines of
marginal stability is equivalent to counting decays for corresponding γ-equivalent dyons
across the elementary T-wall.
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Further, given a Farey arc with rs > 0 and ps− qr = 1, the relation p
r −

q
s = 1

rs implies
that the second column rational number is less than the first column one. If we reverse the
orientation of the γ- matrix by switching the two columns by making use of the S-generator
of PSL(2,Z) given by

(
0 −1
1 0

)
,

γ → γ

(
0 −1
1 0

)
, (2.15)

then the corresponding `γ flips sign and r s < 0. The effect of the column switching is to
interchange the two fragments in the γ-frame i.e. the elementary split now looks like(

Qγ
Pγ

)
→
(

0
Pγ

)
+
(
Qγ
0

)
. (2.16)

Following [26] we now define

Γ+(N) =
{
γ =

(
p q

r s

)
∈ Γ0(N)| rs > 0

}
,

Γ−(N) =
{
γ =

(
p q

r s

)
∈ Γ0(N)| rs < 0

}
. (2.17)

We note the relation
Γ−(1) = Γ+(1)

(
0 −1
1 0

)
= Γ+(1)S . (2.18)

From the above discussion we conclude that lines of marginal stability labelled by matrices
in Γ+(N) with `γ > 0, and in Γ−(N) with `γ < 0, correspond to dyonic decays where the
decadent dyon exists above the lines of marginal stability.

2.2 Defining the dyon counting problem

We now define the decadent dyon counting problem for CHL dyons with I = 1.
Consider the R-strip sandwiched between the elementary T-wall at 0 and the T-wall

at 1. The R-chamber is the region in the R-strip adjoining the elementary T-wall and
which does not contain lines of marginal stability. We consider a decadent two-centred
state with ∆ ≤ 0 that exists in a region of the axion-dilaton moduli space corresponding
to the R-chamber. It will decay along some loci in the upper half plane.6 Starting in the
R-chamber, as we move down in the R-strip, the dyon encounters a progression of decay
walls represented by increasingly smaller Farey arcs. Each such arc can be mapped to a
γ-frame corresponding to an elementary split of a

(
Qγ
Pγ

)
. If γ lies in Γ+(N) (in Γ−(N))

and the corresponding `γ satisfies `γ > 0 (`γ < 0), then by the arguments given above,
the decadent dyon will exist above the Farey arc and decay across it. To put it another
way, starting from a chosen point in the R-strip lying below a particular Farey arc, any
trajectory directed vertically upwards in the R-chamber will encounter a unique finite
sequence of increasingly larger Farey arcs till it enters the R-chamber.

6The largest Farey arc in this strip is the semi-circle intersecting the horizontal axis at 0 and 1, and it
is a decay wall only for the N = 1 case.
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Therefore, given a point in the R-strip lying below the R-chamber, one can construct
a sequence of Γ0(N) matrices corresponding to the sequence of Farey arcs that will be
intersected by a vertical line starting from this point and ending in the R-chamber. In
this note, given a triplet (m,n, `), we will explicitly construct a sequence W (m,n, `) to
compute the dyonic degeneracy d(m,n, `) in the R-chamber via the master formula (2.19)
given below, while avoiding overcounting complications such as BSM.

The elements in the sequence W (m,n, `) will be indexed by natural numbers in the
order in which they are encountered as one moves down from the R-chamber.7 If d∗
represents the known or independently computable dyonic degeneracy at a point ∗ in
the strip, separated from the R-chamber by k walls (Farey arcs) corresponding to the k
elements of W (m,n, `), with the wall-crossing jump across the ith wall denoted by ∆i,
then the master equation for computing decadent dyonic degeneracies in the R-chamber is
given by8

d(m,n, `) = d∗ +
k∑
i=1

∆i = d∗ + (−1)`+1
k∑
i=1

γi ∈W (m,n,`)

|`γi | d1(mγi) d2(nγi) , (2.19)

where d1 and d2 where introduced in (2.10).
From (2.4), it is clear that if the kth γ-frame charges satisfy mγk < −1 or nγk < −1/N ,

then the dyonic degeneracy d(mγk , nγk , `γk) is zero. In this case, the total change in the
dyonic degeneracy due to wall-crossing jumps across the sequenceW (m,n, `), starting from
the largest Farey arc to the last wall below where it ceases to exist, is equal in magnitude
to the degeneracy of the dyon in the R-chamber. Hence, given (m,n, `) for which one can
identify a finite decay sequence W (m,n, `) of Γ0(N) matrices such that the endpoint γ∗
of this sequence corresponds to a charge configuration with vanishing contribution d∗ to
the dyon counting formula, then the decadent dyonic degeneracy in the R-chamber can be
written as [20, 26]

d(m,n, `) = (−1)`+1 ∑
γ ∈W (m,n,`)

|`γ | d1(mγ) d2(nγ) . (2.20)

We are now ready to give an operational definition of the dyon counting problem as
follows: given charge bilinear invariants (m,n, `) with ∆ ≤ 0,

1. define a finite dyonic decay sequence W (m,n, `) of Γ0(N) matrices corresponding
to decay walls in the R-strip, such that the endpoint of this sequence corresponds
to bilinears (mγ , nγ , `γ) with known or independently computable dyonic degeneracy
d∗ = d(mγ , nγ , `γ).

2. Then use the master formula (2.19) to compute d(m,n, `), the dyonic degeneracy in
the R-chamber.

7That is, the largest Farey arc γ matrix will be γ1, the next smaller one will be γ2 and so on.
8From (2.13), `γ = ` mod 2, allowing us to replace (−1)`γ +1 in (2.14) by (−1)`+1.
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Figure 2. Options for downward decay trajectories.

3 Solving the decadent dyon counting problem

3.1 Dyonic decay sequence W (m, n, `)

In order to characterize W (m,n, `), we will first restrict our analysis to decadent dyons
with torsion I = 1 in the heterotic string theory on T 6, the N = 1 CHL model. We will
consider decadent dyons with I > 1 in subsection 3.7. Our formulation of decadent dyons
with I = 1 will be easily generalized subsequently to the N = 2, 3, 5, 7 CHL models, as
will be discussed in subsections 3.4 and 3.8.

In the heterotic string theory on T 6, the lines of marginal stability are la-
belled by PSL(2,Z) matrices, with [f (k)(ρ)]−1 in (2.10) given by [η24(ρ)]−1 =∑
m∈Z,m≥−1 d1(m) e2πimρ. Arranging the three T-duality invariant charge bilinears in a

binary quadratic form,

A =
(

2m −`
−` 2n

)
, (3.1)

the PSL(2,Z) transformations (2.13) on the charges which bring them into the γ-frame can
be represented as a γ conjugation operation,

γ : A → γT Aγ = Aγ =
(

2mγ −`γ
−`γ 2nγ

)
. (3.2)

Thus, the problem of characterizing W (m,n, `) can be re-stated as the problem of identi-
fying a corresponding sequence {Aγ}. Recall that the γ-matrices in W (m,n, `) generating
this sequence will be in Γ+(N) (respectively Γ−(N)), in which case the corresponding line
of marginal stability contributes to the decadent dyon degeneracy if `γ > 0 (respectively
`γ < 0). Further, for every γ− ∈ Γ−(1), there exists a γ+ ∈ Γ+(1) such that γ− = γ+ S.
As S is a basis generator of PSL(2,Z), and hence is a symmetry of the N = 1 CHL model,
we can choose the matrices γ in W (m,n, `) to lie solely in Γ+(1).

