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Abstract We consider a family of four-dimensional black
hole solutions from Dehnen et al. (Grav Cosmol 9:153
arXiv:gr-qc/0211049, 2003) governed by natural number
q = 1, 2, 3, . . . , which appear in the model with anisotropic
fluid and the equations of state: pr = −ρ(2q − 1)−1,
pt = −pr , where pr and pt are pressures in radial and trans-
verse directions, respectively, and ρ > 0 is the density. These
equations of state obey weak, strong and dominant energy
conditions. For q = 1 the metric of the solution coincides
with that of the Reissner–Nordström one. The global struc-
ture of solutions is outlined, giving rise to Carter–Penrose
diagram of Reissner–Nordström or Schwarzschild types for
odd q = 2k + 1 or even q = 2k, respectively. Certain physi-
cal parameters corresponding to BH solutions (gravitational
mass, PPN parameters, Hawking temperature and entropy)
are calculated. We obtain and analyse the quasinormal modes
for a test massless scalar field in the eikonal approximation.
For limiting case q = +∞, they coincide with the well-
known results for the Schwarzschild solution. We show that
the Hod conjecture which connect the Hawking temperature
and the damping rate is obeyed for all q ≥ 2 and all (allowed)
values of parameters.

1 Introduction

The decaying oscillations such as quasinormal modes
(QNMs) [2–12] are at presence a very interesting and popular
topic of investigations. A possible application of QNMs may
be related to gravitational waves [13–15] emitted during the
ringdown (final) stage of binary black hole (BH) mergers.
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It is belived that the frequencies of gravitational waves may
be calculated by using certain superpositions of QNMs. The
importance of these experiments is following: the analysis
of experimental data may clarify the nature of gravity in the
regime of strong fields.

In solving the quasinormal mode (QNM) problem for cer-
tain physical tasks (e.g. related to asymptotically flat black
hole solutions) one should seek the solutions to a wave equa-
tion of the form �(t, x) = e−iωt�∗(x), where �∗ = �∗(x)
obeys a Schrödinger-type equation
(

−ε2 d2

dx2 + V (x)

)
�∗ = ω2�∗, (1.1)

with x ∈ (−∞,+∞) usually appearing as tortoise coordi-
nate and ε > 0, while typically ε = 1 [8–11].

For a certain class of spherically symmetric solutions
(which contain Schwarzschild, Reissner–Nordström ones
and the solutions considered in the body of the paper) the
potential is a smooth function obeying V (x) > 0, which
tends to 0 either when x → −∞ (in approaching to horizon)
or x → +∞ (in approaching to spatial infinity). By choos-
ing (typically) the QNM frequencies ω as complex numbers
obeying Re ω > 0 and Im ω < 0, one get the wave functions
�(t, x) = e−iωt�∗(x) to be damped in time as t → +∞,
while |�∗(x)| has an exponential growth (in |x |) as |x | → ∞.
The QNMs [10,11] are usually calculated by a analytical con-
tinuation method [5–7]. According to Ref. [12] this method
reads as follows: one should start with the Schrödinger equa-
tion for a wave function � = �(x)
(

−h̄2 d2

dx2 − V (x)

)
� = E�. (1.2)

It describes a (non-relativistic) quantum particle of mass 1/2
“moving” in the potential −V (x). Let us suppose that the
Schrödinger operator corresponding to (1.2) has non-empty
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discrete spectrum En = E(h̄, n| − V ), where n = 0, 1, . . . .
(The corresponding eigen functions � = �n(x) should be
exponentially decaying as x → ±∞). Due to Ref. [12] one
should put for QNM frequencies

ω2 = −E(h̄ = iε, n| − V ). (1.3)

Here n = 0, 1, . . . is called as overtone number.
In this article we deal with 4D black hole solutions

from Ref. [1]. These solutions take place in the model with
anisotropic fluid with the following equations of state:

pr = −ρ/(2q − 1), pt = ρ/(2q − 1), (1.4)

where pr and pt are pressures in radial and transverse direc-
tions, respectively, ρ > 0 is the density and q = 1, 2, 3, . . .

is the natural number. (In (1.4) we put c = 1 .) It may be read-
ily verified that these equations of state obey weak (ρ ≥ 0,
ρ + pi ≥ 0), strong (ρ +∑

j p j ≥ 0, ρ + pi ≥ 0) and domi-
nant (ρ ≥ |pi |) energy conditions (here (pi ) = (pr , pt , pt )).

Here we obtain and analyse the QNMs for a test mass-
less scalar field in the eikonal approximation which is the
main subject of the paper. By product we present the global
structure of BH solutions under consideration and calculate
certain physical parameters corresponding to them (gravi-
tational mass, PPN parameters, Hawking temperature and
entropy).

The paper is organised as follows. In Sect. 2 we present
the black hole solutions from Ref. [1]. In Sect. 3 we analyse
the global structure of the solutions. In Sect. 4 we calculate
certain physical parameters which correspond to the solu-
tions under consideration. In Sect. 5 we find the frequences
of QNMs in the eikonal approximation which correspond to
massless test scalar field in the background metric of our BH
solutions with anisotropic fluid for q = 1, 2, 3, . . . . Section
6 is devoted to special (integrable) cases q = 1, 2, 3 and the
limiting case q = +∞. In Sect. 7 we verify the validity of
the Hod conjecture [16] for the solutions under consideration
with q > 1.

2 The black hole solution

Here we consider the solutions to Einstein equations

Rμ
ν − 1

2
δμ
ν R = κTμ

ν , (2.1)

where κ = 8πG/c4, G is Newton gravitational constant and
c is speed of light.