In order to solve the dyon counting problem, we must first construct a W (m,n, `), or
alternatively a finite Farey arc sequence, such that in the region below the last Farey arc in
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the sequence, the dyonic degeneracy d∗ is known or independently determined. We do this
by observing that there exists a simple algorithm to construct the Farey arcs in the R-strip
starting from the largest and first arc that is encountered as one moves in the R-strip down
from the R-chamber. Figure 2 depicts possible options for downward decay trajectories.
The arcs are labelled in the order in which they are encountered. Let us denote the region
below the ith arc by Ri. The first arc that is inevitably crossed is the arc between 0 and
1 with a radius of 1

2 . This corresponds to γ1 =
(

1 0
1 1

)
. In R1, there is a binary choice to

turn left or right in order to intersect the arc between 0 and 1
2 and that between 1

2 and 1

respectively, corresponding to matrices γ2 =
(

1 0
2 1

)
= γ2

1 and γ′2 = γ1

(
1 1
0 1

)
. This process

can be repeated for both γ2 and γ′2. Hence, at every level, there exists a binary left-right
choice, which is equivalent to multiplying the γ matrix at that level by either U =

(
1 0
1 1

)
or T =

(
1 1
0 1

)
. Hence, the latter form a natural choice for a basis of PSL(2, Z) in terms of

which to express decay matrices in W (m,n, `). Thus, given the basis decomposition of an
PSL(2, Z) matrix γ in W (m,n, `),

γ = U s1 T s2 U s3 · · · T sr , s1, . . . , sr−1 > 0, sr ≥ 0 , (3.3)

the sequence W (m,n, `) corresponding to all Farey arcs starting from the largest one till
the arc γ∗ is given as

W (m,n, `) =
{
U, U2, . . . , U s1 , U s1 T, . . . , U s1T s2 , U s1 T s2 U, . . . , U s1 T s2 U s3 , . . . , γ∗

}
.

(3.4)
We now proceed to determine γ∗ for the decadent dyons. We will first determine γ∗

for ∆ < 0. The case ∆ = 0 will be analyzed in subsection 3.6.
We consider ∆ = 4mn−`2 < 0, and we restrict to 0 ≤ ` ≤ m without loss of generality,

following [26]. Note that this implies m > 0. In this case, as shown in [20], one can always
choose a γ∗ such that

mγ∗ < −1 ∨ nγ∗ < −1 =⇒ d∗ = 0. (3.5)

For concreteness, we will restrict to the case mγ∗ < −1 in the following. To construct a
matrix γ∗ satisfying the above constraint, we write down the explicit transformation of m
under the PSL(2, Z) matrix γ∗ =

(
p q

r s

)
using (2.13),

mγ∗ = r2 n+ p2m− p r ` . (3.6)

We will first impose the weaker condition mγ∗ < 0 to obtain for p/r (with r 6= 0),
the range,

`

2m −
√
−∆

2m <
p

r
<

`

2m +
√
−∆

2m . (3.7)

Further, under γ∗, ` transforms as

`γ∗ = −2 r s n− 2 p qm+ (p s+ q r) `. (3.8)
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Since we only count matrices in Γ+(1), we have `γ > 0 for all γ ∈ W (m,n, `). This must
hold, in particular, for γ∗. Using ps− qr = 1, we see that this constraint can be written as

`γ∗

rs
= −∆

2m − 2m
(
`

2m −
q

s

)(
`

2m −
q

s
− 1
rs

)
> 0 . (3.9)

A sufficient condition for the above inequality to hold is(
`

2m −
q

s

) (
`

2m −
q

s
− 1
rs

)
≤ 0, (3.10)

or more explicitly,

0 ≤ `

2m −
q

s
≤ 1
rs
. (3.11)

Therefore, to sum up, the condition mγ∗ < 0 constraints the first column
(
p

r

)
of γ∗

according to (3.7), while the constraint `γ∗ > 0 establishes a lower bound on its second
column via (3.11). A natural choice for the first column that satisfies (3.7) for arbitrary
(m,n, `) with ∆ < 0 and saturates the second inequality of (3.11) due to ps− qr = 1 is

(
p

r

)
=
(
`/g

2m/g

)
, (3.12)

where g = gcd(`, 2m). Hence our choice for the γ∗ matrix is
(
`/g q

2m/g s

)
. Its conjugacy

action (3.2) on the charge bilinear matrix A yields

γT∗ Aγ∗ = Aγ∗ =
(

2mγ∗ −`γ∗

−`γ∗ 2nγ∗

)
=
(

2m∆/g2 s∆/g
s∆/g 2 (q2m+ s2 n− q s `)

)
. (3.13)

Since γ ∈ Γ+(1) and ∆ < 0, the conditions mγ∗ < 0 and `γ∗ > 0 are indeed satisfied.
We will now show that a choice of values of q and s satisfying (3.11) are generated by the
continued fraction representation of `/2m.9

3.2 Euclid’s algorithm and continued fractions

In the previous subsection, we determined a matrix γ∗ =
(
p q

r s

)
, whose first column is given

by (3.12). The entries q and s of the second column have to satisfy the relation ps−qr = 1,
but were otherwise left unspecified. A particular choice for q and s can be obtained by
applying Euclid’s algorithm for determining g, the greatest common divisor (gcd) of the
two numbers p and r of the first column. An equivalent approach for determining γ∗ is
provided by the continued fraction of p/r, as follows.

9A reader familiar with continued fractions will observe that (3.11) is satisfied by the convergents (3.16)
of the continued fraction of `/2m.
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Take `,m ∈ N, and apply Euclid’s algorithm to determine the gcd g of the two numbers
` and 2m. Euclid’s algorithm can be summarized as follows:

` = a0 2m+ r0 ,

2m = a1 r0 + r1 ,

r0 = a2 r1 + r2 ,

r1 = a3 r2 + r3 ,

...
rn−3 = an−1 rn−2 + rn−1 ,

rn−2 = an rn−1 , (3.14)

with the gcd g given by g = rn−1. Note that 0 < ` ≤ m implies that a0 = 0 and r0 = `.
The set of quotients {a0, a1, a2, . . . , an} is elegantly encoded in the finite continued

fraction representation of `/2m as

`

2m = a0 +
1

a1 +
1

a2 +
1

. . . +
1
an

(3.15)

which we also denote by `/2m = [a0; a1, a2, . . . , an]. The convergents pk/qk =
[a0; a1, a2, . . . , ak] satisfy the following recursion relations [31]

p−2 = 0 , p−1 = 1 , q−2 = 1 , q−1 = 0 ,
pk = ak pk−1 + pk−2 , 0 ≤ k ≤ n ,

qk = ak qk−1 + qk−2 , 0 ≤ k ≤ n , (3.16)

which imply p0 = a0, q0 = 1. In the following, we set 0 < ` ≤ m, in which case `/2m =
[0; a1, a2, . . . , an].

The set {a1, a2, . . . , an} determines the following matrix γ∗,

γ∗ =
(
q `/g

s 2m/g

)
=
(

1 0
a1 1

) (
1 a2
0 1

) (
1 0
a3 1

)
· · ·
(

1 an
0 1

)
, n even ,

γ∗ =
(
`/g q

2m/g s

)
=
(

1 0
a1 1

) (
1 a2
0 1

) (
1 0
a3 1

)
· · ·
(

1 0
an 1

)
, n odd . (3.17)

Observe that(
`

2m

)
= γ∗

(
0
g

)
when n even ,

(
`

2m

)
= γ∗

(
g

0

)
when n odd . (3.18)

Note that the case n even corresponds to nγ∗ < 0, while the case n odd corresponds to
mγ∗ < 0.
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The decomposition (3.17) of γ∗ is the decomposition in the basis U and T as in (3.3).
Thus, Euclid’s algorithm implements successive operations of powers of U and T . The
decomposition (3.17) yields all the matrices in the dyonic decay sequence W (m,n, `) cor-
responding to lines of marginal stability, as in (3.4).