The solutions under consideration are defined on the four-
dimensional manifold with topology

M = R(radial) × S
2 × R(time). (2.2)

Here the spherical coordinate system is used: xμ = (r, θ, φ,

t) with signature (+++,−). The energy-momentum tensor

of anisotropic fluid is taken as

(Tμ
ν ) = diag

(
pr , pt , pt , −ρc2

)
, (2.3)

and the equations of state read

pr = −ρc2(2q − 1)−1, pt = −pr . (2.4)

Here ρ is the mass density, pr and pt are pressures in radial
and orthogonal (to radial) directions, respectively.

The parameter q describes relations between the pressures
and the mass density; q > 0, q �= 1/2. In the present paper,
the parameter q is taken to be a natural number to avoid
the non-analytical behaviour of the metric at the (would be)
horizon.

The solution has the following form [1]:

ds2 = gμνdx
μdxν = (H(r))2/q

[
dr2

1 − 2μ
r

+ r2d
2

−(H(r))−4/q
(

1 − 2μ

r

)
c2dt2

]
, (2.5)

κρc2 = (2q − 1)P(P + 2μ)(1 − 2μr−1)q−1

H(r)2+ 2
q r4

, (2.6)

where the function H(r) reads as follows:

H(r) = 1 + P

2μ

[
1 −

(
1 − 2μ

r

)q]
. (2.7)

The metric on the sphere S
2 is denoted by d
2; parameters

P, μ > 0 are arbitrary. Originally we put r > 2μ = rh but
the domain of definition of the metric will be extended below.

The equations of motion (2.1) imply the following relation
for the scalar curvature

R[g] = −κTμ
μ = 2(q − 1)

2q − 1
κρc2, (2.8)

which will be used below for identifying the singularities of
solutions for q = 2, 3, 4, . . . .

3 The global structure of the solution

In what follows we will use the following relation for the
metric

ds2 = −A(r)c2dt2 + (A(r))−1dr2 + C(r)d
2, (3.1)

where

A = A(r) = (H2(r))−1/q
(

1 − 2μ

r

)
, (3.2)

C = C(r) = (H2(r))1/qr2. (3.3)

Here A = A(r) is so-called “red shift function”, C(r) > 0
is “area function”.

The global structure of the solutions above may be studied
by analysing the behaviour of the “redshift function” (A(r))
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Fig. 1 Carter–Penrose diagram for case q = 2, 4, 6, . . .

and the “area function” C(r) (the factor at d
2) at critical
points corresponding to horizons or singularities. The Carter–
Penrose diagrams can be constructed for various values of
the parameters using the standard algorithm [17]. For our
BH solutions it was done in Ref. [18].

In what follows we denote by r = r� the maximal root of
the equation H(r) = 0. We have r� < 0 for odd q = 2k + 1
and r� > 0 for even q = 2k.

There are three classes of important critical points of the
radial coordinate r for the metric (3.1):

(1) r = rh ≡ 2μ. This point corresponds to a regular external
horizon.

(2) r = r�. This point corresponds to the singularity.
(3) r = 0 for odd q = 2k + 1. This point corresponds to

internal horizon.

We introduce the following notations. Let Sch[r1, r2] (r1 <

r2) be a Carter–Penrose diagram of Schwarzschild type with
a singularity at a point r1 and a regular horizon at r2 (Fig. 1).
Similarly, we denote by RN[r1, r2, r3] (r1 < r2 < r3) the
diagram of Reissner–Nordström type with singularity at r1,
an internal horizon at r2, and an external horizon at r3 (Fig. 2).

As a result of analysis, we conclude that the structure of
diagrams depends mostly on the parity of the parameter q:

• For q = 2m, m ∈ N, we have a diagram of type
Sch[r�, rh].

• For q = 2m + 1 the diagram is of type RN[r�, 0, rh].

Extremal case. Let us consider an extremal case of the
solution under consideration when μ → +0. By using rela-
tions (2.5)–(2.7) we get in the limit μ → +0

ds2 = gμνdx
μdxν

= (He(r))
2/q

[
dr2 + r2d
2 − (He(r))

−4/qc2dt2
]
,

(3.4)

κρc2 = (2q − 1)P2

(He(r))
2+ 2

q r4
, (3.5)

Fig. 2 Carter–Penrose diagram for case q = 1, 3, 5, . . .

where

He(r) = 1 + Pq

r
, (3.6)

with P > 0. For q > 1 the metric (3.4) describes a naked
singularity corresponding to r → +0. Indeed, using relations
(2.8) and (3.5) we obtain for the scalar curvature

R[g] = 2(q − 1)P2

(r + Pq)
2+ 2

q r2− 2
q

. (3.7)

For q = 2, 3, 4, . . . we are led to relation: R[g] → +∞ as
r → +0, which tells us about the singularity corresponding
to r = +0. For q = 1 the metric (3.4) is coinciding with the
metric of extremal Reissner–Nordström solution with “dou-
ble” horizon corresponding to r = +0 and singularity (cen-
ter) at r = −P + 0.

4 Physical parameters

In this section we deal with some physical parameters of the
solutions. Here we put for simplicity c = h̄ = kB = 1.

4.1 Gravitational mass and PPN parameters

Let us consider the four-dimensional space-time with the
metric (2.5) for r > 2μ. Introducing a new radial variable R̄
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by the relation:

r = R̄

(
1 + μ

2R̄

)2

, (4.1)

we rewrite the metric in the following form:

ds2 = H2/q

⎡
⎣−H−4/q

(
1 − μ

2R̄

1 + μ

2R̄

)2

dt2

+
(

1 + μ

2R̄

)4

δi j dx
i dx j

⎤
⎦ (4.2)

i, j = 1, 2, 3. Here R̄2 = δi j x i x j .
The parametrized post-Newtonian (Eddington) parame-

ters are defined by the well-known relations

g00 = −(1 − 2V + 2βV 2) + O(V 3), (4.3)

gi j = δi j (1 + 2γ V ) + O(V 2), (4.4)

i, j = 1, 2, 3. Here

V = GM

R̄
(4.5)

is the Newtonian potential, M is the gravitational mass and
G is the gravitational constant.