We now prove that (3.11) holds for every matrix in W (m,n, `) given by (3.4). Let
γi =

(
pi qi
ri si

)
be the ith matrix in W (m, n, `). Note that ri > 0, si > 0 in view of (3.4).

Then, by construction, one of the following two cases holds: either γi+ 1 = γi U , in
which case

pi+ 1 = pi + qi,

ri+ 1 = ri + si, (3.19)
qi+ 1 = qi,

si+ 1 = si,

or γi+ 1 = γi T , in which case

qi+ 1 = qi + pi,

si+ 1 = si + ri, (3.20)
pi+ 1 = pi,

ri+ i = ri.

Further, let γi+ 1 satisfy (3.11), implying 0 ≤ `
2m −

qi+ 1
si+ 1

≤ 1
(ri+ 1) (si+ 1) . Then, in the

case given by (3.19), it follows immediately that γi also satisfies (3.11), since ri > 0, si > 0.
In the case of (3.20), we see that

`

2m −
qi
si

= `

2m −
qi+ 1
si+ 1

− qi
si

+ qi+ 1
si+ 1

≤ 1
ri (si+ 1) + 1

si (si+ 1) = 1
ri si

, (3.21)

and hence γi also satisfies (3.11). Since γ∗ satisfies (3.11), the above result implies that
every matrix in W (m,n, `) does too.

Thus, we have constructed a dyonic decay sequence W (m,n, `) of Γ+(1) matrices
corresponding to the lines of marginal stability encountered along a continuous path
from the R-chamber to the region ∗, where the dyonic degeneracy is known or indepen-
dently determined.

3.3 Diagrammatic representation of decay walls

The observations (3.19) and (3.20) enable us to build up a diagrammatic representation of
the construction of decay walls from the continued fraction sequence. Recall that the two
columns of the matrix γ =

(
p q

r s

)
labelling a decay wall encode the endpoints q/s and p/r of

the corresponding Farey arc on the real axis in the axion-dilaton complex upper half plane.
Further, the first decay wall in the sequence is U corresponding to the endpoints 0

1 and 1
1 .

In the language of continued fractions, given the representation `/2m = [0; a1, a2, . . . , an],
its (n+ 1) convergents pk/qk = [0; a1, a2, . . . , ak] encode the decay walls, with consecutive
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(b) Diagrammatic representation of the
continued fraction 2/7 = [0; 3, 2] and
decay path. The number of quotients
matches the number of large triangles
with two colored edges each.

Figure 3. Characterization of the lines of marginal stability.

convergents pk/qk and pk−1/qk−1 defining the endpoints of the decay wall (from (3.16), we
recall the assignments p0/q0 = 0/1, p−1/q−1 = 1/0). Consecutive convergents are related
by the matrices in (3.17) as follows,(

p1 p0
q1 q0

)
→
(
p1 p2
q1 q2

)
→
(
p3 p2
q3 q2

)
→
(
p3 p4
q3 q4

)
→
(
p5 p4
q5 q4

)
. . . . (3.22)

Hence, the continued fraction encoding of the decay walls leads to the following rule for a
beautiful diagrammatic representation of W (m,n, `) (see [32] for a detailed proof):

The decay walls in W (m,n, `) corresponding to consecutive convergents are edges form-
ing a zigzag path, whose vertices are the convergents of `

2m = [0; a1, a2, . . . , an], starting at
1
0 and ending at `

2m . The path starts along the edge from 1
0 to 0

1 , then turns left across a
fan of a1 triangles, then right across a fan of a2 triangles etc, finally ending at `

2m .

A diagram representing this rule is depicted in figure 3b for `/2m = 2/7. Figure 3
encodes an example of the complete characterization of the lines of marginal stability.
Each element in W (m,n, `) corresponds to one edge in figure 3b. Hence, apart from the
computation of d∗ in (2.19), Figure 3 encodes all the information needed to solve the
decadent dyon counting problem in this example.

3.4 Determining d∗

Having characterized the dyonic decay sequence W (m,n, `), we now turn to the determi-
nation of d∗ in order to completely solve the dyon counting problem using (2.19). We note
that if the final charge bilinears satisfy the constraint, mγ∗ < −1 or nγ∗ < −1, then d∗ = 0.
However, our construction of W (m,n, `) only required the matrix γ∗ to satisfy the weaker
condition mγ∗ < 0 or nγ∗ < 0. Therefore, we have the following two cases:

1. mγ∗ < −1 or nγ∗ < −1. Hence d∗ = 0.
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2. mγ∗ = −1 or nγ∗ = −1. Here we restrict ourselves to the case mγ∗ = −1. In this
case, d∗ 6= 0. In order to compute d∗, we consider a further action on W (m,n, `) by
T j , where j > 0. Using (2.13), we infer the following change of the charge bilinears
under the action of T j ,

(m, n, `)γ∗ = (−1, n∗, `∗) → (−1, n∗ − j2 − j`∗ = nj , `∗ + 2j = `j). (3.23)

Hence, there exists a j0 > 0 such that for all j > j0 we have nj < −1, and hence
d(mj = −1, nj , `j) = 0. Thus we obtain the following expression for d∗,

d∗ =
∑

µ∈{T, T 2,...,T j0}
`γ∗µ d1(−1) d1(nγ∗µ) =

j0∑
j= 1

(`∗ + 2j) d1(−1) d1(n∗ − j2 − j`∗) .

(3.24)

In the case nγ∗ = −1 the above arguments go through, except that we consider the action
on W (m,n, `) by U j , where j > 0. In each of the above cases, d∗ encodes the wall-crossing
contribution to the degeneracy formula from walls corresponding to γ∗T j or γ∗U j matrices.
The operation by T j or U j is equivalent to extending the continued fraction of `/2m to
[0; a1, a2, . . . , an, j0].

The above formula can also be extracted from ψ−1(σ, v) in (4.9), as will be shown in
section 4. We have now computed all quantities on the right hand side of the dyonic degen-
eracy formula (2.19) and consequently, the decadent dyon degeneracy in the R-chamber
for ∆ < 0.

For the ZN CHL orbifold models one can use the procedure of extending the continued
fraction described above. In this case, the wall-crossing jumps encoded by d∗ arise from
matrices in Γ0(N). When mγ∗ < −1 or nγ∗ < −1/N , d∗ = 0. If γ∗ ∈ Γ0(N) and mγ∗ = −1
we obtain

d∗ =
∑

µ∈{T, T 2,...,T j0}
`γ∗µ d1(−1) d2(nγ∗µ) =

j0∑
j= 1

(`∗ + 2j) d1(−1) d2(n∗ − j2 − j`∗) . (3.25)

On the other hand, if at the end of the sequence of decay walls in W (m,n, `), corresponding
to the quotients in the continued fraction of `

2m , the final charge invariants satisfy n∗ =
−1/N with m∗ ≥ −1, we need to extend the W sequence by appropriate U matrices as in
the N = 1 case. In order to do so, observe that the Γ0(N) matrix

U c =
(

1 0
c 1

)
, (3.26)

with c = 0 mod N , maps the charge bilinears (m∗, n∗, `∗) to

mc = c2 n∗ +m∗ − c `∗ ,
nc = n∗ ,

`c = `∗ − 2 c n∗ , (3.27)
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where n∗ = −1/N, m∗ ≥ −1, `∗ ≥ 0 and c ≥ 1. Let c∗ be the minimum of the non-empty
subset of natural numbers defined as {c ∈ N, c = 0 mod N |mc < −1}. Then the relevant
sequence of U matrices to compute d∗ is {Uk|1 ≤ k ≤ c∗, k = 0 mod N}.