From (4.2)–(4.4) we obtain:

GM = μ + P

q
(4.6)

and

β − 1 = q A f

2(GM)2 , (4.7)

γ = 1, (4.8)

where

A f = P(P + 2μ), (4.9)

or, equivalently, P = −μ +
√

μ2 + A f > 0.
The parameter β − 1 is proportional to the ratio of two

physical parameters: the anisotropic fluid density parameter
A f and the gravitational radius squared (GM)2.

4.2 Hawking temperature and entropy

The Hawking temperature of the black hole may be calcu-
lated using the well-known relation [19]

TH = 1

4π
√−g00grr

d(−g00)

dr

∣∣∣∣
hori zon

, (4.10)

where here grr = (A(r))−1, see (3.1).
We get

TH = 1

8πμ

(
1 + P

2μ

)−2/q

. (4.11)

Here q = 1, 2, . . . .

The Bekenstein–Hawking (area) entropy S = A/(4G),
corresponding to the horizon at r = 2μ, where A is the
horizon area, reads

SBH = 4πμ2

G

(
1 + P

2μ

)2/q

. (4.12)

5 Quasinormal modes

In this section we derive quasinormal modes (in eikonal
approximation) for our static and spherically symmetric solu-
tion (for given q) with the metric given (initially) in the fol-
lowing general form

ds2 = −A(u)dt2 + B(u)du2 + C(u)d
2 , (5.1)

where A(u), B(u), C(u) > 0 and d
2 = dθ2 + sin2 θdφ2.
Note that in this section and below we use the Planck units,
i.e. we put h̄ = G = c = 1.

We consider a test massless scalar field defined in the
background given by the metric (4.2). The equation of motion
in general is written in the form of the covariant Klein–Fock–
Gordon equation

�� = 1√|g|∂μ(
√|g|gμν∂ν�) = 0. (5.2)

where μ, ν = 0, 1, 2, 3. In order to solve this equation we
separate variables in function � as follows

� = e−iωt e−γ �∗(u)Ylm, (5.3)

where Ylm are the spherical harmonics, l is the multipole
quantum number, l = 0, 1, . . . and m = −l, . . . , 0, . . . , l.

Equation (5.2), after using (5.3) yields the equation
describing the radial function �∗(u) and having a Schrödin-
ger-like form

d2�∗(u)

du2 +
{
B

A
ω2 − B

C
l(l + 1) − γ ′′

−(γ ′)2
}
�∗(u) = 0 (5.4)

where

γ = 1

2
ln(B−1C

√
AB) (5.5)

and γ ′ = dγ /du, γ
′′ = d2γ

du2 .
Taking into account above expressions one can examine

our black hole solution which has the following form

ds2 = −A(r)dt2 + dr2

A(r)
+ Har2d
2, (5.6)
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where A(r) and C(r) according to Eq. (2.5) can be written
as

A(r) = A = H−a
(

1 − 2μ

r

)
, (5.7)

C(r) = C = Har2 = exp(2γ ), a = 2/q, (5.8)

where

H(r) = 1 + P

2μ

[
1 −

(
1 − 2μ

r

)q]
= 1 + p(1 − zq)

(5.9)

is the moduli function, μ > 0, P > 0, p = P/(2μ), q =
1, 2, . . . and

z = 1 − 2μ

r
, r = 2μ

1 − z
. (5.10)

We note that 0 < z < 1 for r > 2μ.
After using the “tortoise” coordinate transformation

dr∗ = dr

A(r)
(5.11)

the metric takes the following form

ds2 = −Adt2 + Adr2∗ + Cd
2 . (5.12)

For the choice of the tortoise coordinate as a radial one (u =
r∗) we have A = B and

γ = 1

2
lnC = 1

2
ln(Har2), (5.13)

a = 2/q.
Thus, the Klein–Fock–Gordon equation becomes

d2�∗
dr2∗

+ {
ω2 − V

}
�∗ = 0, (5.14)

where ω is the (cyclic) frequency of the quasinormal mode
and V = V (r) = V (r(r∗)) is the effective potential

V = V + δV, (5.15)

V = l(l + 1)A

Har2

= l(l + 1)z(1 − z)2(1 + p(1 − zq))−2a

(2μ)2 , (5.16)

δV = γ ′′ + (γ ′)2 = (
√
C)

′′
/
√
C, (5.17)

so that V is the eikonal part of the effective potential. Here
and below we denote F ′ = dF

dr∗ = AdF
dr .

In what follows we consider the so-called eikonal approx-
imation when l � 1.

The maximum of the eikonal part of the effective potential
is found from the extremum condition

V ′ = A
dV
dr

= 0 (5.18)

or, equivalently,

ν = dV
Vdz = 1

z
− 2

1 − z
+ 4pzq−1

1 + p(1 − zq)
= 0, (5.19)

or

pzq+1 − 3pzq + (1 + p)(3z − 1) = 0. (5.20)

Proposition 1 For any P > 0, μ > 0 and q ∈ N, the
extremality relation (5.18) has only one solution for r > 2μ,
which is the point of maximum for V(r).

The proposition is proved in Appendix. We denote this point
of extremum by r0. In terms of variable z we get that the
point z0 = 1 − 2μ/r0 is a unique solution to Eq. (5.20) for
z ∈ (0, 1).