We will now display explicit formulae for decadent dyonic degeneracies with ∆ < 0 for
the case of heterotic string theory on T 6.

3.5 Explicit formulae

We take 0 ≤ ` ≤ m with m > 0 as well as ∆ < 0. This implies −1 ≤ n < 1
4m. We denote

the continued fraction of `/2m by

`

2m = [0; a1, a2, . . . , ar]. (3.28)

Denoting
m0 = m, n0 = n, `0 = `, (3.29)

we define recursively, with 1 ≤ i ≤ r,

mi = mi−1 + a2
ini−1 − ai`i−1, ni = ni−1, `i = `i−1 − 2aini−1, for i odd

mi = mi−1, ni = a2
imi−1 + ni−1 − ai`i−1, `i = `i−1 − 2aimi−1, for i even.

(3.30)

Note that this is the same as computing the matrices γi (using (3.3)) from the continued
fraction (3.28) and defining

mi = mγi , ni = nγi , `i = `γi . (3.31)

Lastly, define

mij =mi−1+j2ni−1−j`i−1, nij =ni−1, `ij = `i−1−2jni−1, for i odd and 1≤ j≤ ai,
mij =mi−1, ni = j2mi−1+ni−1−j`i−1, `ij = `i−1−2jmi−1, for i even and 1≤ j≤ ai.

(3.32)

Then we obtain for the decadent dyonic degeneracy (2.19),

d(m,n, `) = d∗ + (−1)`+1
r∑
i=1

ai∑
j=1
|`ij | d1(mij)d1(nij) . (3.33)

Here the summation is only over values mij and nij satisfying mij , nij ≥ −1.
In the very specific instance when mγ∗ = −1, we see that n = 1

4(m − 1) and ` = m.
Hence m+ 1 is even. The continued fraction of `/2m is then simply `/2m = [0; 2], and the
decadent dyonic degeneracy (2.19) takes the form

d(m,n, `) =

u b
√

m
4 +1− 1

2c∑
q=1

(2q + 1) d1(n− q2 − q)

+ 1
2(m+ 1) (d1(n))2 + d1(n) . (3.34)
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3.6 ∆ = 0

Now we consider the case ∆ = 4mn − `2 = 0. We restrict to 0 ≤ ` ≤ m with m > 0,
without loss of generality, following [26].

The logic and computational steps are exactly as in the ∆ < 0 case. The γ∗ frame
charge bilinear matrix (3.13) takes on the value

Aγ∗ =
(

0 0
0 2nγ∗

)
∨ Aγ∗ =

(
2mγ∗ 0

0 0

)
. (3.35)

Notice that the conjugacy operation in (3.13) preserves not just the determinant ∆ of
the bilinear matrix, but also the greatest common divisor g̃ of its elements. Denoting
gcd(m,n, `) = g̃, we see that the only non-zero entry of Aγ∗ in (3.35) is

2 g̃ = 2nγ∗ ∨ 2 g̃ = 2mγ∗ . (3.36)

As before, the continued fraction representation of `/2m = [0; a1, . . . , an] yields a sequence
of convergents pk/qk = [0; a1, . . . , ak], k ≤ n, corresponding to the dyonic decay walls, with
the last wall γ∗ representing an immortal 1/4 BPS dyon (0, g̃, 0) or (g̃, 0, 0). Notice that
(0, g̃, 0) can be transformed into (g̃, 0, 0) by the matrix S ∈ PSL(2,Z), which is a symmetry
of heterotic string theory on T 6. Hence d(0, g̃, 0) = d(g̃, 0, 0), and without loss of generality,
we will now consider the case (0, g̃, 0).

Using the expansion of the dyonic degeneracy generating function for heterotic string
theory on T 6 in powers of m [21],10

1
Φ10(ρ, σ, v) = ψ−1e

−2πiρ +
∞∑

m= 0

(
ψFm(σ, v) + ψPm(σ, v)

)
e2πimρ ,

ψF0 (σ) = 2 E2(σ)
η24(σ) , (3.37)

it can be seen that the degeneracy of these mγ∗ = 0, `γ∗ = 0 dyons in the R-chamber is
captured by the quasi modular form,

2 E2(σ)
η24(σ) = − 2

∑
n≥−1

nd1(n) qn . (3.38)

Hence, d∗ = (−1)` 2 g̃ d1(g̃). The dyonic degeneracy formula for zero discriminant states in
the R-chamber is

d(m,n, `) = 2 g̃ d1(g̃)−
∑

γ ∈W (m,n,`)
|`γ | d1(mγ) d1(nγ) . (3.39)

Here we used the fact that for ∆ = 0, ` = 0 mod 2. This implies d∗ > 0, as is the case for
single centre 1/4 BPS black holes [33].

This solves the exact decadent dyon counting problem for the 1/4 BPS states charac-
terized by I = 1 in heterotic string theory on T 6.

10See section 4 for an expanded discussion.
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3.7 Decadent dyons with torsion I > 1

The extension of our solution to the dyon counting problem for I 6= 1 in heterotic string
theory on T 6 is quite straightforward. We again restrict to 0 ≤ ` ≤ m with m > 0. The
dyonic degeneracy, dI(m,n, `) for general I is expressed in terms [17, 18] of the dyonic
degeneracy of states d(m,n, `) for I = 1 as

dI(m,n, `) =
∑
t|I

t d(m, n
t2
,
`

t
) . (3.40)

Each summand in (3.40) is computed by (2.19) via the continued fraction approach to
generating decay walls. However, note that only those decay walls contribute to (2.19)
that correspond to nγ , `γ t = 0 mod t2. This condition implies that the dyonic walls
correspond to a subset of the PSL(2, Z) group, which as we show in the appendix, is
the subgroup

Γ0(t) =
{(

a b

c d

)
∈ PSL(2, Z) | b = 0 mod t

}
. (3.41)

Hence, choosing only Γ0(t) matrices from the continued fraction algorithm, we can perform
an exact computation of dI , using (3.40). We note here that each t|I summand in (3.40)
is computed via the continued fraction representation of `/(2 tm) (see (A.12)), while the
constraint (3.11) is implemented as 0 ≤ `

2 tm −
q
s ≤

1
r s . Further, the terminal point ∗ in

this case corresponds to mγ∗ < −1 or nγ∗ < −t2. It can be shown that mγ∗ < −1 for
the sectors t > 1. This implies that the contribution from the sectors t > 1 is entirely
determined by the set of matrices generated by the continued fraction of `/(2 tm), while
the sector t = 1 requires computing d∗ as in (3.24).

We have thus solved the decadent dyon counting problem for all negative and zero
discriminant 1/4 BPS states in N = 4 heterotic string theory on T 6. We now turn to its
CHL orbifolds for N = 2, 3, 5, 7.

3.8 ZN CHL orbifold models

We consider ZN CHL orbifold models with N = 2, 3, 5, 7. The lines of marginal stability in
these models have been extensively analyzed in [12, 20], where it was shown that the cor-
responding matrices lie in the congruence subgroup Γ0(N) ⊂ PSL(2, Z) defined in (2.6).11

Some of the lines of marginal stability in these models are shown in figure 4.
We compute the degeneracies for twisted sector torsion I = 1 decadent dyons in the

R-chamber with 0 ≤ ` < 2m. As in the heterotic string theory on T 6, we consider the
continued fraction of `/2m.