The maximum of the eikonal part of the effective potential
thus becomes

V0 = V(r0) = l(l + 1)

H2a(r0)r2
0

(
1 − 2μ

r0

)
. (5.21)

In Fig. 3 we plot the reduced eikonal part of the effective
potential V/(l(l + 1)) (l �= 0) as a function of the radial
coordinate r (left panel) and the tortoise coordinate r∗ (right
panel).

As can be seen from examples presented in figure for spe-
cial fixed values of P and μ, the maximum of the effec-
tive potential is largest for q = +∞ case and smallest
for q = 1 case. The case with q = 2 is in the middle.
At large distances the effective potential tends to zero, as
expected.

The second derivative with respect to the tortoise coordi-
nate in the point of extremum is given by

V ′′
0 = d2V

dr2∗

∣∣∣∣
r∗=r∗(r0)

= A2
0
d2V
dr2

∣∣∣∣
r=r0

= A2
0

(
dz

dr

)2 ∣∣∣∣
r=r0

d2V
dz2

∣∣∣∣
z=z0

= A2
0

(
2μ

r2
0

)2
d2V
dz2

∣∣∣∣
z=z0

(5.22)

where A0 = A(r0), see (5.7). The calculation of second
derivative gives us

d2V
dz2

∣∣∣∣
z=z0

= d

dz
(νV)

∣∣∣∣
z=z0

= V0
dν

dz

∣∣∣∣
z=z0

, (5.23)

where ν = ν(z) is defined in (5.19). We get

dν

dz

∣∣∣∣
z=z0

= − 1

z2
0

− 2

(1 − z0)2

+ 4p2qz2q−2
0

(1 + p(1 − zq0))2
+ 4p(q − 1)zq−2

0

1 + p(1 − zq0)
. (5.24)

The last two terms in this relation may be simplified
by using the relation for the third term in (5.19). We
obtain
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Fig. 3 The graphical representation of the reduced potential V/(l(l + 1)) as a function of the radial coordinate r (left panel) and the tortoise
coordinate r∗ (right panel) for P = 2μ = 1, q = 1, 2, 3 and the limiting case q → +∞

dν

dz

∣∣∣∣
z=z0

= − 1

z2
0

− 2

(1 − z0)2

+q

4

(
1

z0
− 2

1 − z0

)2

+ q − 1

z0

(
− 1

z0
+ 2

1 − z0

)

= − 3q

4z2
0

+ q − 2

z0(1 − z0)2 . (5.25)

Thus, by using (5.22), (5.23) and (5.25) we find

V ′′
0 = −1

2
A2

0

(
2μ

r2
0

)2

V0B(z0), (5.26)

where

B(z) = 3

2
q − 2(q − 2)z

(1 − z)2 . (5.27)

The square of the cyclic frequency in the eikonal approx-
imation reads as following [10,11]

ω2 = V0 − i

(
n + 1

2

) √
−2V ′′

0 + O(1), (5.28)

where l � 1 and l � n. Here n = 0, 1, . . . is the overtone
number. By choosing an appropriate sign for ω we get the
asymptotic relations (as l → +∞) on real and imaginary
parts of complex ω in the eikonal approximation

Re(ω) =
(
l + 1

2

)
H−a

0 r−1
0 z1/2

0 + O

(
1

l + 1
2

)
, (5.29)

Im(ω) = −
(
n + 1

2

)
H−a

0 μr−2
0 B1/2

0 + O

(
1

l + 1
2

)
,

(5.30)

where H0 = H(r0) (see (5.9)), r0 = 2μ/(1 − z0), and z0 ∈
(0, 1) is solution to master equation (5.20) and B0 = B(z0),
where B(z) is defined in (5.27).

We note that the parameters of the unstable circular
null geodesics around stationary spherically symmetric and

asymptotically flat black holes are in correspondence with
the eikonal part of quasinormal modes of these black holes.
See [20–22] and references therein. Due to Ref. [23] this cor-
respondence is valid if certain restrictions on perturbations
are imposed.

6 Special cases q = 1, 2, 3 and the limiting case
q = +∞

In this section we consider eikonal QNM for three cases
q = 1, 2, 3 when the master equation (5.20) may be solved
in radicals for all values of p > 0 and also in the limiting
case q = +∞.

6.1 The case q = 1

Let us consider the case q = 1 (a = 2). In this case the
master equation (5.20) is just a quadratic one with two roots:

z+ = −3 ± √
4p(p + 1) + 9

2p
, (6.1)

Here

z+ = z0 = z0(1, p), (6.2)

is belonging to interval (0, 1), while z− < 0 is irrelevant for
our consideration. We have

∂z0(1, p)

∂p
= 3

√
4p(p + 1) + 9 − 2p − 9

2p2
√

4p(p + 1) + 9
> 0. (6.3)

We get that the fuction z0(1, p) is monotonically increasing
and have the following limits: z0(1, p) → 1/3 as p → +0
and z0(1, p) → 1 as p → +∞. For all values p > 0 we
have

1/3 < z0(1, p) < 1. (6.4)
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In this case the eikonal QNM (see (5.29) and (5.30)) read

Re(ω) =
(
l + 1

2

)
H−2

0 r−1
0 z1/2

0 + O

(
1

l + 1
2

)
, (6.5)

Im(ω) = −
(
n + 1

2

)
H−2

0 μr−2
0

√
3

2
+ 2z0

(1 − z0)2

+O

(
1

l + 1
2

)
, (6.6)

where H0 = 1 + P
r0

, r0 = 2μ/(1 − z0) and z0 = z0(1, p) is
defined in (6.2).