For our purposes, we need only observe that unlike in the parent heterotic theory, the
PSL(2, Z) S-matrix is no longer a symmetry when N > 1. Consequently, given a wall γ
labelled by a Γ+(N) matrix, the S-dual wall γS need not lie in Γ−(N), and hence is no

11Unlike in the parent heterotic theory, this does not coincide with the electric-magnetic duality group

Γ1(N) = {
(
a b

c d

)
∈ PSL(2, Z)|c = 0 mod N, a, d = 1 mod N} and is an ‘accidental’ symmetry of the

exact degeneracy formula.
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Figure 4. Lines of marginal stability in the R-strip in ZN CHL models with N = 2, 3, 5, 7 from
top to bottom.

longer guaranteed to be a legitimate decay wall. This implies that we must independently
count contributions from the Γ+(N) walls with `γ > 0 and Γ−(N) walls with `γ < 0 in the
decay sequence WN (m,n, `). We further note that the continued fraction representation
of `/2m generates non-negative quotients, and hence generates walls in Γ+(1) with `γ > 0,
by construction. In the orbifold theories, the Γ−(N) contributions can be extracted as
follows. Let

ΩN =
{
γ ∈ Γ+(1) =

(
a b

c d

)
∈ PSL(2, Z)| d = 0 mod N

}
. (3.42)

Then, given a ΩN matrix, γ =
(
a b

c d

)
, labelling a decay wall generated by the continued

fraction representation of `
2m and corresponding to `γ > 0, we conclude that it will not

represent a legitimate dyonic decay wall for the ZN CHL orbifold. However, the S-dual
matrix γ S lies in Γ−(N) with `γ < 0 and will constitute a valid wall. Hence, we can sum
up the decadent dyon counting solution for CHL models as follows:

The dyonic decay sequence WN (m,n, `) in a ZN CHL orbifold of the heterotic string
theory on T 6 is given by

WN (m,n, `) = (W ∩ Γ+(N)) ∪ (WS ∩ Γ−(N)) , (3.43)

where W denotes the set W (m,n, `) in heterotic string theory on T 6.
Having defined WN , decadent dyonic degeneracies can be computed for I = 1 dyons in

these models by (2.19). We note that for ∆ = 0 dyons, the degeneracy d∗ of a dyon with
charge bilinears (0, ĝ, 0), where

ĝ = gcd(m,nN, `)
N

, (3.44)
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is obtained as follows. Similar to the N = 1 case, the expansion (4.15) of the modular form
1/Φk, given in (2.4), that counts 1/4 BPS dyons yields the following m = 0 quasi-modular
counting function12 [24],

ψF−k, 0(σ) = k + 2
12 (N − 1)

E2(σ/N)− E2(σ)
ηk+2(σ/N) ηk+2(σ) =

∑
nN∈N0

dN (n) qn , (3.45)

where we recall the relation 24/(N + 1) = k+ 2. Hence, d∗ = (−1)`+1dN (ĝ). Using (2.19),
the ∆ = 0 CHL decadent dyonic degeneracy is then given by

d(m, n, `) = −

dN (ĝ) +
∑

γ ∈WN (m,n,`)
|`γ | d1(mγ) d2(nγ)

 , (3.46)

where we used that for ∆ = 0, ` = 0 mod 2.
We have performed extensive numerical checks on the correctness of (2.19) in ZN CHL

orbifold models with N = 1, 2, 3, 5, 7.

3.9 Examples

We illustrate below the above procedure of constructingW (m,n, `) respectivelyW2(m,n, `)
to count decadent dyonic degeneracy by an example each of the ∆ < 0 and ∆ = 0 cases in
heterotic string theory on T 6 as well as an example in the Z2 CHL orbifold.

1. Heterotic on T 6:

(a) (m,n, `) = (14, 1, 8)
Then, ∆ = −8 and `

2m = 2
7 = [0; 3, 2] yielding walls corresponding to(

1 0
1 1

)
,

(
1 0
2 1

)
,

(
1 0
3 1

)
,

(
1 0
3 1

)(
1 1
0 1

)
=
(

1 1
3 4

)
,

(
1 0
3 1

)(
1 2
0 1

)
=
(

1 2
3 7

)
(3.47)

and respective charge bilinears

(7, 1, 6), (2, 1, 4), (−1, 1, 2), (−1,−2, 4), (−1,−7, 6) . (3.48)

The dyonic degeneracy is hence computed to be

d(14,1,8) = (−1)(6d1(7)d1(1)+4d1(2)d1(1)+2d1(−1)d1(1)) =−58671297648.
(3.49)

(b) (m,n, `) = (49, 4, 28).
Then, ∆ = 0 and `

2m = 2
7 = [0; 3, 2], which yields the same walls as in (3.47).

The respective charge bilinears are now

(25, 4, 20), (9, 4, 12), (1, 4, 4), (1, 1, 2), (1, 0, 0). (3.50)

Further,
d∗(49, 4, 28) = d(1, 0, 0) = 2d1(1) = 648 . (3.51)

12ψF−k, 0 in (3.45) is the Fricke dual of (A.73) in [24].
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This yields the dyonic degeneracy to be

d(49, 4, 28) = 648− (20d1(25)d1(4) + 12d1(9)d1(4) + 4d1(1)d1(4) + 2d1(1)d1(1))
= −459 542 242 945 399 203 613 080. (3.52)

(c) (m,n, `) = (12, 3, 12).
Then, ∆ = 0 and `

2m = 1
2 = [0; 2] yielding walls,(

1 0
1 1

)
,

(
1 0
2 1

)
(3.53)

and respective charge bilinears,

(3, 3, 6), (0, 3, 0). (3.54)

Then,
d∗(12, 3, 12) = d(0, 3, 0) = 6d1(3) = 153 900 , (3.55)

so that the dyonic degeneracy is

d(12, 3, 12) = 153 900− 6d1(3)d1(3) = −3 947 381 100 . (3.56)

In all the above cases, the computed decadent dyonic degeneracy tallies with
that read off from the corresponding Fourier coefficient of 1

Φ10
.

2. Z2 CHL orbifold:

N = 2: (m,n, `) = (7, 1
2 , 4).

Then, ∆ = −2 and `
2m = 2

7 = [0; 3, 2], which yields the same matrices as in (3.47).
Out of these, the matrices that are relevant for the degeneracy computation are those
that lie in W2 = (W ∩ Γ+(2)) ∪ (WS ∩ Γ−(2)), namely,(

1 0
2 1

)
,

(
−1 1
−4 3

)
(3.57)

with respective charge bilinears(
1, 1

2 , 2
)
,

(
−1,−1

2 ,−2
)
. (3.58)

This yields,

d

(
7, 1

2 , 4
)

= −2d1(1)d2

(1
2

)
− 2d1(−1)d2

(
−1

2

)
= −5410 . (3.59)

The computed decadent dyonic degeneracy tallies with that read off from the corre-
sponding Fourier coefficient of 1

Φ6
.
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In the above, although we have, for reasons of calculational simplicity, demonstrated
examples with small values of the charge invariants, it is worth pointing out that the
algorithm developed here is, in fact, a computationally more efficient way to compute
degeneracies of negative discriminant states than a brute force expansion of the inverse
of the Siegel form, 1/Φk, especially for large charge invariants. An illustrative example
is provided by a class of negative discriminant states with ` = m and n < m/4. For
large values of ` and m, extracting the corresponding coefficient of 1/Φk is indeed a time-
consuming operation. However, in our algorithm, we observe that the continued fraction
of the ratio `

2m = 1
2 is simply [0; 2], which generates at most two lines of marginal stability

represented by the matrices U and U2. In particular, as mU2 = ∆/m < −1, there is
only one line of marginal stability that contributes to the degeneracy for N = 1, while for
N > 1 there will be no contribution, since U /∈ Γ0(N) for N > 1, and hence the degeneracy
will be zero. This allows us to trivially compute the corresponding charge bilinears as
(mU = n, nU = n, `U = m− 2n). All that is left in order to compute the degeneracy jump
at the U decay wall is to simply obtain the coefficient of qn in the Fourier expansion of
the modular form 1/η24(ρ) (cf. (2.9)), a far more temporally efficient strategy than a brute
force series expansion of the inverse of the Siegel form in three variables.