It may be verified that relations (6.5), (6.6) may be rewrit-
ten as follows

Re(ω) =
(
l + 1

2

) √
M̄

r̄3
0

− Q2

2r̄4
0

+ O

(
1

l + 1
2

)
, (6.7)

Im(ω) = −
(
n + 1

2

) √
M̄

r̄3
0

− Q2

2r̄4
0

√
3M̄

r̄0
− 2Q2

r̄2
0

+O

(
1

l + 1
2

)
, (6.8)

where r̄0 = r0 + P , M̄ = μ + P = GM and

A f = P(P + 2μ) = 1

2
Q2. (6.9)

Here r̄0 corresponds to the position of the unstable, circu-
lar photon orbit in the Reissner–Nordström spacetime with
the metric

ds2 = − f̄ (r̄)dt2 + ( f̄ (r̄))−1dr̄2 + r̄2d
2
2, (6.10)

where f̄ (r̄) = 1 − 2GM
r̄ + Q2

2r̄2 , with Q2 given by (6.9). Our
AF (anisotropic fluid) metric (2.5) for q = 1 is coinciding
with the Reissner–Nordström one (6.10) when the following
relation for radial coordinates r̄ = r + P is imposed.

Relations (6.7), (6.8) for Reissner–Nordström spacetime
were obtained in Ref. [24] for n = 0.

6.2 The case q = 2

Now we put q = 2 (a = 1). The master equation (5.20)
in this case is just cubic one. It has a unique (real) solution
z0 = z0(2, p) for any p > 0 belonging to interval (1/3, 1)

z0 = z0(2, p) = Z1/3 − p−1Z−1/3 + 1, (6.11)

where

Z = Z(p) = 1

p

(√
1 + 1

p
− 1

)
. (6.12)

The function Z(p) is monotonically decreasing from +∞
to +0 and has the asymptotics:

Fig. 4 The graphical representation of the function z0 = z0(3, p)

Z(p) ∼ p−3/2(1 − √
p + O(p)) as p → +0 and Z(p) ∼

2−1 p−2 as p → +∞ which imply z0(2, p) → 1/3 as p →
+0 and z0(2, p) → 1 as p → +∞. It may be verified that
the function z0(2, p) is monotonically inreasing from 1/3 to
1.

The eikonal QNM for q = 2 read

Re(ω) =
(
l + 1

2

)
H−1

0 r−1
0 z1/2

0 + O

(
1

l + 1
2

)
, (6.13)

Im(ω) = −
(
n + 1

2

)
H−1

0 μr−2
0

√
3 + O

(
1

l + 1
2

)
, (6.14)

where H0 = 1 + P
2μ

[
1 −

(
1 − 2μ

r0

)2
]

, r0 = 2μ/(1 − z0),

and z0 = z0(2, p) is defined in (6.11).

6.3 The case q = 3

Let us consider the last case q = 3, when the master equation
(5.20) of fourth power has a solution in radicals (which was
obtained by Mathematica):

z0 = z0(3, p) = 1

2

√
X −

√
Y

4
√

3
+ 3

4
, (6.15)

Y = 12Z1/3 + 27 + 20

(
1 + 1

p

)
Z−1/3, (6.16)

Z = p + 1

2p2 (9 + 3−3/2
√

2187 − 500p(p + 1)), (6.17)

X = −3
√

3

2

(
1 − 8

p

)
Y−1/2 − Z1/3

−5(p + 1)

3p
Z−1/3 + 9

2
. (6.18)

It may be verified that z0 = z0(3, p), given by relations
(6.15)–(6.18), is real for all p > 0 and obey 1/3 < z0 <
3−√

5
2 ≈ 0, 382. This property is graphically illustrated on

Fig. 4.
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Relations (6.5), (6.6) in this case reads as follows

Re(ω) =
(
l + 1

2

)
H−2/3

0 r−1
0 z1/2

0 + O

(
1

l + 1
2

)
, (6.19)

Im(ω) = −
(
n + 1

2

)
H−2/3

0 μr−2
0

(
9

2
− 2z0

(1 − z0)2

)1/2

+O

(
1

l + 1
2

)
, (6.20)

where H0 = 1 + P
2μ

[
1 −

(
1 − 2μ

r0

)3
]

, r0 = 2μ/(1 − z0),

and z0 = z0(3, p) is given by (6.15).

6.4 The case q = +∞

In this case the relations (5.29) and (5.30) for QNM in eikonal
approximation read as follows

Re(ω) =
(
l + 1

2

) √
μ

r3
0

+ O

(
1

l + 1
2

)
, (6.21)

Im(ω) = −
(
n + 1

2

) √
μ

r3
0

+ O

(
1

l + 1
2

)
, (6.22)

where r0 = 3μ = 3GM corresponds the position where
the black hole effective potential attains its maximum. We
note that r0 = 3μ is the radius of the photon sphere for the
Schwarzschild black hole with the metric

ds2 = −
(

1 − 2μ

r

)
dt2 +

(
1 − 2μ

r

)−1

dr2 + r2d
2
2,

(6.23)

which is coinciding with limiting case of our AF metric (2.5)
when q = +∞.

We note that relations (6.21), (6.22) for Schwarzschild
spacetime were obtained in Ref. [5].

Remark Here we restrict our choice of a test field by a mass-
less (spin-zero, non-charged) scalar field which is the sim-
plest “perturbation” to study. It may be shown that the consid-
eration of a test Maxwell field on our black hole background
will lead us to two equations on functions: �∗,a = alm(r∗)
and �∗,b = blm(r∗), which are certain combinations of coef-
ficients (and their derivatives) coming from decomposing of
vector potential in (vector) spherical harmonics. These equa-
tions (one of them is just an integrability condition) look like
Eq. (5.14) but with another potential V = V , instead of (5.15)
(δV = 0 in this case). Thus, we will obtain the same spec-
trum of QNM in eikonal approximation for a test Maxwell
field as for a massless scalar field considered here.