4 Discussion

We systematize various features of the reasoning behind and implications of our results for
heterotic ZN CHL models below.

The microstate degeneracies d(Q,P ) of 1
4 BPS dyons (with I = 1) in heterotic string

theory on T 6 are determined in terms of three charge bilinears, denoted by m,n, ` in
subsection 2.1, i.e. d(Q,P ) = d(m,n, `). These bilinears satisfy the bounds m ≥ −1, n ≥
−1. 1

4 BPS dyonic states can be classified into immortal and decadent states. Immortal
states exist at all points in the axion-dilaton moduli space. These are either single centre 1

4
BPS black holes which require m,n > 0 as well as ∆ = 4mn−`2 > 0 (positive discriminant
states) or zero discriminant states with ∆ = 0.

Decadent states are two-centred 1
4 bound states of 1

2 BPS constitutents that either
cease to exist or come into existence when crossing walls of marginal stability in the axion-
dilaton moduli space [12, 20]. The generating function 1/Φ10 of 1

4 BPS dyonic degeneracies
for I = 1 in heterotic string theory on T 6 is defined on the Siegel upper half plane of genus
2 and admits the Fourier expansion

1
Φ10(ρ, σ, v) =

∞∑
m=−1

ψm(σ, v) e2πimρ , (4.1)

where the Fourier-Jacobi coefficients ψm are meromorphic Jacobi forms of weight −10
and index m with respect to PSL(2,Z). For evaluating their microstate degeneracies, the
symmetries of the even weight Jacobi forms ψm enable us to choose ` to lie in the range
0 ≤ ` < 2m, and subsequently restrict ` to lie in the range 0 ≤ ` ≤ m, with no loss of
generality [26]. As shown in [21], the ψm with m ≥ 0 have a canonical decomposition into
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two mock Jacobi forms,
ψm = ψFm + ψPm, (4.2)

with ψFm and ψPm, referred to as the finite and polar parts respectively. The finite part ψFm,
being holomorphic, possesses the Fourier expansion

ψFm(σ, v) =
∑
n,`∈Z

cFm(n, `) qn y` , q = e2πiσ , y = e2πiv , (4.3)

with well-defined Fourier coefficients cFm(n, `). We computed the dyonic degeneracy in a
region of the moduli space called R-chamber, where the decadent contribution to dyonic
degeneracy arises from two kinds of two-centred states, namely 1

4 BPS states with ∆ < 0
and ∆ = 0.

Thereby, we showed that the contribution of negative discriminant states to the index
d(m,n, `) is determined in terms of the continued fraction of the rational number `/2m
and in terms of T-walls associated with the Fourier coefficients c−1(n, `) of ψ−1. The mi-
crostate degeneracies of single centre 1

4 BPS black holes are encoded in the mock modular
forms ψFm [21]. These degeneracies turn out to be determined in terms of negative discrim-
inant states [22, 26] through a generalized Rademacher expansion of these mock modular
forms [34–37]. Hence, our result can be parsed as:

Single centre 1
4 BPS black hole degeneracies with I = 1 are determined in terms of

the continued fraction of the rational number `/2m and walls corresponding to T and U
matrices (cf. (3.4)) associated with the Fourier coefficients c−1(n, `) of ψ−1.

We proceed to summarise the chain of steps that establish this remarkable result. In
what follows, we will first identify the R-strip as one of the strips into which the axion-
dilaton moduli space is divided into by lines of marginal stability generated by powers of
T (see (4.13)) and derive a formula for c−1 in terms of wall-crossing across these lines. The
Fourier coefficients of ψFm in (4.3) can be divided into 3 sets which are characterized by
whether ∆ ≡ 4mn − `2 is positive, zero or negative. The polar part ψPm that appears in
the decomposition of ψm (with m ≥ 0) is given in terms of an Appel-Lerch sum A2,m [21],

ψPm(σ, v) = d(m)
η24(σ) A2,m(σ, v) , A2,m(σ, v) =

∑
s∈Z

qms
2+s y2ms+1

(1− qs y)2 , q = e2πiσ , y = e2πiv ,

(4.4)
where13 d(m) denote the Fourier coefficients of 1/η24(σ), i.e. 1/η24(σ) =

∑
m≥−1 d(m)qm.

The Appel-Lerch sum A2,m exhibits wall crossing, which means that its Fourier coefficients
are only well defined in a range s < Imv/Imσ < s+ 1, s ∈ Z, in which case

ψPm(σ, v) =
∑
n,`∈Z

cPm(n, `) qn y` . (4.5)

For fixed s, this condition on the range of Imv/Imσ defines a strip in the upper-half complex
plane Σ = Σ1 + iΣ2 (also called axion-dilaton moduli space), with Σ1 = −Imv/Imσ. The

13Here d(m) = d1(m), with d1(m) given by (3.38).
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boundaries of these strips are referred to as T-walls, and the Fourier expansion coefficients
of A2,m suffer jumps when one crosses a T-wall. These jumps are interpreted [21] as being
due to the existence of a bound state of two 1

2 BPS black holes on one side of the T-wall
that ceases to exist when crossing the wall to the other side. The strip s = −1 is referred
to as the R-strip. The R-chamber is the region in the R-strip adjoining the elementary
T-wall defined by Σ1 = 0 and which does not contain lines of marginal stability.

The Fourier-Jacobi coefficient ψ−1 appearing in (4.1) is special in that its decompo-
sition does not contain a finite part. ψ−1 is given by ψ−1(σ, v) = φ2(σ, g)/η18(σ), where
φ2 denotes the Jacobi form of index −1 given by φ2 = 1/ϑ2

1(σ, v), which possesses the
following representation in terms of Appel-Lerch type sums [38] (we use the definition of
the Jacobi theta function ϑ1 given in [9]),

φ2(σ, v) = η−6(σ)
∑
n∈Z

(2n+ 1)q
n(n+1)y

1− qny +
∑
n∈Z

qn
2+2ny2

(1− qny)2 , q = e2πiσ , y = e2πiv . (4.6)

Following [20, 26] we chose to work in the R-chamber. Evaluating the Appel Lerch
sum A2,m (with m ≥ 0) in this chamber yields

A2,m(σ, v) =

∑
k>0

∑
l>0
−
∑
k≤0

∑
l<0

 l qmk
2+lk y2mk+l . (4.7)

Setting ` = l+ 2mk, one readily observes that there are no terms y` in this expansion with
` in the range 0 ≤ ` < 2m. Hence, the Fourier coefficients cPm(n, `) of ψPm(τ, z) vanish for `
in the range 0 ≤ ` < 2m when evaluated in the R-chamber. Consequently, for this range of
values of `, the Fourier coefficients of ψm in the R-chamber equal the Fourier coefficients
cFm(n, `) of ψFm [26]. Therefore, there are no contributions from ψPm to decadent dyonic
degeneracies in the R-chamber.

In the R-chamber, η6(σ)φ2(σ, v) has the Fourier expansion

η6(σ)φ2(σ, v) =
∑
`≥1

` y−` +
∑
k≥1

2k qk2 +
∑
`≥1

∑
k≥1

(2k + `)qk2+`k(y` + y−`), (4.8)

while the Fourier expansion of ψ−1,

ψ−1(σ, v) =
∑
n,`∈Z

c−1(n, `) qn y`, (4.9)

is obtained using (4.8) and the expansion 1/η24(σ) =
∑
j≥−1 d(j)qj . For ` > 0, the coeffi-

cients c−1(n, `) are inferred from the expression∑
j≥−1

d(j)qj
∑

k≥1
(2k + `)qk2+`k

 =
∑

n≥0,k≥1,
n−k2−k`≥−1

(2k + `) d(n− k2 − k`) qn , (4.10)

which results in

c−1(n, `) =
∑
k≥1,

n−k2−k`≥−1

(2k + `) d(n− k2 − k`) , n > 0 . (4.11)
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This has a wall crossing interpretation, as follows. Expressing c−1(n, `) in terms of the
transformed charge bilinears mγ = −1, nγ = n− k2 − k` ≥ −1, `γ = 2k + ` > 0 as

c−1(n, `) =
∑

γ∈{Tk, k∈N}
`γ d(mγ)d(nγ) , (4.12)

the coefficients c−1(n, `) can be interpreted as arising due to the crossing of T-walls that
are described by PSL(2,Z) matrices γ of the form

T k =
(

1 k
0 1

)
, k ≥ 1 . (4.13)

Alternatively one could view (4.12) as a wall-crossing derivation of c−1(n, `). One sees
that (4.12) is precisely d∗ computed in (3.24).

Let us now return to the microstate degeneracies of single centre 1
4 BPS black holes,

which are given in terms of the Fourier coefficients cFm(n, `), where we may restrict to
0 ≤ ` ≤ m, as discussed above, and where n > 0 to ensure that ∆ = 4mn − `2 > 0. The
Fourier coefficients cFm(n, `) are calculated in the R-chamber, by integrating ψFm along a
path that satisfies Imv/Imσ = −`/2m. On the other hand, they are also encoded in the
polar coefficients of ψFm [22, 26]. Thus, computing the latter in the R-chamber leads to
a complete determination of the microstate degeneracies d(m,n, `) of single centre 1

4 BPS
black holes. The polar coefficients of ψFm can be expressed as [20, 26]

cFm(n, `) =
∑

γ∈W (m,n,`)
(−1)`γ+1 |`γ | d(mγ) d(nγ) , ∆ = 4mn− `2 < 0 , (4.14)

where each of the summands represents the contribution of a wall-crossing jump to the
index d(m,n, `).

As we showed in this paper, the set of walls W (m,n, `) that are crossed can be taken
to consist of those that are crossed when following the path associated with the continued
fraction decomposition of `/2m.

The same reasoning applies to the contribution of wall-crossing jumps to cFm(n, `) in
the R-strip for ∆ = 0 decadent states.

Equation (4.14) can be readily generalized to the study of negative discriminant states
in CHL models. These models are obtained by taking a ZN orbifold of heterotic string
theory on T 6 with N = 2, 3, 5, 7. In a CHL model, the microstate degeneracies of 1

4 BPS
dyons in the twisted sector are encoded in a Siegel modular form Φk (with the weight k
given by k = 24/(N + 1) − 2) that is invariant under the congruent subgroup Γ0(N) ⊂
PSL(2,Z) [9]. Φk admits the Fourier expansion

1
Φk(ρ, σ, v) =

∞∑
m=−1

ψ−k,m(σ, v) e2πimρ . (4.15)

The Fourier-Jacobi coefficient ψ−k,−1 is given by [9]

ψ−k,−1(σ, v) = f2(σ) η6(σ)
ϑ2

1(σ, v)
, (4.16)
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where

f1(σ) =
[
η(σ)k+2η(Nσ)k+2

]−1
=

∞∑
j=−1

d1(j)qj , f2(σ) =
∞∑

r=−1/N
d2(r)qr = f1(σ/N) .

(4.17)
These expansions reflect the fact that the charge bilinears m and n in these models satisfy
the bounds m ≥ −1, n ≥ −1/N . For ` > 0, the Fourier expansion of ψ−k,−1 in the
R-chamber,

ψ−k,−1(σ, v) =
∑
n,`∈Z

c−k,−1(n, `) qn y` , (4.18)

results in
c−k,−1(n, `) =

∑
k≥1,

n−k2−k`≥−1/N

(2k + `) d2(n− k2 − k`) . (4.19)

Setting mγ = −1, nγ = n − k2 − k` ≥ −1/N, `γ = 2k + ` > 0 and using d1(−1) = 1, this
can be written as

c−k,−1(n, `) =
∑

γ∈{Tk, k∈N}
`γ d1(mγ) d2(nγ) , (4.20)

which has a T-wall crossing interpretation as in (4.13).
The Fourier-Jacobi coefficients ψ−k,m in (4.15) with m ≥ 0 can again be decomposed

into a mock Jacobi form ψF−k,m and a polar part ψP−k,m [21, 24, 25]. Taking the range14

of ` to be 0 ≤ ` < 2m, one again concludes that the Fourier coefficients of ψ−k,m (with
m > 0) equal the Fourier coefficients of ψF−k,m in the R-chamber. Then, assuming that
there is a generalized Rademacher expansion of the mock Jacobi form ψF−k,m for congruent
subgroups Γ0(N), the Fourier coefficients cF−k,m(n, `) of ψF−k,m with ∆ < 0 will determine
the Fourier coefficients cF−k,m(n, `) with ∆ > 0. The analogue of (4.14) for these CHL
models reads [20]

cF−k,m(n, `) =
∑

γ∈WN (m,n,`)
(−1)`γ+1 |`γ | d1(mγ) d2(nγ) , ∆ = 4mn− `2 < 0 . (4.21)

Each summand represents again the contribution of a bound state that disappears when
crossing a wall of marginal stability associated with the continued fraction decomposition of
`/2m, keeping however only those walls whose associated matrix γ lies in the subset (3.43).
As discussed above, if the last wall that is crossed in this manner results in mγ = −1,
the operation of additional T matrices needs to be taken into account. These are associ-
ated with the decomposition (4.20) of the Fourier coefficients of ψ−k,−1, by retaining the
contributions in (4.20) with nγ ≥ −1/N . These contributions are then to be added. A
similar argument holds in the case of nγ = −1/N , except that here we take into account
U matrices.

Thus, summarising, assuming that there is a generalized Rademacher expansion for
congruent subgroups Γ0(N), the microstate degeneracies of a single centre 1

4 BPS black hole
14One can restrict the range of ` to be 0 ≤ ` ≤ m for even weight Jacobi forms ψF−k,m, i.e. for N = 2, 3, 4, 5,

see [21].
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in (the twisted sector of) CHL models with N = 1, 2, 3, 5, 7 are encoded in the continued
fraction decomposition of `/2m ∈ Q and in walls corresponding to additional T and U

matrices (cf. (3.4)) associated with the Fourier coefficients c−k,−1(n, `) of ψ−k,−1.