7 Hod conjecture

Here we verify the conjecture by Hod [16] on the existence
of quasi-normal modes obeying the inequality

|Im(ω)| ≤ πTH , (7.1)

where TH is Hawking temperature.
We note the Hod conjecture has been tested in theo-

ries with higher curvature corrections such as the Einstein–
Dilaton–Gauss–Bonnet and Einstein-Weyl for the Dirac field
(with positive result) [25]. (For negative result see Ref. [26].)
Recently, we have also verified the Hod conjecture (with pos-
itive result) for a solution with dyon-like dilatonic black hole
[27] for certain values of dimensionless parameter a ∈ [0, 1].

Here we verify this conjecture by using the obtained
eikonal relations (5.30) for Im(ω) and the relation for the
Hawking temperature (4.11). For our purpose it is sufficient
to check the validity of the inequality

y = y(p, q) ≡ |Im(ωeik)(n = 0)|
πTH

=
[

1 + p

1 + p(1 − zq0)

]2/q

×(1 − z0)
2

√
3

2
q − 2(q − 2)z0

(1 − z0)2 < 1, (7.2)

for all p = P/μ > 0, q = 2, 3, . . . , where z0 = z0(p, q)

is unique solution to master equation (5.20), which obeys
0 < z0 < 1, see Lemma in Appendix.

In (7.2) we use the limiting “eikonal value” given by the
first term in (5.30) for the lowest overtone number n = 0.

Proposition 2 The dimensionless parameter y = y(p, a)

from (7.2) obeys the inequality: y < 1 for all p > 0 and
q ∈ {2, 3, 4, . . . }.
Proof First we consider the case q > 2. In what follows we
use the relation

1

3
< z0 = z0(p, q) < 0.4, (7.3)

for all p > 0 and q > 2. Indeed, it follows from relations
(A.16)–(A.18) given at Appendix that

1

3
< z0 = z0(p, q) < z∗(q) ≤ z∗(3) = 3 − √

5

2
≈ 0, 382, (7.4)

for all p > 0 and q ≥ 3. Thus, relation (7.3) is correct.

In what follows we use the following splitting

y = y1y2y3, (7.5)

y1 =
[

1 + p

1 + p(1 − zq0 )

]2/q

, y2 = (1 − z0)
2,

y3 = √
B(z0), (7.6)

where B(z) = 3
2q − 2(q−2)z

(1−z)2 .

123



Eur. Phys. J. C (2022) 82 :624 Page 9 of 13 624

Fig. 5 The graphical
representation of the function
y(p, q) for q = 1, 2, 3, 4

For y1 we obtain from (7.3)

y1 = y1(p, q) =
[

1

1 − p
p+1 z

q
0

]2/q

<

[
1

1 − zq0

]2/q

<

[
1

1 − (0.4)q

]2/q

, (7.7)

for all p > 0 and q > 2. Now, we use the following fact
about the function

f̃ (q) =
[

1

1 − uq

]2/q

, (7.8)

where 0 < u < 1 and q > 0. Namely, the function f̃ (q) is
monotonicall decreasing in (0,+∞). This follows from the
relation

d f̃ (q)

dq
= f̃ (q)

2

q2(1 − x)
[(1 − x) ln(1 − x) + x ln x] < 0,

(7.9)

where x = uq and 0 < x < 1. This fact imlies for u = 0.4
the following bound

y1 = y1(p, q) <

[
1

1 − (0.4)q

]2/q

≤
[

1

1 − (0.4)3

]2/3

≈ 1.04507975. (7.10)

for all p > 0 and q ≥ 3. Hence, we get

y1 = y1(p, q) < 1.0451, (7.11)

for all p > 0 and q > 2.
For y2 we obtain from (7.3)

y2 = y2(p, q) = (1 − z0)
2 <

4

9
, (7.12)

for all p > 0, q > 2.
The last bound

y3 = y3(p, q) = √
B(z0) <

√
B(1/3) = √

3, (7.13)

is also valid for all p > 0 and q > 2. It follows from
monotonical decreasing of the function B(z) in (0, 1) and
1/3 < z0 < z∗ < z1. Here B(z) > 0 for z ∈ (0, z1) and
z∗ = z∗(q), z1 = z1(q) are defined in Appendix.

Plugging the bounds (7.11)–(7.13) into (7.5) we find

y = y(p, q) < 1.0451 × (4/9) × √
3 ≈ 0.804518, (7.14)

and hence

y = y(p, q) < 0.80452 < 1, (7.15)

for all p > 0, q > 2.
This result can be illustrated by a numerical plot of the

function y(p, q) for a particular set of values of q, depicted
on Fig. 5. For q = 2 the validity of Proposition 2 was verified
numerically.

We note that recently, some examples of the violation of
the Hod conjecture have been discussed for certain black hole
solutions in supergravity and other theories [21].

Remark Let us comment also on the case q = 1 which gives
us the Reissner–Nordström metric. It may be readily verified
that in this case the inequality (7.2) is not satisfied for all
values of p: it is valid only for 0 < p < pcr , where pcr is
some critical value of parameter p [27]. As it was pointed
out in [27] the violation of the Hod inequality in the eikonal
regime for certain p (and n = 0) does not close the possibility
for the obeying this relation for exact values of QNM for
certain l = 0, 1, 2, . . . and all values of parameter p.