A similar reasoning applies to ∆ = 0 decadent states, as in the case of heterotic string
theory on T 6.

We close with two comments in the case of heterotic string theory on T 6. As shown
in [20], all the S-walls in the strip s = −1 can be mapped to the wall v2 = 0 in (ρ2, σ2, v2)-
space, and hence can be mapped to the s = 0 T-wall of the polar part,

∞∑
m=−1

ψPm(σ, v) e2πimρ = 1
η24(σ)

∞∑
m=−1

d(m)A2,m(σ, v) e2πimρ

= 1
η24(σ)

∑
s∈Z

∞∑
m=−1

d(m) e2πimρ q
ms2+sy2ms+1

(1− qsy)2 . (4.22)

Likewise, the S-walls in other strips will be mapped to corresponding T-walls of the polar
part. Thus, the wall-crossing formula for S-walls is encoded in (4.22).

The continued fraction of `/2m ∈ Q can be represented in terms of a Stern-Brocot tree
and can be viewed as an ‘inverse discrete attractor flow’ [19].
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A Integral binary quadratic forms

By definition, an integral binary quadratic form is a homogenous quadratic polynomial
f ∈ Z[x, y] [31],

f(x, y) = ax2 + bxy + cy2 . (A.1)

The associated discriminant ∆ is
∆ = 4ac− b2 . (A.2)

Binary quadratic forms are divided into four types according to ∆, as follows [32]:

1. ∆ > 0: f is an elliptic quadratic form;

2. ∆ = 0: f is a parabolic quadratic form;

3. −∆ > 0, but not a square: f is a hyperbolic quadratic form;

4. −∆ > 0, and a square: f is 0-hyperbolic.
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When ∆ > 0, the binary quadratic form is called definite, whereas when ∆ < 0, the
binary quadratic form is called indefinite.

Any integral binary quadratic form f has a symmetric matrix A associated to it,

A =
(

2a b

b 2c

)
, detA = ∆ . (A.3)

Two integral binary quadratic forms f and g are called equivalent [31], f ∼ g, if g = γ ◦ f
for some matrix γ ∈ SL(2,Z), where γ ◦ f is defined by

γ ◦ f = f(px+ qy, rx+ sy) = 1
2(x, y) γTAγ

(
x

y

)

= aγ x
2 + bγ xy + cγ y

2 , γ =
(
p q

r s

)
∈ SL(2,Z) . (A.4)

Here,

aγ = p2a+ prb+ r2c = f(p, r) ,
bγ = 2pqa+ 2src+ (ps+ qr)b ,
cγ = q2a+ qsb+ s2c = f(q, s) . (A.5)

The equivalence relation f ∼ g defines equivalence classes of integral binary quadratic
forms. When a form f is equivalent to itself under a transformation γ, i.e. f = γ ◦ f ,
one speaks of self-equivalence of a form. Non-trivial self-equivalences of a form are called
automorphs of the form [39].

Binary quadratic forms have been shown to play a role in the study of BPS black
holes [40–45]. In this paper, we focused on the cases ∆ < 0 and ∆ = 0. The associated
integral binary quadratic forms are thus either hyperbolic/0-hyperbolic or parabolic. In
the case of parabolic forms, any parabolic form can brought to the form ax2. Thus, for
each non-zero integer a there is just one equivalence class of parabolic forms, with ax2

being a representative in this equivalence class. In the case of hyperbolic forms, it can be
shown that there are only a finite number of equivalence classes [32]. Properties of binary
quadratic forms can be studied by their topographs [32, 46].

In the following, let us consider indefinite integral binary quadratic forms, and let
us specify these for the various types of decadent dyons discussed in this paper. First,
consider decadent dyons (m,n, `) in ZN CHL orbifold models with torsion I = 1. To these
we associate the following integral binary quadratic form,

f(x, y) = Nmx2 −N`xy +Nny2 , (A.6)

where we recall that for CHL models with N prime (with values N = 1, 2, 3, 5, 7), the
charge bilinears are quantized according to

m = 1
2Q

2
m ∈ Z , n = 1

2Q
2
e ∈

1
N

Z , ` = Qe ·Qm ∈ Z . (A.7)
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Subjecting f to the SL(2,Z)-transformation (A.4), we obtain

Nmγ = Nmp2 −N`pr +Nnr2 ,

Nnγ = Nmq2 −N`qs+Nns2 ,

N`γ = −2Nmpq − 2Nnrs+N`(ps+ qr) . (A.8)

Requiringmγ , Nnγ , `γ ∈ Z restricts γ to lie in the congruence subgroup Γ0(N) ⊂ PSL(2,Z).
Next, we consider decadent dyons (m,n, `) in the N = 1 CHL model with arbitrary

torsion I. This requires the charge bilinears to be quantized according to

m ∈ Z , n ∈ t2Z , ` ∈ tZ , (A.9)

with t|I. To these dyons we associate the following integral binary quadratic form,

f(x, y) = t2mx2 − t`xy + ny2 . (A.10)

Under a transformation γ ∈ SL(2,Z)-transformation, (m,n, `) transform as

mγ = mp2 − `pr + nr2 ,

nγ = mq2 − `qs+ ns2 ,

`γ = −2mpq − 2nrs+ `(ps+ qr) . (A.11)

Demanding mγ ∈ Z, nγ ∈ t2Z, `γ ∈ tZ implies that q is a multiple of t, and hence γ lies
in the subgroup Γ0(t) ⊂ PSL(2,Z).

We now consider the zeroes of f(z, 1) in (A.10), where z = x/y (with y 6= 0),

z± = `

2tm ±
√
`2 − 4mn

2tm . (A.12)

In the range z− < z < z+, f(z, 1) attains its minimum at z0 = 1
2(z+ + z−) = `/2tm. Now

observe that t2mγ = f(p, r) = r2f(p/r, 1) (here we assume r 6= 0). For p/r in the range
z− < p/r < z+ we have mγ < 0. Consider choosing a path in the R-strip that starts in
the R-chamber and moves down to negative values of mγ , ending at t2mγ = f(p, r) < 0.
Any rational value z = p/r in the range z− < z < z+ will satisfies this. A natural choice
is z = z0, which is the value where f attains its minimum.

The theory of indefinite binary quadratic forms naturally incorporates the use of con-
tinued fractions via the link between Gauss’ reduction algorithm and the continued frac-
tion of z± [31]. We now consider the case t = 1. The continued fraction of z+ and z−
can yield charge bilinears of the form (mγ , nγ = −1, `γ) and (mγ = −1, nγ , `γ), respec-
tively. The contributions of these states need to be identified under the electric/magnetic
BSM phenomenon [20, 26, 29] in order to avoid overcounting. The theory of indefinite
binary quadratic forms also explains the appearance of the Brahmagupta-Pell equation
x2 − |∆| y2 = 4 in the context of the dyonic BSM phenomenon [26], where all contri-
butions of the form (mγ = −1, nγ = −1, `γ) must be identified. This can be viewed as
identifying automorphs of the indefinite binary quadratic form (A.10) with t = 1 and
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with (m,n, `) = (−1,−1, `). Automorphs of an indefinite binary quadratic form with non-
square discriminant −∆ are in one-to-one correspondence with the solutions to the above
Brahmagupta-Pell equation (see, for instance, Theorem 3.9 in [39]).

As we showed in this paper, the choice z = z0 is a universal choice that works for all
m > 0 and ∆ ≤ 0, i.e. its continued fraction yields a set of decay walls that circumvent the
phenomenon of BSM.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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