8 Conclusion

Here we have studied a non-extremal black hole solutions
in a four-dimensional gravitational model with anisotropic
fluid proposed in Ref. [1]. The equations of state for the
fluid (1.4) contains a parameter q which is natural num-
ber q = 1, 2, 3 . . . . We have outlined the global structure
of solutions under consideration: for odd q = 2k + 1 the
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Carter–Penrose diagram is coinciding with that of Reissner–
Nordström metric (the case of time-like singularity hidden
by two horizons) while for even q = 2k it is coinciding
with that of Schwarzschild metric (the case of space-like sin-
gularity hidden by one horizon). For q = 1 the metric of
the solution [1] coincides with the metric of the Reissner–
Nordström solution while in the limit q = +∞, we get the
metric of the Schwarzschild solution. We have also presented
certain physical parameters corresponding to BH solutions:
gravitational mass M , Hawking temperature, black hole area
entropy.

We have examined the solutions to massless Klein–Fock–
Gordon equation in the background of our static BH metric
for given q = 1, 2, 3 . . . . . By using the tortoise coordinate
we have reduced this equation to radial one governed by cer-
tain effective potential. This potential contains the parameters
of solution such as P > 0, μ > 0, natural parameter q and
also l which is the multipole quantum number, l = 0, 1, . . . .

Here we have studied the eikonal part of the effective
potential for large l and have found a master equation for
the value z0 = 1 − 2μ/r0, where r0 is the value of the
radial coordinate (radius) r0 corresponding to the maximum
of the eikonal part of the effective potential. By using the
maximum value of (the eikonal part) of the effective poten-
tial V0 and r0, we have calculated the cyclic frequencies of
the QNMs in the eikonal approximation up to solution of
the master equation in z0. Since the master equation is an
algebraic equation of order q + 1 in z0 we were able to find
analytical exact solutions for q = 1, 2, 3. For obtained val-
ues of eikonal QNMs we have also considered special cases
q = 1, 2, 3 and a limiting cases q = +∞. For q = 1 our
(eikonal) relations are compatible with the well-known result
for Reissner–Nordström solution [24] (for n = 0), while for
q = +∞ they in an agreement with the well-known result
for the Schwarzschild solution [5].

We have also tested the validity of the Hod conjecture
for our solutions by considering QNMs (eikonal) frequences
with the lowest value of the overtone number n = 0. We have
shown that the Hod conjecture is valid in the range of q > 1.
This assumption is valid for these values of q > 1 since it is
supported by examples of states with large enough values of
the multipole number l.

We note, that the results obtained here for eikonal QMN
modes of test massless (non-charged) scalar field are also
valid for some other test fields, e.g. for electromagnetic one.
This may be considered (by product) in a separate publica-
tion. (The results of Refs. [28,29] may be also used in future
work.)
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Appendix A

Here we prove the Proposition 1. Since the extremality con-
dition (5.18) for the effective potential V (r > 2μ) is equiv-
alent to the master equation (5.20) (z = 1 − 2μ/r ), and the
second derivative V ′′

0 at the point of extremum is given by
relation (5.26) with V0 > 0 (see (5.21)), the Proposition 1 is
equivalent to the following Lemma.

Lemma For any p > 0 and q ∈ N = {1, 2, 3 . . . }, the
master equation

pzq+1 − 3pzq + (1 + p)(3z − 1) = 0 (A.1)

has only one solution z0 = z0(p, q), belonging to interval
(0, 1). This solution obeys the inequality

B(z0) = 3

2
q − 2(q − 2)z0

(1 − z0)2 > 0 (A.2)

for all p > 0 and q ∈ N.

Proof Since z = 1/3 is not a solution to Eq. (A.1) we present
the master equation in the following form

F(z) = F(z, q) = zq
z − 3

3z − 1
= −b = −1 − 1

p
< 0, (A.3)

p > 0. The functions F(z) = F(z, q), q = 1, 2, 3, 4, are
presented at Fig. 6. It follows from the definition (A.3) that

F(z, q) > 0, (A.4)

for z ∈ (0, 1/3), q ∈ N and

lim
z→1/3±0

F(z, q) = ∓∞, (A.5)

lim
z→1−0

F(z, q) = −1, (A.6)

for all q ∈ N. Hence the seminterval (0, 1/3] should be
excluded in our search the solution to Eq. (A.3).
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Fig. 6 The graphical
representation of the functions
F(z) = F(z, q) for
q = 1, 2, 3, 4

Let us analyze behavior of the function F(z) = F(z, q)

for z ∈ (1/3, 1) and fixed q ∈ N = {1, 2, 3 . . . }. The first
derivative reads

dF(z)

dz
= ∂F(z, q)

∂z
= zq−1 [3qz2 + (8 − 10q)z + 3q]

(3z − 1)2 .

(A.7)

For q = 1, 2, we have dF(z)
dz > 0 for z ∈ (1/3, 1) and

hence the function F(z) is monotonically increasing from
−∞ to −1, when z ∈ (1/3, 1). By applying the Intermediate
Value Theorem to our continuous monotonically increasing
function F(z) = F(z, q), q = 1, 2, we get that for any
p > 0 there exist unique z0(p, q) ∈ (0, 1), with z0(p, q) >

1/3, which obeys Eq. (A.1). 1 Inequality (A.2) is obviously
satisfied for q = 1, 2. That means that the Lemma is valid
for q = 1, 2.

Now we consider the case q > 2. From (A.7) we obtain
that the there exists a unique point of extremum of the func-
tion F(z, q) in the interval (1/3, 1)

z1 = z1(q) = 10q − 8 − √
(16q − 8)(4q − 8)

6q
, (A.8)

1/3 < z1(q) < 1, which is the first root of the quadratic
equation 3qz2 + (8 − 10q)z + 3q = 0. The second root
z2(q) = 1/z1(q) ∈ (1, 3) is irrelevant for our consideration.

The calculations give us: z1(3) = (11 − 2
√

10)/9 ≈
0, 5195, z1(4) = (4 − √

7)/3 ≈ 0, 4514, z1(5) = (7 −
2
√

6)/5 ≈ 0, 4202 and F(z1(3)) ≈ −0, 6227, F(z1(4)) ≈
−0, 2987, F(z1(5)) ≈ −0, 1297. We note that

z1(q + 1) < z1(q), (A.9)

1 We remind that the Intermediate Value Theorem states that if F is a
continuous function defined on the interval [a, b], then it takes on any
given value between F(a) and F(b) at some point of this interval.

for all q > 2. This follows from monotonical decreasing of
the function z1(q) for q > 2, since z1(q) = 1/z2(q) and

z2(q) = 10 − 8/q + √
(16 − 8/q)(4 − 8/q)

6
, (A.10)

is monotically increasing in q for q > 2.
It may be verified that

z1(q) → 1

3
, F(z1(q)) → 0, (A.11)

for q → +∞. Indeed, it follows from (A.8) that

z1(q) = 1

3
+ 1

3q
+ O(q−2), (A.12)

and

F(z1(q)) ∼ 1

3q

(
1 + 1

q

)q (
−8

3

)
q ∼ − 8e

3q+1 q → 0

(A.13)

as q → +∞.
The function F(z) = F(z, q) (for q > 2) is monotoni-

cally increasing in the interval (1/3, z1), since dF(z)
dz > 0 in

this interval, see (A.7), while it is monotonically decreasing
in the interval (z1, 1) due to inequality dF(z)

dz < 0 which is
valid there. Hence we get

F(z1(q), q) > F(z, q) > F(1, q) = −1 (A.14)

for all z ∈ (z1, 1) and q > 2. This implies that the semi-
interval [z1(q), 1) should be excluded in our search of solu-
tion to Eq. (A.3) for a given q > 2. Thus, we restrict our
consideration to z ∈ (1/3, z1(q)).

Let us define z∗(q) ∈ (1/3, z1(q)), which obeys the fol-
lowing equation

F(z∗(q), q) = −1, (A.15)

q > 2. By applying the Intermediate Value Theorem for
a continuos monotonically increasing function F(z(q), q)

defined on (1/3, z1(q)) and using (A.5) and (A.14) one can
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readily prove that such point does exist and is unique for any
q > 2.

The calculations give us

z∗(3) = 3 − √
5

2
≈ 0, 382, z∗(4) ≈ 0, 346,

z∗(5) ≈ 0, 337. (A.16)

It may be proved that

z∗(q + 1) < z∗(q), (A.17)

for any natural q > 2. Indeed, if we suppose that z∗(q+1) ≥
z∗(q) for some q we get from monotonical increasing of
the function F(z, q + 1) in (1/3, z1(q + 1)) and obvious
inequality F(z, q + 1) > F(z, q) for z ∈ (1/3, 1) that

−1 = F(z∗(q + 1), q + 1) ≥ F(z∗(q), q + 1)

> F(z∗(q), q) = −1

and hence we come to a contradiction. Thus, the chain of
inequalities (A.17) is correct.

Now we return to our original equation (A.3). From mono-
tonical increasing of the function F(z, q) in (1/3, z1(q)) we
get that F(z) ≥ F(z∗(q)) = −1 for z ∈ [z∗(q), z1(q)) and
hence the semi-interval [z∗(q), z1(q)) should be excluded
for our consideration of (A.3). By applying once more the
Intermediate Value Theorem for a continuos monotonically
increasing function F(z(q), q) defined on (1/3, z∗(q)) and
using (A.5) and (A.15) we can find that the point z0 which
obeys the equation (A.3) does exist, belongs to (1/3, z∗(q))

and is unique for any q > 2 and p > 0. We denote this point
as z0 = z0(p, q). Thus, we have

1/3 < z0(p, q) < z∗(q) < z1(q), (A.18)

for all q > 2 and p > 0. It follows from (A.11) and (A.18)

z0(p, q) → 1

3
, (A.19)

as q → +∞ uniformly in p ∈ (0,+∞).
We note that one can present the solution as

z0(p, q) = F−1
q

(
−1 − 1

p

)
, (A.20)

where F−1
q is the function which is inverse to the func-

tion Fq : (1/3, z∗(q)) −→ (−∞,−1), defined as Fq(z) =
F(z, q). The function F−1

q is a continuos and monotonically
increasing one (due to a proper theorem on inverse function).
It may be readily verified that

lim
p→+∞ z0(p, q) = z∗(q), (A.21)

and

lim
p→+0

z0(p, q) = 1/3. (A.22)

Thus, the first part of the Lemma is proved for all q ∈ N.
Now, we should prove the second part of the Lemma for
q > 2 (for q = 1, 2 it was checked above). Let us consider
the function

B(z) = 3

2
q − 2(q − 2)z

(1 − z)2 (A.23)

for z ∈ (0, 1) and q = 3, 4, . . . . We get

B(z) = 3qz2 + (8 − 10q)z + 3q

2(1 − z)2

= 3q(z − z1(q))(z − z2(q))

2(1 − z)2 , (A.24)

where z1(q) < 1 and z2(q) > 1 are defined by relations
(A.8) and (A.10), respectively. We find that B(z) > 0 for all
z ∈ (0, z1(q)) and hence for z = z0(p, q) with q > 2 and
p > 0. We remind that 1/3 < z0(p, q) < z∗(q) < z1(q) for
all q > 2 and p > 0. Thus, the inequality (A.2) is satisfied.
The Lemma is proved.
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